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Supervisors: RNDr. Jǐŕı Mareš, CSc., Dr. Nina V. Shevchenko

(Nuclear Physics Institute ASCR, 250 68 Řež)
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1 Introduction

This work is devoted to the calculations of the K−-deuteron scattering length

within the Faddeev approach. The two-body K̄N interaction plays an essential

role in our considerations.

The K̄N interaction near threshold is known to be strongly attractive as well

as strongly absorptive. It is mainly affected by the subthreshold I = 0 resonance

Λ(1405), which is usually assumed a K̄N bound state and a resonance in the πΣ

channel [1]. The experimental data which have been used to constrain the K̄N

interaction consist of cross sections of low-energy K−p scattering and reactions

[2], and of the position and width of the Λ(1405) resonance. An important ex-

perimental information near threshold is the K−p scattering length aK−p, which

has been determined from measurements of the energy shift and width of the 1s

state in the kaonic hydrogen [3, 4, 5]. The value of aK−p can be extracted from

the kaonic hydrogen 1s level shift Γ and width ε by applying the Deser-Trueman

formula [6, 7]

ε + i
Γ

2
= 2α3µ2aK−p, (1)

where α is the fine structure constant and µ corresponds to the K−p reduced

mass.

The K̄-nucleus interaction is also strongly attractive, as deduced from anal-

ysis of kaonic atoms [8]. Global density-dependent fits lead to optical potentials

150− 200 MeV deep, whereas coupled-channel calculations based on chiral mod-

els on the K̄N interaction [9, 10] yield relatively shallow potential with depth

≈ 50 − 60 MeV. The depth of the K̄-nucleus potential is closely related to the

existence and possible width of K̄-nuclear states. This issue has attracted consid-

erable attention recently. Kishimoto [11] suggested to search for K̄-nuclear states

in the nuclear (K−, p) reaction and Akaishi and Yamazaki [12] predicted a nar-

row K̄NNN I = 0 nuclear state bound by more than 100 MeV. Dote et al. [13]

in calculations of very light nuclei predicted considerable polarization of the nu-

clear core caused by the strongly attractive K̄-nucleus interaction. Calculations

of the K−pp system performed by Shevchenko et al. [14] using the three-body

coupled channel K̄NN − πΣN Faddeev equations yielded a quasibound K−pp

state with considerable width. The FINUDA experiment at Frascati reported
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evidence for deeply bound K−pp states [15] and later preliminary evidence for a

narrow K̄NNN quasibound state [16]. However, an alternative, more conven-

tional interpretation of the FINUDA events was presented in refs. [17, 18]. The

issue of K̄-nuclear quasibound states is clearly far from being resolved and more

experimental as well as theoretical explorations, including the study of the K̄N

interaction, are necessary.

This year, the SIDDHARTA experiment at Frascati is going to measure both

the energy shift and the width of kaonic hydrogen with a higher precision (of

several eV) than previous experiments [3, 4, 5]. Moreover, SIDDHARTA will

perform measurements of the kaonic deuterium. A precise value of the K−d scat-

tering length from the measurements of the K−d atomic level shift and width and

a precise value of the K−p scattering length are essential for extracting the K−n

scattering length, for our better understanding of low-energy K̄N interaction and

for extrapolating into K̄-nuclear systems.

The first Faddeev calculations of K−d elastic scattering were performed by

Hetherington and Schick [19]. Later the approach was refined by Schick and

Gibson [20] who included explicitly hyperonic channels to account for processes

K̄N ↔ πY (Y = Σ, Λ). In 1980, Toker et al. [21] studied K−d → π−Λp reactions,

as well as other three-body K− processes, in the Faddeev formalism for separable

two-body coupled-channel interactions fitted to available low-energy data. They

found that the elastic and total K−d cross sections are quite independent of the

type of the Y N interaction. Bahaoui et al. [23] calculated the K−d elastic scatter-

ing at low energies within a multi-channel three-body approach using relativistic

separable parametrization for the Y N and K̄N interactions. Input parameters

were obtained by fitting the low-energy data with the extra constraint of repro-

ducing the πΣ mass spectrum. Deloff [24] studied ηd and K−d scattering lengths

within the Faddeev approach and compared one- and multi-channel Faddeev cal-

culations. Moreover, he checked how reliable is the fixed center approximation

(FCA), in which the physical deuteron is approximated by two nucleons sepa-

rated by a fixed distance. This approximation, which was originally applied in

atomic and molecular physics, is inadequate in K−d calculations, because of rel-

atively large value of the kaon mass mK ≈ 495MeV compared to the nucleon
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mass mN ≈ 939MeV . Kamalov, Oset and Ramos [25] applied the FCA of the

Faddeev equations to the evaluation of the scattering length aK−d. Their in-

put consisted of elementary K̄N amplitudes calculated using chiral Lagrangians

and a coupled-channel unitary method. Bahaoui et al. [26] refined their own

multi-channel Faddeev approach and calculated the K−d scattering length both

in isospin and particle basis. Besides π-nucleon and hyperon-nucleon interactions

they considered also the D component of the deuteron wave function. They found

the effect of the additional two-body inputs negligible. Meiβner, Raha and Ruset-

sky [27, 28] applied the FCA to the study of the K̄N and K−d scattering lengths

within the framework of a low-energy effective field theory. They considered the

extraction of the K̄N scattering lengths aI=0 and aI=1 from a combined fit to

the kaonic hydrogen and kaonic deuterium data. They concluded that with the

present DEAR values for the kaonic hydrogen 1s level shift and width, a solution

for aI=0 and aI=1 exists only in a restricted domain of input values of the K−d

scattering length. Gal [29] reviewed multiple-scattering approximations to the

Faddeev theory of the K−d scattering length and compared them with published

K̄NN − πY N Faddeev calculations.

The three-body Faddeev equations [31, 32] are used for accurate formulation of

the quantum-mechanical three-body problem. These equations exactly describe

dynamics of a system of three particles. In general, Faddeev equations require

as an input all potentials describing interactions between every two particles.

The kernels of the Faddeev equations are Hilbert-Schmidt operators. Therefore,

unlike the three-body problem in classical mechanics, the quantum three-body

problem is uniquely solvable. However, these equations are too complicated for

practical purposes. In particular, they are still two-dimensional after angular

momentum decomposition. In the Alt-Grassberger-Sandhas (AGS) form [33],

the three-body Faddeev equations become one-dimensional integral equations for

the three-body transition amplitudes. In these equations separable parts of two-

particle transition amplitudes are used. The three-body AGS equations have the

structure of multi-channel two-particle Lippmann-Schwinger (LS) equations and

are more practical than the original Faddeev equations.

In this work we use the Faddeev equations in the AGS form [33] for the calcu-
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lation of the K−d scattering length. Dealing with scattering at low-energies, we

work in s-wave approximation and we do not consider any relativistic corrections.

For simplicity we assume that the isospin symmetry is not broken. It means that

there is no difference between the proton and neutron masses, as well as between

the masses of K− and K̄0. Furthermore, we do not consider Coulomb interac-

tion. Our calculations are performed in the momentum and isospin basis, where

protons and neutrons are treated as identical particles.

