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Preface

Seminar on Numerical Analysis (SNA) is a scientific meeting devoted mainly to mathematical
modeling, numerical methods for partial differential equations, numerical linear algebra and par-
allel computing. Its history goes back to 2003. Since 2005 it has been coupled with the winter
school offering tutorials or extended lectures of various selected topics. The venue and organiza-
tion effort of these meetings is traditionally distributed between Bohemian and Moravian-Silesian
organizers from the Academy of Sciences (Institute of Geonics, Ostrava and Institute of Com-
puter Science, Prague) as well as from the universities (Technical University of Ostrava, Czech
Technical University and Charles University in Prague). The seminar and the winter school
SNA 2014 will be held for the first time in the training centre of the Czech Association of Phys-
ical Education and Sports in Nymburk. This year the winter school offers the lectures delivered
by the following distinguished researchers:

• Discontinous Galerkin method (V. Kučera),

• Operator preconditioning (Z. Strakoš),

• FFT-based Galerkin method for homogenization of periodic media (J. Vondřejc, J. Zeman
and I. Marek)

• Mathematics in image processing (M. Šorel).

We believe that the participants will enjoy also the complementary program of contributed
presentations and posters. We wish you a pleasant stay in Nymburk.

On behalf of the Programme and Organizing Committee of SNA 2014

Mirek Tůma, Miro Rozložník
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Isogeometric analysis for Navier-Stokes equations

B. Bastl, M. Brandner, J. Egermaier, K. Michálková, E. Turnerová

NTIS – New Technologies for Information Society, University of West Bohemia, Plzeň

1 Introduction

This article is devoted to the simulation of viscous incompressible fluid flow. The numerical
model is based on the isogeometrical approach. This is a part of the project devoted to the
shape optimization of water turbines. Typically in engineering practice, design is done in CAD
systems and meshes, needed for the finite element analysis, are generated from CAD data. Each
design change requires generation of new meshes which takes a lot of time. Primary goal of using
isogeometric analysis is to be geometrically exact, independently of the discretization. Then we
do not need to create any other mesh – the mesh of the so-called “NURBS elements” is acquired
directly from CAD representation. Further refinement of the mesh or increasing the order of
basis functions are very simple, efficient and robust.

2 NURBS Surfaces

NURBS surface of degree p, q is determined by a control net P (of control points Pi,j , i = 0, . . . , n,
j = 0, . . . ,m), weights wi,j of these control points and two knot vectors U = (u0, . . . , un+p+1),
V = (v0, . . . , vm+q+1) and is given by a parametrization

S(u, v) =

∑n
i=0

∑m
j=0wi,jPi,jNi,p(u)Mj,q(v)∑n

i=0

∑m
j=0wi,jNi,p(u)Mj,q(v)

=
n∑

i=0

m∑

j=0

Pi,jRi,j(u, v). (1)

B-spline basis functions Ni,p(u) and Mj,q(v) are determined by knot vectors U and V and de-
grees p and q, respectively, by a formula (for Ni,p(u), Mj,q(v) is constructed by the similar way)

Ni,0(u) =

{
1 ui ≤ t < ui+1

0 otherwise

Ni,p(u) =
u− ui
ui+p − ui

Ni,p(u) +
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p(u). (2)

Knot vector is a non-decreasing sequence of real numbers which determines the distribution
of a parameter on the corresponding curve/surface. B-spline basis functions (see Figure 1) of
degree p are Cp−1-continuous in general. Knot repeated k times in the knot vector decreases the
continuity of B-spline basis functions by k− 1. Support of B-spline basis functions is local – it is
nonzero only on the interval [ti, ti+p+1] in the parameter space and each B-spline basis function
is non-negative, i.e., Ni,p(t) ≥ 0,∀t.

3 Stationary Navier-Stokes equations

The model of viscous flow of an incompressible Newtonian fluid can be described by the Navier-
Stokes equations in the common form

∇p+ u · ∇u− ν∆u = f,
∇ · u = 0,

(3)

7



T = (0, 1, 2, . . . , 7), p = 1 T = (0, 1, 2, . . . , 7), p = 3

T = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) T = (0, 0, 0, 1, 2, 2, 3, 3, 3)

Figure 1: B-spline basis functions

where u = u(x) is the vector function describing flow velocity, p = p(x) is the pressure function,
ν describes dynamic viscosity and f additional body forces acting on the fluid. We do not assume
only very small Reynolds numbers, but there are still some “limits” for which this model gives
reasonable solution. The boundary value problem is considered as the system (3) together with
boundary conditions

u = w on ∂ΩD (Dirichlet condition)

ν
∂u

∂n
− np = 0 on ∂ΩN (Neumann condition).

(4)

If the velocity is specified everywhere on the boundary, then the pressure solution is only unique
up to a hydrostatic constant.

Let V be a velocity solution space and V0 be the corresponding space of test functions, i.e.,

V = {u ∈ H1(Ω)d|u = w on ∂ΩD}
V0 = {v ∈ H1(Ω)d|v = 0 on ∂ΩD}.

(5)

Then a weak formulation of the boundary value problem: find u ∈ V and p ∈ L2(Ω) such that

ν

∫

Ω
∇u : ∇v +

∫

Ω
(u · ∇u)v −

∫

Ω
p∇ · v =

∫

Ω
f · v ∀v ∈ V0

∫

Ω
q∇ · u = 0 ∀q ∈ L2(Ω)

3.1 Approximation using isogeometric analysis

We define the finite-dimensional spaces V h
0 ⊂ V0, W h ⊂ L2(Ω) and their basis functions. We

want to find uh ∈ V h and ph ∈W h such that for all vh ∈ V h
0 a qh ∈W h it holds

ν

∫

Ω
∇uk+1

h : ∇vh +

∫

Ω
(uk

h · ∇uk+1
h )vh −

∫

Ω
pk+1
h ∇ · vh =

∫

Ω
f · vh, (6)

∫

Ω
qh∇ · uk+1

h = 0, (7)

This approach is based on the so-called Picard’s method. For isogeometric analysis, basis func-
tions of V h

0 and W h are NURBS basis functions obtained from the NURBS description of the
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computational domain (for velocity and pressure). We can express uk
h and pkh as a linear com-

bination of the basis functions (2) and substitute them to (6) and (7). Linearization is done
with help of Picard’s iteration and we obtain a sequence of solutions (uk

h, p
k
h) ∈ V h ×W h, which

converges to the weak solution. We obtain a matrix formulation of the problem in the form



A+N(uk) 0 −B⊤
1

0 A+N(uk) −B⊤
2

B1 B2 0






uk+1
1

uk+1
2

pk+1


 =




f1 − (A∗ +N∗(uk)) · u∗
1

f2 − (A∗ +N∗(uk)) · u∗
2

−B∗
1 · u

∗
1 −B∗

2 · u
∗
2


 (8)

where

A =
[
Aij

]
1≤i≤nu

d
,1≤j≤nu

d

, A∗ =
[
Aij

]
1≤i≤nu

d
,nu

d
+1≤j≤nu

v
,

N(u) =
[
Nij(u)

]
1≤i≤nu

d
,1≤j≤nu

d

, N∗(u) =
[
Nij(u)

]
1≤i≤nu

d
,nu

d
+1≤j≤nu

v
,

Bk =
[
Bkij

]
1≤i≤np,1≤j≤nu

d

, B∗
k =

[
Bkij

]
1≤i≤np,nu

d
+1≤j≤nu

v

(9)

Aij = ν

∫

Ω
(∇Ru

i · J−1) · (∇Ru
j · J−1)|det J |

Nij(u) =

∫

Ω
Ru

i






nu
v∑

l=1

(u1l, u2l)R
u
l


 · (∇Ru

j · J−1)


 |det J |

Bkij =

∫

Ω
Rp

i

[
(∇Ru

j · J−1) · ek
]
|det J |

(10)

The initial Navier-Stokes problem was transformed to the sequential solving of linear systems.

3.2 LBB (Ladyženskaja-Babuška-Brezzi) condition

In general, it is not possible to use an arbitrary combination of discretizations for pressure and
velocity for solving Stokes problem in order for given discretizations to be stable, it needs to
satisfy the so-called LBB condition (or inf-sup condition). It can be shown that such a suitable
choice of discretizations is represented by spaces with basis function of degree p (for pressure)
and degree p+ 1 (for velocity) obtained with the help of p-refinement (see [1] for more details).

4 Examples

We will present a well-known test example, the so-called fluid flow past a cylinder with parabolic
inflow boundary condition (left boundary), no-slip boundary condition on walls (u = 0, upper
and bottom boundary) and homogeneous Neumann condition at the outflow (right boundary).

Pressure – control net Pressure – NURBS elements
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Velocity – control net Velocity – NURBS elements

Navier-Stokes problem – velocity Navier-Stokes problem – pressure

5 Conclusion

Iterative solution of stationary Navier-Stokes equations converges only for relatively low Reynolds
numbers. Therefore, it is necessary to use stabilization methods (e.g. SUPG, PSPG, see [2]). The
problems with oscillations can be solved by the SOLD methods [3]. The following steps of this
project will be focused on turbulence modelling and transient case described by non-stationary
Navier-Stokes equations.

Acknowledgement: This work has been supported by Technology agency of the Czech Republic
through the project TA03011157 “Innovative techniques for improving utility qualities of water
turbines with the help of shape optimization based on modern methods of geometric modeling”.
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GPU implementation of the finite element method

P. Bauer, V. Klement, T. Oberhuber, V. Žabka

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

1 Introduction

Numerical approximation of partial differential equations by means of the finite element method
leads to a system of linear equations, generally

Ax = b. (1)

In case of some nonlinear evolution problems and implicit time-stepping schemes, the system
matrix A depends on time. During the numerical solution of such problems, the system matrix
has to be updated after each time step. When implementing the solver on the GPU, special
attention has to be paid to the matrix update because it can significantly affect performance of
the implementation.

The following three basic approaches to deal with the matrix update on the GPU should be
considered. First, the matrix can be assembled from the local element matrices on the CPU
and then copied to GPU memory. However, memory transfers between CPU memory and GPU
memory are slow and this approach is efficient only if the memory transfers overlap with some
computations. Second, the system matrix does not have to be assembled at all. Instead, specific
methods operating only on local element matrices can be employed for the solution of (1). The
system matrix assembly is then replaced with several less expensive vector disassembly and
assembly operations [4, 5]. The third approach is to assemble the system matrix entirely on the
GPU [1].

This paper investigates a way of assembling the system matrix by the finite element method
entirely on the GPU as described in [1]. We present a general CUDA implementation of the finite
element matrix assembly relying on a coloring of the computational mesh. There are no particular
limitations on the mesh, so it can be unstructured. We validate the CUDA implementation by
comparison with a corresponding CPU implementation.

2 Implementation of the finite element method

Our implementation of the finite element method follows the same pattern as that in
DUNE-FEM [2] and DUNE-PDELab [3]. The system matrix is assembled from the local ele-
ment matrices. Each local element matrix consists of entries computed by integration of the
basis functions and their derivatives over a single element. These integrals involving the basis
functions are transformed by a geometry transformation to integrals over the reference element
and evaluated using quadratures. Hence, the values of the basis functions and their derivatives
in the quadrature points on the reference element are only needed. More details can be found
in [6].

We implement the algorithm in CUDA. On the GPU, the assembly of the matrix should be done
in parallel. For that purpose the mesh is colored (on the CPU) in such a way that elements of
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the same color do not share any degrees of freedom. Thus, at least elements of the same color
can be processed in parallel.

Each CUDA thread is assigned to one element. It computes one entry of the local element
matrix, immediately adds it to the corresponding entry of the system matrix and continues with
the next entry. When computing the entries of the local matrix, the thread reads the quadrature
weights, the basis function values in the quadrature points, the derivatives of the basis functions
in the quadrature points, the Jacobian matrices of the geometry transformation in the quadrature
points and the indices of the local matrix entries in the system matrix. In our implementation,
the quadrature weights, the basis function values and the derivatives are stored in the constant
memory space on the GPU because they are the same for all the elements. The Jacobian matrices
of the geometry transformations and the indices of the local matrix entries in the system matrix
are different for each element and, therefore, they are stored in the global memory space. To
achieve maximum GPU memory bandwidth, the data in global memory are structured so that
the memory accesses are coalesced.

The system matrix is sparse. We assume that its nonzero pattern does not change in time.
Therefore, the matrix can be allocated and the column indices of its entries precomputed on the
CPU which is more suitable for this task than the GPU. Similarly, the indices of the local matrix
entries in the system matrix and the Jacobian matrices of the geometry transformations can also
be precomputed on the CPU prior to the matrix assembly and transferred to GPU memory.

3 Results and conclusion

In order to test the presented GPU implementation of the FEM matrix assembly, we also created
corresponding sequential and OpenMP CPU implementations. We applied all the implementa-
tions to the numerical solution of the heat equation employing the backward Euler method for
the time discretization. We tested them on four different two-dimensional triangular meshes and
four different three-dimensional tetrahedral meshes consisting of approximately 20 000, 150 000,
500 000 and 2 000 000 cells. The P1 and P2 finite elements were considered. The resulting
matrices assembled by all the three implementations were identical.

We also compared the running times of each implementation. The GPU implementation ran on
NVIDIA GeForce GTX 590 (only 1 GPU used), and the CPU implementations ran on AMD
Phenom II X6 1090T (6 cores, 3.2 GHz). All the computations were performed using double-
precision floating point arithmetic. The results are shown in Figure 1. The times measured
do not include computations that can be done in advance and only once for the given mesh,
i.e., mesh coloring, initialization of the Jacobian matrices of the geometry transformations and
determination of the local matrix entries indices in the system matrix, and the transfer of these
data to GPU memory.

It can be seen that the GPU implementation performed 3–10 times better than the OpenMP CPU
implementation and up to 25 times better than the sequential CPU implementation. However,
the CPU implementation might be more efficient if the mesh contains only a small number of
cells (typically less than several thousand cells). In addition, the GPU might be limited by the
amount of memory available when processing large amounts of data.

Acknowledgement: This work has been supported by the grant No. SGS11/161/OHK4/3T/14
of the Student Grant Agency of the Czech Technical University in Prague and the project
No. TA01020871 of the Technological Agency of the Czech Republic.
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(a) Two-dimensional P1 elements.
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(b) Two-dimensional P2 elements.
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(c) Three-dimensional P1 elements.
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(d) Three-dimensional P2 elements.

Figure 1: Comparison of the three FEM matrix assembly implementations: implementation
in CUDA, sequential CPU implementation and OpenMP CPU implementation using 6 cores.
Results of the GPU computation using the P2 elements on the largest mesh are not available
because the GPU ran out of memory. The OpenMP CPU implementation using the P1 elements
on the smallest mesh performed much worse than the sequential CPU implementation. These
results are thus omitted from the graphs.
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Tvarová optimalizace pro 2D kontaktní problém
s Coulombovým třením s koeficientem tření závislým na řešení

P. Beremlijski∗, J. Haslinger, J. Outrata, R. Pathó

∗Centrum excelence IT4Innovations a Katedra aplikované matematiky
Vysoká škola báňská - Technická univerzita Ostrava

1 Úvod

Článek se věnuje diskretizované úloze tvarové optimalizace pro dvojrozměrné pružné těleso v jed-
nostranném kontaktu s tuhou překážkou. Stavová úloha je v tomto případě dána jako Signoriniho
problém s Coulombovým třením, kde koeficient tření je závislý na řešení. Tento koeficient na-
víc nemusí být popsán diferencovatelnou funkcí, ale pouze lokálně lipschitzovskou funkcí. Při
splnění jistých podmínek pro koeficient tření má diskrétní kontaktní úloha jediné řešení a toto
řešení je závislé lokálně lipschitovsky na návrhové proměnné popisující tvar pružného tělesa.
Díky jedinému řešení diskrétní úlohy pro fixovanou řídící proměnnou, můžeme použít tzv. pří-
stup implicitního programování. Ten je založen na minimalizaci nehladké funkce složené z cenové
funkce a jednoznačného zobrazení, které návrhové proměnné přiřazuje řešení diskrétní úlohy.
Pro minimalizaci nehladké funkce lze použít některou z verzí bundle trust metody. K citlivostní
analýze je nutné použít Morduchovičův kalkul. Na závěr příspěvku je ilustrováno použití našeho
přístupu. Podrobně se lze s uvedeným přístupem seznámit v [3].

2 Stavová úloha

Nechť Ω ⊂ R2 je pružné těleso s lipschitzovskou hranicí ∂Ω. Hranice ∂Ω je složena ze tří nepře-
krývajících se částí Γu, Γp a Γc (viz obrázek 1).

�

�

Obrázek 1: 2D pružné těleso.

Γu je hranice s Dirichletovskou podmínkou, na hranici Γp působí povrchové síly P = (P1, P2),
kde P ∈ L2(Γp). Těleso je zdola „podepřeno“ podél hranice Γc tuhou překážkou. Tvar Γc je
určen návrhovou proměnnou α ∈ Rd, přičemž množinu přípustných návrhových proměnných
označíme Uad, tzn. α ∈ Uad. Na této hranici je předepsáno Coulombovo tření s koeficientem tření
závislým na řešení F : R+ → R+. Navíc platí, že F je lipschitzovské v R+.
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Algebraická formulace diskrétního Signoriniho problému s Coulombovým třením s koeficientem
tření závislým na řešení je následující

Najděte (u ,λ) := (u(α),λ(α)) ∈ R
m × R

p
+ :

(A(α)u , v − u)m + (F(|u t|) • λ(α), |v t| − |u t|)p

≥ (L(α), v − u)m + (λ, vn − un)p ∀v ∈ R
m,

(µ− λ,un + α)p ≤ 0 ∀µ ∈ R
p
+,





(1)

kde A ∈ Rm×m a L ∈ Rm jsou matice tuhosti a vektor sil závislé na řídící proměnné α, a • b :=
(a1b1, . . . , apbp) ∈ Rp, a = (a1, . . . , ap), b = (b1, . . . , bp), u označuje vektor posunutí, kde u t

označuje tečné a un normálové posunutí, a λ ∈ R
p
+ (p je počet kontaktních uzlů) je vektor

Lagrangeových multiplikátorů. Vektor (u ,λ) nazveme stavovou proměnnou.

Dále zredukujeme naši úlohu a budeme se zabývat pouze kontaktními uzly. Stavová úloha realizuje
zobrazení S : α ∈ Rd → (u t,un,λ) ∈ R3p (řídícímu vektoru α ∈ Uad je přiřazeno řešení kontaktní
úlohy (u t,un,λ)). Diskretizovanou stavovou úlohu lze ekvivalentně popsat zobecněnou rovností
(podrobně v [1] a [2]).

0 ∈ Att(α)u t +Atn(α)un − Lt(α) +Qt(u t,λ)

0 = Ant(α)u t +Ann(α)un −Ann(α)un − Ln(α)− λ

0 ∈ un + α+NR
p
+
(λ),





(2)

kde multifunkce Qt : Rp × Rp
⇉ Rp je definována jako

(
Qt(x , z )

)
i
:= F(|xi|)zi∂|xi|, ∀i =

1, . . . , p ∀x , z ∈ Rp a NR
p
+
(·) je standardní normálový kužel.

3 Tvarová optimalizace pro kontaktní úlohu s Coulombovým tře-
ním s koeficientem tření závislým na řešení

Cílem úlohy tvarové optimalizace je nalezení takové návrhové proměnné α (určující Beziérovu
funkci, kterou je modelována kontaktní hranice Γc), pro kterou nabývá cenový funkcionál
J(α,S(α)) svého minima. Úlohu diskrétní tvarové optimalizace zavedeme jako úlohu

min
α∈Uad

J (α), J (α) := J(α,S(α)), (3)

kde funkcionál J je spojitě diferencovatelný. K řešení této obecně nehladké úlohy byla použita
bundle trust metoda (podrobně viz [7]). Tato iterační metoda potřebuje rutinu, která v každé
iteraci vypočte hodnotu cenového funkcionálu (k tomu potřebujeme vyřešit stavovou úlohu)
a jeden (libovolný) Clarkeův subgradient z Clarkeova zobecněného gradientu ∂J (α). Pro jeho
nalezení použijeme tvrzení

∂J (α) = ∇1J(α,S(α)) + {C T∇2J(α,S(α)), C ∈ ∂S(α)} (4)

(viz [4]). Protože platí {C Ty∗|C ∈ ∂S(α)} ⊃ D∗S(α)(y∗) pro všechna y∗, stačí nalézt jeden
prvek z množiny D∗S(α)(∇2J(α,S(α))). Prvky limitní koderivace D∗S(α) najdeme použitím
nehladkého kalkulu B. Morduchoviče (viz [6]). Podrobně v [3].

4 Numerický příklad

Pro numerické řešení stavové úlohy byla použita metoda postupných aproximací. Numerické
řešení stavové i tvarově-optimalizační úlohy bylo implementováno v knihovně MatSol (viz [5]).
Tato knihovna byla vyvinuta v prostředí Matlab.
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Dříve navržený postup byl použit pro řešení úlohy tvarové optimalizace mající za cíl nalézt tvar
kontaktní hranice tak, aby se vektor λ(α) blížil co nejvíce předepsanému vektoru λ:

min ‖λ(α)− λ‖66
α ∈ Uad,

(5)

Koeficient tření F (viz obr. 2) je pro naší úlohu definován takto

F(t) :=





0.25 pro t ∈ 〈0, 0.01〉,

0.25 · (−60t+ 1.6) pro t ∈ (0.01, 0.02),

0.1 pro t ∈ 〈0.02,∞).

(6)

Obrázek 2: Definice koeficientu tření.

Naši oblast jsme diskretizovali sítí s 1800 uzly, její velikost je 2x1. Povrchové tlaky na hranici
Γp jsou předepsány takto P1 = (0;−60 MPa) na (0, 1.8) × {1} a P1 = (0; 0) na (1.8, 2) × {1},
zatímco P2 = (30 MPa; 10 MPa) na {2} × (0, 1). Fyzikální parametry oblasti mají tyto hodnoty
– Youngův modul E = 1 GPa a Poissonova konstanta ν = 0.3. Dimenze návrhové proměnné α

řídící Beziérovu funkci, kterou je dána hranice Γc, je 20.

Počáteční návrh a jeho deformace je na obrázku 3.

Obrázek 3: Počáteční návrh.

Obrázek 4 zobrazuje optimalizovaný návrh a jeho deformaci.

Obrázek 4: Optimalizovaný návrh.
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Obrázek 5: Rozložení normálového napětí na kontaktní hranici pro počáteční návrh (vlevo) a opti-
malizovaný návrh (vpravo).

Rozložení normálového napětí λ(α) na kontaktní hranici (plná čára) i předepsaný vektor λ

(tečkovaná čára) pro počáteční i optimalizovaný tvar tělesa jsou zobrazeny na obrázku 5.

Hodnota cenového funkcionálu pro počáteční návrh je 1.0746 · 1014, zatímco hodnota cenového
funkcionálu pro výsledný návrh je 4.7879 · 109.
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(ERDF) v rámci projektu Centra excelence IT4Innovations (CZ.1.05/1.1.00/02.0070) a projek-
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High performance computing in micromechanics

R. Blaheta, R. Hrtus, O. Jakl, J. Starý

Institute of Geonics AS CR, Ostrava

1 Introduction

By micromechanics we understand analysis of the macroscale response of materials through
investigation of processes in their microstructure. Here by the macroscale, we mean the scale of
applications, where we solve engineering problems involving materials like different metals and
composites in aircraft design or rocks and concrete in a dam construction. Different applications
are characterized by different characteristic size. At macroscale the materials mostly look as
homogeneous or they are idealized as homogeneous or piecewise homogeneous. A substantial
heterogeneity is hidden and appears only after more detailed zooming view into the material.
This hidden heterogeneity can be called a microstructure. In metals it is created by crystals
and grains, in composite materials by matrix and inclusions, in concrete by gravel and mortar
or iron reinforcement etc. When the ratio between the characteristic dimensions on macro and
microstructure subjects is sufficiently large, then we say that the scales are well separated. In this
case, it is not possible to perform the macroscale analysis going into the microstructure details,
but it is possible to analyse the macroscopic problems with the use of effective (homogenized)
material properties, which are obtained by testing smaller samples of materials. In computational
micromechanics, the testing of such samples means solution of boundary value problems on test
domains involving the microstructure with loading provided by suitable boundary conditions.

We focus on X-ray CT image based micromechanics of geomaterials with the use of continuum
mechanics and the finite element computation of the microscale strains and stresses, see [2]. This
means that basic information about the microstructure is provided by analysing (segmentation)
of 3D images of real samples. This information should be completed by information on local
material properties, i.e. material properties of the individual material constituents.

There is a strong need for high performance parallel computing at several stages of the compu-
tational micromechanics, namely at

• analysis of CT scans,

• high resolution finite element solution of boundary value problems,

• solution of inverse problems for determination or calibration of local material properties.

In this contribution, we focus on the second point, i.e. solving the high resolution finite element
systems with tens or hundreds degrees of freedom on available parallel computers at the Institute
of Geonics and the IT4Innovations supercomputer centre in Ostrava. Following [3], we describe
efficiency of the in-house GEM solvers exploiting the Schwarz domain decomposition method
with aggregation by performing computational experiments on the above parallel computers.
The solution of these systems is also necessary for building efficient solution methods for inverse
material identification problems, see [4] and a further work in progress.
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2 High resolution FEM systems and GEM solvers

In analysis of geocomposites (see [2]), the domain Ω is a cube with a relatively complicated
microstructure. The FEM mesh is constructed on the basis of CT scans. As benchmarks, we
shall use FEM systems arising from CT scanning of a coal-resin geocomposite at CT-lab of the
Institute of Geonics. The characteristics of two benchmarks can be seen in Table 1.

