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Galois connections

Let A, Bbe sets, RC A x B.
Forany SC Aandany T C Blet

» SU:={beB|Vac S: aRb}

» T':={ac A|Vbe T:aRb}.
Then

» the maps T — T¢and S +— SY are C-antitone.

» the maps S+ S:=S%and T — T := T are closure

operators (S§C S=S)

> Suéu — Su, TZUE — /.
Usually it is of interest to characterize the family of closed sets
{S§| S = S} and the closure operator “from below”.
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Galois connections, examples

Let A, Bbe sets, R C A x B.

SY:={bec B|Vac S:aRb}=(),cs{bc B|aRb}
T¢:={acA|Vbe T:aRb} =p.r{ac Al aRb}
Examples

» A = vector space, B = dual space = set of linear forms.
aRb < b(a) = 0.
S C A= SY =linear hull of S.

» A= all formulas, B = all structures,
aflb < b a (the formula a holds in the structure b).
S = all consequences of S={a: SF a}

» A = operations on X, B = relations, fRp < f > p.
SU = (S) = clone generated by S.
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k-ary clones, clones

0K = {f | f: XK = X}. 0x = 2, 0.

Definition (k-ary clone)

A k-ary cloneon Xisaset T C ng) which is closed under
“composition” and contains the k projections.

Definition (Clone)

Acloneon Xisaset T C Ox = Jx_1 ng) which is closed
under “composition” and contains all projections.

Definition (Composition)

Letfe0®W, g, ..., € 0.

(g1, 9k)(X) :=f( 91(X), ..., gk(X) ) for all X € X™.

If Cis a clone, then C¥) := Cn 0" is a k-ary clone, the k-ary
fragment of C.
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Vector-valued operations
Cisaclone: f,g1,...,9c € C= f(g1,...,9«) € C).

We can view (gy, ..., gk) as a single function g : X™ — XX, and
write f o g instead of f(g, ..., gk).
Definition

For any set S C Oy let S be the set of all operations
f . Xk — X" with the property that all “components” are in S:

S=J{f: X > X"|vie{1,...,n}: nfofeS8)}
k,n
where 77 : X" — Xis the i-th projection function.
The set Sis a clone iff S contains all projection functions and is
closed under composition:
Vg X s XK vf XK 5 X" (f,ge 8= foge )

: :
Clones (3&4) Discrete Mathematics and Geometry, TU Wien




Examples of clones

» Every subset S C Ox will generate a clone (S), the
smallest clone containing S.

» For any relation p C X": Pol(p) := {f € (‘)9(’) > plisa
clone.

» For any relation p € XX (K infinite), Pol(p) is a clone.

» For any set R of relations, POL(R) := (.5 Pol(p) is a
clone.

» (C) = POL(INV(C)), where INV(C) := ¢ Inv(f),
Inv(f) :={p| f > p}.
(For infinite X, need to allow infinitary relations; operations
still have finite arity!)
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The lattice of all clones on X

For finite X, Ox is countable.

For infinite X of size x, Ox has 2" elements.

Definition

For any nonempty set X let C/(X) be the set of all clones on X.
(CI(X) is a subset of the power set of Ox.)

» CI(X) is a complete lattice. (meet = intersection, join =
clone generated by union)
» CI(X) is Countable for | X| = 2.
(Post’s lattice. wikipedia!)
» CI(X) is of size |R| = 2% for X finite with > 2 elements.
» For infinite X of size x: |CI(X)| < 22".
In fact: = 22", (Later)
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Minimal clones

Definition
We call a clone M minimal if J C M (J is the smallest clone,
containing only the projections), but there is no clone D with
JCDC M.
The minimal clones are the atoms of the clone lattice.
An operation mis minimal iff (m) is a minimal clone.
Instead of minimal clones we consider minimal operations.
If mis minimal, thenVfe (m)\ J: me (f).
» If mis unary, then have m ¢ (m/) for all j except if m = id.
Hence j = id (“retraction”), or mis a permutation of prime

order.
» If m not essentially unary, then m must be idempotent.
m(x,...,x)=m.
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Minimal operations, examples

Every constant operation.

Every permutation whose order is a prime number.

The meet operation of any meet-semilattice.