The details of our Faddeev calculations of the K−d scattering length are

described in the next section and attached appendices. Section 3 is devoted

to the two-body K̄N and NN potentials used in the calculations. Our results

are presented and discussed in section 4. We conclude with a brief summary in

section 5.

2 Three-body Faddeev equations

Following Sandhas [30] we start from the Faddeev-type three-body equations in

the Alt-Grassberger-Sandhas (AGS) form [33]

Uβα = (1− δβα)G−1
0 +

∑

γ 6=β

TγG0Uγα, (2)

where the operator G0 is the free three-body Green’s function defined by the

standard way G0 = (z − H0)
−1, where z stands for the three-body energy. Uβα

are the three-body transition operators describing the elastic and rearrangement

processes in our system. The Faddeev indices α, β = 1, 2, 3 determine two bound

particles in the initial or final state. For example, α = 1 means a bound state of

particles labeled by indices 2 and 3. Consequently,

U11 : 1 + (23) → 1 + (23),

U21 : 1 + (23) → 2 + (31),

U31 : 1 + (23) → 3 + (12).

(3)

The operator U11 describes the elastic scattering. Therefore, it is directly con-

nected to the scattering length which is the main goal of this work. In the AGS

equations (2) the two-body potentials enter the two-body transition operators Tγ
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which fulfill the two-body Lippmann-Schwinger (LS) equation

Tγ = Vγ + VγG
(2)
0 Tγ. (4)

Here the operator G
(2)
0 is the free two-body Green’s function and Vγ is the two-

body separable potential in the form

Vγ = |gγ〉λγ〈gγ|, (5)

where λγ is the strength factor describing the power of the two-body interaction.

By using this form of the two-body potential we can analytically solve the LS

equation (4) for the two-body transition operator Tγ as follows

Tγ(z) = |gγ〉τγ(z)〈gγ|, (6)

where τγ(z) is the energy dependent part of the operator Tγ

τγ =

[
1

λγ

− 〈gγ|G(2)
0 |gγ〉

]−1

. (7)

As pointed out earlier our calculations will be carried out in the momentum

and isospin basis. The scattering amplitude is defined as the matrix element

of the elastic transition operator Uβα, α = β, between the three-body wave

functions. Since in the asymptotic region two particles are bound we can rewrite

the three-body wave function as a product of the bound state wave function of

the two-particle subsystem |ψB
α 〉, plane wave corresponding to the third particle

|kα〉 and the three-body isospin vector. The construction of the isospin vectors

is described in Appendix B. Then, the scattering amplitude corresponding to the

elastic scattering of the particle α on the subsystem composed of the particles β

and γ can be expressed

fα(kβ,k′α; z) = −(2π)2µα〈Iβ,kβ; ψB
β |Uβα(z)|ψB

α ;k′α, Iα〉, β = α, (8)

where µα stands for the three-body reduced mass of the particle α relative to

the particles β and γ. The definition of the three-body masses can be found in

Appendix A. The scattering length of the particle α on the particles β and γ

subsystem is obtained by going with the three-body energy to zero

aα = fα(kβ = 0,k′α = 0; z → 0), β = α. (9)
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From the stacionary Schrödinger equation we can express the bound state wave

function using the Green’s function and the two-body formfactor as follows

|ψB
α 〉 = λαNB

α G
(2)
0 (z)|gα〉. (10)

Here, NB
α is the normalization constant, which can be obtained from the condition

〈ψB
α |ψB

α 〉 = 1. After using equation (10) and introducing the notation

Xβα(z) ≡ 〈gβ|G0(z)Uβα(z)G0(z)|gα〉, (11)

Zβα(z) ≡ 〈gβ|G0(z)|gα〉, (12)

we can rewrite the original AGS equations in a more suitable form in the momen-

tum and isospin basis. Apparently each term in derived equations will contain a

combination of the constants λβλαNB
β NB

α , which can be omitted. Therefore we

can write the AGS equations in the form

〈Iβ,kβ|Xβα(z)|k′α, Iα〉
= (1− δβα)〈Iβ,kβ|Zβα(z)|k′α, Iα〉+

∑

γ 6=β

〈Iβ,kβ|Zβγ(z)τγ(z)Xγα(z)|k′α, Iα〉.

(13)

After partial wave decomposition which is described in detail in Appendix C

and where we assumed that only s-wave contribution will be significant in our

calculations, we get the following equations

〈Iβ, kβ|Xβα(z)|k′α, Iα〉 = (1− δβα)〈Iβ, kβ|Zβα(z)|k′α, Iα〉+

+ 4π
∑

γ 6=β

∑
Iγ

∫
dk̄γ k̄

2
γ〈Iβ, kβ|Zβγ(z)|k̄γ, Iγ〉×

× 〈Iγ|τγ

(
z − k̄2

γ

2µγ

)
|Iγ〉〈Iγ, k̄γ|Xγα(z)|k′α, Iα〉,

(14)

where relation (C-8) was used when dealing with the function τγ(z). If we act by

the operators Xµν ,Zµν and τµ on the isospin vectors, we get a two-body isospin

dependence of the operators, because our two-body interactions are isospin-

dependent. In addition, all these operators are defined as multiplied by the scalar

products of isospin vectors which are described in detail in Appendix B:

〈Iβ, kβ|Xβα(z)|k′α, Iα〉 = X̂
Iβ ,Iα

βα (kβ, k′α; z)〈Iβ|Iα〉 ≡ X
Iβ ,Iα

βα (kβ, k′α; z). (15)
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Then equations (14) transform into the form

X
Iβ ,Iα

βα (kβ, k′α; z) = (1− δβα)Z
Iβ ,Iα

βα (kβ, k′α; z)+

+ 4π
∑

γ 6=β

∑
Iγ

∫ ∞

0

dk̄γ k̄
2
γZ

Iβ ,Iγ

βγ (kβ, k̄γ; z)τ Iγ
γ

(
z − k̄2

γ

2µγ

)
XIγ ,Iα

γα (k̄γ, k
′
α; z),

(16)

where the indices Iα denote the isospin dependence of the operators.

We want to calculate the K−d scattering length and therefore, we introduce

the indices K,N1 and N2 instead of α, β, γ. This labeling corresponds to the kaon

and two nucleons which we consider distinguishable for the moment. Using this

labeling and equations (8-11) we can express the K−d scattering length as

aK−d = −(2π)2µK(NB
K )2λ2

KX0,0
KK(kK = 0, k′K = 0; z → 0), (17)

where Iα = Iβ = 0 because of known deuteron isospin INN = 0. According to

(16) three Faddeev equations with the same initial states α are coupled, we thus

need to solve equation (16) for XKK , XN1K and XN2K . This gives us the set of five

integral equations (D-1–D-5). Nucleons are identical fermions, therefore all three-

body wave functions must be antisymmetric. Two-body wave function of the NN

system with orbital momentum l = 0 is antisymmetric for (INN = 0, SNN = 1)

and (INN = 1, SNN = 0), which means that |N1N2〉 = −|N2N1〉. The three-

body spin conservation and zero spin of the antikaon means, that we have only

(INN = 0, SNN = 1) and than INN = 1 does not enter our three-body equations.