Benchmark Discretization Size in DOF Data size

GEOC-2s 257×257× 257 50 923 779 8.5GB
GEOC-2l 257×257×1025 203 100 675 33.5GB

Table 1: Benchmarks representing microstructures of two geocomposite samples. Notation,
applied discretization meshes and sizes of resulting linear systems.

The elastic response of a representative volume Ω is characterized by homogenized elasticity C
or compliance S tensors (S = C−1). The elasticity and compliance tensors are determined from
the relations

C〈ε〉 = Cε0 = 〈σ〉 and S〈σ〉 = Sσ0 = 〈ε〉, (1)

respectively. Here 〈σ〉 and 〈ε〉 are volume averaged stresses and strains computed from the
solution of elasticity problem

−div(σ) = 0, σ = Cmε, ε = (∇u+ (∇u)T )/2 in Ω, (2)

with boundary conditions

u(x) = ε0 · x on ∂Ω and σ · n = σ0 · n on ∂Ω, (3)

respectively. Above, σ and ε denote stress and strain in the microstructure, Cm is the variable
local elasticity tensor, u and n denote the displacement and the unit normal, respectively. The
use of pure Dirichlet and pure Neumann boundary conditions allows us to get a upper and lower
bounds for the upscaled elasticity tensor, see e.g. [2].

By using the GEM software [1], the domain is discretized by linear tetrahedral finite elements.
The arising systems are then solved by PCG method with a stabilization in the singular case
(see [3]). The implementation in the GEM software uses two solvers:

GEM-DD is a solver implemented in the GEM software. It uses one-level additive Schwarz
domain decomposition preconditioner with subproblems replaced by displacement decom-
position incomplete factorization, see ref. in [3]. The resulting preconditioner is symmetric
positive definite even for the singular case.

GEM-DD-CG solver differs in preconditioning, which is now a two-level Schwarz domain de-
composition arising from the previous GEM-DD by additive involvement of a coarse prob-
lem correction. The coarse problem is created by a regular aggressive aggregation with
3 DOF’s per aggregation. In singular case, the coarse problem is also singular with a
smaller null space containing only the rigid shifts. The coarse problem is solved only ap-
proximately by inner (not stabilized) CG method with a lower solution accuracy - relative
residual accuracy ε0 ≤ 0.01.

Note that in the computational experiments described in the next Section, we solve the problems
with pure Neumann boundary conditions.
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3 Parallel computers and computational experiments

The computational experiments are performed on two computers:

Enna - 64-core NUMA multiprocessor at the Institute of Geonics:

• eight octa-core Intel Xeon E7-8837/2.66GHz processors

• 256GB of DDR2 RAM

• CentOS 6.3, Intel Cluster Studio XE 2013, Trilinos 11.4.1

Anselm - multicomputer (cluster) with 207 compute nodes at the Supercomputing Center
IT4Innovations. We employed the computing nodes equipped with:

• two octa-core Intel E5-2665/2.4GHz processors

• 64GB of memory and 500GB of local disk capacity

• Infiniband QDR interconnection, fully non-blocking, fat-tree

• Bullx Linux OS (Red Hat family), Intel Parallel Studio XE 2013

Table 2 shows the timings of GEM solvers (without and with coarse grid problem applied)
obtained for GEOC2s, i.e. a problem of more than 50 million DOF’s, where the performance
up to 64 processing elements on Enna and up to 128 processing elements on Anselm could be
compared. The stopping criterion was ‖r‖/‖b‖ ≤ ε = 10−5 and the DD-CG solver made use of
a coarse problem with aggregation factors 9×9×9 (81 000 DOF’s).

Enna Anselm

DD DD-CG DD DD-CG

#Sd # It Titer #It Titer A/E Titer A/E Titer

2 914 8461.2 437 3523.1 0.67 5644.2 0.79 2785.4
4 1129 4973.3 428 1923.6 0.59 3526.2 0.72 1383.4
8 1421 2942.5 416 922.9 0.82 2422.6 0.79 725.7
16 1655 1994.6 376 415.8 0.64 1325.8 0.84 348.7
32 1847 1923.5 329 348.3 0.42 798.3 0.56 194.8
64 2149 3074.9 295 505.9 0.20 620.8 0.23 117.6

128 n/a 515.7 n/a 107.1

Table 2: Timings of the GEOC2s benchmark achieved by the GEM solvers on the multiprocessor
Enna and cluster Anselm: Iteration counts (#It), wall-clock time (in seconds) of the solution
(Titer) and the corresponding performance ratio Anselm/Enna (A/E) are provided for up to 128
subdomains (#Sd).

For greater number of subdomains, the results confirm the advantage of systems with distributed
memory, when the multiprocessors in general suffer from the memory-processor bandwidth con-
tention. Thus, while on Enna the scalability fades out at about 32 cores, the turning point on
Anselm is around 128 processing elements, when the small size of subdomains deteriorates the
computation/communication ratio.

In absolute figures, we were able to solve the benchmark 3 – 4 times faster on Anselm than on
Enna. The advantage of Anselm is to be derived partially from the fact that its newer Intel
Sandy Bridge CPU architecture as such outperforms Enna’s Westmere one, in our application
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Enna Anselm

DD-9×9×9 DD-9×9×18 DD-9×9×27 DD-9×9×27

#Sd # It Titer #It Titer #It Titer #It Titer

4 751 13719.0 858 15737.6 997 18518.4 997 12671.4
8 690 6237.7 800 6960.8 917 8062.9 917 5803.9
16 585 2717.4 674 4010.6 777 4815.6 777 2576.6
32 585 2483.6 622 2923.8 708 3452.5 708 1157.5
64 627 3637.0 627 558.8

128 652 358.5
256 631 299.6
512 649 333.5

Table 3: Timings of the GEOC2l benchmark achieved by the GEM-DD-CG solver on the mul-
tiprocessor Enna and cluster Anselm: Iteration counts(#It) and wall-clock time (in seconds)
for the solution time (Titer) are provided now for different sizes of CG problem involved in
computations and for various numbers of subdomains (#Sd).

by 20-40%, what can be estimated from the test up to 8 processing elements (one socket) when
the processors work in similar conditions.

Table 3 reports computations with the largest benchmark GEOC2l (about 200 million DOF)
and demonstrates the impact of the coarse grid size on the time of the solution. We can observe
that very aggressive aggregation leads to the best results. We could confirm this observation on
Anselm, where the best time in the Table 3 (299.6 s with 256 processing elements and aggregation
9×9×27) was surpassed by an experiment with the coarser aggregation 15×15×31. The overall
best GEOC2l solution time of 249.8 s was achieved after 910 iterations on #Sd=512 subdomains
(32 compute nodes employed).

A bit surprising decrease of the number of iterations with increasing number of subdomains
(processors) as reported in the above Tables, especially for DD-CG, can be explained by the fact
that smaller subdomain problems are solved more accurately in our implementation.

Acknowledgement: This work was supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).
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Elliptic equations on non-compatible meshes
of different dimension

J. Březina

Technical University of Liberec, Liberec

1 Introduction

Deep final repositories for nuclear waste are planned in rocks with low permeability, namely in
granite, in order to minimize transport of a possible leakage to the surface. A regional model
of water flow and transport processes in the granite has to deal with presence of relatively tiny
fracture zones of significantly higher hydraulic permeability. One possible approach is to treat
these fracture zones as an independent domain of lower dimension and introduce a coupling with
a surrounding matrix.

For purpose of this contribution, we shall consider a model problem consisting of a 2d matrix
domain Ω2 and of a fracture domain Ω1 formed by a network of 1d lines. We also set Ω0 = ∅.
We shall consider saturated porous media on both domains described by the Darcy’s law

vd = −Kd∇hd on Ωd \ Ωd−1 for d = 1, 2; (1)

and the continuity equation

divqd = Fd on Ωd \ Ωd−1 for d = 1, 2; (2)

where vd is the velocity qd = νdvd is the Darcy flux, ν2 = 1, and ν1 is the fracture zone cross-
section, Other quantities are: the tensor of hydraulic conductivity Kd, the pressure head hd,
and partially integrated density of the water sources Fd. Vectors qd and tensors Kd lives in the
corresponding local tangent spaces of domains Ωd. The principal unknowns of this system are
the fluxes qd and the pressure heads hd. We prescribe Dirichlet boundary condition hd = Hd on
the outer boundaries Γd of both domains. Furthermore, one boundary condition has to be posed
for each of two sides of a line in Ω1. First condition is the continuity of h2 from both sides and
the second is balance of the fluxes

q+
2 · n+ + q−

2 · n− = Q2 = σ1(Trh2 − h1). (3)

Here Q2 is the surface density of the local outer flux from Ω2 into Ω1, which is proportional to
the difference between the trace of h2 and h1 with a given transition coefficient σ1. The flux Q2

also appears as a part of the volume source F1 = Q2 + ν1f1 on the domain Ω1.

2 Discrete mixed-hybrid formulation

The coupling used in the model problem, namely continuity of the pressure, is physically relevant
only when fracture zone has higher conductivity then matrix (cf. [1]), however it admits approx-
imation of the trace of the pressure head h2 on Ω1 even in the case of non-compatible meshes.
This is big advantage in real applications, where fracture zone can be complex and generation
of compatible meshes becomes problematic.
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Let Td = {T i
d, i ∈ Id} be a triangulation of the domain Ωd and Ed =

⋃
i∈Id

∂T i
d \ Γd set of

internal edges. We do not assume any relationship between T2 and T1. We shall denote by
Vd ⊂ H(div,Ωd) the space of discontinuous lowest order Raviart-Thomas functions (RT0) and
by Pd ⊂ L2(Ωd) the space of functions piecewise constant on elements of Td. Further, we
introduce P̊d, the space of functions piecewise constant on edges in Ed. Finally, we denote
V = V2 × V1 and P = P2 × P1 × P̊2 × P̊1.

We say that pair (q, h) =
(
q, (h, h̊)

)
∈ V × P is mixed-hybrid solution of the problem P12 if it

satisfies abstract saddle point problem

a(q,ψ) + b(ψ, h) = 〈G,ψ〉 ∀ψ ∈ V, (4)

b(q, φ)− c(h, φ) = 〈F, φ〉 ∀φ = (φ, φ̊) ∈ P, (5)

where the bilinear forms on the left-hand side are

a(q,ψ) =
∑

d=1,2

∑

i∈Id

∫

T i
d

1

νd
qi
dK

−1
d ψ

i
d,

b(q, φ) =
∑

d=1,2

∑

i∈Id

(∫

T i
d

−divqd φd +

∫

∂T i
d
\Γd

(qd · n)φ̊d

)
,

c(h, φ) =

∫

Ω1

σ
(
R(h1)− T (h2)

)(
R(φ1)− T (φ2)

)

and linear forms on the right-hand side are

〈G,ψ〉 =
∑

d=1,2

∑

i∈Id

∫

∂T i
d

(ψd · n)Hd,

〈F, φ〉 = −
∑

d=1,2

∫

Ωd

νdfdφd.

In the bilinear form c, we have used a reconstruction operator R and operator T approximating
the trace of the pressure head h2 on Ω1. For more details of the mixed-hybrid formulation and
extension to 3d we refer to [2].

3 Numerical experiments

Various choices of operators R and T are possible. In [3], two suitable choices have been proposed.
Method P0 put simply R(h1) = h1 and T (h2) on element T i

1 is weighted average of h2 values on
intersecting 2d elements with weights proportional to the length of intersection. Method P1 use
h̊1 values to reconstruct piecewise linear approximation of the pressure head h1 and h̊2 values are
interpreted as degrees of freedom of non-conforming P1 finite elements, then operator T simply
takes trace of this non-conforming approximation on Ω1. Both methods were tested on very
simple geometry in [3] giving convergence rates summarized in Table 1.

Two new topics are covered in this contribution. For first, we better investigate true quality of
the velocity field. Table 1 shows rather poor convergence of the velocity, but this is mainly caused
by the local error around the fracture since discrete velocity field can not express a jump sitting
on the fracture. We shall present numerical tests indicating that velocity field is in fact better
out of the fracture. For the second, we shall present comparison of proposed non-compatible
methods with a more general model which admits discontinuous pressure on the fracture, but
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pressure head velocity

ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1

1d 2d 1d 2d 1d 2d 1d 2d

method P0 2.1 1.60 1.87 1.55 1.82 0.6 1.43 0.56

method P1 2.1 1.68 1.87 1.55 1.82 0.6 1.60 0.56

compatible mesh 1.9 1.9 1.9 1.9 1.9 1 1.9 1

Table 1: Estimated order of convergence of approximated L2-error for the pressure head and the
velocity.

can be applied only for compatible meshes. These comparisons are done on more realistic meshes
involving complex fracture domain.
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Discontinuous Galerkin method for advection-diffusion equation
in domains with fractures

J. Březina, J. Stebel

Technical University of Liberec

1 Introduction

The paper deals with mathematical modeling of transport of dissolved substances in a fractured
rock massif. Our goal is to adapt a numerical method that will treat the following aspects of the
model:

• Complex geometry. The rock matter, such as granite, contains system of thin layers (called
fractures) that are difficult to be captured by elements of the same dimension.

• Heterogeneity. The real material contains zones with hydraulic conductivity and dispersion
tensor differing by orders of magnitude.

• Advection/diffusion dominance. At various scales, the problem can have character of first
order hyperbolic or second order elliptic PDE.

Throughout the paper, Ωd ⊂ Rd, d ∈ {2, 3}, will be a Lipschitz domain representing the massif.
Our approach is based on explicit treating of the fracture as a (d−1)-dimensional manifold Ωd−1

inside the massif, i.e. Ωd−1 ⊂ Ωd. Accordingly, for k ∈ {d− 1, d} we seek for the concentrations
uk : [0, T ]× Ωk → R satisfying the advection-diffusion equation

∂tu
k − div(Ak∇uk) + div(bkuk) = fk in Ωk, (1a)

accomplished by the initial and boundary conditions

uk(0, ·) = uk0 in Ωk, (1b)

uk = gk on (0, T ) × Γk
D, (1c)

−A
k∇uk · nk = hk on (0, T ) × Γk

N . (1d)

Here Ak, bk is the diffusion tensor and the advection vector field, usually given as the Darcy
velocity, nk stands for the unit outward normal vector to ∂Ωk = Γk

D∪Γk
N . The mass interchange

between the domain and the fracture is realized through the interface condition

(−A
d∇ud + bd) · nd = fd−1 = q(ud, ud−1), (1e)

where

q(ud, ud−1) := σ(ud − ud−1) + (bd · nk)+ud − (bd · nd)−ud−1 on (0, T ) × Ωd−1, σ ≥ 0, (1f)

involves two mechanisms: interchange due to different concentrations (first term) and due to
advection (second and third term). Here f+ = max{0, f} and f− = −min{0, f} is the positive
and the negative part, respectively.
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2 Weak formulation and well-posedness

For any k ∈ {d− 1, d} we introduce the space

V k := {v ∈W 1,2(Ωk); v|Γk
D
= 0}.

The couple (ud, ud−1) is said to be a weak solution to (1) if

• (uk − gk) ∈ L2(0, T ;V k), ∂tuk ∈ L2(0, T ; (V k)∗), k ∈ {d− 1, d};

• uk(0, ·) = uk0, k ∈ {d− 1, d};

• for a.a. t ∈ (0, T ) and v ∈ V d:

〈∂tu
d, v〉V d +

(
A
d∇ud − bdud∇v

)
Ωd

+
(
bd · ndudv

)
Γd
N

+
(
q(ud, ud−1)v

)
Ωd−1

=
(
fdv
)
Ωd

+
(
hdv
)
Γd
N

; (2)

• for a.a. t ∈ (0, T ) and v ∈ V d−1:

〈∂tu
d−1, v〉V d−1 +

(
A
d−1∇ud−1 − bd−1ud−1∇v

)

Ωd−1
+
(
bd−1 · nd−1ud−1v

)

Γd−1

N

=
(
fd−1v

)
Ωd−1

+
(
hd−1v

)
Γd−1

N

+
(
q(ud, ud−1)v

)
Ωd−1

. (3)

Theorem 1. Let Ak, bk, bk · nk, σ be bounded, fk ∈ L2((0, T ) × Ωk), hk ∈ L2((0, T ) × Γk
N ) and

Ak be uniformly positive definite for k ∈ {d − 1, d}. Then there exists a unique weak solution
(ud, ud−1), satisfying the estimate

sup
t∈(0,T )

(
‖ud(t, ·)‖22,Ωd + ‖ud−1(t, ·)‖22,Ωd−1

)
+

∫ T

0

(
‖∇ud‖22,Ωd + ‖∇ud−1‖22,Ωd−1

)
≤ C,

where the constant C > 0 depends on the data.

3 Approximation

For the space semi-discretization we have chosen the discontinuous Galerkin (DG) method with
weighted averages [1]. The main reason is its capability to treat purely advective as well as
diffusive problems and its robustness with respect to space variations of the diffusion tensor. For
the time discretization we use the implicit Euler scheme. We shall describe how the method has
been extended to the present model.

Let τ , h be the time step and the space discretization parameter, respectively. We assume that
T k
h is a regular partition of Ωk into simplices, k ∈ {d− 1, d}. We define the set Ek

h of all edges of
elements in T k

h . Further, Ek
h,I , E

k
h,B will stand for interior and boundary edges, respectively, and

Ek
h,D for edges that coincide with Γk

D. For an interior edge E we denote by T−(E) and T+(E)

the elements sharing E. The unit normal vector n to E is assumed to point from T−(E) towards
T+(E). We introduce the jump [f ] = f|T−(E) − f|T+(E), the average {f} = 1

2(f|T−(E) + f|T+(E))
and the weighted average {f}ω = ωf|T−(E)+(1−ω)f|T+(E). The weight ω is chosen in a specific
way taking into account possible inhomogeneity of Ak (see [1] for details).
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At each time instant tn = nτ we search for the discrete solution ukh,n ∈ V k
h , where

V k
h = {v : Ωk → R; v|T ∈ P1(T ) ∀T ∈ T k

h }

is the space of functions piecewise affine on the elements of T k
h , possibly discontinuous across the

element interfaces. For n = 1, 2, . . ., the discrete problem reads:

1

τ

(
ukh,n − ukh,n−1v

)

Ωk
+ akh,n(u

k
h,n, v) + ãkh,n(u

d
h,n, u

d−1
h,n , v) = bkh,n(v) ∀v ∈ V k

h .

The forms akh,n, ãkh,n, bkh,n are defined as follows:

akh,n(u, v) =
(
A
k(tn)∇u∇v

)
Ωk

−
(
bk(tn)u∇v

)
Ωk

−
∑

E∈Ek
h,I

(({
A
k(tn)∇u

}
ω
· nk[v]

)

E
+ θ

({
A
k(tn)∇v

}
ω
· nk[u]

)

E

)

+
∑

E∈Ek
h,I

(
bk(tn) · n

k {u}[v]
)

E
+

∑

E∈Ek
h,B

(
bk(tn) · n

kuv
)

E

+
∑

E∈Ek
h,I

γE ([u][v])E +
∑

E∈Ek
h,D

γE (uv)E ,

ãdh,n(u
d, ud−1, v) =

(
q(ud, ud−1)v

)
Ωd−1

, v ∈ V d
h ,

ãd−1
h,n (ud, ud−1, v) = −

(
q(ud, ud−1)v

)
Ωd−1

, v ∈ V d−1
h ,

bkh,n(v) =
(
fkv

)
Ωk

+
(
hkv
)
Γk
N

+
∑

E∈Ek
h,D

γE

(
gk(tn)v

)
E
.

The value γE > 0 affects the inter-element jumps of the solution. The constant θ ∈ {−1, 0, 1}
represents the nonsymmetric, incomplete and symmetric variant of the DG method.

In the case when an edge is shared by more than two elements, we consider the so-called ideal
mixing, i.e. mass entering the edge through every inlet element (bk points out of this element)
is divided among all outlet elements proportionally to their fluxes.

4 Results

The numerical method described above has been implemented in the software Flow123d [2]. It
is demonstrated on the following examples.

4.1 Simple 2D fractured domain

In the first example, the advection is given by a pressure driven flow field (see Figure 1). Diffusion
is neglected. The hydraulic conductivity and consequently also the advection field is 10 times
larger in the fractures.

The DG method was compared to the finite volume-explicit Euler scheme. The larger advection
in fractures leads to a restriction of the time step in the explicit FV method. On the other hand,
a significantly larger step used by DG method yields comparable results (see Figure 1).
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Figure 1: Transport in 2D fractured domain: geometry and direction of advection; FV solution
at t = 0.18 (τ = 4 · 10−4); DG solution at t = 0.18 (τ = 10−2).
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Figure 2: Diffusion through fracture: Geometry; solution at t = 1 along horizontal axis.

4.2 Diffusion through fracture

In the second example there is no advection present and the substance is transported by means
of diffusion through the fracture. The diffusion tensor has different value in regins divided by
the fracture. The performace of the DG method is preserved even for vanishing diffusion.

5 Conclusion

A model for the advection-diffusion equation governing the transport processes in domains with
fractures has been presented and its well-posedness was established. The problem has been
approximated by the discontinuous Galerkin method which has proven to be robust with respect
to the size of advection vector and diffusion tensor as well as to their inhomogeneity.
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Partition of unity methods for approximation of point sources
in porous media

P. Exner

Faculty of Mechatronics, Informatics and Interdisciplinary Studies
Technical University of Liberec

1 Introduction

People often consider in their models of flow in porous media very large areas which can contain
various phenomenons of very small scale compared with the size of the areas. These can be some
disruptions of the porous media, e.g. cracks and wells, or material inhomogeneities which cause
large gradients in pressure head and velocity or even their discontinuities.

Using the standard FEM (Finite Element Method) we are unable to properly approximate the
quantities in the vicinity of these disturbances, unless we introduce cells of the same scale in the
mesh. This leads to very fine meshes which highly increase computational costs. We use PU
(Partition of Unity) methods to overcome this problem and demonstrate it on a steady quasi-
three-dimensional model of multi-aquifer system containing hydro-geological wells which cause
singularities in solution. We follow the work [5] of R. Gracie and J. R. Craig who have already
used the XFEM (eXtended FEM) on a similar model.

We have implemented both the XFEM and SGFEM (Stable Generalized FEM) for our problem,
using the Deal II library [2].

2 Model description

We consider steady flow in a system of aquifers (2D layers of given thickness) which are separated
by layers with low permeability (aquitards). We suppose the aquitards to be impermeable and
so we do about the outer boundary of the aquifers to prescribe homogeneous Neumann boundary
condition there.

The distribution of pressure head in m-th aquifer is described by Poisson equation

−Tm∆hm = fm on Θm, ∀m = 1, . . . ,M, (1)

where Tm [m2s−1] denotes transmisivity, hm [m] pressure head and fm [ms−1] source density.
Equation (1) is derived from the Darcy law and the continuity equation for incompressible fluid.

The communication between aquifers is possible only through wells which can be seen as 1D
problems governed by following equation

∫

∂Bm
w

σmw (hm −Hm
w ) dx = cm+1

w

(
Hm

w −Hm+1
w

)
− cmw

(
Hm−1

w −Hm
w

)
, (2)

∀m = 1, . . . ,M and ∀w = 1, . . . ,W,

where σmw [ms−1] denotes the permeability coefficient between w-th well and m-th aquifer, Hm
w

pressure head in the well w at the level of m-th aquifer, cmw [m2s−1] permeability of the well w
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between aquifers and finally ∂Bm
w is the boundary of the well. The equation (2) puts the flow in

and out of the well on right hand side and the flow through the well boundary on the left hand
side in balance.

The transfer between wells and aquifers can be treated in two ways. There is a well boundary
integral on the left hand side of (2) and it represents flow over the boundary of the well. Second
variant uses a surface integral in (2) which represents flow source in the area of aquifer and
well cross-section (the units of σmw then changes). The same integral appears also in the weak
formulation of (1) – as a boundary integral in the first variant or as a part of the source term in
the second variant. Both variants were tested in the work with nearly identical results, only the
second approach simplifies the implementation and slightly speeds up the assembly.

3 Numerical methods

We implemented and compared three numerical methods, using the Deal II library (does not
provide any XFEM/SGFEM functionality itself):

• h-adaptive FEM with linear finite elements, without any enriching technique

• so called ’corrected’ XFEM with local enrichment developed by T. P. Fries in [4], introduc-
ing ramp function and shift

• SGFEM introduced by I. Babuška and U. Banerjee in [1]

3.1 Enrichment function

The hydro-geological wells represent sources with very small diameter in the model. If we solve
a local problem with circular domain with one well placed in the center, we will see the logarithmic
dependence of the pressure head on the distance from the well. If we represented the well only by
a point, the pressure head would go to infinity while closing to the point (singularity | log 0| → ∞).

To capture large gradients of pressure head around the wells, we introduce local enrichment
function

φw(x) =

{
log(rw(x)), rw > Rw

log(Rw), rw ≤ Rw,
(3)

where rw is the distance from the well center and Rw is the well radius.

3.2 Discretization

According to [5] we used the corrected XFEM method with ramp function gw at first. The
pressure approximation we are looking for is in the form

h(x) =
∑

j∈N

αj ϕj(x)

︸ ︷︷ ︸
FEM

+
∑

w∈W

∑

k∈Nw

gw(x)βw,k φw(x)ϕk(x)

︸ ︷︷ ︸
enrichment

, (4)

where the first part with degrees of freedom αj corresponds with the linear finite elements ϕj .
The second part with degrees of freedom βw,k is the enrichment part. The index set N contains
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numbers of all mesh nodes, the index set W contains numbers of all wells and Nw is the set of
all enriched nodes from the well w.

We are enriching nodes of the mesh that are inside a circular neighborhood of given radius renr.
The bigger the enriched area is, the larger amount of additional degrees of freedom are coming
from the enrichment. The proper choice of the radius renr is not trivial and we would like to
further investigate this.