The median operation in any linear order.

... (many more. Some necessary conditions known, but no
explicit criterion.)

vV V. vV v VY

Fact
If X is finite, then there are finitely many minimal operations.

Every clone # J contains a minimal clone.

(This is not true for infinite sets. Let s : Z — Z be defined by
s(x) = x + 1, then every non-projection in (s) is of the form s/
(j € {1,2,...}, and none of them is minimal, as (s%) C (¢/).)
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Complete sets

Theorem
For every X: ((‘)&2)> = Ox.

Proof for infinite X.

» Let po : X2 — X be a bijection.
» Find bijections p; : X/ — X for j = 3,4,..., with p; € (0(3)).
For example, ps(x, y, z) := pa(X, p2(y, 2)).
> Forevery f: XK — X, let?:=fop.".
So f(X) = f(pk(X)) for all ¥ € X¥. As fis unary, 7 € (0®)),
» From f € (0®) and py € (0®) conclude f € (O@).
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Complete sets

For every X: ((‘)g(z)> = Ox.
Proof for finite X (“Lagrange interpolation”).

Let (X, +,-,0,1) be a finite lattice with smallest element 0 and
greatestelement1. Sox+0=0+x=x =1 - x for all x.
» Foreach a€ X let x5: X — X be the characteristic

function of the set {a}. So y, € O(M) C (0()).
» For each @ € X¥ let x5 : XX — X be the characteristic
function of {&}: xz = [, xa(X)- S0 x5z € (03)).
» Forany b e X let ¢, € O(Y) be constant with value b.
> Every operation f € OK) can now be written as
ZanK(Xa Cr(a ) Sofe (O(2)>

(Remark: This proof also works for strongly amorphous sets.)
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Precomplete clones

Definition
A clone C C Oy is “precomplete” (or “maximal’) if C # Oy, but
there is no clone D satisfying C C D C Ox.

Theorem

For any clone C C Oy there is a precomplete clone C' with
ccc.

(Remark: Not true for infinite sets! At least if the continuum
hypothesis holds.)
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Post’s lattice

is countably infinite.
(“precomplete” clones) B
and 7 atoms.

The lattice of all clones
on a 2-element set
It has 5 coatoms
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Precomplete clones, example 1

Let p be a nontrivial unary relation, i.e. 0 C p C X.
Then Pol(p) is the set of all operations f such that p is a
subalgebra of (X, f). This clone is precomplete.

Proof.

Let g : XK — X, g ¢ Pol(p). Let C := (Pol(p) U {g}). We show
C = Ox. Sufficient: ¢ > 0.

For v € X, let ¢, be the constant function with value v.

There are @ = (ay, ..., ax) € p*, b ¢ p with g(8) = b,

So ¢, = g(Cay,-.-,Cq)isin C.

X Tyer sotec.
f(x1,x2) ifyép
Now f = #(x2, 72, cp), i.e., f(x1, X2) = f(x1, X2, b). So f € C.

For f e Og(z) define 7(xq, X2, y) := {
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Precomplete clones, example 2

~ a nontrivial equivalence relation = Pol(~) is precomplete.

Proof.

For 3, b € X write & ~ b iff Vi a; ~ b;. This is an equivalence
relation on XX.

Let g: XX — X, g ¢ Pol(~). Let C := (Pol(~) U {g}). We have
to show C = 0. Sufficient: C 2 02,

There is k and & ~ b € XX with 1 := g(d) # g(b) =

We claim that for each p € X2 there is a function x, : X2 — X
which maps p to 1, everything else to 0 £ 1.

For each p € X? et hp : X2 — XX be defined by hp(p) = a,

hp(x) = b otherwise. Clearly hy € PoI( )- So xp:=gohp, e C.
(continued on next page)
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Proof that Pol(~) is precomplete, continued.