Therefore the three-body wave function corresponding to the bound state of two

nucleons and a free kaon |K(N1N2)〉 is automatically antisymmetric. |N(KN)〉
states should be antisymmetrized by hand. We constructed the wave function

as a combination of two parts |N1(KN2)〉 − |N2(KN1)〉. Now we can define new

operators totally antisymmetric under exchange of the two nucleons

XD ≡ X0,0
KK ,

X0 ≡ X0,0
N1K −X0,0

N2K ,

X1 ≡ X1,0
N1K −X1,0

N2K .

(18)

With the above mentioned wave functions it is possible to derive relations for the

operators Zβα and τα:

τN1 = τN2 , ZN1N2 = ZN2N1 , ZN1K = −ZN2K . (19)
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Using labeling (18) and relations (19) we can rewrite the former set (D-1–D-5)

as a new set of three integral equations (D-6,D-7,D-8) for the three unknown

quantities XD, X0 and X1, where the indices N1 and N2 are replaced by the

common index N . Here we have used relations derived by Bahaoui et al. [26] for

the antisymmetrized operators Z̃βα

Z̃KN =
√

2ZKN1 = −
√

2ZKN2 , Z̃NN = −ZN1N2 = −ZN2N1 . (20)

Next, we replace integration by summation using standard Gaussian quadrature

from Numerical Recipes [38]

∫ L

0

dxf(x) =
N∑

j=1

ωjf(xj), (21)

where ωj are weight factors, N is dimension and L is the integration limit identical

in all integrations in our set of equations. We have set the value of this parameter

L = 3.5 fm−1 as we have checked that integration in the region beyond this limit

varies the results only insignificantly. Now, we can write just one matrix equation

instead of the previous set (D-6,D-7,D-8)




XD

X0

X1


 =




0 ω ·KD0 ω ·KD1

ω ·K0D ω ·K00 ω ·K01

ω ·K1D ω ·K10 ω ·K11







XD

X0

X1


 +




0

2Z0,0
NK

2Z1,0
NK


. (22)

In this equation we have defined the vectors

ω ·KΛΛ′ =




ω1KΛΛ′(k
1
Λ, k1

int) ω2KΛΛ′(k
1
Λ, k2

int) · · · ωNKΛΛ′(k
1
Λ, kN

int)

ω1KΛΛ′(k
2
Λ, k1

int) ω2KΛΛ′(k
2
Λ, k2

int) · · · ωNKΛΛ′(k
2
Λ, kN

int)
...

...
. . .

...

ω1KΛΛ′(k
N
Λ , k1

int) ω2KΛΛ′(k
N
Λ , k2

int) · · · ωNKΛΛ′(k
N
Λ , kN

int)




,

XΛ =




XΛ(k1
K , k′K)

XΛ(k2
K , k′K)
...

XΛ(kN
K , k′K)




, ZI,0
NK =




ZI,0
NK(k1

N , k′K)

ZI,0
NK(k2

N , k′K)
...

ZI,0
NK(kN

N , k′K)




,

(23)

where the notation Λ, Λ′ = D, 0 and 1 corresponds to equations (18), ki
Λ are

momenta corresponding to abscissae from the Gaussian quadrature, k′K is an
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input parameter which in our case goes to zero, kj
int are momenta over which we

integrate and KΛΛ′(k
i
Λ, kj

int) are the kernels of the set of integral equations, which

can be expressed as a function of known quantities

KΛΛ′(kΛ, kint) = 4πC̃Λ,Λ′ k
2
intZ

I,I′
ΛΛ′(kΛ, kint)τ

I′
Λ′

(
z − k2

int

2µΛ

)
, (24)

where C̃ΛΛ′ = −1, +1, +2 are constants from the equations (D-6,D-7,D-8). It

is to be noted that computing of these kernels is tedious but in all respects

straightforward as is shown in Appendix E. After introducing a compact notation

X =




XD

X0

X1


, Z =




0

Z0,0
NK

Z1,0
NK


, ωK =




0 ω ·KD0 ω ·KD1

ω ·K0D ω ·K00 ω ·K01

ω ·K1D ω ·K10 ω ·K11


, (25)

equation (22) transforms into the final form

(1− ωK)X = 2Z, (26)

which is solved by standard linear algebraic techniques [38] using the lower-upper

(LU) decomposition and numerical procedures for solving a set of linear equations.

The final expression for the K−d scattering length follows from equations (17)

and (18):

aK−d = −(2π)2µK(NB
K )2λ2

KXD(k1
K , k′K = 0; z → 0). (27)

Computing time required for the numerical operations grows up with the third

power of the dimension N (see eq. (21)). Fortunately, the final result converges

rather rapidly (for N ∼ 100) and the calculation of the K−d scattering length is

thus quite fast.
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3 Input

The use of separable potentials brings us several advantages. For example, there

is a lower number of integrations in the set of integral equations. Moreover,

it is possible to express the two-body transition operator Tγ analytically. We

considered two-body potentials in the form

V = |g〉λ〈g|, (28)

which can be after applying corresponding two-body momentum vectors and two-

body isospin vectors rewritten as follows

V I(p,p′) = λIg
I(p)gI(p′). (29)

The potentials used in our calculations are s-wave, isospin dependent and isospin

conserving. However, there is not too many potentials of this type. Let us remark

that there exists a possibility of separabilization of non-separable potentials, but

we do not use such a procedure in our work. Since we work in the isospin basis

instead of the particle basis and we neglect the isospin breaking effects, we use as

an input the kaon-nucleon potential and the nucleon-nucleon potential for I = 0

or I = 1. All relevant masses and fundamental physical constants are taken from

the Review of Particle Physics [35]. Because of the isospin symmetry we use

the average mass mK̄ of K− and K̄0, and the average mass mN of proton and

neutron.

3.1 K̄-Nucleon potential

Separable K̄N potentials which can be found in literature are quite old and do not

reproduce the present K̄N data sufficiently well. Therefore, we have constructed

our own separable potential with the formfactors of the form (29)

gI(p) =
1

p2 + β2
I

. (30)

Since there are two possible values of the two-body isospin, we have to determine

four parameters λI and βI for I = 0 and 1, where λI are in general complex due to

the K̄N → πΣ interaction. Consequently, we have six unknown real parameters.

It is possible to determine these parameters from experimental data, namely the
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mass and the width of the Λ(1405) resonance and the complex K−p scattering

length. The two remaining parameters, the range parameters βI , were set for

both isospin channels to the value β = 3.5 fm−1, according to fits of the K̄N

potentials to the low-energy K−p data performed by Shevchenko et al. [14].

We assume that Λ(1405) is a quasibound state of the K̄N subsystem for I = 0.

We used the PDG values [35] MΛ = 1405 MeV and ΓΛ = 50 MeV, which seem to

be the most plausible at present. Nevertheless, we also studied the sensitivity of

the calculated K−d scattering length to the variations of these values as shown

in the next chapter.