To get the optimal convergence rate of the XFEM, it is recommended to use both the ramp
function and shift. We replace the enrichment function φw in (4) with its shifted version

φw,k(x) = φw(x)− φw(xk). (5)

which guarantees the optimal convergence of the method but possibly brings the problem of
ill-conditioning into the linear system. This leads us to the SGFEM which uses only the shift
without ramp function in the enriched part of (4). It was proven (for 1D sofar in [1]) that if the
finite element part of the trial space is almost orthogonal to the enriched part of the trial space
then the condition number of the linear system is not worse than the condition number of the
FEM part of the linear system.

4 Results

In the theoretical part of our work we derived the weak formulation of the problem and we proved
the existence and the uniqueness of the weak solution according to Lax-Milgram lemma.

The following figure 1e shows the solution of a simple problem with one well in a single aquifer over
x axis. One can see the enriched part (red), the linear finite element part (black) and their sum
(blue) corresponding with (4). Analytical solution of this model is known so we could measure

(e) Decomposed solution.
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(f) Convergence rate.

convergence rates of the methods – shown in the other figure 1f. We reached higher h-adaptive
FEM convergence rate O(h0.8) than R. Gracie and J. R. Craig in [5]. XFEM convergence rate
O(h1.7) is in a good agreement with their results but still suboptimal. The results are in detail
described in master’s thesis [3].

The comparison of corrected XFEM with shifted enrichment and SGFEM is about to be finished.
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5 Future work

There are several problems we would like to take interest in and do tests on our model:

• the choice of the size of the enrichment area (is it possible automatic?)

• adaptive integration on the enriched elements – there is an idea of precomputed quadrature
points which would be then only mapped from the reference element

• improvement in solving of the linear system

After finishing this primal research of XFEM/SGFEM method we will aim our effort in the im-
plementation of XFEM in the mixed hybrid method to compute both pressure head and velocity
of a fluid. Further extension of our model on flow in 3D system with cracks is planned. Long term
aim is to implement this method in the software Flow123d which specializes in computations on
complex meshes consisting of simplicial elements of different dimensions.
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Tracking the trajectory in finite precision CG computations

T. Gergelits, Z. Strakoš

Department of Numerical Mathematics
Faculty of Mathematics and Physics, Charles University in Prague, Prague

1 Introduction

The method of conjugate gradients (CG) [4] is the method of choice for solving linear systems
of algebraic equations

Ax = b, A ∈ F
N×N , b ∈ F

N , where F is C or R,

with a large and sparse matrix A which is Hermitian and positive definite. It is well known that
the numerical convergence behaviour of the CG method can be strongly affected by the influence
of rounding errors. However, whereas the CG convergence rate may be substantially different in
finite precision and exact arithmetic, we observe that the trajectories of approximations as well
as the corresponding Krylov subspaces are very similar.

2 Delay of convergence & rank-deficiency

Computationally, the CG method is based on short recurrences. Assuming exact arithmetic,
short CG recurrences ensure the global orthogonality of the residual vectors, which span at the
kth step the k-dimensional Krylov subspace Kk(A, r0). Here r0 = b−Ax0 is the initial residual
and x is approximated by xk ∈ x0 + Kk(A, r0). In practical computations, however, the use of
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Figure 1: Illustration of the delay of convergence in finite precision CG computations.
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Figure 2: Delay of convergence is determined by the rank-deficiency of the computed Krylov
subspace.

short recurrences inevitably leads to the loss of the global orthogonality among the computed
residual vectors; they often become even (numerically) linearly dependent. Consequently, the
computed residuals may, at the kth step, span a subspace of the dimension k̄ smaller than k.
This rank-deficiency of the computed Krylov subspaces then causes a delay of convergence of
finite precision CG computations; see Fig. 1.

The correspondence between the delay of convergence and the rank-deficiency (see, e.g., [7]
and [6, Section 5.9.1]) is illustrated in Fig. 2. In the right, the exact CG convergence curve1

is compared with the curve of finite precision CG computations which is shifted back by the
(numerical) rank-deficiency k − k̄ where

k̄ = rank(Kk(A, r0))

is the numerical rank of the computed Krylov subspace. The threshold criterion for computation
of the numerical rank is set to 0.1, loss of orthogonality is even for this “weak” threshold very
substantial.

We observe that the kth error ‖x − x̄k‖A of finite precision CG computations corresponds to
the k̄th error ‖x − xk̄‖A of exact CG computations, i.e., the convergence of finite precision CG
computations is delayed, with respect to exact CG computations applied to the same data A, b
and x0, by k − k̄ iterations; cf. [3].

3 Inertia of computed approximations and Krylov subspaces

Since approximations x̄k generated by finite precision CG computations and xk̄ generated by
exact CG computations both lie in the same space FN , we can compare the vectors themselves
(see Fig. 3). Surprisingly, the distance between the exact precision approximation and the shifted
finite precision CG approximation is small in comparison with the actual size of the error (red
solid line), i.e.,

‖x̄k − xk̄‖∞
‖x− xk̄‖∞

≪ 1.

1The exact arithmetic is simulated by full double reorthogonalization of the computed residuals.
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Figure 3: The closeness of exact CG and shifted FP CG approximations in comparison with the
actual size of the error is illustrated by the red solid line.

Figure 4: The trajectory of approximations x̄k generated by finite precision CG computations
tightly follows the trajectory of exact CG approximations xk̄ with the delay given by the rank-
deficiency of the computed Krylov subspace.

Thus we formulate an observation that the trajectory of approximation vectors generated by
the CG method in finite precision arithmetic applied to linear system Ax = b closely follows
the trajectory of approximation vectors from the CG method in exact arithmetic applied to the
same system; see the illustration in Fig. 4.

The observed correspondence among the approximation vectors from the finite precision CG
computations and CG in exact arithmetic suggests that also the associated Krylov subspaces
are in some sense close to each other. Indeed, we have observed that the computed rank-
deficient Krylov subspace span numerically nearly the same subspace as the Krylov subspace of
the corresponding dimension generated by the CG method in exact arithmetic.
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4 Conclusion

To our best knowledge, the relation between the k-th Krylov subspace computed by the CG
process in finite precision arithmetic and the Krylov subspace of the corresponding dimension k̄
generated by exact CG process has not been adressed in literature. The somewhat related
problem of sensitivity of Krylov subspaces to small perturbations was studied in several papers;
see, e.g., [1, 5] or [8]. Krylov subspaces can be in general sensitive to small perturbations of the
matrix A. The observed stability (or inertia) of computed Krylov subspace represents a very
remarkable phenomenon which needs further investigation.
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FLLOP: A novel massively parallel QP solver

V. Hapla, D. Horák, A. Markopoulos, L. Říha

VSB-Technical University Ostrava,
IT4Innovations National Supercomputing Center,

VSB-Technical University of Ostrava
17. listopadu 15/2172

708 33 Ostrava – Poruba, Czech Republic

Discretization of most engineering problems, described by partial differential equations, leads to
large sparse linear systems of equations. However, problems expressible as elliptic variational
inequalities, such as those describing the equilibrium of elastic bodies in mutual contact, are
more naturally discretized to quadratic programming problems (QP). They can be thought of as
a generalization of linear systems of equations being subject to equality and inequality constraints
and take the form

find x = argmin
x

1

2
xTAx− bTx subject to BEx = cE , BIx ≤ cI , l ≤ x ≤ u.

where A ∈ Rn×n is the symmetric positive semidefinite Hessian matrix, b ∈ Rn is the right hand
side vector, BE ∈ RmE×n is the equality constraint matrix, cE ∈ RmE is the equality constraint
right hand side vector, BI ∈ RmI×n is the inequality constraint matrix, cI ∈ RmI is the inequality
constraint right hand side vector, l ∈ Rn is the lower bound vector, u ∈ Rn is the upper bound
vector.

We present here our novel package FLLOP for quadratic programming and FETI domain de-
composition, built on top of PETSc (similarly to TAO and SLEPc packages). Currently tested
applications include mainly engineering problems of structure mechanics: linear elasticity, con-
tact problems, elasto-plasticity, and shape optimization.

FLLOP API is designed to be easy-to-use but at the same time efficient and HPC-centric. One
of the principal design decisions is decoupling of concepts of QP problems, QP transforms and
QP solvers. A QP transform is a mapping deriving from the given original QP a new QP which
is simpler or has some better properties. It is of course required that the solution of the original
QP can be computed from the solution of the derived one. QP transforms often allow use of
efficient solvers that are not compatible with the original QP. However, they are themselves
solver-neutral. The algebraic part of the FETI DDM method is a special case of QP transform.

The typical workflow when solving a QP with FLLOP is as follows:

1. specification of the QP by the user,

2. an automatic or user-specified series of QP transforms,

3. an automatic or manual choice of a suitable solver,

4. solution of the most derived QPs by the chosen solver,

5. a series of reconstructions to get a solution of the original QP (triggered automatically by
the solver).

Each function representing a QP transform creates a new instance QP2 of the QP class based on
the original QP1. The data objects being altered by the given QP transform are copied from
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Figure 1: Chain of QP transforms.

QP1, modified and stored to QP2. Otherwise, QP1 and QP2 only share pointers to the same data
object. Furthermore, links between QP1 and QP2 are created; QP1 obtains a child link to QP2,
QP2 gets a parent link to QP1. Thus, a doubly linked list is generated where every node is a QP
(Figure 1).

The solution x〈QP2〉 is generally not equal to the solution x〈QP1〉. The associated reconstruction
function

(
QP2→QP1

)
must be called to carry out x〈QP1〉 =

(
QP2→QP1

)
(x〈QP2〉). For the above-

mentioned case, the reconstruction function is
(
QP2→QP1

)
(x) = x+xP , so it holds that x〈QP1〉 =

x〈QP2〉+xP . In FLLOP, the reconstruction function is injected to the child QP by the transform
function. Once the solution of the last QP is computed, the solver triggers a series of the
reconstruction functions in LIFO manner, i.e. the reconstruction function of the last QP is
called first.

We also need to store somewhere the auxiliary data created by a transform and needed by the
asociated reconstruction function. In our case, it is the vector xP . For this purpose so called
reconstruction context is used; it is a void pointer, injected to the child QP together with the
reconstruction function. The notions mentioned above are illustrated by Figure 2.

Figure 2: Example of QP transform and reconstructions of the solution – homogenization of the
equality constraints.
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On parameter dependent static contact problems
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1 Discrete static contact problems with Coulomb friction

Consider deformable bodies in mutual contact. The relevant mathematical description consists
in modeling both non-penetration conditions and a friction law. The widely accepted Coulomb
friction law represents a serious mathematical and numerical problem.

In particular, we consider the static contact problem with Coulomb friction on a planar domain.
The problem is uniquely solvable, provided that the friction coefficient F > 0 is sufficiently
small. Note that no essential contribution was made concerning solvability of this problem for
general data. In a natural finite element (FEM) approximation, the discrete problem has always
a solution, disregarding the size of F , see e.g. [2, 6].

Figure 1: Contact of two elastic bodies Ω1 (the upper body) and Ω2, along the contact bound-
ary Γc. The loading is due to surface tractions. On the right: Resulting displacements. The
FEM data: n = 1320, m = 30.

We consider a particular geometry, see Figure 1. The FEM approximation (linear elements)
yields the following primal-dual discrete state problem:

Ku+N⊤λν + T
⊤λt = f , (1)

Nu ≤ 0, λν ≥ 0, λ⊤
νNu = 0, (2)

|λt,i| ≤ Fλn,i,

|λt,i| < Fλn,i ⇒ (Tu)i = 0,

|λt,i| = Fλn,i ⇒ ∃ ct,i ≥ 0 : (Tu)i = ct,iλt,i,





i = 1, . . . ,m, (3)

where (u,λν ,λt) ∈ Rn × Rm × Rm. Here u approximates a displacement field with n degrees
of freedom. Further λν , λt approximate normal and tangential stress components, respectively
along the contact boundary Γc, m is the number of contact nodes. Data of the model: K ∈
Rn×n is a positive definite stiffness matrix, N ,T ∈ Rm×n are full rank matrices (the actions of
distributed contact forces along normal and tangential directions), respectively, and f ∈ Rn is
a vector of nodal forces.
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The inequalities (2) and (3) can be equivalently written as

λν − PRm
+
(λν + ρNu) = 0 and λt − P[−F(λν+ρNu)+,F(λν+ρNu)+](λt + ρTu) = 0,

respectively, where PRm
+

, P[−F(λν+ρNu)+,F(λν+ρNu)+] are suitable projectors and (·)+ denotes
the non-negative part. Parameter ρ > 0 is arbitrary but fixed (e.g., ρ = 1). Therefore, solving
(1)-(3) is equivalent to finding roots y = (u,λν ,λt) ∈ Rn × Rm × Rm of the equation

G(y) ≡



Ku+N⊤λν + T

⊤λt

λν − PRm
+
(λν + ρNu)

λt − P[−F(λν+ρNu)+,F(λν+ρNu)+](λt + ρTu)


 =



f

0

0


 , (4)

where y = (u,λν ,λt) ∈ Rn × Rm × Rm. The mapping G : Rn+2m 7→ Rn+2m is continuous and
piecewise smooth. In particular, it is piecewise affine, see e.g. [7] for the notion.

2 The semi-smooth Newton method (SSNM)

For solving (4), we apply the Newton iterations. Due to nature of the operator G, semi-smooth
methods are applicable, see e.g. [4]. Let M = {1, 2, . . . ,m} be the set of all indices of the
contact points: Given y = (u,λν ,λt) ∈ Rn ×Rm ×Rm, we define the inactive sets Iν := Iν(y),
I+
t := I+

t (y), I−
t := I−

t (y) by

Iν = {i ∈ M : λν,i + ρ(Nu)i < 0},

I+
t = {i ∈ M : λt,i + ρ(Tu)i −Fλν,i > 0},

I−
t = {i ∈ M : λt,i + ρ(Tu)i + Fλν,i > 0},

and the active sets Aν := Aν(y), At := At(y) as their complements:

Aν = M\ Iν, At = M\ (I+
t ∪ I−

t ).

For details see [3].

3 Continuation

Consider the Coulomb friction model (1)-(3), i.e. (4). We assume that the model depends on
parameters. In particular, we consider that

a) f := f(α) depends on a scalar parameter α which simulates loading changes, see [3]

b) the friction coefficient F is a positive parameter; we will call it β.

In this contribution we fix the load α and consider continuous changes of the friction parameter β.
The resulting solution path is a curve in R×Rn+2m, see a qualitative sketch in Figure 2. It consists
of oriented smooth branches, connected by transition points.

• In order to follow the oriented smooth branches, we implemented tangent continuation, see [1],
Algorithm 4.25, with SSNM as a corrector. We used an adaptive step-size control.

• In order to detect transition points, we introduced branching and orientation indicators. The
idea is to modify the inactive sets Iν, I+

t , I−
t properly.
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Figure 2: Solution path consists of oriented smooth branches, connected by transition points.
Hence, refering to this particular sketch: For a fixed β, we may encounter up to five crossing
points of the path. They are related to five different solutions.

4 Example

In an experiment in [3], we fixed the parameter F = 9 and consider a linear loading parametrized
by α. Applying continuation, see [3], we found three different solutions for α = 0. They are
shown in Figure 3 in a proper projection on the contact boundary.
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Figure 3: Three solutions labeled as state_0_9_case1, state_0_9_case2, state_0_9_case3 for
parameters α = 0 and β = F = 9. Note that at the contact point No15 we have three different
contact modes namely no contact (circle), contact-slip (square) and contact-stick (diamond).
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Figure 4: Path No1, the initial point state_0_9_case2. Solution path of the contact point No15
with the orientation = -1 (on the left) and the orientation = 1 (on the right). Observe the fold
transition from the mode contact-slip (square) to the mode contact-stick (diamond), related to
the ordinate β = 6.4617.

42



−2 0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

6

β

λ ν(1
4)

5 10 15 20 25 30 35 40 45
5.766

5.766

5.766

5.766

5.766

5.766
x 10

6

β

λ ν(1
4)

Figure 5: Path No2, the initial point state_0_9_case1. Solution path of the contact point No14
with the orientation = -1 (on the left) and the orientation = 1 (on the right). There is no fold
transition point on the path.

We encountered two solution paths. Each path is initialized at the indicated point and followed
with either the positive or negative orientation (orientation = 1, orientation = -1):

Path No1, see Figure 4: The path is initialized at the point state_0_9_case2. It contains also
the point state_0_9_case3 with the same ordinate β = F = 9. There is a fold transition point
with the ordinate β = F = 6.4617.

Path No2, see Figure 5: The path is initialized at the point state_0_9_case1.
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Consider a linear (orthogonally invariant) approximation problem with multiple right-hand sides

AX ≈ B, where A ∈ R
m×n, X ∈ R

n×d, B ∈ R
m×d.

The total least squares (TLS) formulation seeks for a solution X of

(A+ E)X = B +G such that min ‖[G,E]‖F .

A question of existence and uniqueness of this TLS solution has been studied for decades. Golub
and Van Loan in the paper [1] showed that even with d = 1 the TLS solution may not exist, and
when it exists, it may not be unique. The book [7] by Van Huffel and Vandewalle introduced the
nongeneric approach, extended the Golub–Van Loan’s analysis to two special cases with d ≥ 1,
and gave the so-called classical TLS algorithm. Wei further analyzed problems with nonunique
solutions in [8, 9]. The necessary and sufficient condition for existence of TLS solution in the
general case (with d ≥ 1) was published in [2]. Our analysis, based on [1, 7], resulted in a new
classification of TLS problems.

The single right-hand side case (d = 1) was revisited by Paige and Strakoš in [6]. They introduced
a minimally dimensioned subproblem of Ax ≈ b called a core problem always having the unique
TLS solution. We extended the core problem concept to the general case d ≥ 1. Definition and
detailed analysis of this core problem can be found in the recent paper [3]. Further analysis of
the core problem, based on band generalization of Golub–Kahan iterative bidiagonalization, is
prepared for publication; see [4].

In this contribution we concentrate on solvability of the core problem for d > 1. Using the
properties of the right singular vector subspaces of the corresponding extended core problem
matrix [B1, A11], it will be shown that the core problem with multiple right-hand sides may
not have a TLS solution. We show that core problems with multiple right-hand sides can have
internal structure which allows to interpret the original problem as a direct sum of two (or more)
uncorrelated components. In such case we call the core problem reducible. It will be shown that
existence of a TLS solution of a reducible core problem depends on existence of a TLS solution of
its components, but also on the relations among singular values of these components. Finally we
show that also an irreducible core problem with multiple right-hand sides may not have a TLS
solution. The analysis of solvability is still under development; see [5].

Acknowledgement: The research of Martin Plešinger has been supported by the ESF grant
CZ.1.07/2.3.00/30.0065, “Support of the creation of excellent research and development teams
at the Technical University of Liberec”.
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Příklady zpracování geometricky složitých modelů
pro výpočty proudění podzemní vody

M. Hokr, D. Frydrych, A. Balvín

Technická univerzita v Liberci

1 Úvod

V dosavadních pracích autorů (např. [1]) byly řešeny úlohy průsaku podzemní vody do tunelu –
hlavní přínos z hlediska numerických metod bylo použití kombinace 3D a 2D elementů (kontinua
a puklin), z hlediska aplikace pak identifikaci parametrů horniny z měřeného průtoku v tunelu
(inverzní úloha). Cílem této práce je prezentovat nové nástroje a postupy přípravy geometrie,
které dokážou překonat omezení u dosavadních modelů, další řešené úlohy z aplikace na experi-
menty v podzemí, zmínit typické problémy a ukázat možnosti efektivnějšího řešení v souvislosti
se způsoby reprezentace tunelu nebo vrtů v modelu – objektů válcového tvaru, které z hlediska
měřítka celého modelu mají liniový charakter.

Ve všech případech je řešena úloha ustáleného filtračního proudění, tj. lineární eliptická parciální
diferenciální rovnice s neznámým polem tlaku (piezometrické výšky), na příslušné oblasti, která je
kombinací více subdomén stejné nebo různé dimenze (síť puklin-ploch nebo kombinace 2D puklin
a 3D kontinua). Použita je smíšená-hybridní metoda konečných prvků implementovaná v softwaru
Flow123D vyvíjeném na TU v Liberci [3].

2 Zpracování geometrie ploch ve 3D – puklin

Omezením open-source preprocesoru GMSH, který byl historicky využíván pro výpočetní soft-
ware Flow123D (včetně převzetí některých datových formátů), je nutnost explicitního zadání
všech význačných entit geometrie – tj. bodů, linií a ploch hranice oblasti, i vnitřích rozhraní
(mezi materiály) a průniků podoblastí. Jejich určení je v případě většího počtu puklin (ploch
v prostoru) obecného směru a přítomnosti tunelu a vrtů ručně téměř nemožné. Jako vhodný
nástroj byl nalezen program SALOME [4], open-source projekt založený na principu geomet-
rického modelování. Obsahuje knihovnu základních geometrických entit (bod, úsečka, krychle,
koule, atd) a několik knihoven geometrických operací. Generující operace slouží k definování
entit vyšších dimenzí pomocí entit nižších dimenzí (např. „vytažením“ úsečky je vygenerována
plocha). Transformační operace zajišťují posuny, rotace, zrcadlení a změny měřítka daných geo-
metrických entit. Boolovské operace zajišťují sjednocení, průnik a rozdíl geometrických entit.
Z programu je možné po vytvoření geometrie přímo volat generátor diskretizace NETGEN jako
jeden z možných alternativ.

Pro úlohu průsaku do tunelu Bedřichov tak bylo možné jednak použít realističtější tvar tunelu
(osmistěn), jednak předepsat pevnou polohu rozhraní mezi různými parametry horniny, zejména
díky výpočtu průniků ploch a tunelu, ale i díky efektivnímu automatickému řízení kroku diskre-
tizace (zjemnění kolem průniků a rozhraní). Srovnání modelů bylo předmětem práce [2] a ukázka
je na obrázku 1. Síť jemnějšího modelu má přes milion elementů, objemový rozsah modelu je
přitom přibližně čtvrtinový proti hrubší variantě s 220000 elementy.
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Obrázek 1: Hrubá a jemná geometrie a diskretizace ve svislém řezu 3D úlohy průsaku do tunelu
Bedřichov, odstíny jsou podoblasti různých materiálových koeficientů.

Úlohou vycházející z jiné aplikace je proudění v síti puklin v okolí experimentu VITA (vliv
zahřívání na vlastnosti horniny) ve štole Josef, podzemním pracovišti ČVUT – jednak přirozený
průsak do štoly, jednak při testech tlakování jednotlivých vrtů vedených ze štoly v různých
směrech (průměr obvykle 76 mm). Model puklinové sítě vycházel z přímého mapování, určení
poloh a orientací na stěně a ve vrtech. Pukliny jsou realizovány jako disky průměru od 9 do
12,5 m. Softwarem SALOME byly určeny liniové průniky mezi jednotlivými puklinami. Dále byly
nalezeny linie představující vyústění jednotlivých puklin a to jak do jednotlivých vrtů (elipsy),
tak i na hranici modelové oblasti. Síť vygenerovaná na geometrii zájmové oblasti je tvořena
16695 uzly a 33642 trojúhelníkovými elementy. Pohled na síť a ukázku výsledků je na obrázku 2.

Přes úspěšné vygenerování sítí pro uvedené úlohy různého charakteru a měřítka jsou i případy,
kdy postup vyžaduje další úpravy geometrie – např. při více průsečících objektů blízko sebe
(zejména pro síť puklin obecných směrů) dochází k extrémnímu zjemnění výsledné sítě, nepo-
užitelnému pro výpočet. Takový problém se typicky objevuje u stochasticky generovaných sítí
puklin.

Obrázek 2: Tok v puklinové síti v okolí experimentu VITA ve štole Josef – geometrie, diskretizace
a zobrazení výsledků.
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3 Reprezentace liniových objektů – tunel, vrty

V úlohách podzemní vody se velmi často pracuje s vrty, které jsou typickým nástrojem jak po-
zorovat nebo ovlivňovat děje v hornině. Podobnou roli mají tunelové stavby ve větším měřítku.
Fyzikálně jde o dutinu v modelové oblasti např. válcového tvaru s definovanou okrajovou pod-
mínkou na jejím povrchu. Numerické řešení na takovéto oblasti komplikuje malý příčný rozměr
vzhledem k měřítku úlohy, tj. nutnost velkého zjemnění diskretizace v okolí vrtu nebo tunelu.
Přirozeným modelem vrtu by byl jednorozměrný objekt (úsečka), ale předepsání hodnoty odpo-
vádající okrajové podmínce na úsečku uvnitř 3D oblasti vede na matematicky nekorektní úlohu
(singularitu). V komerčních softwarech pro podzemní vodu je někdy takováto úloha „skrytě“
řešena – na úrovni diskretizované úlohy je možné předepsat hodnotu do konkrétního uzlu nebo
elementu sítě, ale jde pak o řešení závislé na diskretizaci (např. u lineárních konečných prvků
nebo konečných objemů se výsledek chová jako úloha s dutinou rozměru odpovídajícího měřítku
kroku diskretizace). Tento efekt byl i prakticky testován na úloze bodového zdroje v ploše porov-
náním s analytickým řešením radiálního toku, ale nelze čekat, že by bylo možno vztahy zobecnit
pro různá numerická schémata a geometrie sítě.