We started with a clone C 2 Pol(~).
For each p € X2 we have found x,, € C, xp, : X2 — X with

Xp(P) = 1, Xp(X) = 0 for x # p. (And 0 £ 1)
Define x : X2 — XX by x(¥) = (xp(x) : p € X?). So y € C.
Let f € 0 be arbitrary. We will show f € C.
Define f : X2+IXI* 5 X as follows:

» fis constant on each ~-class. (So f € Pol(~) C C)

> (X, (X)) = f(X).
This two requirements are compatible, as X # x’ implies that

X(X) £ x(X).
Clearly f(X) = f(X, x(X)). So f € C.
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Precomplete clones, example 3

Definition
Letr: X — X, f: XK= X. We say that f commutes with r if:

VX1, X € X0 F(r(xe), ... r(xk)) = r(f(x1,...,Xx))

Writing r® for the relation {(x, r(x)) | x € X}, f commutes with r
iff f > r®. (We may write f > r instead of f > r®)

Clearly f > r = f > r/ for all j. Hence e.g. Pol(r) g‘PoI(rz). But
if r is a permutation of order p, then Pol(r) = Pol(r’) whenever
p does not divide .

Theorem
Assume thatr : X — X is a permutation and all cycles have the
same prime length. Then Pol(r) is precomplete.

: :
Clones (3&4) Discrete Mathematics and Geometry, TU Wien




Precomplete clones, examples 4,5

» “monotone”: Let p C X x X be a partial order with smallest
and greatest element.

Pol(p) is the set of all pointwise monotone operations.
» “affine” Assume | X| = p™, so wlog X is a finite field
X = GF(p™).
Let p = {(a,b,c,d) € X* | a+ b= c+ d}. Then Pol(p) is
the set of all operations f of the form

3
L

f(X1,.. xk)_a0+z lel
i=1j

I
o

All these clones are precomplete.
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Post’s lattice, again

The 5 precomplete

clones in CI({0,1}):

» operations

preserving {0}.
» operations

preserving {1}.
» monotone

operations
» “‘commuting”:
)

=—|f(X).

f(—|X
» affine operations
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Rosenberg’s list

Theorem

Let X = {1,...,k}. Then there is an explicit finite list of
relations p+, . . ., pm Such that every precomplete clone on X is
one of Pol(p1), ..., Pol(pm).

The list includes

all “central relations” (generalisations of p C X)

all nontrivial equivalence relations

(Aif|X]=2)

all prime permutations

All bounded partial orders

affine relations (only if | X| = p")

(others. more complicated but still explicit)
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Rosenberg’s list

Theorem
Let X = {1,...,k}. Then there is an explicit finite list of
relations p+, . . ., pm Such that every precomplete clone on X is

one of Pol(p1), ..., Pol(pm).

Completeness criterion (S) # Oy iff there is some p; from the
list with Vi € S: f > p;.
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A complicated interval in the clone lattice

Definition

Let Cigem be the clone of all idempotent operations:
f(x,...,x) = x. (Assume |X| > 3.)

Find all clones between Ciger, and O x!

Example
Let Y C X. Then Cigemy :={f |Vx € Y :f(x,...,x)=x}isa
clone 2 Cigem.

Theorem

Every clone between Cigen and O is of the form Cigem;y -
Hence: the interval [Cigem, O x| is (anti-)isomophic to the power
set of X.

(Precomplete clones correspond to singletons, Ox to ().)
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[Cigem; Ox], proof sketch

Let C be a clone containing all idempotent operations
f(x,...,x) =X.

We want to find Y such that
C=Ciemy={Ff|VyeY: fy,...,y) =y} .
fix(f):={ae X | f(a,...,a) = a}, nix(f) := X\ fix(f).
Let R := {nix(f) | f € C}.

R is downward closed.

R is upward directed, hence an ideal.

Let Z be the largest element of R, Y := X'\ Z.
So C C Cigem;v-

If nix(f) C nix(g) and g € C, then f € C.

Hence C = Cigemv-
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A complicated interval, continued

Cidem = the clone of all idempotent operations: f(x, ..., x) = x.

Theorem (X finite)

Every clone between Ciger, and Ox is of the form Cigem;y -
For infinite X:

Definition

For every filter 7 on X, let

Cr = Cuaemy ={f13Y €FVy e YI(y,....y) =y}
YeF

Each Cx is a clone above Cigem.
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A complicated interval, conclusion

Cr:={f|3AY e FVye Yy, .,y)=y}

Theorem

Let X be any set. Then the map F — Cxr is an order-preserving
bijection between the filters on X and the clones above Cr.
Ultrafilters correspond to precomplete clones in this interval,
and the improper filter corresponds to O .