From the PDG mass and width of Λ(1405) we get the binding energy of the

K̄N bound state

EK̄N
B = (−29.5− i 25) MeV. (31)

This value is much larger then the binding energy of the deuteron. This implies

that at low energies the K̄N interaction is stronger than the NN interaction.

There are two available experimental values of the K−p scattering length

derived from the kaonic hydrogen 1s level shift and width in the KEK experi-

ment [3, 4]:

aKEK
K−p = (−0.78± 0.15± 0.03) + i (0.49± 0.25± 0.12) fm, (32)

and in the DEAR collaboration experiment [5]:

aDEAR
K−p = (−0.468± 0.090± 0.015) + i (0.302± 0.135± 0.036) fm. (33)

By comparing these two scattering lengths we see rather large discrepancy be-

tween the two measurements. The result published by the DEAR collaboration

is suppose to be more accurate, because of smaller error bars. However, it is

impossible to find the parameters of the K̄N potential which reproduce simulta-

neously the K−p cross sections and the aDEAR
K−p value. Hence we used the KEK

value aKEK
K−p = (−0.78 + i 0.49) fm in our fits. Moreover, in order to study the

sensitivity of our predictions of the K−d scattering length we varied the aK−p

KEK value within the error bars indicated in eq. (32).

In order to connect the K−p scattering length with the potentials for I = 0

and I = 1, we make use of the relation between the K−p scattering length and
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the scattering lengths in the I = 0 and I = 1 channels:

aK−p =
(aI=0 + aI=1)

2
. (34)

Using the above mentioned input values we get all required parameters. For

example, for aK−p = −0.78 + i 0.49 fm, mΛ = 1405 MeV and ΓΛ = 50 MeV, we

get

βI=0 = βI=1 = 3.5 fm−1,

λI=0 = (−1.944− i 0.253) fm−2,

λI=1 = (−0.660− i 0.596) fm−2.

(35)

3.2 Nucleon-Nucleon potential

There are not too many suitable separable nucleon-nucleon potentials. In our

work, we have chosen the reliable PEST potential [36] and an interesting energy

dependent potential created by Garcilazo in 1980 [37], which we have modified

according to some newer experimental data.

3.2.1 PEST potential

The nucleon-nucleon PEST potential [36] is a separable approximation of the

Paris potential. The strength parameters were set to λI=0 = λI=1 = −1 and the

formfactors were defined as follows

gI(p) =
1

2
√

π

6∑
i=1

cI
i

p2 + (βI
i )

2 . (36)

The parameters βI
i and cI

i are listed in ref. [36]. PEST is on-shell and off-

shell equivalent of the Paris potential up to Elab. ∼ 50 MeV. It is repulsive

at distances shorter than 0.8 fm. It reproduces the deuteron binding energy

Ed
B = −2.2249 MeV, as well as the triplet and singlet NN scattering lengths

a(3S1) = −5.422 fm and a(1S0) = 17.534 fm, respectively.

3.2.2 Energy dependent NN potential

A separable energy dependent nucleon-nucleon potential was presented by Gar-

cilazo in ref. [37]. This potential is defined analogously to the other potentials
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used in this work

V I(p,p′; E) = λI(E)gI(p)gI(p′), (37)

where gI(p) are the standard Yamaguchi formfactors

gI(p) =
γI

p2 + α2
I

(38)

and λI(E) are functions of the two-body energy

λI(E) = − tanh

(
1− E

EI
c

)
, (39)

which are negative (positive) for E < EI
c (E > EI

c ) and finite as E goes to

±∞. These characteristics of λI(E) correspond to the required properties of the

potential, which is supposed to be attractive at low energies and repulsive at

high energies. EI
c is the energy where the phase shift changes sign. In ref. [37],

Garcilazo used for the determination of the parameters of the NN potential some

values of the NN scattering lengths, which have been later outdated. Hence when

using the original parameters of ref. [37] we got the deuteron binding energy, Ed
B =

−2.186 MeV, which is too low. Therefore we determined our own parameters γI

and αI using the relevant formulae

mNπ

2aI
=

α4
I

γ2
I λI(0)

+
mN

4
παI ,

−mN

4
πrI =

2α2
I

γ2
I λI(0)

− mNπ

4αI

+
α4

I

γ2
I

1

mN

d

dE

(
1

λI(E)

)

E=0

,

(40)

where mN is the nucleon mass, aI are the NN scattering lengths and rI stand for

the effective ranges for the I = 0 and I = 1 channels. Using the NN scattering

lengths and effective ranges given by the PEST potential and the energies EI=0
c =

0.816 fm−1 and EI=1
c = 0.767 fm−1 we get the following values of the required

parameters

αI=0 = 1.5659 fm−1, γ2
I=0 = 1.7647 fm−2,

αI=1 = 1.2348 fm−1, γ2
I=1 = 0.6056 fm−2.

(41)

These parameters give the correct deuteron binding energy Ed
B = −2.228 MeV.
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4 Results and discussion

In this chapter we present results of our calculations of the K−d scattering length

using the Faddeev equations in the AGS form. In particular, we demonstrate the

sensitivity of the K−d scattering length to the variations of the two-body inputs.

At the end of the chapter we also compare our best results with the results of

similar calculations performed so far.

4.1 Dependence of aK−d on the NN potential

We calculated the K−d scattering length using two different NN potentials pre-

sented in section 2, namely the PEST potential and the energy dependent po-

tential of Garcilazo (E-dep). During these calculations we considered the K̄N

potentials with the parameters λI and βI , which reproduce mΛ = 1405 MeV,

ΓΛ = 50 MeV and the K−p scattering length, for which we used as a guideline

the KEK value: aKEK
K−p = (−0.78 + i 0.49) fm. Then we obtained the following

values for the K−d scattering length:

aPEST
K−d = (−1.39 + i 0.96) fm, (42)

aE−dep
K−d = (−1.32 + i 1.02) fm. (43)

These results are not much different from each other as can be expected from the

fact that the K̄N potentials were kept fixed in the above calculations. The K̄N

interaction is namely stronger than the NN interaction as can be deduced from

comparsion of the binding energies of the deuteron and the Λ(1405) resonance

(see eq. (31) and text below). Even if the results are very similar we will try to

trace up the origin of the difference, since both potentials give identical two-body

results such as the deuteron binding energy or scattering lengths and effective

radii for I = 0 and I = 1. In the two-body calculations we compute the scattering

amplitude using the formula

fNN(k,k′, z) = −(2π)2M red
NN〈k|TNN |k′〉, (44)

where M red
NN is the reduced mass of two nucleons and TNN is the two-body transi-

tion operator which contains the function τNN(z), as shown in eqs. (6,7). Then

while the two-body scattering amplitude is expressed as a product of the function
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Fig. 1: The τ I=0(z) for the nucleon-nucleon potentials PEST and E-dep with I = 0 as

a function of NN energy (see text for details).
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Fig. 2: The τ I=1(z) for the nucleon-nucleon potentials PEST and E-dep with I = 1 as

a function of NN energy (see text for details).