I při reprezentaci tunelu nebo vrtu dutinou v geometrii je významný vliv přesnosti reprezentace
tvaru a velikosti a použitého kroku diskretizace. Test byl proveden na několika úlohách, příklad
sítí je na obrázku 3. Vztah mezi výsledkem úlohy s přesnou geometrií tunelu a jemnou diskretizací
a úlohy s hrubší reprezentací (čtvercový profil větší velikosti použitý z důvodu omezení pro
předchozí výpočty 3D úlohy [1]) pak byl použit pro dodatečnou korekci výsledků 3D úlohy
o předpokládáný vliv velikosti tunelu a diskretizace [2]. V rámci 2D úlohy i v úloze sítě puklin
(samotných ploch ve 3D) není proti 3D úloze (kombinace 2D a 3D) zjemnění tak omezující
a úlohu experimentu VITA (obrázek 2) se sadou vrtů bylo možné diskretizovat a řešit s rozumnou
výpočetní náročností.

Problém reprezentace vrtu lze řešit kombinací lokálního analytického řešení radiálního toku okolo
vrtu (uvnitř jednoho elementu) a numerického řešení na hrubší síti [5], což je využíváno i v apli-
kacích. Tento přístup je výhodné formálně zapracovat do konceptu rozšířené metody konečných
prvků (XFEM), což bude ukázáno na semináři v příspěvku P. Exnera, v návaznosti na dosavadní
řešení v literatuře.

Obrázek 3: Sítě pro porovnání vlivu diskretizace profilu tunelu/vrtu ve 2D.

4 Závěr

Představené příklady jednak ukazují možnosti standardních softwarových nástrojů a algoritmů
pro generování geometrie a diskretizace, jednak v některých případech omezení vyplývající z ma-
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lých rozměrů vrtů nebo tunelu vzhledem k měřítku úlohy. Pro takový případ je naznačen možný
směr dalšího vývoje a použití numerických metod.

Poděkování: Práce byla podporována Ministerstvem průmyslu a obchodu v rámci projektů
č. FR-TI3/325 (VITA) a FR-TI3/579 (Geostab). Na získání dat poloh puklin použitých v modelu
a na měření ve vrtech se podílel celý řešitelský tým projektu FR-TI 3/325.
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The efficient reconstruction formula for the amplitudes
of the rigid body modes in FETI for contact problems
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1 Introduction

The presentation deals with the relation of the vector of amplitudes of the rigid body modes
in FETI-1 or TFETI methods [1] and the multipliers generated by SMALSE algorithm [2] for
the solution of nonlinear problems. Once the dual solution - vector of Lagrange multipliers is
computed, to get the primal solution it is necessary to exclude those rows in the constraint ma-
trix with inequalities which correspond to zero Lagrange multipliers, compute new coarse space
matrix and coarse problem matrix, factorize it and solve this coarse problem [3]. Concerning e.g.
elasto-plastic problems, we have to solve this reconstruction in each time step. The new formula
computing this vector of the rigid body modes using a part of the residual and the SMALSE
multipliers is presented and the scalability improvement is illustrated by numerical experiments
done with FLLOP library [4] developed at our department.
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LIF data evaluation – image processing algorithms

M. Isoz

Institute of Chemical Technology, Prague

1 Introduction

Measurements of the liquid films and related forms of flow are often performed via an optical
experimental technique[1, 2]. One of such methods is so called Light Induced Fluorescence (LIF).

It is based on the principle of adding a marker to the measured liquid, illumination of the liquid
by a monochromatic light and measurement of the intensities of light emitted by the marked
liquid.

Figure 1: Example of experimental data obtained during LIF based measurement of gas–liquid
interface of rivulet falling down on an inclined plate.

Example of LIF based experimental method data output can be seen in Figure 1. Crucial parts
of image are the inclined plate on which the studied rivulet is positioned and the calibration cell
in upper right corner of the image. Calibration cell serves as a scale for conversion of measured
light intensities in local film thicknesses.

For automatization of the data evaluation process, locating these two objects in images obtained
during experiments is of key importance.

Moreover, as the measurements are quite easy to perform and quick, usually more than 40 images
with the same position of these two elements were available. This fact can be used to refine the
found coordinates through simple statistics.

Each experimental image corresponds to a matrix A of type (m,n), where m and n are the
vertical and horizontal resolutions of the image. Elements of matrix A, (aij) are the pixels of
processed image, (aij) ∈ 〈0; 1〉. Case of aij = 0 corresponds to a black pixel and aij = 1 to the
white one.

Both described algorithms work with black and white images. The transformation of grayscale
image to black and white is done through comparison of matrix elements to a preset threshold.
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Result of this transformation is matrix Ã with

ãij =

{
1 if aij < threshold
0 if aij ≥ threshold .

, i = 1, . . . ,m, j = 1, . . . , n (1)

2 Calibration cell finding algorithm

The calibration cell is a very distinct object. Hence the algorithm does not have to be very
complex. Besides, as the program was implemented in MATLAB, most of the steps have been
performed via functions available in Image Processing Toolbox of this environment.

However, the most crucial step of the algorithm, selection of the calibration cell from all the
candidate elements that passed through basic size based filtering, had to be developped. The
proposed selection algorithm is based on comparing values of custom objective function.

From Figure 1, it is clear that the calibration cell is almost perfectly rectangular object. Addi-
tionally, it is always placed vertically. So the custom objective function penalizes the elements
for not being rectangular and for not having edges parallel to image borders. This penalization
is done through sum of two almost independent terms.

The first term of objective function penalizes checked object for not being rectangular and for
not being oriented in the above described way.

Let us denote the term as ∆RA and define it by relation,

∆RA =
δx δy −

∫
S dS

δx δy
, (2)

where
∫
S dS stands for actual area of the element calculated directly from the number of pixels

of which it consists. Other terms of the equation, δx and δy are the maximal distances between
pixels in horizontal (x) and vertical (y) direction, respectively.

The product δx δy always stands for the maximal possible area of tested element. Only for
exactly vertically or horizontally placed rectangular elements, δx δy =

∫
S dS, hence dividing

their difference by δx δy ensures
∆RA ∈ 〈0, 1) . (3)

Other custom objective function term is penalizing the object for not being rectangular. It is
based on the sum of dot products of the direction vectors of elements sides. Main idea is that
the tangent vectors defined in the clockwise and counterclockwise directions in the top left and
bottom right corner of the tested element should be perpendicular to each other. The second
term of the objective function is denoted by DP and defined as follows,

DP =

2∑

i=1

~ui
‖~ui‖

·
~vi
‖~vi‖

, (4)

where ~ui, i = 1, 2 are the tangent vectors defined in the clockwise direction in opposite corners
and ~vi, i = 1, 2 are the vectors defined in the counterclockwise direction.

Value of the objective function for the i-th tested element is then calculated as sum of the above
defined terms,

Si = ∆RAi +DP i . (5)

Algorithm can malfunction for the case of multiple distinct, roughly rectangular elements present
in the image. However, testing proved it to be very dependable.
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3 Plate finding algorithm

The second crucial element on the images from experiments is the inclined plate with measured
rivulet itself. As it can be seen in Figure 1, the plate edges are much less distinct than the
calibration cell. This resulted in need of much more sophisticated and computational time
consuming algorithm.

First, a preprocessing had to be done, where the approximate position of the plate had to be
specified manually, the rivulet itself was removed from the selected area and the contrasts in the
resulting image were enhanced. The result was a matrix B, submatrix of A containing only the
plate itself. Image represented by B was transformed in black and white using the relation (1).
Finally the Hough transform was used to detect the line segments in B̃[3, 4].

The result of previously described procedure were line segments represented by coordinates of
their starting and ending points. As it can be deduced from the Figure 1, only the vertical and
horizontal lines near the borders of manually selected area were relevant for the plate position
estimation.

All the other found line segments had to be excluded. Furthermore, the remaining lines had to
be sorted with respect to the plate edge they were adjacent to. At last, the plate edges positions
were estimated from the weighted mean of relevant line segments coordinates. Weights were
based on the line segment length, with longer segments taken as more important.

The process is depicted in algorithm based on pseudo MATLAB syntax below.
% constants

Dx, Dy % maximal non−horizontality (non−verticality) of kept lines

Eh, Ev % maximal tolerated distance from the selection edges

Sh, Sv % horizontal and vertical sizes of selected area

for i = 1:number of found lines

% prepare the statements for processing the found segments

ishorizontal= abs(xStart−xEnd) < Dx; isvertical = abs(yStart−yEnd) < Dy;

isleft = abs(xStart−0) < Eh; isright = abs(xStart−Sh) < Eh;

istop = abs(yStart−0) < Ev; isbottom = abs(yStart−Sv) < Ev;

% if the line is not vertical or horizontal, discard it

if ¬isvertical && ¬ishorizontal, discard tested segment; break; end

% sort lines with respect to selected area edges they are adjacent to

% discard the rest (lines in center of the selected area)

if isvertical && (isleft || isright)

Vweight(i) = abs(yStart−yEnd)/Sv; % calculate the weight of segment

if isleft

propLeft(i) = mean([xStart xEnd]); % save its horizontal position

else

propLeft(i) = mean([xStart xEnd]);

end

elseif ishorizontal && (istop || isbottom)

Hweight(i) = abs(xStart−xEnd)/Sh; % calculate the weight of segment

if istop

propTop(i) = mean([yStart yEnd]); % save its vertical position

else

propBottom(i) = mean([yStart yEnd]);

end

else, discard tested segment;break;

end;end

After all the lines were tested, the plate edges position was calculated from proposed coordinates
and their weights.
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4 Statistical processing of algorithms results

Result of the above described algorithms is a matrix of found elements coordinates on experi-
mental images, C. Each row of C corresponds to one processed image and each column to one
found coordinate. As it was mentioned before, there are usually more than 40 images with the
same experimental apparatus set up. This fact can be used to refine the found coordinates and
to compensate for possible algorithms malfunctions.

Final position of the looked up elements is calculated as mean value of each column of C with
previously excluded outliers.

Outliers exclusion is based on the data kurtosis[5]. From each column of matrix C are left out
all the values not satisfying the equation

|(ci)j − µj| ≥ αjσj , i = 1, . . . ,number of images . (6)

In (6), µj is the mean value and σj is the standard deviation of the j-th column of C and the
coefficient αj is calculated from the columns kurtosis by the formula

αj =
7

Kurt((ci)j)
, i = 1, . . . ,number of images . (7)

For the case of standard distribution, the advised value of numerator in (7) is 9[3]. However, as
the distrubution of found coordinate should be closer to δ-function (the experimental set up was
not tempered with), value 7 was chosen and proven by testing as more appropritate.

5 Conclusion

Modern, LIF based measurements are very fast and with improving quality of digital capturing
devices also accurate experimental techniques. Unfortunately, the obtained data are only as
good as it is the image processing method used for their evaluation. With the above explained
algorithms, it is possible to automatically and precisely locate the most important elements on
experimental images and improve the quality of measured data.
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Different types of noncommutative algebras
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We will study various types of noncommutative algebras as they were invented by Sir William
Rowan Hamilton in 1843 and six years later, in 1849, by Sir James Cockle, namely we will study
four algebraic systems: quaternions, coquaternions, tessarines, and hyperbolic quaternions.

Quaternions

Let us denote by H the field of quaternions, which is R4 equipped with a special multiplication
rule which makes R4 a skew field. In order to explain that, let 1, i, j,k be the four standard basis
elements in H. They obey the following multiplication rules, see (6):

i2 = j2 = k2 = −1; ij = k, jk = i, ki = j. (1)

Instead of a := a1 + a2i + a3j + a4k we write equivalently also a = (a1, a2, a3, a4). Let a :=
(a1, a2, a3, a4), b := (b1, b2, b3, b4). Then, the multiplication rules (1) imply

ab := (a1b1 − a2b2 − a3b3 − a4b4, a1b2 + a2b1 + a3b4 − a4b3, (2)

a1b3 − a2b4 + a3b1 + a4b2, a1b4 + a2b3 − a3b2 + a4b1).

And we see from the above multiplication rule, that the set of quaternions of the form a :=
(a1, 0, 0, 0) is isomorphic to the field of real numbers, denoted by R, and the set of quaternions
of the form a := (a1, a2, 0, 0) is isomorphic to the field of complex numbers, denoted by C. Let
a := (a1, a2, a3, a4). Then, a := (a1,−a2,−a3,−a4) will be called conjugate of a. The absolute
value of a is denoted by |a| and defined by |a| :=

√
a21 + a22 + a23 + a24. And for all a, b ∈ H there

are the rules

|a|2 = aa = aa, |ab| = |ba| = |a||b|, ab = b a, ℜ(ab) = ℜ(ba), a−1 =
a

|a|2
, (3)

where the last rule applies only for a 6= 0. Let us note that only real quaternions commute with
all other quaternions, i.e. the center of H is R.

The field H is isomorphic to a certain class of matrices in C2×2. Let a = (a1, a2, a3, a4) ∈ H. Let
us put w = a1 + a2i, z = a3 + a4i . Then the set of matrices of the form

H̃ =

(
w z

−z w

)

with ordinary matrix addition and multiplication is isomorphic to H, [8].

This leads to complex systems of equations with matrices in which a scalar element a ∈ R is
replaced by a 2 × 2 matrix with complex elements. Due to the isomorphism it means that we
can work with quaternionic matrices. It has some advantages (increased accuracy, economy of
storage), but on the other hand it needs more computational effort.

The field H is also isomorphic to a certain class of matrices in R4×4.
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Let a = (a1, a2, a3, a4) ∈ H. We introduce the mapping ω : H −→ R4×4 by

ω(a) :=




a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2
a4 −a3 a2 a1


 ∈ R

4×4. (4)

The mapping ω represents the isomorphic image of a quaternion a = (a1, a2, a3, a4) in the matrix
space R4×4.

Coquaternions

The coquaternions or split–quaternions are elements of a 4-dimensional associative algebra intro-
duced in 1849 by Sir James Cockle (1819–1895),[2], mathematician and lawyer in Australia. Like
the quaternions, they form a four dimensional real vector space equipped with a multiplicative
operation, see (6). Unlike the quaternion algebra, coquaternions contain zero divisors, nilpotent
elements, and nontrivial idempotents. As a mathematical structure, they form an algebra over
the real numbers, which is isomorphic to the algebra of all real 2× 2 matrices.

The algebra of coquaternions will be abbreviated by Hcoq. Coquaternions obey multiplication
rules given in (6). Let a := (a1, a2, a3, a4), b := (b1, b2, b3, b4). The explicit multiplication rule
for the product ab is

ab := a1b1 − a2b2 + a3b3 + a4b4 + (a1b2 + a2b1 − a3b4 + a4b3)i+ (5)

(a1b3 − a2b4 + a3b1 + a4b2)j+ (a1b4 + a2b3 − a3b2 + a4b1)k .

Also here, only real coquaternions commute with all other coquaternions, i.e. the center of Hcoq

is R.

In the following table, the multiplication rules for quaternions and coquaternions are listed. Two
tables differ only by signs of the red figures.

H 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Hcoq 1 i j k

1 1 i j k

i i −1 k −j

j j −k 1 −i

k k j i 1

(6)

Theorem 1 Let a = a1 + a2i+ a3j+ a4k ∈ Hcoq and define the matrix

C4 :=




a1 −a2 a3 a4
a2 a1 a4 −a3
a3 a4 a1 −a2
a4 −a3 a2 a1


 . (7)

Then, the set of all matrices of the type C4 forms an algebra, and this algebra is isomorphic to
the algebra of coquaternions. 2

For proof, see [4]. Let us remark, that two matrices ω(a) in (4) and C4 in (7) differ only by signs
of the red elements.
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Let a = a1 + a2i + a3j + a4k ∈ Hcoq . The algebra of coquaternions is also isomorphic to the
algebra of real 2× 2 matrices, [5]:

C2 = a1

(
1 0

0 1

)
+ a2

(
0 1

−1 0

)
+ a3

(
0 1

1 0

)
+ a4

(
1 0

0 −1

)
(8)

=

(
a1 + a4 a2 + a3

−a2 + a3 a1 − a4

)
, and

C−1
2 =

1

d

(
a1 − a4 −a2 − a3
a2 − a3 a1 + a4

)
, d := a21 + a22 − a23 − a24 6= 0.

If we denote the four basis elements in the order of the equation (8) by E, I,J,K, then they
obey the same multiplication rules as 1, i, j,k in (6). An algebra of this type, is also called a split
algebra, in the current case the algebra of split quaternions, [5].

Let a = (a1, a2, a3, a4) be a coquaternion. We define the conjugate of a (notation ā or conj(a))
and modulus abs2 by

ā := (a1,−a2,−a3,−a4) , abs2(a) := a21 + a22 − a23 − a24 . (9)

The quantity abs2 may be negative, it is not the square of a norm. The coquaternions came to
be called split-quaternions due to the division into positive and negative terms in the modulus
function. Let b be another coquaternion. There are the following rules:

aā = āa = abs2(a), abs2(ab) = abs2(ba) = abs2(a)abs2(b) ,

(ab) = b̄ā , ℜ(ab) = ℜ(ba) .

The coquaternion a will be called singular if abs2(a) = 0. If a is nonsingular (= not singular =
invertible), then

aa−1 = a−1a = (1, 0, 0, 0) holds for a−1 =
ā

abs2(a)
.

Tessarines

A Tessarine System is a system in R4 equipped with the multiplicative operation defined in (10).
The tessarines are best known for their subalgebra of real tessarines t = a1 + a3j, also called
split-complex numbers, which express the parametrization of the unit hyperbola. James Cockle
introduced the tessarines in 1848 in a series of articles in Philosophical Magazine, [2].

In 2009 mathematicians proved a fundamental theorem of tessarine algebra: a polynomial of
degree n with tessarine coefficients has n2 roots, counting multiplicity, [7].

Linear representation:

Let t = a1 + a2i + a3j + a4k be a tessarine. Let us note that, since ij = k, we have t =
(a1 + a2i) + (a3 + a4i)j. The mapping

t 7→

(
w z

z w

)
, w = a1 + a2i, z = a3 + a4i,

is a linear representation of the algebra of tessarines as a subalgebra of 2× 2 complex matrices.
For instance, ik = i(ij) = (ii)j = −j has the linear representation

(
i 0

0 i

)(
0 i

i 0

)
=

(
0 −1

−1 0

)
.
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Note that unlike most matrix algebras, the algebra of tessarines is a commutative algebra.

The multiplication rules for tessarines and hyperbolic quaternions are listed in the following
tables. These tables differ from the multiplication table for quaternions only by signs of the red
figures.

Tess. 1 i j k

1 1 i j k

i i −1 k −j

j j k 1 i

k k −j i −1

Hyp.quat. 1 i j k

1 1 i j k

i i 1 k −j

j j −k 1 i

k k j −i 1

(10)

Hyperbolic quaternions

The system of hyperbolic quaternions is a nonassociative algebra in R4 equipped with multiplica-
tive operation defined in (10). Unlike the ordinary quaternions, the hyperbolic quaternions are
not associative. For example, (ij)j = kj = −i, while i(jj) = i.

In the fundamental work [6], A. Macfarlane defined the concepts of the theory of relativity of
space and time using hyperbolic quaternions. More resent results can be found in [1].
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Slightly generalized regular space decompositions

A. Kolcun

Institute of Geonics AS CR, Ostrava

Space decomposition methods represent an important part of numerical modelling process. In
many applications it is suitable to use the simplest case of decomposition – regular rectangular
grid: the whole raster graphic concept can be seen from this point of view. Different raster
concept, based on regular hexagonal mesh, is analyzed e.g. in [18]. Generalized task – decom-
position of the space to the set of the identical elements have been presented in various research
areas since a long time, and it is connected with Hilbert’s 18th problem [9], [10].

Within the numerical methods development, the space discretization became an important tool
of the shape expressivity. The domain of interest is decomposed to simple polyhedral elements.
In the simplest case of linear approximation, the triangles for 2D tasks and tetrahedra for 3D
tasks are used. There is a wide range of generators used for the decomposition, e.g. [7], [6], which
produces meshes with irregular structure of nodes coincidency. For good interpolation properties,
the condition like Delaunay one [3], [5] is required in the case of the isotropical environment.
(In 2D case, the Delaunay triangulation maximizes the minimum angle. Compared to any other
triangulation of the points, the smallest angle in the Delaunay triangulation is at least as large
as the smallest angle in any other. However, the Delaunay triangulation does not necessarily
minimize the maximum angle.)

Due to the fact, that for geometric modelling (CAD) parametrical models based on the tool
of NURBS curves, surfaces and volumes are used, discretization with regular structure of node
coincidency is important and wide spread. Moreover, the common basis for both geometric and
physically based modelling can be founded [11], [4].

Using current methods, creating 3D models is an extremely time-consuming, unreliable, and
labour-intensive process. So, when the geometry information is obtained e.g. from computer
tomograph or similar devices, i.e. in the form of pixel/voxel grid, it is reasonable to create
the space decomposition in the same or similar way. The discretization error – aliasing – has
a very local character in this case only [2]. Moreover, this error can be eliminated as mentioned
below.

Finer mesh This way, however, leads to substantial increasing of memory demands.

Adjusting the geometry Some of the grid nodes are shifted according to prescribed geometry.
It is proved [16] that even in the simplest case of adjusting (local displacement of the grid
nodes only, which are the most close to the prescribed shape) resulting mesh holds the
Delaunay property.

Pixel/voxel partitioning This approach gives a wide variability of the shape expression: from
four types of possible tetrahedra we can create 72 different conform decompositions [12],
[1], [17]. On the other hand, not all configurations of diagonals are admissible: in some
cases only nonconform decompositions are possible, and in some cases no decompositions
are possible. This fact can be considered as a generalization of the decomposition of
Schönhardts polyhedron [19], [20]. This drawback can be eliminated. We can move the
node in such way, that planar quadrilateral, which is nonconformly partitioned, become a
tetrahedron. In this case voxel can be decomposed to 6-13 tetrahedra. [13]. So, in this
case both regularity of geometry and nodes coincidency is spoilt.
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Goldberg’s tiling There are several methods how to decompose 3D space into the set
of the same tetrahedra [8], [9], [21]. Comparison of these decompositions in [14] shows
the benefit of Goldbergs tiling. Within this class of decompositions we can find such one,
based on tetrahedron, close to the regular one (each face is isoscelles triangle with edges
ratio

√
(43) : 1 : 1). Moreover, Cartesian indexation of nodes with three-indexes can be

used and there are four different assembling schemes how we can compose the voxel form
these six tetrahedra [15].
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Noise revealing in Golub-Kahan bidiagonalization
as a mean of regularization in discrete inverse problems

M. Kubínová, I. Hnětynková

Charles University in Prague, Faculty of Mathematics and Physics
Institute of Computer Science, Academy of Sciences of the Czech Republic

1 Introduction

We consider an ill-posed linear system

Ax ≈ b, A ∈ R
n×n, b = bexact + bnoise ∈ R

n, (1)

where A is a nonsingular matrix and bnoise is an unknown perturbation of the right-hand side
bexact, ‖bnoise‖ ≪ ‖bexact‖. Moreover, we assume that the matrix A is a discretized smoothing
operator with singular values decaying gradually to zero and the vector bnoise represents noise
(for simplicity, we assume white noise, that is, the noise has flat frequency characteristics). The
aim is to approximate the exact solution

xexact ≡ A−1bexact.

Since A has smoothing property, the operator A−1 amplifies high-frequencies. For noise sig-
nificant enough, the discrete Picard condition is violated, which makes the naive solution
xnaive ≡ A−1b completely meaningless, and problem (1) has to be regularized. A successful
regularization method has to suppress the devastating effect of high-frequency noise while pre-
serving sufficient information from the data. The amount of regularization is usually controlled
by a regularization parameter and choice of this parameter represents the most difficult part
of solving discrete inverse problems [2]. One can also attempt to eliminate (at least to some
extent) the high-frequency part of the noise. Assume, we have an estimate b̃noise of the noise
vector bnoise. Then, a straightforward approach to solve problem (1) is to subtract this estimate
from the right-hand side b, and solve the system

Ax = b− b̃noise. (2)

We want system (2) to have better overall properties than the original problem (1). In our case,
the aim is to dampen the high frequencies coming from noise. The key part of this approach is
to find an estimate b̃noise. In the following, we will present a cheap parameter-free method for
finding such an estimate using Golub-Kahan bidiagonalization [1].

2 Estimating noise via noise propagation in Golub-Kahan bidi-
agonalization

Golub-Kahan bidiagonalization is an iterative procedure that is widely used in solving large
linear systems. Given the initial vectors w0 ≡ 0, s1 ≡ b/β1, β1 ≡ ‖b‖ 6= 0, it computes

αkwk = AT sk − βkwk−1 , ‖wk‖ = 1 ,

βk+1sk+1 = Awk − αjsk , ‖sk+1‖ = 1,
(3)
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until αk = 0 or βk+1 = 0, or until k = n. Vectors sk and wk form the bases of Krylov subspaces
KK(AAT , b) and KK(ATA,AT b) respectively.

In hybrid methods (see, e.g., [3, 4]), Golub-Kahan bidiagonalization is used as outer regularization
(regularization of the original large problem by projection). Moreover, as shown in [5], due
to the orthogonalization, one may also make use of the propagation of the noise through the
bidiagonalization process. Since the starting vector s1 is polluted by white noise, this noise is
present in all subsequent left bidiagonalization vectors sk. As shown in [5], the size of the noise
in the vector sk+1 can be related to the amplification factor

ρ−1
k ≡

k∏

j=1

αj

βj+1
, (4)

where αj and βj+1 are the normalization coefficients from (3). It was also shown in [5] that if A
is a discretized smoothing operator, then the factor ρ−1

k has to grow (on average) until it reaches
the point where the noise is revealed in the maximal way. This is illustrated in Figures 1 and 2.
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k for problem shaw(400)
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Figure 2: Corresponding left bidiagonalization vectors
sk, k = 2, . . . , 11.

We see that for ρ−1
k maximal, the bidiagonalization vector sk+1 may be fully dominated by the

noise. This observation forms the basis of the proposed method for finding an estimate b̃noise.