(For finite sets, all filters are principal.)

Translation to topology: the interval [Cigem, Ox] is
anti-isomorphic to the family of closed sets of 5 X, the
Cech-Stone compactification of the discrete space X.
(Precomplete clones correspond to points, Ox to (.)
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Another complicated interval

Let X be infinite. We will find “very many” clones with trivial
unary fragment, i.e., below Ci4..m, the clone of all idempotent
operations. (Unfortunately: no complete classification.)
In fact all our operations will be “conservative”:
(X1, Xk) € {Xq, .oy Xk}
» Let (A;: i € I) be a family of sufficiently independent sets.
(In particular: we demand that for any finite ly C / and any
j €1\ I the set (Ui, Ai)) N (X'\ Aj) contains at least 2 elements.
It is possible to find such a family with 21X elements, in
particular: an uncountable such family.)
» Fix a linear order <; on A;, with minimum operation A;.
» Extend A; to X by requiring x A; y = x outside A;.
» Forany I' C Ilet Cy := ({A; | i € I'}). Then all Cy are
distinct. (Note: the numbers of such clones = 22*'1)

Clones (3&4) Discrete Mathematics and Geometry, TU Wien



Local clones

Let X be infinite. A clone C is local if each fragment C N Oxk is
closed in the product topology (pointwise convergence) on XX
(with discrete X). Equivalently: If there is a set R of relations of
finite arity such that C = POL(R).

The lattice of local clones has only 2!XI elements; the lattice of
all clones: 22,

Example:
On a finite set with k elements, the intervall [C)S}), Ox] has k + 1
elements.

On any infinite set X, the intervall [09)7 Ox] in the lattice of all

clones has at least 22" elements.
On any infinite set X, the intervall [Ogg), Ox] in the lattice of local
clones has at only countably many elements.
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Bonus round: non-AC

We used X x X ~ X to show that <O§?)> = Oy (for infinite
sets X). But X x X ~ X uses the axiom of choice (and in fact
VX infinite : X x X ~ X is equivalent to AC). Was that
necessary?

Yes, probably.

Proof sketch. Really: a hint. An idea of a hint. No
satisfaction guaranteed.

Let (M, R3) be the “random 3-uniform hypergraph”. That is, R3
is a totally symmetric totally irreflexive relation which is “as
random as possible”. For example: For all (reasonable) finite
sets {a1,b1,...,ak, bk, C1,01,...,Cn dn} C M there is some

e € M with R(a;, b;, e) for all i, and —~R(c;, d;, e) for all j.
(Technically: the Fraissé limit of all finite 3-uniform

hvberaranhs.)
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non-AC, continued

Continuation of the proof.

Let (M, Rs) be the “random 3-uniform hypergraph”. (M
countable, R; € M® is “random” or “generic”.)

Let f1, ..., fn be first order definable binary operations, say
definable from my, ..., my in the structure (M, R). Then the set
X x X can be partitioned into finitely many sets according to
the “type” a pair (x, y) can have over my, ... my. On each type
each operation f; must be either constant or a projection, so the
same is true for any element of (f, ..., fs). But the function xg
is neither a projection or a constant on any type. So we have
found a definable ternary function not in the clone generated by
the definable binary functions.
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non-AC, conclusion

We have found a definable ternary function on (M, R),
definable from R, but not in the clone generated by the
definable binary functions.

Now construct a model of ZF+—AC in which all operations on M
are definable from R and finitely many parameters. In this
model, all binary operations are trivial on a large set, but not all
ternary operations.
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Summary

Clones (3&4)

The clone lattice on {0, 1} is well understood. (But
nontrivial.)

CI(X) for larger finite sets X: many fragments are explicitly
known (certain intervals, coatoms, . ..), others only
partially (atoms), or only for very small sets (say,

|X| < 4,5).

To analyse k-ary operations, it is often helpful to consider
k + 1-ary operations. (Or 2k-ary. or (k + | X|?)-ary, etc.)
Many open questions.

For infinite X: set theory kicks in. Local clones more
interesting than all clones?
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Thank you
for your attention!
and for your questions!

... and for your corrections!!
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