19



τNN(z) and two formfactors g(k), g(k′), in the three-body Faddeev equations only

the function τ(z) remains in original form (see eq. 16). We have found that the

behavior of the two-body NN scattering amplitudes is identical for both NN

potentials, but the behavior of the function τ(z) is much different for these two

potentials as can be seen in Fig.1 and Fig.2. This could be the possible explana-

tion of the difference between the obtained values of the K−d scattering length

aPEST
K−d (42) and aE−dep

K−d (43).

It is to be noted that in ref. [28] Rusetsky et al. found no difference between

the K−d scattering lengths calculated using different (Paris and Bonn) NN po-

tentials. This result could be caused by the limited validity of the fixed-center

approximation used in that work.
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Fig. 3: The scattering length aK−d as a function of the mass mΛ of the Λ(1405)

resonance. Here the NN potential PEST was used, ΓΛ = 50 MeV and the K−p

scattering length is fixed at the KEK value (32).
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Fig. 4: The scattering length aK−d as a function of the width ΓΛ of the Λ(1405)

resonance. Here the NN potential PEST was used, mΛ = 1405 MeV and the K−p

scattering length is fixed at the KEK value (32).

4.2 Dependence of aK−d on the K̄N potential

First, we studied the sensitivity of the K−d scattering length to the variations

of the parameters of the Λ(1405) resonance, namely the mass mΛ and the width

ΓΛ. The K−p scattering length was kept fixed at the aKEK
K−p value and we used

the PEST NN potential throughout the calculations. In Fig.3 and Fig.4, we

present the K−d scattering length as a function of the mass mΛ and width ΓΛ,

respectively. It is to be noted that the real part Re(aK−d) is negative but in

the figures we plotted its absolute value |Re(aK−d)|. While the real part of the

K−d scattering length is rather sensitive to the variations of both mΛ and ΓΛ,

the imaginary part is almost insensitive to the value of the width of Λ(1405) (see

Fig.4). As stated before, the Λ(1405) resonance is assumed I = 0 quasibound

state of antikaon and nucleon. Therefore the higher value of the Λ(1405) mass

corresponds to smaller binding energy of the K−p system, which is consistent
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with the lower absolute value of the real part of the K−d scattering length as we

witness in Fig.3.
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Fig. 5: The scattering length aK−d as a function of the real part of the two-body K−p

scattering length aK−p. The imaginary part of aK−p is fixed at the KEK value, the

NN potential PEST was used, mΛ = 1405 MeV and ΓΛ = 50 MeV were considered.

Next we kept the position and the width of Λ(1405) fixed, we used the PEST

NN potential and studied the dependence of the aK−d on the real and imagi-

nary part of the two-body K−p scattering length. We varied these two input

parameters within the range of the KEK experimental error bars (eq. (32)). The

scattering length aK−d as a function of the real and imaginary part of aK−p are

presented in Fig.5 and Fig.6, respectively. The figures demonstrate that the de-

pendence of aK−d on the two-body K−p scattering length is very weak. It is much

weaker that the dependence of aK−d on the position and width of Λ(1405). Since
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K−p scattering length aK−p. The real part of aK−p is fixed at the KEK value, the NN

potential PEST was used, mΛ = 1405 MeV and ΓΛ = 50 MeV were considered.

Λ(1405) is a quasibound state in the I = 0 K̄N channel, its mass and width

are directly related to the I = 0 K̄N interaction. On the other hand the K−p

scattering length is a combination of the I = 0 (aI=0) and I = 1 (aI=1) scattering

lengths (see eq. (34)). Figures 3 and 4 thus illustrate strong dependence of the

K−d scattering length on the I = 0 interaction. In Figs. 5 and 6, strength of

the I = 0 interaction was held fixed (via the fixed Λ(1405) characteristics) and

the variations of aK−p thus represent the variations of only the I = 1 interaction.

Consequently, Figs.3–6 confirm that the I = 0 K̄N interaction is stronger and

more important in the K−d system than the I = 1 interaction. This conclusion

is consistent with the fact that the two-body K̄N in the I = 0 channel is stronger
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than in the I = 1 channel, as can be also deduced from the existence of the I = 0

Λ(1405) resonance while there is no resonance in the I = 1 channel.

For completeness, we also performed calculations for the DEAR value of the

K−p scattering length (45), the PEST NN potential and the PDG values of the

Λ(1405) parameters. The resulting value of the K−d scattering length

aDEAR
K−d = (−1.40 + i 0.97) fm, (45)

is very close to the aKEK
K−d value (42) and is in agreement also with Figs.5–6. This

again confirms our conclusion that in the K−d system the I = 1 K̄N interaction

is much weaker and less important than the I = 0 K̄N interaction.

4.3 Comparison with other calculations

In Figure 7 we compare our results (42,43, and 45) with other calculations of the

K−d scattering length. It is to be noted that these calculations were performed

within different approaches and, moreover, using different two-body inputs. This

is the reason of the differences between the calculated aK−d values. The values

calculated by Torres et al. (TDD) [22] and Toker and Gal (TG) [21] were obtained

within multi-channel Faddeev equations. Nevertheless they are very close to our

results. The multi-scattering approximation to Faddeev equations by Gal (G)

[29] yielded the aK−d value which is also ”perhaps fortuitously” in agreement

with our results.

The calculations performed by Kamalov et al. (KOR) [25] are based on the

fixed-center approximation to the Fadeev equations which is improper in the

K−d system. Their aK−d value differs significantly from the other presented

values, as well as the result of Bahaoui et al. (B) [26], who performed the multi-

channel Faddeev calculations and included also relativistic corrections and some

other effects like d-wave contribution to the NN interaction. The real part of the

scattering length calculated by Deloff (D) [24] is rather small compared to the real

parts of all other results. However, the mass and the width of the K−p resonance

in the Deloff’s calculations are too high (m ≈ 1440 MeV and Γ ≈ 120 MeV)

and differ significantly from the values used in other calculations. It is shown

in Fig.3 that the absolute value of the real part of the K−d scattering length
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Fig. 7: The K−d scattering lengths calculated using various two-body inputs: the

PEST potential and aKEK
K−p (1), the E-dep potential and aKEK

K−p (2), the PEST potential

and aDEAR
K−p (3) (see text for details). For comparison we present also results of previous

calculations: Bahaoui et al. (B) [26], Torres & Dalitz & Deloff (TDD) [22], Deloff (D)

[24], Gal (G) [29], Kamalov & Oset & Ramos (KOR) [25], Toker & Gal (TG) [21].

decreases with the mass of the Λ(1405) resonance. Therefore, this could be a

possible explanation of the discrepancy between the the Deloff’s value and other

calculations.

Out of our results, we consider the most plausible value for the K−d scattering

length aKEK,PEST
K−d = (−1.39 + i 0.96) fm.