Let k̂ + 1, where k̂ ≡ argmax
k

ρ−1
k , be the iteration of maximal noise revealing (in our example

presented above, k̂ + 1 = 7). Then, one may approximate the noise vector by the (properly
scaled) left bidiagonalization vector sk̂+1. In [7] it was shown that the resulting right-hand side
b− b̃noise lies in the span of smooth vectors (the troublesome high-frequencies coming from the
noise are subtracted) and therefore the method has a regularization effect, as illustrated in Figure
3.

Despite being computationally undemanding, this method is, as shown in [7], competitive with
standard methods for solving inverse problems such as truncated SVD or Tikhonov [4]. The
method still needs to be tested on real-world examples and it has to be investigated, how to
solve system (2) efficiently, or whether rounding errors and consecutive loss of orthogonality may
harm the method significantly.
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Simultaneous transport of heat, moisture
and salt in porous materials

J. Kruis

Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague

1 Introduction

Transport of heat, moisture and various species in civil engineering materials is studied more
frequently. There are two reasons for this trend. First, durability and reliability of structures
are investigated and especially salt transport plays very important role. Second, mechanical be-
haviour of structure is usually significantly influenced by temperature and moisture distribution.
Chloride ions cause corrosion of reinforcement in concrete.

This contribution describes three models of transport processes and shows systems of partial
differential equations which have to be solved. After spatial discretization by the finite element
method, nonsymmetric systems of ordinary differential equations are obtained and they are
solved by the generalized trapezoidal rule. The resulting system of algebraic equations is also
nonsymmetric. It is solved by LU factorization or by GMRES method.

2 Selected material models

There are many material models describing moisture, heat and moisture, moisture and salt and
heat, moisture and salt transport in porous material. For detailed explanation, see reference [1].

In 1995, Künzel proposed in [2] a model for coupled heat and moisture transport based on the
following balance equations

∂ρv
∂ϕ

∂ϕ

∂t
= div

(
(Dφ + δpps)gradϕ+ δpϕ

dps
dT

gradT

)
(1)

∂H

∂T

∂T

∂t
= div

(
(λ+ Lvδpϕ

dps
dT

)gradT + Lvδppsgradϕ

)
(2)

where ρv is the partial moisture density, ϕ is the relative humidity, t (s) is the time, Dφ is the
liquid water transport coefficient, δp (kg/m/s/Pa) is the water vapour permeability, ps (Pa) is
the partial pressure of saturated water vapour in the air, T (K) is the temperature, H (J/m3)
is the total enthalpy, λ (W/m/K) is the thermal conductivity, Lv (J/kg) is the latent heat of
evaporation of water. This model is very popular in building physics.

Suwito, Cai and Xi published in [3] governing equations for the coupled problem of chloride ions
and moisture diffusion

∂Ct

∂Cf

∂Cf

∂t
= ∇(DCl∇Cf + εDϕ∇ϕ) (3)

∂w

∂ϕ

∂ϕ

∂t
= ∇(δDCl∇Cf +Dϕ∇ϕ) (4)
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where Ct is the total chloride concentration, Cf is the free chloride concentration, DCl (m2/s) is
the chloride diffusivity, Dϕ is the humidity diffusivity, ε is the humidity gradient coefficient and
δ is the chloride gradient coefficient.

Černý and coworkers published in [4] coupled salt-moisture-heat transport model which leads to
the balance equation for the moisture

(
̺w +

M

RT
psat(π − w)

dϕ

dw
−

M

RT
psatϕ

)
∂w

∂t
= (5)

= div

((
̺wκ+ ̺sδp

dϕ

dw

)
∇w

)
+ div

(
δpϕ

dps
dT

∇T

)
(6)

balance equations for the salt

CfH(Cf,sat − Cf )
∂w

∂t
+

(
wH(Cf,sat − Cf ) +

∂Cb

∂Cf

)
∂Cf

∂t
+
∂Cc

∂t
= (7)

= div(wD∇Cf ) + div(Cfκ∇w) (8)

∂Cc

∂t
= H(Cf − Cf,sat)

∂

∂t
(w(Cf −Cf,sat)) (9)

and balance equation for the heat

∂H

∂T

∂T

∂t
= div

(
Lvδppsat

dϕ

dw
∇w

)
+ div

((
λ+ Lvδp

dps
dT

)
∇T

)
(10)

where Cf the concentration of free salts in water (kg/m3 of solution), Cb the concentration
of bonded salts in the whole porous body (kg/m3 of sample), Cf,sat the saturated free salt
concentration (kg/m3 of solution), Cc the amount of crystallized salt (kg/m3 of sample), D the
salt diffusion coefficient (m2/s), w the volumetric moisture content (m3/m3), κ the moisture
diffusivity (m2/s), H(x) the Heaviside step unit function (H(x < 0) = 0,H(x ≥ 0) = 1), δ the
water vapour diffusion permeability (s), pv the partial pressure of water vapour (Pa), ̺w the
density of water (kg/m3), Lv the latent heat of evaporation of water (J/kg), λ the thermal
conductivity (W/m/K), ̺ the bulk density (kg/m3), c the specific heat capacity (J/kg/K), T the
temperature (K).

The balance equations (5–10) can be rewritten in the following form

Hww
∂w

∂t
= div(Dwwgw) + div(DwTgT ) (11)

Hfw
∂w

∂t
+Hff

∂Cf

∂t
+Hfc

∂Cc

∂t
= div(Dfwgw) + div(Dffgf ) (12)

Hcw
∂w

∂t
+Hcf

∂Cf

∂t
+Hcc

∂Cc

∂t
= 0 (13)

HTT
∂T

∂t
= div(DTwgw) + div(DTTgT ) (14)

One of the most difficult problem connected with coupled transports is definition of boundary
conditions. Dirichlet boundary conditions (prescribed values) are barely available. Neumann
boundary conditions (prescribed flux densities) are also usually not known. The most suitable
boundary conditions are of the Newton type (transmission boundary conditions) but it can be
very difficult to obtain appropriate transmission coefficients.
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3 Discretization

Discretization of the balance equations is demonstrated on the model proposed by Černý in [4].
The unknown variables (the volumetric moisture content, the concentration of free salts in water,
the amount of crystallized salt, the temperature) are discretized in the form

w = Nwdw (15)

Cf = N fdf (16)

Cc = N cdc (17)

T = NTdT (18)

where Nw,N f ,N c,NT denotes the matrices of shape functions and dw,df ,dc,dT are vectors
of nodal values. The test functions are in the form

ηw = Nwbw (19)

ηf = N fbf (20)

ηc = N cbc (21)

ηT = NTbT (22)

and the gradients of unknown variables are expressed in the form

gw = Bwdw (23)

gf = Bfdf (24)

gc = Bcdc (25)

gT = BTdT (26)

(27)

where Bw,Bf ,Bc,BT are matrices of partial derivatives of the shape functions. The shape
functions are usually linear functions.

The resulting system of ordinary differential equations has the form



Cww 0 0 0

Cfw Cff Cfc 0

Ccw Ccf Ccc 0

0 0 0 CTT







ḋw

ḋf

ḋc

ḋT


+




Kww 0 0 KwT

Kfw Kff 0 0

0 0 0 0

KTw 0 0 KTT







dw

df

dc

dT


 =




0

0

0

0


 (28)

Clearly, the system is nonsymmetric and nonlinear.

Time integration is based on the generalized trapezoidal rule [5] in the form

di+1 = di +∆tvi+α , (29)

where the vector vi+α has the form

vi+α = (1− α)vi + αvi+1 . (30)

The vector v contains time derivatives of unknown nodal variables, i.e. time derivatives of the
vector d. Substitution of expressions (29) and (30) to the system of balance equations results in
well known form

(C +∆tαK) vi+1 = f i+1 −K (di +∆t(1− α)vi) . (31)

The nonsymmetric and nonlinear system of equations (31) has to be solved within each time
step.
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4 Conclusion

Solution of transport processes in porous materials is generally very complicated task. Coupled
transport processes are leading to nonsymmetric systems of algebraic equations and there are
still questions about their solvability. This contribution summarizes three models of coupled
transport processes.

Acknowledgement: Financial support for this work was provided by project number 13-18652S
of Czech Science Foundation. The financial support is gratefully acknowledged.
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Optimization of parameters in SDFEM method
for different spaces of parameter τ

P. Lukáš

Charles University in Prague, Faculty of Mathematics and Physics

The talk is devoted to the numerical solution of the scalar convection–diffusion equation. We
present new results of an adaptive technique in finite element method based on minimizing
a functional called error indicator Ih : Wh → R. The simplest form of such an indicator is

Ih(wh) =
∑

K∈Th,K∩∂Ω=∅

h2K ‖ − ε∆wh + b · ∇wh + cwh − f‖20,K ∀wh ∈Wh, (1)

where we have used the notation from the article of V. John, P. Knobloch, S. B. Savescu [1]. It
is possible to enrich this indicator by other terms, which favour less smeared solution to diffuse
one. One example of such a term is ‖φ(|b⊥ · ∇wh|)‖0,1,K , where φ is a function like square root.
The suitability of added terms depends on the problem we solve.

The parameter we are changing in the optimization process is currently the parameter τ from
SUPG (SDFEM) method. We use more different finite element spaces (space of piecewise
constant functions, piecewise linear continuous functions, and piecewise linear discontinuous
functions) for the parameter τ . The talk is based on the article of V. John, P. Knobloch,
S. B. Savescu [1].
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Asymptotic expansion for convection–diffusion problems

J. Lamač1, J. Hozman2

1Faculty of Mathematics and Physics, Charles University in Prague
2Technical University of Liberec

1 Introduction

While solving singularly perturbed problems, such as convection-diffusion equation or convection-
diffusion-reaction equation, we would like to have some test solution of the respective differential
equation (equipped with some simple boundary data) which can confirm or disprove our analysis
or methods. This solution can be either exact or asymptotically exact. The same demand can
we also have while construction anisotropic and adaptively refined meshes.

In this context, finding the asymptotically exact solution of the respective differential equation
is more convenient. Although it seems that we loose the accuracy of the solution it is not
the case, since we can choose the accuracy of the solution ourselves. The construction of the
asymptotically exact solutions for differential equations – the method of matched asymptotic
expansions – is well described for one-dimensional cases and several two-dimensional cases, see
e.g. [1, 4] and the references cited therein. However, for multidimensional cases the construction
of the asymptotic expansions of the solutions of partial differential equations is more complicated
and in fact treated mostly on simple domains – squares and rectangles in 2D. And the analysis of
the singularly perturbed problems is performed on these rectangular domains, as well. Therefore,
the main goal of this paper is to extend the type of these domains to another convex polygons
and enable the generalization of the above mentioned analysis of these problems.

2 Model equation and reduced problem

The model equation for our purposes will be a scalar convection-diffusion equation

Lu := −ε∆u(x, y) + bT (x, y)∇u(x, y) = f(x, y) in Ω ⊂ R
2, (1)

u(x, y) = 0 on ∂Ω, (2)

where Ω is a convex polygonal domain with boundary ∂Ω satisfying

∂Ω = Γ+ ∪ Γ0 ∪ Γ− and Γ+ ∩ Γ0 = Γ0 ∩ Γ− = Γ− ∩ Γ+ = ∅ (3)

with Γ+, Γ0 and Γ− defined as follows: Γ+ = {(x, y) ∈ ∂Ω, bT (x, y)n(x, y) > 0}, Γ0 = {(x, y) ∈
∂Ω, bT (x, y)n(x, y) = 0} and Γ− = {(x, y) ∈ ∂Ω, bT (x, y)n(x, y) < 0}. Here n(x, y) denotes
a unit normal vector at (x, y) ∈ ∂Ω orthogonal to the boundary ∂Ω.

Since we are not interested in solving the equation (1) for general data but in finding some
test solution for given domain, we can confine ourselves to sufficiently smooth data, namely
b ∈ C1(Ω)2 and f ∈ L2(Ω). In what follows we shall also consider that the vector b possesses
the Taylor expansion in Ω, namely in the neighbourhood of ∂Ω.

As ε→ 0+, the equation (1) becomes singularly perturbed and near the boundary Γ+ it is usually
difficult to compute the solution numerically. Thus we would like to determine the asymptotic
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Figure 1: Part of the general convex domain Ω (left) and the simple triangular domain considered
in numerical experiment (right).

expansion of the solution to the equation (1) near the boundary Γ+. At first we formally set
ε = 0 in the equation (1) and obtain the so-called reduced problem

bT (x, y)∇u0(x, y) = f(x, y) in Ω ⊂ R
2, (4)

u0(x, y) = 0 on Γ−, (5)

where we have to consider only the boundary condition on Γ− due to the cancellation law (see [4]
for details). The problem (4)–(5) is the hyperbolic problem and we assume that the solution of
this problem is known, more specifically, we expect only the problems with the (analytically)
computable reduced solution u0. Some basic results on existence, uniqueness and regularity of
the solution of (4)–(5) can be found in [2]. The reduced solution u0 is, in fact, the first term of
the so-called global (or regular) expansion of the solution u, which is a good approximation of u
away from the layers. We call the function Em

g u the m-th order global expansion of the function
u when Em

g u =
∑m

j=0 ε
juj, where u0 is the reduced solution and uj , j ∈ {1, 2, . . . ,m} satisfy

bT (x, y)∇uj(x, y) = ∆uj−1(x, y) in Ω ⊂ R
2 (6)

uj(x, y) = 0 on Γ−. (7)

This definition immediately implies that L(u − Em
g u) = εm+1∆um in Ω, u − Em

g u = 0 on Γ−

and u − Em
g u = −Em

g u on Γ+ ∪ Γ0. Due to the last property, considering ε ≪ ‖Em
g u‖∞,Ω, the

comparison principle (or the maximum principle) yields only ‖u−Em
g u‖∞,Ω ≤ ‖Em

g u‖∞,Ω. This
is the reason why the local correction terms must be introduced.

3 Results on exponential layers

In order to construct the local correction terms, new coordinates in the neighbourhood of Γ+

must be introduced. For this purpose let us assume that there are only two vertices {P 0, PH} =
Γ− ∩ Γ+ and consider Γ+ = ∪H

k=1ek, where ek are the edges of Γ+. Then P 0 ∈ e1, PH ∈ eH and
the remaining vertices of Γ+ satisfy P k = ek ∩ ek+1, k = 1, . . . ,H − 1.

The transformation of coordinates Ψk corresponding to the edge ek, k = 1, 2, . . . ,H, is now
defined as Ψk : (x, y) → (ξk, ηk), where

ξk(x, y) = (P k−1
y − y) cosαk − (P k−1

x − x) sinαk, (8)

ηk(x, y) = (P k−1
x − x) cosαk + (P k−1

y − y) sinαk. (9)
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Here P k−1 = [P k−1
x , P k−1

y ] and nk = (− sinαk, cosαk)
T is the normal vector, orthogonal to the

edge ek, see Figure 1 (left). Then let us denote dk = ηk(P
k) and due to the convexity of Ω, we

may for simplicity assume that the domain Ω is oriented in such a way that αk ∈ [0, 2π) and
αk < αk+1 for all k = 1, 2, . . . ,H − 1. This notation also implies that the angle corresponding
to the vertex P k is equal to γk = π + αk − αk+1.

In what follows we recall result from [3], i.e. assume that all characteristics through points of Ω
leave Ω at points of Γ+ in finite time and Γ0 = ∅, then the following estimate holds for sufficiently
small ε,

|u(x, y)− umas(x, y)| ≤ Cεm+1 in Ω, (10)

where constant C is independent of Ω and ε, and umas is the asymptotic expansion of the m-th
order defined as

umas(x, y) =

m∑

n=0

εn

{
un(x, y) +

H∑

k=1

V k
n

(
ξk(x, y)

ε
, ηk(x, y)

)
+

H−1∑

k=1

Zk
n

(
ξk(x, y)

ε
,
ξk+1(x, y)

ε

)}
(11)

The functions V k
n and Zk

n in (11) are solutions of the differential equations independent of ε, e.g.
for n = 0 we solve

−
∂2V k

0

∂ξ2
k

− b
(
P k−1 + ηk

dk

(
P k − P k−1

))
· nk

∂V k
0

∂ξk
= 0 in R

+ × (0, dk) (12)

−
∂2Zk

0

∂ξ2
k−1

+ 2cos γk
∂2Zk

0

∂ξk−1∂ξk
−

∂2Zk
0

∂ξ2
k

− b
(
P k
)
·nk−1

∂Zk
0

∂ξk−1
− b
(
P k
)
·nk

∂Zk
0

∂ξk
= 0 in (R+)2 (13)

For n > 0, the functions V k
n and Zk

n are recursively defined from V k
0 , . . . , V

k
n−1 and Zk

0 , . . . , Z
k
n−1,

the detailed description can be found in [3].

Now we shall numerically verify the theoretical estimate (10) for the first order asymptotic
expansion of the solution of the equation (1) with simple data bT = (1, 0) and f = 1 on a triangle
with vertices P 0 = [0,− tan γ

2 ], P
1 = [1, 0] and P 2 = [0, tan γ

2 ], see Figure 1 (right). Figure 2
(left) shows the particular case of the first order asymptotic expansion u0as (γ = π

4 and ε = 0.01).
The general form of the function u0as for this simple domain is introduced in [3] as

u0as(x, y) = u0(x, y)− u0
(
Ψ−1

1 (0, η1(x, y))
)
exp

(
ξ1(x, y)

ε
B1

1(0, η1(x, y))

)
(14)

−u0
(
Ψ−1

2 (0, η2(x, y))
)
exp

(
ξ2(x, y)

ε
B2

1(0, η2(x, y))

)

+u0(P
1)




r∑

j=0

exp

(
prj
ξ1(x, y)

ε
+ qrj

ξ2(x, y)

ε

)
−

r−1∑

j=0

exp

(
prj+1

ξ1(x, y)

ε
+ qrj

ξ2(x, y)

ε

)
 ,

where u0(x, y) is the solution of the reduced problem given by (4)–(5) and

ξ1(x, y) = (1− x) sin γ
2 + y cos γ

2 , ξ2(x, y) = (1− x) sin
γ

2
− y cos

γ

2
, (15)

η1(x, y) = x cos γ
2 + (y + tan γ

2 ) sin
γ
2 , η2(x, y) = (1− x) cos

γ

2
+ y sin

γ

2
, (16)

prj =
sin2((j+1)γ)

sin2 γ

(
B1

1 +B2
1

sin(jγ)
sin((j+1)γ)

)
, qrj = sin2((j+1)γ)

sin2 γ

(
B2

1 +B1
1
sin((j+2)γ)
sin((j+1)γ)

)
, (17)

B1
1 = B1

1(0, d1) = −b(P 1) · n1, B2
1 = B2

1(0, 0) = −b(P 1) · n2. (18)

Numerical experiments are carried out with the use of discontinuous Galerkin method (see,
e.g. [5]) with piecewise linear approximations on uniformly refined meshes having approximately
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Figure 2: The 3D plots of the first order asymptotic expansion function (left) and the corre-
sponding distribution of error (right) for case γ = π

4 and ε = 0.01.

5000 elements for several different values of γ and ε. The difference between the numerical
solution uh and asymptotic expansion u0as is depicted in Figure 2 (right). Table 1 records the
corresponding errors uh−u0as in L∞(Ω)-norm together with the experimental order of convergence
(EOC) with respect to ε. We observe that EOC ≈ 1 for all considered angles γ, which is in
a good agreement with derived theoretical results of order O(ε) according to (10).

ε γ = π
2 γ = π

3 γ = π
4 γ = π

6

0.04 8.0211E-02 9.5164E-02 1.4183E-01 2.6822E-01
0.02 3.3935E-02 4.6841E-02 7.8396E-02 1.4062E-01
0.01 1.6045E-02 2.1667E-02 3.8123E-02 7.7320E-02
0.005 9.0778E-03 1.1417E-02 2.0733E-02 4.2789E-02

EOC 1.051 1.029 0.936 0.881

Table 1: Computational errors in L∞(Ω)-norm and experimental orders of convergence for dif-
ferent values of γ and ε.
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Stability of suspension bridges in lateral wind

J. Malík

Institute of Geonics, Academy of Sciences of the Czech Republic,
Studentská 1768, 708 00 Ostrava–Poruba

1 Introduction

The collapse of the original Tacoma suspension bridge has been studied in many papers. On
7 November 1940 around 10 a.m. the torsional oscillations appeared on the deck of the original
Tacoma bridge after the loosening of one midspan cable band, which resulted in the lateral
asymmetry of the construction. It seems that the loosening of the midspan cable band had
a significant impact on the behavior of the bridge and in the end it resulted in the collapse.

The model of the central span , depicted in Fig. 1,and the cable system studied in this paper is
described by two functions corresponding with vertical and torsional motions of the central span
and was formulated in [1]. The cable stays are modeled as a continuum. The model is based
on the equilibrium state given by the gravitational forces acting on the whole construction. The
two functions mentioned above describe the deflection from the equilibrium state. We analyze
the action of lateral wind on the center span. These forces are relatively small comparing to
the gravitational forces. The formulation describes the mutual reaction of the center span and
the cable system as well as the reaction of the diagonal ties on the midspan cable bands. Three
different types of evolution variational problems are formulated and analyzed.
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△ △
center span

fixed point

midspan band

diagonal ties

main cable

cable stay

Figure 1: Specification of center span

The equations formulated here describe the deflections from the equilibrium state due to the
forces induced by lateral wind. The analysis of the derived equations reveals that the action of
lateral wind can cause torsional oscillations if just one midspan cable band loosens.

2 Formulation of problems and main results

The analysis is based on the variational equations derived in [1]. Let us remind the parameters
of the deck and the cable system.

• The width of the deck is denoted 2D.
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• The length of the central span is L.

• The sag of the main cables is L1.

• The mass of the deck per unit length along the span is MD.

• The mass of the main cable per unit length is MC .

• The modulus of elasticity of the deck is ED.

• The moment of inertia of the deck cross section with respect to the horizontal line through
its centroid is ID.

• The polar mass moment of inertia of the deck is IP .

• The shear modulus of the deck is GD.

• The torsional constant of the deck is JD.

• The gravitational acceleration is g.

The formulation of the linearized model is based on the Hamilton principle. The starting point
is the equilibrium under gravitational forces. Then we look for a new equilibrium, which is
a stationary point of the functional defined below. The deflection of the center span from the
original equilibrium is described by functions u(x, t), θ(x, t), where u(x, t) corresponds to vertical
deformations and θ(x, t) corresponds to torsional deformations of the center span The formulation
of the linearized models is based on the following hypotheses formulated in [1]. Let us define the
bilinear form

ac(u, v) =

L
2∫

−L
2

H

(
1 +

(
dy
dx

)2
)

du
dx

dv
dx

dx.

Then the potential energy of the main cables can be expressed in the form

ac(u, u) +D2ac(θ, θ) .

Let us define another two bilinear forms

aver(u, v) =

L
2∫

−L
2

EDID
d2u

dx2
d2v

dx2
dx , ator(θ, ϕ) =

L
2∫

−L
2

GDJD
dθ
dx

dϕ
dx

dx ,

which are connected with the bending and torsional deformation energy of the deck. To simplify
our equations for the dynamic problems, we define the bilinear forms

mver(u, v) =

L
2∫

−L
2

Mveruvdx, mtor(θ, ϕ) =

L
2∫

−L
2

Mtorθϕdx,

where Mver,Mtor are functions on (−L/2, L/2) defined by

Mver(x) =2MC

(
1 +

(
dy
dx

)2
) 1

2

+MD ,

Mtor(x) =2D2MC

(
1 +

(
dy
dx

)2
) 1

2

+ IP .
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The equations for the dynamic problems will be derived from the Hamilton principle. The
variational equation reads

mver(ü, v) +mtor(θ̈, ϕ) + 2ac(u, v) + 2D2ac(θ, ϕ) + aver(u, v) + ator(θ, ϕ) =
L
2∫

−L
2

Fverv dx +

L
2∫

−L
2

Ftor ϕdx

and holds for all sufficiently smooth functions v(x), ϕ(x) defined on (−L/2, L/2). In our models
we assume that the main span is hinged in its end points, so the functions u, θ satisfy the
boundary conditions

u (−L/2, t) = u (L/2, t) = θ (−L/2, t) = θ (L/2, t) = 0 .

So far we have not consider the fact that the main cables are inextensible and fixed at the end
points and fastened at the midspan cable bands. Let us suppose that the deck deforms and
the deformation transfers on the main cables via the inextensible suspenders. To simplify our
considerations, we define three linear forms

h(u) =

L
2∫

−L
2

dy
dx

du
dx

dx , hr(u) =

0∫

−L
2

dy
dx

du
dx

dx , hl(u) =

L
2∫

0

dy
dx

du
dx

dx .

If both main cables are fixed in their end points, then u and θ satisfy the relations

h(u) = h(θ) = 0 .

In the case both main cables are fixed at the midspan cable bands as well, the following relations

hr(u) = hr(θ) = hl(u) = hl(θ) = 0

hold. In the end let us study the case, where both main cables are fixed at the end points and
only one main cable is fixed at the midspan cable band, then the relations

hr(u−Dθ) = hl(u−Dθ) = h(u+Dθ) = 0

Now we are going to formulate three dynamic problems connected with the way how the main
cables are fixed. The first dynamic problem describes oscillations of the center span if the main
cables are fixed at the end points. The functions u(t), θ(t) are a solution to D1 if these functions
satisfy the relations

h(u(t)) = h(θ(t)) = 0

for all t, and the variational equation. The variational equation holds for all v, ϕ which satisfy
the relations

h(v) = h(ϕ) = 0.

The initial conditions are compatible with D1, which is defined in [1].