25



5 Conclusion

In this work, we studied the K−d scattering length. We formulated the Faddeev

equations in the AGS form for the K−d system. We performed three-body Fad-

deev calculations in the isospin basis. Due to the known deuteron isospin Id = 0,

the three-body isospin of the studied system is I = 1
2
. Moreover, since computing

of the scattering length is a low-energy calculation, we restricted our considera-

tions to s-wave two-body interactions. In our calculations we used two separable

NN potentials, PEST [36] and energy dependent (E-dep) potential [37]. For the

K̄N interaction we applied our own separable potential, which reproduces the

K−p scattering length and the position and the width of Λ(1405). We varied the

parameters of the Λ(1405) resonance as well as the value of the K−p scattering

length within experimental error bars in order to study the sensitivity of the K−d

scattering length on the two-body inputs. We found rather weak dependence of

the K−d scattering length on the NN potential. We observed strong dependence

of aK−d on the I = 0 K̄N interaction and very weak dependence on the I = 1

K̄N interaction. Our study thus confirmed that the I = 0 K̄N interaction is

much stronger and more important for the K−d system. Our calculations yield

the K−d scattering lengths, which are reasonably close to the values of previ-

ous calculations of Torres et al. [22], Gal [29] and Toker & Gal [21]. Our most

plausible value is

aKEK,PEST
K−d = (−1.39 + i 0.96) fm. (46)

The next step in the Faddeev calculations of the K−d scattering length should

be the extension to multi-channel formalism, i.e. the inclusion of πΣ, πΛ into the

coupled-channel K̄N interaction.
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Appendices

A Momentum relations

The Hamiltonian of the three-body system in the rest frame is expressed in the

standard form using the momenta and masses of the three participating particles

H =
∑

γ

(
q2

γ

2mγ

+ Vγ

)
, (A-1)

where Vγ, γ = 1, 2, 3, are two-body potentials. In the center of mass system, we

can rewrite the Hamiltonian as follows

H =
p2

ξ

2Mξ

+
k2

ξ

2µξ

+
∑

γ

Vγ, (A-2)

where the particle labeled by index ξ is free and the two remaining particles are

bound, Mξ is the two-body reduced mass in the two-particle subsystem built-up

without particle labeled by ξ and µξ is the three-body reduced mass between the

two-particle subsystem and the third particle labeled by ξ. The Hamiltonian can

be thus expressed in three ways for ξ = 1, 2, 3. All reduced masses are defined in

the standard way

M1 =
m2m3

m2 + m3

, M2 =
m3m1

m3 + m1

, M3 =
m1m2

m1 + m2

, (A-3)

µ1 =
m1(m2 + m3)

m1 + m2 + m3

, µ2 =
m2(m3 + m1)

m1 + m2 + m3

, µ3 =
m3(m1 + m2)

m1 + m2 + m3

. (A-4)

Both the two-body impulse pξ and the impulse of the third particle relative to

the two-body subsystem kξ are functions of the momenta qξ relative to the rest

frame

p1 =
m3q2 −m2q3

m2 + m3

, p2 =
m1q3 −m3q1

m3 + m1

, p3 =
m2q1 −m1q2

m1 + m2

, (A-5)

k1 =
(m2 + m3)q1 −m1 (q2 + q3)

m1 + m2 + m3

,

k2 =
(m3 + m1)q2 −m2 (q3 + q1)

m1 + m2 + m3

,

k3 =
(m1 + m2)q3 −m3 (q1 + q2)

m1 + m2 + m3

.

(A-6)
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Due to the above relations it is possible to connect the three pairs of the relative

momenta (pξ,kξ) with each other by the following expressions

pξ = A(ξη)pη + B(ξη)kη,

kξ = C(ξη)pη + D(ξη)kη,
(A-7)

for ξ 6= η and ξ, η = 1, 2, 3. Coefficients in (A-7) can be easily determined as

functions of the corresponding masses. Using (A-7) we can directly express the

scalar products of the impulse eigenvectors

〈pξ,kξ|pη,kη〉 = δ(3)
(
pξ − A(ξη)pη −B(ξη)kη

)
δ(3)

(
kξ − C(ξη)pη −D(ξη)kη

)
.

(A-8)
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B Scalar products of the isospin vectors

In this work one-particle isospins are labeled by the symbol I(j), where j = 1, 2, 3

defines the relevant particle. The common eigenvector of the operators (I(j))2, I
(j)
3

is surely |Ijmj〉, where j = 1, 2, 3. This means that in a three-particle system,

where we know one-particle isospins and isospin projections for each particle, the

eigenvector of the three particles in particle basis has a form

|I1m1〉|I2m2〉|I3m3〉. (B-1)

In isospin basis, where we are working, two-body isospins are known. Due to

this we need to construct three-body eigenvectors in isospin basis and express,

how they are connected with the particle ones. The three-particle isospin I can

be constructed in three ways. For example, after adding the isospins of the

second and third particle we get the two-particle operator I(2,3), which we then

put together with the isospin of the first particle

I(2,3) = I(2) + I(3),

I = I(1) + I(2,3).
(B-2)

In this way we obtain vector

|I1(I2I3)I23Im〉
≡

∑
m1m2m3m23

(I1I23m1m23|Im)(I2I3m2m3|I23m23)|I1m1〉|I2m2〉|I3m3〉,
(B-3)

which is the common eigenvector of the set of the operators

(I(1))2, (I(2))2, (I(3))2, (I(2,3))2, (I)2, I3. (B-4)

The symbols with round brackets in equation (B-3) are the Clebsch-Gordan co-

efficients. The scalar product of the two isospin vectors can be expressed by the

Wigner 6j-symbol (see e.g. ref. [34]).

〈(I1I2)I12I3Im|I1(I2I3)I23Im〉 =
(−1)−I1−I2−I3−I

√
(2I12 + 1)(2I23 + 1)





I1 I2 I12

I3 I I23



 . (B-5)

In our case all isospins and their projections are conserved except the two-body

isospins I(i,j). Therefore our separable potentials are function of only the isospins
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I(i,j). Hence we can use the shortened notation for the isospin vectors |Iγ〉 as can

be seen in eq. (8). Here index γ labels the spectator particle and the eigenvalue

of this vector corresponds to the two-body isospin of the two others particles.

In our calculations we encountered just three types of the scalar products of the

isospin vectors, which are evaluated below according to (B-5):

〈0|0〉 = −1

2
,

〈0|1〉 = 〈1|0〉 =
1

2
√

3
,

〈1|1〉 =
1

18
.

(B-6)
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C Partial wave decomposition

We start with the AGS equations (13) rewritten by using the notation (11,12).

〈Iβ,kβ|Xβα(z)|k′α, Iα〉
= (1− δβα)〈Iβ,kβ|Zβα(z)|k′α, Iα〉+

∑

γ 6=β

〈Iβ,kβ|Zβγ(z)τγ(z)Xγα(z)|k′α, Iα〉.

(C-1)

Using the closure relation

1 =

∫
dk

∞∑

l=0

l∑

m=−l

|klm〉〈klm| (C-2)

we can express the matrix element of the operator Xβα between the plane waves

corresponding to the spectator particle by the same operator in the basis of the

partial waves

〈k|Xβα(z)|k′〉

=

∫
dk̄

∞∑

l=0

l∑

m=−l

∫
dk̄′

∞∑

l′=0

l′∑

m′=−l′
〈k|k̄lm〉〈k̄′l′m′|k′〉〈k̄lm|Xβα(z)|k̄′l′m′〉.

(C-3)

Using the relation

〈k|k̄lm〉 = δ(k − k̄)Ylm(k̂)
√

4π, (C-4)

the formula for the product of two spherical harmonics

l∑

m=−l

Y∗
lm(n1)Ylm(n2) =

2l + 1

4π
Pl(n1,n2), (C-5)

and the normalization of plane waves 〈k|k′〉 = δ(3)(k− k′), we get the expression

〈k|Xβα(z)|k′〉 =
∞∑

l=0

Pl(k̂ · k̂′)〈klm|Xβα(z)|k′lm〉. (C-6)

Similarly, we obtain the expression for the operator Zβα

〈k|Zβα(z)|k′〉 =
∞∑

l=0

Pl(k̂ · k̂′)〈klm|Zβα(z)|k′lm〉. (C-7)

Now we insert the closure relations for plane waves 1 =
∫

dkγ|kγ〉〈kγ| and isospins

1 =
∑

Iγ
|Iγ〉〈Iγ| into equations (C-1). Moreover, we use the formula for the

operator τγ(z) in the momentum basis

〈k|τγ(z)|k′〉 = δ(3)(k− k′)τγ

(
z − k2

γ

2µγ

)
. (C-8)
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Since τγ(z) is the two-body operator, z is the three-body energy and the momenta

k and k′ of the third particle are not connected with the two-body interaction, it

is necessary to change the energy dependence of the operator τγ(z) as shown in

(C-8). After using formula (C-8) and the expressions for Xβα and Zβα (C-6,C-7)

we obtain

∞∑

l=0

(2l + 1)Pl(k̂β · k̂α)〈Iβ, kβlm|Xβα(z)|kαlm, Iα〉 =

(1− δβα)
∞∑

l=0

(2l + 1)Pl(k̂β · k̂α)〈Iβ, kβlm|Zβα(z)|kαlm, Iα〉+

+
∑

γ 6=β

∑
Iγ

∫
dkγ

∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)Pl(k̂β · k̂γ)Pl′(k̂γ · k̂α)×

×〈Iβ, kβlm|Zβα(z)|kγlm, Iγ〉〈Iγ|τγ

(
z − k2

γ

2µγ

)
|Iγ〉〈Iγ, kγl

′m′|Xβα(z)|kαl′m′, Iα〉.

(C-9)

Then we substitute dkγ = k2
γdkγdΩ, use the orthogonality relation for the Leg-

endre polynomials

∫
dΩ Pl(n · n1)Pk(n · n2) =

4π

2l + 1
Pl(n1 · n2)δlk (C-10)

and remove the Legendre polynomials in equations (C-9). Finally, we put l = 0

and m = 0 (s-wave approximation) and write the equations (C-9) in a following

form

〈Iβ, kβ|Xβα(z)|kα,Iα〉 = (1− δβα)〈Iβ, kβ|Zβα(z)|kα, Iα〉+

+ 4π
∑

γ 6=β

∑
Iγ

∫
dkγk

2
γ〈Iβ, kβ|Zβγ(z)|kγ, Iγ〉×

× 〈Iγ|τγ

(
z − k2

γ

2µγ

)
|Iγ〉〈Iγ, kγ|Xγα(z)|kα, Iα〉.

(C-11)
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D Sets of integral equations

There are two sets of integral equations mentioned in the text, which we derived

during manipulations with the Faddeev equations. The first set:

X0,0
KK(kK , k′K) =

4π

∫ ∞

0

dk̄N1 k̄
2
N1

Z0,0
KN1

(kK , k̄N1)τ
0
N1

(
z − k̄2

N1

2µN1

)
X0,0

N1K(k̄N1 , k
′
K)+

+4π

∫ ∞

0

dk̄N1 k̄
2
N1

Z0,1
KN1

(kK , k̄N1)τ
1
N1

(
z − k̄2

N1

2µN1

)
X1,0

N1K(k̄N1 , k
′
K)+

+4π

∫ ∞

0

dk̄N2 k̄
2
N2

Z0,0
KN2

(kK , k̄N2)τ
0
N2

(
z − k̄2

N2

2µN2

)
X0,0

N2K(k̄N2 , k
′
K)+

+4π

∫ ∞

0

dk̄N2 k̄
2
N2

Z0,1
KN2

(kK , k̄N2)τ
1
N2

(
z − k̄2

N2

2µN2

)
X1,0

N2K(k̄N2 , k
′
K),

(D-1)

X0,0
N1K(KN1 , k

′
K) = Z0,0

N1K(KN1 , k
′
K)+

+4π

∫ ∞

0

dk̄K k̄2
KZ0,0

N1K(KN1 , k̄K)τ 0
K

(
z − k̄2

K

2µK

)
X0,0

KK(k̄K , k′K)+

+4π

∫ ∞

0

dk̄N2 k̄
2
N2

Z0,0
N1N2

(kN1 , k̄N2)τ
0
N2

(
z − k̄2

N2

2µN2

)
X0,0

N2K(k̄N2 , k
′
K)+

+4π

∫ ∞

0

dk̄N2 k̄
2
N2

Z0,1
N1N2

(kN1 , k̄N2)τ
1
N2

(
z − k̄2

N2

2µN2

)
X1,0

N2K(k̄N2 , k
′
K),

(D-2)

X1,0
N1K(KN1 , k

′
K) = Z1,0

N1K(KN1 , k
′
K)+

+4π

∫ ∞

0

dk̄K k̄2
KZ1,0

N1K(KN1 , k̄K)τ 0
K

(
z − k̄2

K

2µK

)
X0,0

KK(k̄K , k′K)+

+4π

∫ ∞

0

dk̄N2 k̄
2
N2

Z1,0
N1N2

(kN1 , k̄N2)τ
0
N2

(
z − k̄2

N2

2µN2

)
X0,0

N2K(k̄N2 , k
′
K)+

+4π

∫ ∞

0

dk̄N2 k̄
2
N2

Z1,1
N1N2

(kN1 , k̄N2)τ
1
N2

(
z − k̄2

N2

2µN2

)
X1,0

N2K(k̄N2 , k
′
K),

(D-3)

X0,0
N2K(KN2 , k

′
K) = Z0,0

N2K(KN2 , k
′
K)+

+4π

∫ ∞

0

dk̄K k̄2
KZ0,0

N2K(KN2 , k̄K)τ 0
K

(
z − k̄2

K

2µK

)
X0,0

KK(k̄K , k′K)+

+4π

∫ ∞

0

dk̄N1 k̄
2
N1

Z0,0
N2N1

(kN2 , k̄N1)τ
0
N1

(
z − k̄2

N1

2µN1

)
X0,0

N1K(k̄N1 , k
′
K)+

+4π

∫ ∞

0

dk̄N1 k̄
2
N1

Z0,1
N2N1

(kN2 , k̄N1)τ
1
N1

(
z − k̄2

N1

2µN1

)
X1,0

N1K(k̄N1 , k
′
K),

(D-4)
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X1,0
N2K(KN2 , k

′
K) = Z1,0

N2K(KN2 , k
′
K)+

+4π

∫ ∞

0

dk̄K k̄2
KZ1,0

N2K(KN2 , k̄K)τ 0
K

(
z − k̄2

K

2µK

)
X0,0

KK(k̄K , k′K)+

+4π

∫ ∞

0

dk̄N1 k̄
2
N1

Z1,0
N2N1

(kN2 , k̄N1)τ
0
N1

(
z − k̄2

N1

2µN1

)
X0,0

N1K(k̄N1 , k
′
K)+

+4π

∫ ∞

0

dk̄N1 k̄
2
N1

Z1,1
N2N1

(kN2 , k̄N1)τ
1
N1

(
z − k̄2

N1

2µN1

)
X1,0

N1K(k̄N1 , k
′
K).