The functions u(t), θ(t) are a solution to the dynamic problem D2 if these functions satisfy the
relations

hr(u(t)) = hr(θ(t)) = hl(u(t)) = hl(θ(t)) = 0
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for all t, the boundary conditions , and the variational equation. The variational equation holds
for all v, ϕ which satisfy the relations

hr(v) = hr(ϕ) = hl(v) = hl(ϕ) = 0

and the boundary conditions. The initial conditions are compatible with D2, which is defined
in [1].

The functions u(t), θ(t) are a solution to the third dynamic problem D3 if these functions satisfy
the relations

hr(u(t)−Dθ(t)) = hl(u(t) −Dθ(t)) = h(u(t) +Dθ(t)) = 0 ,

for all t, the boundary conditions, and the variational equation. The variational equation holds
for all v, ϕ which satisfy the relations

hr(v −Dϕ) = hl(v −Dϕ) = h(v +Dϕ) = 0

and the boundary conditions. The initial conditions are compatible with D3, which is defined
in [1].

The existence and continuous dependence on data is proved in [2].

3 Conclusion

The original Tacoma bridge exhibited relatively small vertical oscillations from the time that it
was opened. The bridge was stable with respect to torsional oscillations until one midspan cable
band loosened. This led to torsional oscillations which lasted for approximately one hour and
then the deck broke. The new evolution variational equations were derived. These equations
describe the behavior of the center span and main cables in the three different situations, where
the both main cables have the fastened midspan cable bands, only one cable has the fastened
midspan cable band, and the main cables have no fastened midspan cable bands. The analysis
revealed that the behavior of the center span depends on the direction of lateral wind and vertical
and torsional oscillations of the center span are connected if just one midspan cable band loosens.
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Technologies, areg. no. CZ.1.05/2.1.00/03.0082 supported by Research and Development for
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1 Introduction

The FRAP (Fluorescence Recovery After Photobleaching) method is based on measurement of
the change of fluorescence intensity in a region of interest (being usually an Euclidian 2D do-
main) in response to an external stimulus, a short period of high-intensity laser pulse provided
by the CLSM.2 Stimulus, the so-called bleach, causes irreversible loss in fluorescence of autoflu-
orescence molecules or fluorescently tagged compounds (e.g. green fluorescence proteins – GFP)
in living cells in bleached area without any damage in intracellular structures. After the bleach,
the observed recovery in fluorescence presumably reflects the diffusion of fluorescence compounds
from the area outside the bleach. Based on spatio-temporal FRAP images, the process is recon-
structed using either a closed form model or simulation based model. In the latter case, beside
a single diffusion coefficient D, also the sequence {Dj} can be estimated as well. Let us underline
that FRAP images are usually very noisy, with small signal to noise ratio (SNR), i.e. in order
to get reliable results for the sequence {Dj}, an adequate technique residing in regularization is
mandatory [1, 5, 6].

2 Inverse Problem Formulation

Assuming the special geometry residing in one-dimensional simplification, getting the unbleached
particle concentration y as a function of dimensionless quantities x := r

L (r is a spatial coordinate
in physical units, L is a characteristic length), τ := t

T (t is time, T is a constant with some
characteristic value, e.g. the time interval between the initial and the last measurements), and
p := D T

L2 (re-scaled diffusion coefficient), we obtain the following dimensionless diffusion equation

∂y

∂τ
− p

∂2y

∂x2
= 0 (1)

with the initial condition and Dirichlet boundary conditions

y(x, τ0) = f(x), x ∈ [0, 1], (2)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (3)

2Confocal laser scanning microscopy (CLSM) allows the selection of a thin cross-section of the sample by
rejecting the information coming from the out-of-focus planes. However, the small energy level emitted by the
fluorophore and the amplification performed by the photon detector introduces a measurement noise.
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Spatio-temporal FRAP data

Based on FRAP experiments, we have a 2D dataset in form of a table with (N + 1) rows
corresponding to the number of spatial points where the values are measured, and (m+M + 1)
columns with m pre-bleach and M + 1 post-bleach experimental values forming 1D profiles

yexp(xi, τj), i = 0 . . . N, j = −m. . .M.

In fact, the process is determined by m columns of pre-bleach data containing the information
about the steady state and optical distortion,3 and M+1 columns of post-bleach data containing
the information about the transport of unbleached particles (due to the diffusion) through the
boundary.

Objective function

We construct an objective function Y (p) representing the disparity between the experimental
and simulated time-varying concentration profiles, and then within a suitable method we look
for such a value p ∈ RM minimizing Y .

The usual form of an objective function is the sum of squared differences between the experimen-
tally measured and numerically simulated time-varying concentration profiles. Taking separately
temporal (sub-index j) and spatial data points (sub-index i), we get:

Y (p) =
M∑

j=1

N∑

i=0

[yexp(xi, τj)− ysim(xi, τj , pj)]
2 , (4)

where ysim(xi, τj, pj) are the simulated values resulting from the solution of problem (1)–(3),
and yexp(xi, τ0), i = 0 . . . N, represent the initial condition f(x). The left and right Dirichlet
boundary conditions g0(τ) and g1(τ) are represented by yexp(0, τj) and yexp(1, τj), j = 1 . . .M,
respectively.

Ill-posedness

Our problem is ill-posed in the sense that the solution, i.e. the diffusion coefficients p1 . . . pM , do
not depend continuously on the initial experimental data. This led us to the necessity of using
some stabilizing procedure in form of the following regularized cost functions:

Yj(pj, preg, α) =

N∑

i=0

[yexp(xi, τj)− ysim(xi, τj , pj)]
2 + α (pj − preg)

2 (5)

for j = 1 . . .M , where α ≥ 0 is a regularization parameter and preg ∈ R is an expected value.
Taking α = 0, function Y (p, preg, α) =

∑M
j=1 Yj(pj, preg, α) turns to (4).

Values p∗j(α), j = 1 . . .M, are approximate solutions of minimization problems 4

p∗j (α) = arg min
pj , preg

Yj(pj , preg, α). (6)

3The noise identification can be performed using the pre-bleach data as well.
4Minimizing Y with respect to p > 0 represents a one-dimensional optimization problem. It was solved using

variable metric method implemented in the UFO system [4].
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It holds that limα→0 p
∗
j(α) = p∗j(0). For α → ∞ we have that (i) ‖p∗(α) − preg‖

2 → 0, i.e. the
estimated parameter variance is diminishing or even p∗j(α) ≡ preg ∀j, and (ii) function values
Y (p∗(α), preg, α) become larger (although there is a supremum). The problem of choosing in
some sense optimal parameter α∗ is discussed in the next section.

3 Tikhonov regularization vs. Least squares with a quadratic
constraint regularization

A useful tool to see the relation between the residuum for different values of regularization
parameter α, and the norm of a solution or relative standard deviation of the solution or some
other measure of variability of the solution, is the so-called L-curve. Usually, this parametric
plot, in our case with Y (p∗(α), preg, 0) (without the regularization term) in the abscissa, and
‖p∗(α) − preg‖

2 in the ordinate, is L-shaped (hence the name). In the upper left part we have
small values of α (under-smoothing, the solution is corrupted by the noise in data) and the lower
right part corresponds to the over-smoothing (the regularization term dominates for large α). Let
see Figure 1 for the just introduced plot corresponding to our FRAP problem with the synthetic
noisy data.

Tikhonov regularization

Tikhonov regularization [6] is based on adding a regularization term in (4) getting (5) and solving
the problem

p∗(α) = arg min
p, preg

Y (p, preg, α), st. p ≥ 0. (7)

The question is how to choose a "right" (in some sense optimal) parameter α∗. In [2], it is
preferred the so-called L-curve criterion consisting in finding the point of maximal curvature on
the L-curve. This point with corresponding solution p∗(α∗) is called L-curve optimal. However,
in most cases this point is hard to determine.

Constraint based on determination of estimated parameter variance

To avoid the above mentioned situation of non-unambiguous choice of the parameter α∗, another
approach, consisting in prescribing the value of ‖p∗ − preg‖

2 in advance, can be used. As the
norm of a solution p∗(α) becomes more and more smaller for α→ ∞, assume that we have pre-
scribed the variance in the solution with some value ξ. If we denote Y (p) =

∑M
j=1 Yj(pj , preg, 0),

then according to Hansen [2], we can solve the following equivalent optimization problem with
a quadratic constraint

p∗(ξ) = argmin
p
Y (p), st. ‖p − preg‖

2 ≤ ξ, p ≥ 0. (8)

Measurement noise based constraint

Suppose that we either know or can estimate the noise in input data. If we denote yδexp(xi, τj)
as real noisy data and yexp(xi, τj) as ideal data that would be measured without the noise, then

M∑

j=1

N∑

i=0

[
yδexp(xi, τj)− yexp(xi, τj)

]2
≤ δ
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where δ specifies the noise level (for the normally distributed non-correlated additive noise with
the variance σ20 , we have δ ≈ M N σ20). This leads to another possibility to determine (6). As
Hansen [2] claims, the following optimization problem is again equivalent to the previous ones

p∗(δ) = argmin
p

‖p− preg‖
2, st. Y (p) ≤ δ, p ≥ 0. (9)

By theory, L-curve is continuous and decreasing which means that both constraints in (8) and (9)
are attained on the boundary. Thus each value δ (specifying the noise level) corresponds the
value L(δ) = ξ on the L-curve so that

Y (p) = δ ⇔ ‖p − preg‖
2 = L(δ).

Moreover, this point also corresponds to a certain Tikhonov regularization parameter α, i.e. α ≡
[δ, L(δ)]. The respective α∗ for a given noise δ∗ is called noise optimal. Then the solution p∗(δ∗)
corresponds to the solution found by applying the discrepancy principle [3].

The practical confirmation of the Hansen’s conjecture about the equivalency of above three
methods is shown in Figure 1.
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Figure 1: L-curves for three different regularization methods, i.e. the log-log-plot of the solution
norm versus the residual norm, with α as the parameter.
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4 Conclusions

We have presented three methods for the solution of the apparently simple parameter estimation
problem. However, due to the noisy data from the spatio-temporal FRAP measurement, we have
to look for a stabile numerical process. The most usual method is the Tikhonov regularization.
Nevertheless, in our specific problem we had to deal with the complicated problem of determining
the optimal regularization parameter α. Fortunately, there are two equivalent methods based
on least squares with a quadratic constraint regularization enabling the application of the UFO
system [4]. While the first method constrains the estimated parameter variance, the second is
based on the measurement noise determination and constraining the residuum (proportional to
the noise level). This latter approach naturally takes into account the noise level in the data
and corresponds to the discrepancy principle as well. Furthermore, all three approaches were
implemented into our software CA-FRAPwith satisfactory results on synthetic data.
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A posteriori algebraic error estimation in numerical solution
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J. Papež 1, M. Vohralík 2
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1Charles University in Prague
2INRIA, Paris-Rocquencourt

1 Introduction

The paper [1], see also the references therein, proposes an adaptive method with a posteriori
stopping criteria for numerical solution of nonlinear partial differential equations of diffusion
type. The main idea in [1] is to distinguish different components of the error, namely the
discretization, the linearization, and the algebraic ones, and to design stopping criteria based on
balancing these error components. The estimates rely on quasi-equilibrated flux reconstructions
and yield a general framework which can be applied to various discretization schemes.

In the present contribution we tightly follow [1] and concentrate specifically on estimating the
algebraic part of the error. We show that, with an additional assumption on the flux reconstruc-
tions, the algebraic error can be bounded using the algebraic a posteriori error estimator. This
justifies the distinction of error components presented in [1]. For simplicity we restrict ourselves
to a linear model problem discretized using the conforming finite element method. We show that
the flux reconstruction given in [1] can be modified such that the newly introduced assumption
is satisfied. We believe that an analogous modification is possible also for other discretization
schemes, as well as for the nonlinear setting considered in [1].

2 Model problem and discrete setting

Let Ω ⊂ Rd, d ≥ 2, be a polygonal (polyhedral) domain. We consider the Poisson model problem:
find u : Ω → R such that

∆u = f in Ω, u = 0 on ∂Ω, (1)

where f : Ω → R is the source term. Assuming f ∈ L2(Ω), the model problem (1) can be casted
into the weak form: find u ∈ V ≡ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ V, (2)

where H1
0 (Ω) denotes the standard Hilbert space of L2(Ω) functions whose weak derivatives are

in L2(Ω) and with trace vanishing on ∂Ω. Owing to (2), the flux −∇u is in the space H(div,Ω)
spanned by the functions in [L2(Ω)]d with weak divergences in L2(Ω).

Let Th be a simplicial mesh of Ω. We suppose that the mesh is conforming in the sense that, for
two distinct elements of Th, their intersection is either an empty set or a common l-dimensional
face, 0 ≤ l ≤ d− 1. We denote a generic element of Th by K and its diameter by hK . We denote
by Pm(K) the space of m-th order polynomial functions on an element K and by Pm(Th) the
broken polynomial space spanned by vh|K ∈ Pm(K) for all K ∈ Th. Let

Vh ≡ H1
0 (Ω) ∩ Pm (Th) =

{
v ∈ H1

0 (Ω) , v|K ∈ Pm(K) ∀K ∈ Th
}

(3)

83



be the usual finite element space of continuous, piecewise m-th order polynomial functions,
m ≥ 1. The corresponding discrete formulation of problem (2) reads: find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh . (4)

Let ψj ∈ Vh, j ∈ C ≡ {1, . . . ,dim(Vh)}, denote the usual Lagrange basis of Vh. Employing this
basis in (4) gives rise to the system of linear algebraic equations

AU = F . (5)

At the i-th step, i = 1, 2, . . . , of an iterative solver applied to the algebraic system (5), we obtain
the approximation U

i = [Ui
j ]j∈C to the solution U and the algebraic residual vector R

i = [Ri
j]j∈C

such that
AU

i = F− R
i . (6)

Finally, by uih we denote the approximation to the solution u determined by the coefficient
vector U

i,
uih ≡

∑

j∈C

U
i
jψj . (7)

3 Error measure and a posteriori error estimates for total error
and for the algebraic error

The (total) error between the exact solution u of the weak formulation (2) and the approximate
solution uih ∈ Vh given by (7) is measured as

‖∇(u− uih)‖ = sup
ϕ∈V,‖∇ϕ‖=1

(
∇(u− uih),∇ϕ

)
. (8)

The following assumption is the starting point for a posteriori error estimation proposed in [1].

Assumption 3.1 (Quasi-equilibrated flux reconstructions). There exist vector-valued functions
tih ∈ H(div,Ω), di

h,a
i
h ∈ [L2(Ω)]d, and a scalar-valued function ρih ∈ L2(Ω) such that

1. ∇· tih = fh − ρih ,

2. tih = di
h + aih ,

3. as the linear solver converges, ‖aih‖ → 0 .

Here fh is a piecewise polynomial approximation of the source term f verifying (fh, 1)K = (f, 1)K
for all K ∈ Th.

For any K ∈ Th, the Poincaré inequality states that

‖ϕ− ϕK‖K ≤ CPhK‖∇ϕ‖K ∀ϕ ∈ H1(K) , (9)

where ϕK denotes the mean value of ϕ in K. Since the simplices K are convex, there holds
CP = 1/π ; see, e.g., [2, 3]. The Friedrichs inequality states that

‖ϕ‖ ≤ hΩ‖∇ϕ‖ ∀ϕ ∈ V , (10)
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where hΩ denotes the diameter of the domain Ω. The following theorem is a simple application
of [1, Theorems 3.4 and 3.6] to our model problem. We denote local estimators in the form ηi

2,K ,
where i = 1, 2, . . . stands for the algebraic iteration step and K ∈ Th for the mesh element. The

global versions of these estimators are defined as ηi
2
≡
{∑

K∈Th
(ηi

2,K)2
}1/2

.

Theorem 3.2 (Total error a posteriori estimate distinguishing error components). Let u ∈ V
solve (2), let uih ∈ Vh be given by (7), and let Assumption 3.1 hold. For any K ∈ Th, define
respectively the discretization estimator, the algebraic estimator, the algebraic remainder, and
the data oscillation estimator as

ηidisc,K ≡ ‖∇uih + di
h‖K , (11)

ηialg,K ≡ ‖aih‖K , (12)

ηirem,K ≡ hΩ‖ρ
i
h‖K , (13)

ηiosc,K ≡ CPhK‖f − fh‖K . (14)

Then

‖∇(u− uih)‖ ≤ ηidisc + ηialg + ηirem + ηiosc . (15)

In the adaptive algorithm proposed in [1] the flux reconstruction di
h is constructed using the

approximate algebraic solution U
i given at the i-th step of algebraic iterative solver. Then

one performs ν > 0 additional iteration steps yielding the vector U
i+ν and the corresponding

flux reconstruction di+ν
h . The algebraic error flux reconstruction is defined as aih ≡ di+ν

h − di
h.

The number ν of the additional iteration steps and the convergence of the algebraic solver are
controlled using the (global) criteria

ηirem ≤ γrem max
{
ηidisc, η

i
alg

}
, (16)

ηialg ≤ γalg η
i
disc , (17)

or using the elementwise equivalents

ηirem,K ≤ γrem,K max
{
ηidisc,K , η

i
alg,K

}
, (18)

ηialg,K ≤ γalg,K ηidisc,K , ∀K ∈ Th . (19)

Here γrem, γalg (respectively γrem,K , γalg,K) are the user-given weights (typically of order 0.1).
The criteria (16)–(17) are sufficient to establish the global efficiency of the total error estimator;
the local criteria (18)–(19) assure the local efficiency; see [1, Section 5].

Elaborating on the results from [1], our goal is to bound also the algebraic error

‖∇(uh − uih)‖ = sup
ϕh∈Vh,‖∇ϕh‖=1

(
∇(uh − uih),∇ϕh

)
,

where uh is the (unknown) solution of the discrete formulation (4) and uih ∈ Vh is an approxi-
mation to uh as given by (7). We introduce for this purpose an additional assumption on the
flux reconstruction.

Assumption 3.3 (Quasi-equilibration of di
h). The function di

h satisfies di
h ∈ H(div,Ω) and

there exists a scalar-valued function rih ∈ L2(Ω) such that

∇· di
h = fh − rih , (20)

(rih, ψj) = R
i
j ∀j ∈ C . (21)
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Assuming (20) and setting aih = di+ν
h −di

h as above, Assumption 3.1 is satisfied with ρih ≡ ri+ν
h .

Theorem 3.4 (Algebraic error a posteriori estimate). Let uh be the solution of (4) and uih ∈ Vh
be given by (7). Let ηialg, η

i
rem be defined respectively by (12) and (13). Let Assumption 3.3 hold.

Then
‖∇(uh − uih)‖ ≤ ηialg + ηirem . (22)

Therefore, using the criteria (16) or (18), the algebraic estimator ηialg provides an upper bound on
the algebraic error. The efficiency of this estimator is a subject of further study — the techniques
used for the proof of global and local efficiency of the total error estimator (see [1, Section 5])
are not applicable in this case.

4 Flux reconstructions

The paper [1] presents flux reconstruction in various discretization schemes that fulfill Assump-
tion 3.1 and the first part (20) of Assumption 3.3. In this contribution we restrict ourselves to
the conforming finite element method. We show that we can easily modify the flux reconstruc-
tion from [1] such that the relation (21) required for proving the bound (22) is also satisfied.
The flux reconstruction is sought in the Raviart–Thomas–Nédélec finite element space and it
is constructed using (mutually independent) local homogeneous Neumann mixed finite element
problems posed on patches around mesh vertices.

5 Conclusion

Following [1] we presented a posteriori error estimate for the total error that distinguishes its
different components. The estimate yields a guaranteed upper bound on the total error. Addi-
tionally, we showed that the parts of the estimate denoted as algebraic estimator and algebraic
reminder provide an upper bound on the algebraic error. This justifies the distinction of error
components and the stopping criteria presented in [1]. We applied the general framework from [1]
to a linear problem and the conforming finite element discretization. The application for other
discretization schemes and nonlinear problems and the efficiency of the estimate are subjects of
further study.
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Variability of Turing patterns in reaction-diffusion systems

V. Rybář, T. Vejchodský

Institute of Mathematics AS CR, Prague

1 Introduction

Systems of reaction-diffusion equations have been used for several decades in biology and ecol-
ogy to explain phenomena concerning symmetry breaking, spatial variations, and formation of
patterns. For example, let us mention predator-prey models as two (or more) species spatial eco-
logical models, biochemical reaction-diffusion systems of morphogenes in developmental biology,
formation of skin patterns, and vascularization of tumours. Typical reaction-diffusion system
consists of two equations

∂u

∂t
=D1∆u+ f(u, v) in (0,∞) × Ω, (1)

∂v

∂t
=D2∆v + g(u, v) in (0,∞) × Ω, (2)

where u = u(t, x), v = v(t, x), Ω ⊂ R2 is a domain, D1,D2 are diffusion coefficients and f(u, v),
g(u, v) are nonlinear reaction terms.

Turing showed [4] that if u and v are in a linearly stable uniform steady state in caseD1 = D2 = 0,
then this state can, under certain conditions, become unstable for D1 6= 0, D2 6= 0, and spatially
inhomogeneous stationary solution can evolve. Such solutions are called patterns. The set of
parameters that yield patterns is known as the Turing domain. Linear analysis can help with
identification of the Turing domain, but in general system (1)–(2) is a source of non-trivial
problems in the fields of bifurcation analysis, theory of partial differential equations and others.

In this brief contribution we study the non-uniqueness of stationary solutions to problem (1)–(2)
with periodic boundary conditions. For simplicity, let us consider Ω to be a square (0, L)2 and
define the following periodic boundary conditions

u(0, y) = u(L, y) ∀y ∈ (0, L) and u(x, 0) = u(x,L) ∀x ∈ (0, L), (3)

v(0, y) = v(L, y) ∀y ∈ (0, L) and v(x, 0) = v(x,L) ∀x ∈ (0, L). (4)

We first show that any shift of a stationary solution to problem (1)–(4) is again a stationary
solution. Therefore, we define a periodic shift of a function by a vector (r, s). Let u ∈ C([0, L]2)
satisfy the periodic boundary condition (3). The periodic shift ũ ∈ C([0, L]2) of u by (r, s) ∈
(0, L)2 is defined as

ũ(x, y) =





u(x+ r, y + s) for x ∈ (0, L − r), y ∈ (0, L− s),

u(x+ r, y + s− L) for x ∈ (0, L− r), y ∈ (L− s, L),

u(x+ r − L, y + s) for x ∈ (L− r, L), y ∈ (0, L− s),

u(x+ r − L, y + s− L) for x ∈ (L− r, L), y ∈ (L− s, L).

(5)

Note that values ũ(x, y) for x = L− r or y = L− s are determined by the continuity.
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Lemma 1. Let u, v ∈ C2([0, L]2) be a stationary solution to (1)–(2). Let r,s ∈ (0, L) be fixed and
let ũ and ṽ be periodic shifts of u and v, respectively, by the vector (r, s). Then ũ, ṽ is a stationary
solution to problem (1)–(4).

The proof of this lemma is easy and we skip it. Lemma 1 implies that there are classes of
stationary solutions to problem (1)–(4) that are equivalent up to a shift. Thus, there is a question,
how many classes of solutions there exist for a given nonlinear system. Therefore, we focus on
a particular system from [2] and try to answer this question numerically.

2 Model problem and numerical scheme

Liu, Liaw, and Maini use in [2] the following reaction-diffusion system

∂u

∂t
= Dδ∆u+ αu+ v − r2uv − αr3uv

2, (6)

∂v

∂t
= δ∆v − αu+ βv + r2uv + αr3uv

2. (7)

to model the formation of pigment patterns on coats of leopards and jaguars. As opposed to [2],
we equip system (6)–(7) with periodic boundary conditions (3)–(4). Due to unstable behaviour of
this system, we compute its stationary solutions by sufficiently long time evolutions starting from
initial conditions that mimic small amplitude random fluctuations around the spatially constant
steady state. We use the fourth order Runge-Kutta method [1] for time discretization. Fourier
collocation spectral method, implemented according to [3], was used for spatial discretization
and we present its brief description.

Let us consider a function z sampled on the spatial discretization grid {x1, . . . , xN} with
zj = z(xj). Let z be periodic, i.e. z1 = zN . Using definitions of discrete Fourier transform (DFT)
and inverse discrete Fourier transform (both properly defined and discussed in [3]), we can com-
pute the derivatives wj = z′(xj), j = 1, . . . , N , by the following procedure:

1. given zj , j = 1, . . . , N , compute its DFT ẑk =
∑N

j=1 e
−ikxjzj, k = −N/2 + 1, . . . , N/2,

2. define ŵk = ikẑk, k = −N/2 + 1, . . . , N/2,

3. compute wj =
1
2π

∑N/2
k=−N/2+1 e

ikxj ŵk, j = 1, . . . , N .

Applying this procedure two times yields second derivatives. Thus, the diffusion terms in (1)
and (2) can be transformed into −Dk2ûk and −Dk2v̂k, respectively, and partial differential
equations (1)–(2) transform to a system of ordinary differential equations

dûk
dt

= −D1k
2ûk + f̂(u, v), k = −N/2 + 1, . . . , N/2, (8)

dv̂k
dt

= −D2k
2v̂k + ĝ(u, v), k = −N/2 + 1, . . . , N/2. (9)

This system can be efficiently solved for example by the fourth order Runge-Kutta method [1].

3 Numerical experiments

We use system (6)–(7) with boundary conditions (3)–(4) and with parameters taken from [2],
D = 0.45, δ = 6, α = 0.899, β = −0.91, r2 = 2, and r3 = 3.5. These parameters yield stationary
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solutions that correspond to spotted patterns. The components u and v of a stationary solution
are complementary in the sense that local maxima of u (centres of spots) correspond to local
minima of v. Therefore, we concentrate on the component v only in what follows.

The experiments are performed in domain Ω = (0, L)2 with L = 50 which was divided into
48× 48 vertices of uniform discretization grid. As an initial condition, we generate a uniformly
distributed random number in (−0.05, 0.05) for every node of the grid. The time stepping
is performed with step ∆t = 1, and it is terminated as soon as the relative l2-norm of two
consecutive approximate stationary solutions vk and vk+1 in times tk = k∆t and tk+1 = (k+1)∆t
is smaller than 10−4, i.e. when

‖vk − vk+1‖l2

‖vk‖l2
< 10−4. (10)

Note that the discrete l2-norms are computed over the grid nodes.

We solved the problem with this setup 6000 times. Every time with different (random) initial
condition. In the resulting sample of 6000 stationary solutions we try to identify classes of
solutions that are identical up to a shift in the sense of Lemma 1. We do this by successive
building of a database of representatives of solution classes and numbers of solutions in every
class. At the beginning the database is empty. For every stationary solution in the sample, we
check whether it is equivalent to a representative from the database. If it is, we increase the
number of solutions in this class by one. If not, we insert this solution into the database as
a representative of a new class and initialise the number of solutions in it to one.

The crucial step in this algorithm is the check of equivalence of two stationary solutions. Given
two computed stationary solutions v1 and v2, we determine their equivalence according to the
following procedure. We first shift v1 and v2 to ṽ1 and ṽ2 according to (5) such that minima
of ṽ1 and ṽ2 are attained in the centre of the square (0, L)2, i.e. in the point (25, 25). Then we
test if the relative l2-norm of the difference of ṽ1 and ṽ2 is below a tolerance TOL. This means
that if v1 and v2 are equivalent

‖ṽ1 − ṽ2‖l2

‖ṽ1‖l2
< TOL.

In this numerical experiment we have chosen TOL = 0.16. This value corresponds to the observed
sizes of differences between solutions within the same class. These differences are caused mainly
by the discretization error on the relatively coarse grid and by the chosen time step. With
TOL set to this level, the algorithm identified 9 different classes of solutions in the sample of
6000 stationary solutions. Table 1 presents numbers of solutions in these classes. Figure 1
shows representatives of these classes with minima centred to (25, 25). In this figure, we observe
certain symmetries. For example, rotating the representative of class 1 by 90◦, we obtain the
representative of class 2. Representative of class 3 is representative of class 4 reflected over the
horizontal or vertical axis. Similarly, representatives of classes 5, 6, 7 and 8 differ by suitable
reflections and rotations. These symmetries are not surprising due to symmetries of the domain.

Class 1 2 3 4 5 6 7 8 9
# Solutions 2997 2898 46 32 9 5 2 8 3

Table 1: Number of solutions in solution classes.
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Figure 1: Representatives of solution classes.

4 Conclusion

The performed numerical study confirms that identification of the number of distinct stationary
solutions for reaction-diffusion problems undergoing Turing instability is non-trivial. Besides the
general fact that a shift of a periodic solution remains a solution, we have identified a number
of equivalence classes of distinct stationary solutions for the particular system. Data in Table 1
show that stationary solutions in classes 1 and 2 are much more frequent than solutions in the
remaining classes. This means that most of the random initial conditions lead to stationary
solutions from classes 1 and 2. Only a small fraction of initial conditions leads to a stationary
solution of another class. An interesting point is that the number of time steps to reach the
steady state according to the criterion (10) is considerably smaller for the solutions from classes 1
and 2 in comparison to the other classes. This indicates that solutions from classes 1 and 2 are
more natural and robust steady states of the system, while solutions from the other classes are
exceptional, but still existing steady states.

Of course, it is not clear whether we succeeded to identify all classes of stationary solutions for
system (6)–(7) with boundary conditions (3)–(4). There is still a possibility that there are other
extremely rare stationary solutions. Theoretically, it would be interesting to link the obtained
classes of solutions to possible stationary solutions of linearised system which can be obtained
analytically. Further, we plan to investigate the influence of the domain size on the patterns and
try to find a natural period of the spotted patterns. Finally, we plan to perform a similar study
in the case of homogeneous Neumann boundary conditions.
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Numerical results of plunger cavity optimal design

P. Salač

Technical University of Liberec, Liberec

1 Introduction

This work concerns the numerical approximation of continuous problem of the shape optimization
presented in [1], where a rotationally symmetric system of mould, glass piece, plunger and plunger
cavity is considered. The state problem is given as a stationary head conduction-convection
process. The system has given heat source and is cooled by flowing water inside the cavity
and outside by environment. The design variable is taken to be the shape of inner surface of
the plunger cavity. Existence and uniqueness of the state problem solution and existence of
a solution of the optimization problem are proved in [1].

The results of the numerical optimization to required target temperature 800 [◦C] of the outward
surface of the plunger Γ1 together with the distribution of temperatures along the interface Γ1

between the plunger and the glass piece before and after the optimization process are presented.

2 Numerical results

The scheme of the system with dashed design function is visualized on the Fig. 1. For detail
formulation of the problem, proofs of existence and uniqueness of the state problem solution and
existence of a solution of the optimization problem see [1].

Γ1

Γe
2

Γ4

Ωe
P l (Plunger)ΩGl (Glass)

Ωe
Ca (Cavity)

Γ5

Γ6

Γ7

ΩMo (Mould)

Γin
b b b b b b b b b b b b b bb

Γ3

Γout

Figure 1: Scheme of the system mould, glass piece, plunger, cavity of plunger and supply tube.

The model problem was programmed in FreeFem++ software, version 3.19. Optimization of the
plunger cavity shape was implemented on the system for pressing glass vases of high 267 [mm]
of a weight 1, 55 [kg]. The heat source was determined as the average power derived from the
solution of mixed problem for heat conduction with forced linear decreasing Dirichlet boundary
conditions to the given surface temperature of 800 [◦C] at the moment of separation pressing
tools and glass piece, i.e. at the time of 13 [s] on the inner side and at the time of 88 [s] on
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the outward of the glass piece and with constant initial temperature of 1150 [◦C]= 1423 [K]
throughout the region ΩGl, i.e. the problem

cv̺
∂ϑ

∂t
= k∆ϑ in [0; 13] ×ΩGl , (1)

ϑ(0, x, r) = 1423 in ΩGl , (2)

ϑ(t, x, r) =
1073 − 1423

13
t+ 1423 in [0; 13] × Γ1 , (3)

ϑ(t, x, r) =
1073 − 1423

88
t+ 1423 in [0; 13] × Γ6 , (4)

where we set up for specific heat capacity of glass cv = 796 [J kg−1 K−1], density ̺ = 2500 [kgm3].
We solve this mixed problem by the method of time discretization. Stationary heat source for
the state problem is determined from the solution of this problem in time t = 13 [s] according
to the relation

q(x, r) =
cv
13

(ϑ(0, x, r) − ϑ(13, x, r)) . (5)

Cooling of the plunger cavity was realized by the potential flow of cooling water with constant
mass flow 1 [kgmin−1], inlet temperature of 15 [◦C] and outlet temperature of 100 [◦C]. We
obtain velocity field of flowing water as a solution of the Neumann boundary value problem
for the Laplace equation in the plunger cavity Ωe

Ca. For the detail variational formulation of
the problem of potential flow of water see (1.3)–(1.5) in [1] pages 408–409. We used FEM by
FreeFem++ with automatic mesh generator for the numerical solution.

Cooling of the mould from the outward was realized by outside environment of tempera-
ture 60 [◦C] with considered coefficient of heat transfer 14 [W m−2 K−1]. We look for the
temperature distribution in the entire system by solving of the state problem in the form of
a mixed boundary value problem for the energy equation in which we employ the heat source (5)
determined on the basis of the solution of the problem (1)–(4) and potential flow from the prob-
lem (1.3)–(1.5). For the detail variational formulation of the problem for energy equation see [1]
pages 410–414. We again used FEM by FreeFem++ with automatic mesh generator for the
numerical solution.

We solve the problem of the optimal design formulated in [1] page 414. The cost functional of
the continuous problem is in the form

J S(F e
2 ) = ‖ϑ(F e

2 )|Γ1
−1073‖20,r,Γ1

, (6)

where ϑ(F e
2 )|Γ1

is the trace of solution ϑ(F e
2 ) of continuous state problem in the region Ωe

P l on
the boundary Γ1, and the optimal surface plunger temperature is TΓ1

= 1073 [K]= 800 [◦C]. The
surface integral in the cost functional is computed numerically by the midpoint method with
equidistant division to 1000 subintervals according to the length of arc.

Temperatures in 11 pilot points on the surface Γ1 of the plunger were monitoring during optimiza-
tion. To these 11 points, the 11 “shadow” points were found using gradient lines of temperatures
at the boundary Γe

2 between the plunger and water. The shadow points were moved in the
directions corresponding to the required changes of temperatures in the pilot points. The shape
of the plunger cavity surface is created by natural cubic spline functions inset by the 11 shadow
points.

Remark. A sensitivity analysis can be performed on the basis of temperature evaluation along
the boundary Γ1. Let us introduce a homeomorphism between the outward plunger boundary Γ1

and the plunger cavity boundary Γe
2 defined by the gradient lines of the temperature field in the

plunger. In the parts of Γ1 where we need to decrease the temperature, we narrow “the wall” by
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moving the points of Γe
2 along the gradient lines to locally achieve more intensive cooling. On the

other hand, in places of Γ1 where we need higher temperature, we increase “the wall thickness”
to locally decrease the intensity of cooling. By the term “the wall thickness” we understand the
length of the temperature gradient line that connects the related points of Γ1 and Γe

2.

In the numerical realization of the solution we first determine the stationary heat source for the
state problem by application of time-discretization to the mixed heat conduction problem (1)–(4),
then we start to iterate. In each iteration, first we find a cubic spline functions passing through
the shadow points which form the inner wall of the plunger cavity. In the calculation we use the
rotation of the coordinate system about 60◦. After we obtain plunger cavity we solve the problem
for finding potential flow of cooling water, then we deal with the state problem for temperature
throughout the system. Next, we determine the cost functional and the coordinates of shadow
points for the next iteration.

100 iterations was carried to find the optimal shape of the cavity. Before the beginning of
the iteration process the approximated cost functional took on the value of 796, 982, gradually
declined to values around ten and then fluctuated. The minimum value of 3, 123 has been
achieved in the 72-th iteration. Halting the decline in value of the cost functional was caused by
a small number of shadow points (11 points), for further refinement would be needed to increase
their number.

Figure 2: Contours of temperature at the beginning of the optimization.

Figure 3: Contours of temperature and the final shape of the plunger cavity optimized under
surface target temperature 800 [◦C]= 1073 [K].
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Figure 4: Distribution of temperature along the surface Γ1 before and after the optimization.

Fig. 4 shows distributions of temperatures along plunger outward surface before and after the
optimization to the required target temperature of the plunger surface 800 [◦C]= 1073 [K].

3 Conclusion

The problem of cooling of the plunger by stationary flowing water through its cavity was intro-
duced. Results of the numerical plunger cavity shape optimization with a view to achievement
required temperature 800 [◦C]= 1073 [K] at surface Γ1 between the glass and the plunger were
performed. Numerical results shows limited capability of approximation by cubic splines and
suggest using of order approximation (for example B-splines).

Acknowledgement: This work was realized with financial support by the Technological Agency
of the Czech Republic, project No. TA03010852.
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Max-min and min-max approximation problems
for normal matrices revisited

P. Tichý

Institute of Computer Science AS CR, Prague

We give a new proof for an equality of certain max-min and min-max approximation problems
involving normal matrices. The previously published proofs of this equality apply tools from ma-
trix theory, (analytic) optimization theory and constrained convex optimization. Our proof uses
a classical characterization theorem from approximation theory and thus exploits the link be-
tween the two approximation problems with normal matrices on the one hand and approximation
problems on compact sets in the complex plane on the other.
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Solution of algebraic systems arising from the discontinuous
Galerkin discretization of PDEs by the p-multigrid technique

A. Živčák, V. Dolejší

Faculty of Mathematics and Physics
Charles University in Prague

We deal with the numerical solution of partial differential equations with the aid of the discontin-
uous Galerkin (DG) method. This technique is based on piecewise polynomial but discontinuous
approximation. Therefore, we can simply construct hierarchical basis functions locally for each
element.

The DG discretization leads to the necessity to solve large (non-)linear algebraic systems. Among
the most efficient techniques solving algebraic systems belong the so-called multigrid methods,
which aim to attain the so called textbook multigrid efficiency.

Multigrid methods are based on coarser representations of the discretized problem. Can be used
for solving linear and also nonlinear problems. Very well known and widely used h-multigrid is
based on geometrical hierarchy of computational meshes. However, for the DG discretization,
more suitable is the so-called p-variant of multigrid, where a hierarchy of discretization spaces
with respect to polynomial approximation degree p is considered.

Projection operators, which carry out the restriction and prolongation depends on choice of
basis function. Due to the locality of basis function in the DG method we get local projection
operators. Their form is very simple in the case of orthonormal basis function and therefore
effortless implementation can be used.

We describe the application of the p-multigrid to the DG method, namely the restriction and
prolongation operators. We discuss several solution strategies and present first preliminary nu-
merical results in comparison with iterative solvers. Moreover, we mention some weakness of the
presented algorithm and also give some outline of a possible use of a non-linear multigrid.
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Gibbs phenomenon

f (x) =
∞

∑
n=−∞

cneinx ≈ fN(x) =
N

∑
n=−N

cneinx
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Gibbs phenomenon

Stigler’s law of eponymy: ”No scientific discovery is named
after its original discoverer”.
Discovered and explained by Henry Wilbraham 1848, i.e.
51 years before Josiah Willard Gibbs.
Similar phenomenon observed in FEM, however nobody
ever proved any deeper connection with classical Gibbs.
Well understood for Fourier series.
In FEM, we essentially cure the symptoms and not the
cause (stabilizations, filtering, postprocessing,...).
Observation: approximating discontinuous functions by
continuous (or even smooth) functions is not a good idea.
Approximate by piecewise continuous functions instead.
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Discontinuous approximations

Finite element method
Globally continuous piecewise polynomial approximations.
Arbitrarily high orders of convergence.
Gibbs phenomenon ruins everything.

Finite volume method
Solution approximated by piecewise constant functions.
Does not suffer from Gibbs phenomenon (usually).
Lowest possible order.
Very dissipative.

Discontinuous Galerkin (DG)
Piecewise polynomial solutions.
Global continuity in some weak sense (penalization).
Arbitrarily high orders of convergence.
Gibbs phenomenon stays localized (unlike FEM).
Expensive.
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Poisson problem

−∆u = f in Ω.

Multiply by test function v ∈ H1(Ω), integrate over Ω and
apply Green’s theorem:∫

Ω
∇u ·∇v dx−

∫
∂Ω

∇u ·nv dS =
∫

Ω
fv dx . (1)

Seek u ∈ H1(Ω) such that (1) holds for all v ∈ H1(Ω).

Boundary conditions

Neumann: ∇u ·n = gN on ΓN ⊂ ∂ Ω.
Dirichlet: u = uD on ΓD ⊂ ∂ Ω.∫

Ω
∇u ·∇v dx−

∫
ΓD

∇u ·nv dS =
∫

Ω
fv dx +

∫
ΓN

gNv dS.
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Dirichlet boundary conditions

−∆u = f in Ω, u = uD on ∂ Ω.

∫
Ω

∇u ·∇v dx−
∫

∂Ω
∇u ·nv dS =

∫
Ω

fv dx .

Unlike the Neumann condition, there is no way how to
incorporate u|∂Ω = uD directly into the equation itself.
We write u = u0 + ũD, where

u0|∂Ω = 0,

ũD|∂Ω = uD.

ũD ∈ H1(Ω) chosen arbitrarily.
New equation for u0 ∈ H1

0 (Ω), weak formulation holds for all
v ∈ H1

0 (Ω).
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Dirichlet BCs by penalization

Courant ’43, Lions’68, Babuška ’73...

u = uD 7−→ u + ε∇u ·n = uD, ε � 1.

∫
Ω

∇u ·∇v dx−
∫

∂Ω
∇u ·nv dS =

∫
Ω

fv dx

⇓∫
Ω

∇u ·∇v dx +
1
ε

∫
∂Ω

(u−uD)v dS =
∫

Ω
fv dx

We seek uε ∈ H1(Ω) such that∫
Ω

∇uε ·∇v dx +
1
ε

∫
∂Ω

(uε −uD)v dS =
∫

Ω
fv dx , ∀v ∈ H1(Ω).
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Dirichlet BCs by penalization

∫
Ω

∇uε ·∇v dx︸ ︷︷ ︸
(1)

+
1
ε

∫
∂Ω

(uε −uD)v dS︸ ︷︷ ︸
(2)

=
∫

Ω
fv dx︸ ︷︷ ︸
(1)

.

uε ,v ∈ H1(Ω).
(1) = standard formulation of the equation.
(2) = penalization of non-satisfaction of Dirichlet BC.
uε |∂Ω 6= uD, but uε |∂Ω→ uD for ε → 0.
uε is the unique minimiser over H1(Ω) of the functional

Jε (v) := |v |2H1(Ω)−2
∫

Ω
fv dx +

1
ε

∫
∂Ω

(v −uD)2 dS.

The following estimate holds:

|u−uε |2H1(Ω) +‖uD−uε‖2L2(∂Ω) = O(ε).
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∫
Ω

∇uε ·∇v dx +
1
ε

∫
∂Ω

(uε −uD)v dS =
∫

Ω
fv dx .

Penalization - general recipe
Take your equation in weak form.
Add your requirement (eg. u−uD = 0) to your equation,
with some weight (e.g.1

ε
) and tested by some expression

involving the test function (e.g. v ).
Resulting left-hand side term should be semi-elliptic, e.g.
1
ε

∫
∂Ω u2

ε dS ≥ 0.
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DG method for ordinary
differential equations
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Abstract ODE
We seek u : [0,T ]→ H such that

u′(t) + Au(t) = f (t), ∀t ∈ (0,T ), u(0) = u0.

H is a Hilbert space with scalar product (·, ·)H .
A : H→ V is a given operator.
f : [0,T ]→ V is a given right-hand side.
V is a Hilbert space with scalar product (·, ·).
Define a(u,v) := (Au,v) for u,v ∈ H.

Examples:
System of ODEs: H = V := (R)n.
Heat equation: H := H1

0 (Ω),V := L2(Ω) and A :=−∆,
hence a(u,v) =

∫
Ω ∇u ·∇v dx .
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0 = t0 < t1 < .. . < tn = T .
Ik := (tk−1, tk ].
For a function ϕ :

⋃n
k=1 Ik → H we denote

ϕ
±
k = ϕ (tk±) := lim

t→tk±
ϕ(t), [ϕ]k := ϕ (tk +)−ϕ (tk−) .

Space of piecewise polynomial functions of order q with
values in H:

Sτ =
{

ϕ : [0,T ]→ H; (ϕ|Ik )(t) =
q

∑
j=0

ϕj t j , where ϕj ∈ H
}
.
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DG formulation

u′(t) + Au(t) = f (t)
∣∣ .ϕ ∈ Sτ ,

∫
Ik

dt .

∫
Ik

(u′,ϕ) + a(u,ϕ)dt =
∫

Ik
(f ,ϕ)dt .

Integrate per partes twice:∫
Ik

(u′,ϕ)dt =
(
u(tk ),ϕ−k

)
−
(

u(tk−1)︸ ︷︷ ︸
=u−k−1

,ϕ+
k−1

)
−
∫

Ik
(u,ϕ ′)dt

=
(

u+
k−1−u−k−1︸ ︷︷ ︸

=[u]k−1

,ϕ+
k−1

)
+
∫

Ik
(u′,ϕ)dt .
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DG formulation

DG scheme

We seek U ∈ Sτ such that U−0 := u0 and for all k = 1, . . . ,n,∫
Ik

(U ′,ϕ) + a(U,ϕ)dt +
(
[U]k−1,ϕ

+
k−1

)
=
∫

Ik
(f ,ϕ)dt , ∀ϕ ∈ Sτ .

One-step method: Given U−k−1, we can compute U on Ik .
Initial condition u0 is not satisfied exactly, only by
penalization.
Continuity at tk is not exact, only by penalization.
For q = 0, i.e. piecewise constants w.r.t. time, we define
U|Ik := Uk ∈ H, ϕ := 1.ϕ0 ∈ H. Thus

|Ik |a(Uk ,ϕ0) + (Uk −Uk−1,ϕ0) =
(∫

Ik
f dt ,ϕ0

)
, ∀ϕ0 ∈ H,

which is the implicit Euler method.
V. Kučera Discontinuous Galerkin method
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Properties

A-stability.
Is the method stable for u′(t) + Au(t) = 0 with A positive
semi-definite?
Useful for stiff systems.

A-stability

Let f = 0 and a(ϕ,ϕ)≥ α‖ϕ‖2H for all ϕ ∈ H, α ≥ 0. Then for all
k = 1, . . . ,n,

‖U−k ‖
2 + 2α

∫ tk

0
‖U‖2H dt +

k−1

∑
j=0

∥∥[U]j
∥∥2 ≤ ‖u0‖2.
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A-stability

Proof:
We take ϕ := 2U on Itk and zero elsewhere:

2
∫

Ik
(U ′,U)dt︸ ︷︷ ︸

(i)

+2
∫

Ik
a(U,U)dt︸ ︷︷ ︸

(ii)

+2
(
[U]k−1,U+

k−1

)︸ ︷︷ ︸
(iii)

= 0.

(i) = 2
∫

Ik

1
2

d
dt
‖U‖2 dt = ‖U−k ‖

2−‖U+
k−1‖

2,

(ii)≥ 2α

∫
Ik
‖U‖2H dt ,

(iii) =
∥∥[U]k−1

∥∥2
+‖U+

k−1‖
2−‖U−k−1‖

2.

By gathering all the above estimates, one obtains

‖U−k ‖
2−‖U−k−1‖

2 + 2α

∫
Ik
‖U‖2H dt +

∥∥[U]k−1
∥∥2 ≤ 0.

Sum over all k .
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Under certain technical assumptions (A self-adjoint, etc.), the
following results hold:

Error estimate

sup
t∈(0,T )

∥∥u(t)−U(t)
∥∥≤ τ

q+1
(∫ T

0

∥∥∥∂ q+1u
∂ tq+1 (s)

∥∥∥2

H
ds
)1/2

.

Nodal superconvergence

max
k=1,...,n

∥∥u(tk )−U−k
∥∥≤ τ

2q+1
(∫ T

0

∥∥∥∂ q(Aq+1/2u)

∂ tq (s)
∥∥∥2

H
ds
)1/2

.
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Concluding remarks

One-step implicit scheme.
Discontinuous piecewise-polynomial approximation.
Initial condition and continuity enforced weakly by
penalization.
Arbitrary orders of convergence.
Unconditionally stable for all orders.
Suitable for stiff ODEs.
Expensive.
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Diffusive problems

Convective problems
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Convective problems
Diffusive problems

Continuous problem

Let QT := Ω× (0,T ). We seek a function u : QT → R such that

∂u
∂ t

+
d

∑
s=1

∂ fs(u)

∂xs
= g in QT ,

u|ΓD×(0,T ) = uD,

u(x ,0) = u0(x), x ∈ Ω.

f1, . . . , fd ∈ C1(R) are convective fluxes. In theoretical work,
fs usually globally Lipschitz continuous
Describes things that flow: fluids, electrons in
semiconductors, city traffic, etc.
linear=advection, nonlinear=convection.
typical solution contains discontinuities (shock waves etc.).
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Convective problems
Diffusive problems

Continuous problem

∂u
∂ t

+
d

∑
s=1

∂ fs(u)

∂xs
= g

u is a conserved quantity: Integrate equation over Ω̃⊂ Ω,

d
dt

∫
Ω̃

u dx︸ ︷︷ ︸
(1)

+
∫

∂ Ω̃

d

∑
s=1

fs(u)n(K )
s dS︸ ︷︷ ︸

(2)

=
∫

Ω̃
g dx︸ ︷︷ ︸

(3)

.

(1) = amount of u contained in Ω̃,
(2) = flow of u through boundary of Ω̃,
(3) = sources inside Ω̃,
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Convective problems
Diffusive problems

DG formulation

Let Th be a partition of the closure Ω into a finite number of
closed triangles K ∈Th.

By Fh we denote the set of all edges of Th. For a given edge
Γ ∈Fh we define a unit normal nΓ.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8
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For each interior face Γ ∈Fh there exist two neighbours
K (L)

Γ ,K (R)
Γ ∈Th. We use the convention that nΓ is the outer

normal to the element K (L)
Γ .

v (L) = trace of v |
K (L)

Γ

on Γ,

v (R) = trace of v |
K (L)

Γ

on Γ,

[v ]Γ = v (L)−v (R),

〈v〉Γ = 1
2

(
v (L) + v (R)

)
.

K
(L)
Γ

K
(R)
Γ

Γ

~nΓ
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Convective problems
Diffusive problems

Over Th we define the broken Sobolev space

Hk (Ω,Th) = {v ;v |K ∈ Hk (K ) ∀K ∈Th}

We discretize the continuous problem in the space of
discontinuous piecewise polynomial functions

Sh = {v ;v |K ∈ Pp(K ) ∀K ∈Th},

where Pp(K ) is the space of polynomials on K of degree
≤ p.
In order to derive a variational formulation, we multiply our
equations by a test function ϕ ∈ H1(Ω,Th), integrate over
some element K ∈Th and apply Green’s theorem.
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DG formulation

∂u
∂ t

+
d

∑
s=1

∂ fs(u)

∂xs
= g .ϕ ∈ Sh,

∫
K

dx

∫
K

∂u
∂ t

ϕ dx +
∫

∂K

d

∑
s=1

fs(u)n(K )
s ϕ dS−

∫
K

d

∑
s=1

fs(u)
∂ϕ

∂xs
dx =

∫
K

gϕ dx .