(D-5)

The second set:

XD(kK , k′K) =

4π

∫ ∞

0

dk̄N k̄2
NZ0,0

KN(kK , k̄N)τ 0
N

(
z − k̄2

N

µN

)
X0(k̄N , k′K)+

+4π

∫ ∞

0

dk̄N k̄2
NZ0,1

KN(kK , k̄N)τ 1
N

(
z − k̄2

N

µN

)
X1(k̄N , k′K),

(D-6)

X0(kN , k′K) = 2Z0,0
NK(kN , k′K)+

+8π

∫ ∞

0

dk̄K k̄2
KZ0,0

NK(kN , k̄K)τ 0
K

(
z − k̄2

K

µK

)
XD(k̄K , k′K)

−4π

∫ ∞

0

dk̄N k̄2
NZ0,0

NN(kN , k̄N)τ 0
N

(
z − k̄2

N

µN

)
X0(k̄N , k′K)

−4π

∫ ∞

0

dk̄N k̄2
NZ0,1

NN(kN , k̄N)τ 1
N

(
z − k̄2

N

µN

)
X1(k̄N , k′K),

(D-7)

X1(kN , k′K) = 2Z1,0
NK(kN , k′K)+

+8π

∫ ∞

0

dk̄K k̄2
KZ1,0

NK(kN , k̄K)τ 0
K

(
z − k̄2

K

µK

)
XD(k̄K , k′K)

−4π

∫ ∞

0

dk̄N k̄2
NZ1,0

NN(kN , k̄N)τ 0
N

(
z − k̄2

N

µN

)
X0(k̄N , k′K)

−4π

∫ ∞

0

dk̄N k̄2
NZ1,1

NN(kN , k̄N)τ 1
N

(
z − k̄2

N

µN

)
X1(k̄N , k′K).

(D-8)
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E Calculation of the kernels

We start with the definition of the kernels (24)

KΛΛ′(kΛ, kint) = 4πC̃ k2
intZ

I,I′
ΛΛ′(kΛ, kint)τ

I′
Λ′

(
z − k2

int

2µΛ

)
. (E-1)

Here the τ I′
Λ function can be expressed following equation (7). Next, we will

calculate the functions ZI,I′
ΛΛ′ . We insert into the definion (12)

〈Iβ,kβ|Zβα|k′α, Iα〉 ≡ 〈Iβ,kβ|〈gβ|G0|gα〉|k′α, Iα〉, (E-2)

the closure relations

1 =

∫
dp̄ξdk̄ξ|p̄ξ, k̄ξ〉〈p̄ξ, k̄ξ|, (E-3)

where ξ = 1, 2, 3 is an arbitrary index, and use the relation |gα〉|Iα〉 = |gIα
α 〉|Iα〉.

We obtain

〈kβ|ZIβ ,Iα

βα |k′α〉 =

∫ ∫
dp̃αdk̃αdp̄βdk̄β〈kβ|〈gIβ

β |p̄β, k̄β〉×

× 〈p̄β, k̄β|G0|p̃α, k̃α〉〈p̃α, k̃α|gIα
α 〉|k′α〉〈Iβ|Iα〉.

(E-4)

Further, we use the relation 〈kβ|〈gIβ

β |p̄β, k̄β〉 = 〈kβ|k̄β〉〈gIβ

β |p̄β〉, act on the vectors

|p̃α, k̃α〉 by the three-body Green’s function, and apply the relation (A-8) where

is needed:

〈kβ|ZIβ ,Iα

βα |k′α〉 =

∫ ∫
dp̃αdk̃αdp̄βdk̄β gIα

α (p̃α)g
Iβ

β (p̄β)×

× 1

z − p̃2
α

2Mα
− k̃2

α

2µα

〈Iβ|Iα〉δ(3)(k′α − k̃α)δ(3)(kβ − k̄β)×

× δ(3)
(
p̄β − CAp̃α − CBk̃α

)
δ(3)

(
k̄β − CCp̃α − CDk̃α

)
.

(E-5)

In analogy with equations (C-2–C-7), we can write

〈p̄α|V Iα
α |p̃α〉 = λIαgIα

α (p̃α)gIα
α (p̄α) = λIα

∞∑

l=0

Pl(ˆ̃pα · ˆ̄pα)〈p̃αlm|gIα
α 〉〈gIα

α |p̄αlm〉,
(E-6)

and we will consider only the s-wave (l = 0) term. By using the formfactors for

s-waves, gIΛ
Λ (pΛ) = (|p2

λ| + (βIΛ
Λ )2)−1, and after applying the delta functions, the
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equation (E-5) transforms in the form

〈kβ|ZIβ ,Iα

βα |k′α〉 =

1∣∣∣CA

CC kβ +
(
CB − CACD

CC

)
k′α

∣∣∣
2

+ (β
Iβ

β )2

×

× 1

z − 1
2Mα

∣∣∣ kβ

CC − CD

CC k′α
∣∣∣
2

− |k′α|2
2µα

×

× 1∣∣∣ kβ

CC − CD

CC k′α
∣∣∣
2

+ (βIα
α )2

〈Iβ|Iα〉.

(E-7)

After operations with the Legendre polynomials we get the formula

〈kβ|ZIβ ,Iα

βα |k′α〉 =
1

2

∫ 1

−1

dΩ〈kβ|ZIβ ,Iα

βα |k′α〉. (E-8)

In each denominator in (E-7) there is a scalar product of the vectors kβ and k′α

which can be expressed using kβ ·k′α = Ωkβk′α, where Ω is the angle between both

momenta. Hence we rewrite (E-7) in the general form

〈kβ|ZIβ ,Iα

βα |k′α〉 =
1

2

3∑
j=1

∫ 1

−1

dΩ
1

AjΩ + Bj

〈Iβ|Iα〉, (E-9)

where Aj, Bj, j = 1, 2, 3, are functions of masses, two-body potential parameters

and the three-body energy. After integration, we get the final relation

Z
Iβ ,Iα

βα (kβ, k′α) =
1

2

3∑
j=1

Dj

Aj

ln
|Bj + Aj|
|Bj − Aj| 〈Iβ|Iα〉, (E-10)

where Dj, j = 1, 2, 3, is a function of Aj and Bj.
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