Sum over all K ∈Th, rearrange edge terms∫
Ω

∂u
∂ t

ϕ dx +
∫

Fh

d

∑
s=1

fs(u)ns[ϕ]dS− ∑
K∈Th

∫
K

d

∑
s=1

fs(u)
∂ϕ

∂xs
dx =

∫
Ω

gϕ dx .

Since u will eventually be replaced by a discontinuous discrete
approximation uh ∈ Sh,we approximate∫

Γ

d

∑
s=1

fs(u)ns[ϕ]dS ≈
∫

Γ
H(u(L),u(R),n)[ϕ]dS.
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∂u
∂ t

+
d

∑
s=1

∂ fs(u)

∂xs
= g

Convective form

bh(u,ϕ) =− ∑
K∈Th

∫
K

d

∑
s=1

fs(u)
∂ϕ

∂xs
dx +

∫
Fh

H(u(L),u(R),n)[ϕ]dS.

Right-hand side form

`h
(
ϕ
)
(t) =

∫
Ω

g(t)ϕ dx .

DG scheme

We seek uh ∈ C1([0,T ];Sh) such that

d
dt
(
uh(t),ϕh

)
+ bh

(
uh(t),ϕh

)
= `h

(
ϕh
)
(t), ∀ϕh ∈ Sh, ∀t ∈ (0,T ).
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DG formulation

d
dt
(
uh(t),ϕh

)
+ bh

(
uh(t),ϕh

)
= `h

(
ϕh
)
(t), ∀ϕh ∈ Sh. (2)

Take a basis B = {ϕα}nα=1 of the space Sh and write

uh(t) =
n

∑
α=1

ξα (t)ϕα .

Test by ϕh := ϕα ,α = 1, . . . ,n. Then (2) is a system of
ODEs for unknown functions {ξα (t)}n

α=1. Solve using your
favorite method.
For p = 0, DG = finite volume method.
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Numerical flux

∫
Γ

d

∑
s=1

fs(u)ns[ϕ]dS ≈
∫

Γ
H(u(L)

h ,u(R)
h ,n)[ϕ]dS.

We have approximated the physical flux ∑
d
s=1 fs(u)ns of

quantity u through edge Γ, by a numerical approximation,
the so-called numerical flux H(u(L)

h ,u(R)
h ,n).

Straightforward choices

H(u(L)
h ,u(R)

h ,n) =
d

∑
s=1

fs
(
〈uh〉

)
ns or

d

∑
s=1

〈
fs(uh)

〉
ns

lead to unstable schemes.
Averaging is natural for a diffusive problem. For convective
problems, information is transported, not diffused.
In the finite volume method, H uses some information
about the flow of u through Γ (characteristics etc.).
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Lax-Friedrichs

For a constant λ > 0 define

H
(
u(L)

h ,u(R)
h ,n

)
=

d

∑
s=1

〈
fs(uh)

〉
ns︸ ︷︷ ︸

H1

+λ
(
u(L)

h −u(R)
h

)︸ ︷︷ ︸
H2

.

H1 = ’naive’ choice.
In the resulting formulation, H2 leads to the term∫

Fh

λ [uh][ϕ]dS,

which imposes, by penalization,
[
uh] = 0, i.e. continuity on

all edges.
For a certain choice of λ , this is the famous Lax-Friedrichs
numerical flux used in the finite volume method.
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Upwinding

H(u(L)
h ,u(R)

h ,n) =

{
∑

d
s=1 fs(u(L)

h )ns, if A > 0,

∑
d
s=1 fs(u(R)

h )ns, if A≤ 0,

where A = ∑
d
s=1 f ′s

(
〈uh〉)ns is the direction of information

propagation w.r.t. Γ.
Upwinding can be rewritten as

H
(
u(L)

h ,u(R)
h ,n

)
=

d

∑
s=1

〈
fs(uh)

〉
ns︸ ︷︷ ︸

H1

+
sgn(A)

2

d

∑
s=1

[
fs(uh)

]
ns︸ ︷︷ ︸

H2

.

H1 = ’naive’ choice, but H2 leads to the term
d

∑
s=1

∫
Fh

sgn(A)

2
[
fs(uh)ns

]
[ϕ]dS,

which imposes, by penalization,
[
fs(uh)ns

]
= 0 on edges, i.e.

continuity of fluxes.
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Theory

Smooth solutions - Zhang & Shu, V.K.

Let u, ∂u
∂ t ∈ L2(0,T ;Hp+1(Ω)) and fs ∈ C2(R),s = 1, . . . ,d . Let H

be an E-flux. Let uk
h ,k = 0,1, . . . be the DG solution obtained by

the explicit Euler method with the time step restriction
τ = maxk=0,1,...τk = O(h4/3). Then we have the estimate

max
k=0,1,...

‖u(tk )−uk
h‖L2(Ω) = O(hp+1/2 + τ).

General solution - Cockburn & Gremaud
Let u be the exact entropy solution, let H be the Lax-Friedrichs
numerical flux along with shock capturing streamline diffusion.
Then for compactly supported solutions

‖u−uh‖L∞(0,T ;L1(Ω)) = O(h1/8).
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Final remarks

Combination of Finite volume and Finite element
techniques.
Higher orders straightforward (unlike FV).
Works for convective problems (unlike FEM).
Piecewise polynomial solutions, continuity imposed weakly
by penalization (numerical fluxes).
Basis functions can have a support of one element.
Local stabilizations.
Parallelization.
More degrees of freedom !!!!!
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Examples
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Flow in GAMM channel, M∞ = 0.67

0

0.2

0.4

0.6

0.8

1

Figure: Mach number isolines.
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Flow in GAMM channel, M∞ = 0.67

Figure: Densit.
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Flow in GAMM channel, M∞ = 0.67
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Figure: Entropy isolines.
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Flow in GAMM channel, M∞ = 0.67
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Figure: Entropy.
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Flow around cylinder, M∞ = 10−4

Figure: Velocity isolines of exact and numerical solution, respectively.
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Flow around cylinder, M∞ = 10−4
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Figure: Velocity distribution on cylinder surface.
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Corner eddies near cylinder, M∞ = 10−4

L.E. Fraenkel: On Corner Eddies in Plane Inviscid Shear Flow, 1961

Figure: Exact solution streamlines.

Figure: Approximate solution streamlines.
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Corner eddies near cylinder, M∞ = 10−4

L.E. Fraenkel: On Corner Eddies in Plane Inviscid Shear Flow, 1961
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Figure: Velocity distribution on cylinder surface: ◦◦◦ – exact solution
of the incompressible equations, —— – numerical solution.
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Flow around Zhukovsky profile, low Mach number

Figure: M∞ = 10−4, velocity isolines: exact solution of incompressible
flow (left), numerical solution (right).
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Flow around Zhukovsky profile, low Mach number
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Figure: Distribution of velocity on the profile surface: ◦◦◦ – exact
solution of incompressible flow, —— – numerical solution.
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Flow around Zhukovsky profile, low Mach number
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Figure: Distribution of pressure on the profile surface: ◦◦◦ – exact
solution of incompressible flow, —— – numerical solution.
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Supersonic flow around Zhukovsky profile

Figure: M∞ = 2.0, Mach number isolines.
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NACA 0012 viscous flow

Figure: M∞ = 0.5, Re = 5000, α = 2◦, Mach number isolines.
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NACA 0012 viscous flow

Figure: M∞ = 0.5, Re = 5000, α = 25◦, streamlines
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Diffusive problems
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Poisson problem

We seek a function u : Ω→ (R) such that

−∆u = g in Ω,

u = uD on ΓD ⊂ ∂ Ω,

∂u
∂n

= gN on ΓN = ∂ Ω\ΓD.

Corresponds to diffusion, smoothing, averaging.
Ideal for classical FEM.
Unnatural for DG.
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DG formulation

−∆u = g
∣∣ .ϕ ∈ H2(Ω,Th),

∫
K

dx , Green

∫
K

∇u ·∇ϕ dx−
∫

∂K
∇u ·n(K )

ϕ dS =
∫

K
gϕ dx .

Sum over all K ∈Th, rearrange edge terms using ∇u = 〈∇u〉,

∑
K∈Th

∫
K

∇u ·∇ϕ dx−
∫

F I
h

〈∇u〉·n[ϕ]dS−
∫

F D
h

∇u ·nϕ dS =
∫

Ω
gϕ dx+

∫
F N

h

gNϕ dS.

Similar to classical weak formulation, except for 2nd term. This
is due to the discontinuity of ϕ and uh.
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DG formulation

∑
K∈Th

∫
K

∇u ·∇ϕ dx−
∫

F I
h

〈∇u〉·n[ϕ]dS−
∫

F D
h

∇u ·nϕ dS =
∫

Ω
gϕ dx+

∫
F N

h

gNϕ dS.

The left-hand side is not symmetric with respect to u,ϕ,
unlike the standard weak formulation.
The left-hand side is not elliptic with respect to some
suitable energy norm.
There is no means of imposing Dirichlet boundary
conditions.
In the DG method, these requirements are mutually
exclusive.
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∑
K∈Th

∫
K

∇u ·∇ϕ dx−
∫

F I
h

〈∇u〉·n[ϕ]dS−
∫

F D
h

∇u ·nϕ dS =
∫

Ω
gϕ dx+

∫
F N

h

gNϕ dS.

Fixing symmetry:
Since [u] = 0 on edges, we add the term

−Θ
∫

F I
h

〈∇ϕ〉 ·n[u]dS.

For Θ = 1, we obtain symmetry w.r.t. 2nd term.
Since u = uD on ∂ Ω, we add the term

−Θ
∫

F D
h

∇ϕ ·n(u−uD)dS.

For Θ = 1, we obtain symmetry w.r.t. 3rd term AND impose
Dirichlet boundary conditions by penalization.
Such a formulation is symmetric for Θ = 1, but not elliptic.
It is semi-elliptic for Θ =−1, but not symmetric.
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∑
K∈Th

∫
K

∇u ·∇ϕ dx−
∫

F I
h

〈∇u〉·n[ϕ]dS−
∫

F D
h

∇u ·nϕ dS =
∫

Ω
gϕ dx+

∫
F N

h

gNϕ dS.

Fixing ellipticity and Dirichlet conditions:
We add the interior and boundary penalty terms∫

F I
h

CW

|Γ|
[u][ϕ]dS +

∫
F D

h

CW

|Γ|
(u−uD)ϕ dS,

where CW > 0 is an appropriate constant.
These terms impose, in a weak sense, continuity of uh on
edges and satisfaction of the Dirichlet BC.
For CW large enough, we get ellipticity of the resulting
bilinear form.
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Diffusion form

ah(u,ϕ) = ∑
K∈Th

∫
K

∇u ·∇ϕ dx−
∫

F I
h

〈∇u〉 ·n[ϕ]dS−
∫

F D
h

∇u ·nϕ dS

−Θ
∫

F I
h

〈∇ϕ〉 ·n[u]dS−Θ
∫

F D
h

∇ϕ ·nu dS.

Interior and boundary penalty form

Jh(u,ϕ) =
∫

F I
h

CW

|Γ|
[u][ϕ]dS +

∫
F D

h

CW

|Γ|
uϕ dS.

Right-hand side form

`h(ϕ) =
∫

Ω
gϕ dx +

∫
F N

h

gNϕ dS−Θ
∫

F D
h

∇ϕ ·nuD dS +
∫

F D
h

CW

|Γ|
uDϕ dS.

We seek uh ∈ Sh such that

ah(uh,ϕh) + Jh(uh,ϕh) = `h(ϕh), ∀ϕh ∈ Sh.
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Properties of the DG formulation

ah(uh,ϕh) + Jh(uh,ϕh) = `h(ϕh), ∀ϕh ∈ Sh.

In fact, the specific scheme depends on the choice of Θ:

Θ =


1, Symmetric variant (SIPG),
0, Incomplete variant (IIPG),
−1, Nonsymmetric variant (NIPG.)

Despite the complexity of the scheme, we still have
consistency:

ah(u,ϕh) + Jh(u,ϕh) = `h(ϕh), ∀ϕh ∈ Sh.

Galerkin orthogonality.
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Properties of the DG formulation

Ellipticity and boundedness

There exists a constant C0
W > 0, such that if

CW >


2C0

W , for the SIPG variant,
C0

W , for the IIPG variant,
0, for the NIPG variant,

then we have ellipticity and boundedness of ah(., .) + Jh(., .)
w.r.t. the DG-norm

‖ϕh‖DG :=
(

1
2

(
|ϕh|2H1(Ω,Th) + Jh(ϕh,ϕh)

))1/2
.

Corollary
∃!uh.
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Properties of the DG formulation

Error estimates

Let u ∈ Hp+1(Ω). There exists a constant C independent of h,
such that

‖u−uh‖DG ≤ Chp|u|Hp+1(Ω).

Convergence for u ∈ H1(Ω) has been proved only recently
(medius analysis, T. Gudi 2010).
Optimal O(hp+1) convergence in the L2(Ω)-norm can be
done for SIPG using duality tricks on convex domains.
For other variants this is an open problem even in 1D
(partially answered for IIPG by O. Havle 2010).
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Unified approach of Arnold et al. 2002

−∆u = g ⇐⇒

{
−divχ = g,

∇u = χ,

Discretize using DG as a convective problem

∑
K∈Th

∫
K

χ ·∇ϕ dx−
∫

Fh

χ ·n[ϕ]dS =
∫

Ω
gϕ dS, ∀ϕ ∈ Sh,

− ∑
K∈Th

∫
K

u divψ dx +
∫

Fh

u n · [ψ]dS =
∫

Ω
χ ·ψ dx , ∀ψ ∈ (Sh)d .

Approximate using numerical fluxes∫
Γ

χ ·n[ϕ]dS ≈
∫

Γ
Hχ (u(L),u(R),χ

(L),χ
(R),n)[ϕ]dS,∫

Γ
un · [ψ]dS ≈

∫
Γ

Hu(u(L),u(R),χ
(L),χ

(R),n)[ψ]dS,
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Unified approach of Arnold et al. 2002

A natural choice is e.g.

Hχ (u(L),u(R),χ
(L),χ

(R),n) := 〈∇u〉 ·n,

Hu(u(L),u(R),χ
(L),χ

(R),n) := 〈u〉n.

We can eliminate the auxiliary variable χ and obtain SIPG.
Other choices of Hχ ,Hu lead to other variants of the DG
method for Poisson’s equation.
Arnold et al. list nine basic possibilities, not including IIPG.
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Concluding remarks

DG formulation of −∆u is a mess.
Technical, counterintuitive, leads to very complicated
formulations, computationally expensive (more DOFs,
nonsymmetric systems, etc.), theory is full of open
problems, lots of possible formulations.
No one should use DG to discretize Poisson’s problem.

However...
It works.
Sometimes we are forced to use it.
If diffusion terms are present in complicated nonlinear
convection-dominated problems, where finite elements fail,
we need to discretize them using DG along with the rest of
the equation.
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Mathematics in Image Processing

Michal Šorel et al.
Department of Image Processing

Institute of Information Theory and Automation (ÚTIA)
Academy of Sciences of the Czech Republic

Image processing and related fields
• Image processing 

– Image restoration (denoising, deblurring, SR)
– Computational photography (includes restoration)
– Segmentation
– Registration
– Pattern recognition

• Computer vision – recognition and 3D reconstruction
but growing overlap with image processing

• Machine learning
• Compressive sensing (also sub‐field of computational
photography)

Image reconstruction (inverse problems)

–Denoising
–Deblurring
–Tomography

Image segmentation and classification

• Separating objects, categories,
foreground/background, cells or organs in 
biomedical applications etc.

Image Registration

• Transforming different sets of data into one 
coordinate system

• Transform is constrained to have a specific
form (rotation, affine, projective, splines etc.)  

Optical flow

Sequence of images contains information about the scene,
We want to estimate motion – special case of image registration



2D Motion Field = Optical Flow

Optical center

2D motion field

Projection on the 
image plane of the 3D 
scene velocity

3D motion field

Image intensity

I1

I2

Optical flow example

Source: CBIA Brno, http://cbia.fi.muni.cz

Stereo reconstruction

Principle Result (depth map or
disparity map)

Result (3D model)

Source: http://lcav.epfl.ch

Mathematics in image processing
Mathematics in image processing , CV etc. My subjective estimate

Linear algebra 90%

Numerical mathematics 70%

Statistics and probability 30%

Analysis (including convex analysis and variational
calculus) used in all above

Graph theory (mainly graph algorithms) 15%

Universal algebra not much

Probably similar for most engineering fields…

Presentation outline

• Mathematical formulations of image processing
problems

• Bayesian view of inverse problems in (not only) 
image restoration, sparsity

• Discrete labeling problems and Markov random 
fields (MRF)
– Surprising result – a large family of non‐convex MRF 
problems can be solved exactly in polynomial time/ 
reformulated as convex optimization problems

Image

• Greyscale image
– Continuous representation – 2D function
– Discrete – matrix
– Both can be extended to 3D 

• Color image = set of 3 or more greyscale 
images
– RGB channels are highly correlated→ many 
algorithm work with greyscale only



Inverse problems in image restoration

• Denoising
• Deconvolution and deblurring
• Super‐resolution
• JPEG Decompression
• CT, MRI, PET etc. reconstruction 
(reconstruction from projections) • z … observation, u … unknown original image 

• Maximum a posteriori (MAP): max p(u|z)
• Maximum likelihood (MLE): max p(z|u)

Bayesian Paradigm

a posteriori distribution
unknown

likelihood
given by our problem

a priori distribution
our prior knowledge

MAP corresponds to regularization

data term regularization term

Data term for image denoising

Image Prior
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Image Prior

Gradient histogram
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Theory on when we can do this will be given later (CRF) 



Image Prior

Tikhonov regularization

TV regularization
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Image Prior

Non-convex regularization

Bayesian MAP approach for denoising Sparsity
• TV regularization can be extended to other sparse
representations

• W often a set of convolutions with highpass
filters
– Wavelets
– Learned by PCA

Measure of Sparsity

• norms ( )

• norm, counts nonzero elements

• many other sparsity measures 
– smooth l1

l2 unit ball



l1 unit ball l0.9 unit ball

l0.5 unit ball l2‐norm 

l1‐norm  Deblurring

• Denoising

• Deblurring



Super‐resolution (with deblurring)

Several possibly shifted blurred images

Di … downsampling operator

Convolutions represent also the shift

Optical flow

• Based on the assumption of constant 
brightness

• Optical flow is the velocity field

Regularization
term

Data
term

Weighting
parameter

Optical flow JPEG compression

C TQ

C-1Q-1

y

x

Bayesian MAP restoration

MAP – maximum a posteriori probability

Bayesian JPEG decompression

(Bredies and Holler, 2012)

Or using redundant wavelets

Using total variation (TV)



50
jpg

50
est

Convex variational problems

• Denoising, deblurring, SR, optical flow, JPEG 
decompression …

• Solution by convex optimization (interior
point, proximal methods)

• What to do for discrete or non‐convex
problems?

• For each site (pixel) we look for a label (or a 
vector of labels)

• Labels depend on local image content and a 
smoothness constraint

• Image restoration, 
segmentation, stereo, 
and optical flow are all
labeling problems

Discrete labeling problems

40

• For each site (pixel) we look for a label (or a 
vector of labels)

• Labels depend on local image content and a 
smoothness constraint

Discrete labeling problems

41

Segmentation foreground/background
or object number

{0,1}
{1.. k}

Stereo Disparity (inverse depth) ‐k..k

Optical flow local motion (‐k..k) x (‐k..k)

Restoration  Intensity 0..255

Segmentation

42



Graph cuts & Belief propagation
„Classical algorithms“

Belief propagation

Graph cuts

43

• Markov Random Field 
• Gibbs Random Field
• MRF  GRF (Hammersley‐Clifford theorem)
• Smoothness priors
• MRF models in

– stereo
– segmentation
– restoration (denoising, deblurring)

Markov Random Fields (MRFs)

44

• sites S = {1, ... , m}
• F ... set of random variables defined on S
• N ... neighborhood system
• ... (possibly discrete) label 
• configuration f =  {f1 ... fK},  

• Other (possible) properties – homogeneity, 
isotropy

Markov Random Field (MRF)

45

• Solution – dynamic programming ... O(m)

46

MAP in a chain
f1 fNf2

Gibbs Random Field

Partition function

Energy function U(f)

Vc(f) ... clique potentials

P(f) > 0 !

47

MRF = GRF

F is an MRF on S with respect to N

if and only if

F is a Gibbs random field on S with respect to N

MRF ... conditional independence of non‐neighbor nodes 
(variables)

GRF ... global function depending on local “compatability
functions”

Hammersley‐Clifford theorem

48



• An MRF is also a GRF – complicated, 
introduction of canonical potentials needed

• A GRF is a MRF

Hammersley‐Clifford theorem ‐ proof

49

• MAP‐MRF

• How to incorporate smoothness? 
– Penalties/potentials  similar for most applications

50

MRF = GRF

Priors on derivatives, usually first derivative

Discontinuity preserving penalties

Smoothness prior

51

segmentation,  sometimes in 
stereo

Tikhonov regularization

TV regularization

line process, Mumford‐Shah 
functional

2 images d1,d2 on the input

Birchfield‐Tomasi matching cost – insensitivite to
sampling:

MAP‐MRF for stereo (Boykov & al.)

52

 “ “GrabCut” — Interactive Foreground Extraction using 
Iterated Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake, 
SIGGRAPH 2004

53

MAP‐MRF for segmentation

• “Grab cut” example

V1(fi,di) ~ probability to be in fg/bg based on a 
feature space (intensities, texture features etc...) 
– modeled for example as a mixture of Gaussians

MAP‐MRF for segmentation

54



• Denoising (with anisotropic TV regularization)
– 2D indexing  ‐ only this slide 

• Deblurring (with TV regularization)

• Discrete methods not efficient for restoration!

MAP‐MRF for restoration

55

• Common framework for many image 
processing a CV problems 

• MAP‐MRF approach results in similar 
functionals

• MRF = GRF

MRFs ‐ Summary
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• MAP – Maximum a posteriori probability

• Graph cuts = min‐cut ~ max‐flow (Ford‐Fulkerson
theorem)

• Much better than simulated annealing based 
methods, often very close to global optimum

MAP‐MRF using graph cuts

57

For V2 ≥ 0 metric
– V2(a,b) = 0  ⇔ a = b
– V2(a,b) = V2(b,a)  (actually not necessary)
– V2(a,b) ≤ V2(a,c) + V2(c,b)

or semimetric (without ∆‐inequality)

Metric: 
for any norm |.|

Semimetric:

Graph cuts minimization
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• Local minimization – minimum if  no possible 
decrease of E(f) in one “move” 

• Iterated conditional modes (ICM) iteratively 
minimizes each node (pixel)       easily gets 
trapped in a local minimum (~ gradient descent)

• Simulated annealing – global moves but without 
any specific direction       slow

• Graph cuts – use much larger set of “moves” so 
that the minimum over the whole set can be 
found in a reasonable (polynomial) time

Graph cuts minimization

59

α‐β swap and α‐expansion moves

initial labeling standard move α‐β swap move α‐expansion 
move

60



• Arbitrary metric V2(α,β) (Δ‐inequality) 
• Not worse than 2x optimum

α‐expansion algorithm
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• Arbitrary semimetric V2(α,β)
(without Δ‐inequality) 

• No optimality guaranteed

α‐β swap algorithm
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α‐β swap move graph

63

α‐β swap move graph

64

α‐β swap move graph

65

• We know how to transform minimization of E(f) 
over all possible α‐β swap moves to graph cut 
problem

66

α‐β swap ‐ summary



α‐expansion move graph

67

α‐expansion move graph

68

∆ ‐ inequality !

α‐expansion graph ‐ cuts
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• We know how to transform minimization of E(f) over 
all possible α‐expansion moves to graph cut problem

• What remains? ‐ how to find the minimum cut

70

α‐expansion ‐ summary

• “Augmenting path” type algorithm with simple 
heuristics
– Looks for a non‐saturated path ~ path in residual 
graph

– Simultaneously builds trees from α and β
• Maximum complexity O(n2mCmax), Cmax cost of 
the minimum cut

• Actually typically linear with respect to the 
number of pixels

• On our problems faster than good combinatorial 
algorithms ‐ Dinic O(n2m), Push‐relabel O(n2√m) 

Graph cuts algorithm

71

• Minimization of E(f) by finding min‐cut in a graph in 
polynomial time

2 label minimization can be done in polynomial (and 
typically linear) time with respect to the number of pixels

• K>2 labels – NP hard
– Equivalent to Multiway Cut Problem
– α‐expansion finds a solution ≤ 2*optimum
– In practice both α‐β swap and α‐expansion algorithms get very 

close to global minimum

Graph cuts ‐ summary

72



 “ “GrabCut” — Interactive Foreground Extraction using 
Iterated Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake, 
SIGGRAPH 2004
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Graph cuts – additional example

• Conditional independence is strong structural
information that can be exploited

• Gives useful approximations for difficult (NP‐
hard) problems

• For convex problem mostly better to use 
continuous methods

Discrete optimization in MRFs ‐
summary

74

• Graph Cuts
– “Fast Approximate Energy Minimization via Graph Cuts” ‐ Y. 

Boykov, O. Veksler, R. Zabih, PAMI 2001 (Augmenting path min‐
cut algorithm)

– “An Experimental Comparison of Min‐Cut/Max‐flow Algorithms 
for Energy Minimization in Vision” – Y. Boykov, V. Kolmogorov, 
PAMI 2004 (Graph construction for α‐β swap and α‐expansion 
moves)

– “ “GrabCut” — Interactive Foreground Extraction using Iterated 
Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004

• Belief propagation
– “Understanding Belief Propagation and its Generalizations” ‐

J.S. Yedidia, W.T.Freeman, Y.Weiss (Mitsubishi electric research 
laboratories, Technical report, 2002)
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