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Tato prace uvadi vysledky vypoctu jednocasticovych spek-
ter A hyperonu v 10, *iCa a *}Pb v piiblizeni mod-
elu stfednitho pole.  Stfedni pole je vytvoreno self-
konzistentné z realistické NN interakce NQLOopt pomoci
Hartree-Fockovy metody. Hyperon A vazany v hyperjadre
interaguje s jadernym prostiedim skrze efektivni YNG AN
interakci odvozenou z Nijmegenského modelu ESCO08. Hus-
totné zavisly DDNN interakéni ¢len, ktery napodobuje roli
tricasticovych NNN sil byl shledan nezbytnym pro spravny
popis jadernych a hyperjadernych vlastnosti. Rovnéz jsme
studovali konvergenci a stabilitu jednocasticovych spek-
ter A v 10O a *{Ca a zjistili jsme, Ze naSe vysledky
jsou v souladu s experimentalnimi daty. Provedli jsme
vypocty i s jinymi NN a AN potencialy a potvrdili jsme
modelovou nezéavislost nasich predpovédi. Zkoumali jsme
zavislost jednoc¢dsticového spektra A v *}Ca na vazbové
konstanté C, a Fermiho hybnosti kg, které vstupuji
poporadé jako parametry do hustotné zavislého DDNN in-
terakéniho ¢lenu a YNG potencialu. Dospéli jsme k zavéru,
ze spravné hodnoty C), a kp jsou klicové k rozumnému

popisu jednocasticovych spekter A.
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Chapter 1
Introduction

Hypernucleus is a bound system which consists of protons, neutrons and one or more
hyperons (e.g. A, ¥, =, Q) with strangeness S # 0. Hyperons decay predominantly
weakly (except 3Y) which results in their rather long lifetime (& 1071 s) compared
to the time scale of the strong interaction (&~ 1072* s). This allows experimen-
tal study of the properties of hypernuclei, including their structure. Furthermore,
propagation of a hyperon in nuclear matter is not affected by the Pauli exclusion
principle, which makes the hyperon a unique probe of the nuclear interior. The study
of hypernuclei contributes to our better understanding of baryon-baryon forces, as
well as nuclear structure and dynamics.

Hypernuclei were discovered in 1952 by Jerzy Pniewski and Maryan Danysz who
explored interactions of high-energy cosmic ray with a nucleus in nuclear emul-
sion [I]. One of the events resulted in a heavy object that travelled a long distance
before it decayed. This event is depicted in Fig. [Tl First explanation was that
this unknown object had been a bound system of a nucleus and m meson. However,
this capture is highly improbable. Later, Pniewski and Danysz correctly concluded
that the studied object was a bound system of nucleus and a hyperon [I]. In the
late 1950’s large number of hypernuclei has been discovered. Numerous species have
been observed in experiments with nuclear emulsion exposed to proton, pion, or kaon
beams. The data from these experiments were rather limited. Major breakthrough
in hypernuclear physics has occurred due to the advent of counter experiments. The
number of observed hypernuclei has been doubled and the information about their
spectra has become more precise. Hypernuclei have been studied by many collab-
orations worldwide (CERN, BNL, KEK, FINUDA, JLab, JPARC, GSI, MAMI-C
[2, B, [, 5] 6] ). Their theoretical and experimental study is still topical.

Up to now, about 30 species of A hypernuclei have been discovered, starting

from the lightest hypernuclear system 3H to the heaviest hypernuclei 2%Pb and



Fig. 1.1: The first hypernuclear decay observed. Incoming cosmic ray particle
(track p) interacts with one of nuclei in the emulsion and a hypernucleus is pro-
duced (point A). Line f indicates the track of the hypernucleus which decays into
three particles (point B) [I].

208Bi. The most precisely described hypernuclei are the lightest s- and p-shell A hy-
pernuclei [7]. In addition, the following double-A hypernuclei have been measured
in experiments: ,$He, {{Be, and (3B [8, [0, [10]. Except of A hypernuclei, only the
bound system §.He was observed [I1]. So far, there is no experimental evidence of
= and 2 hypernuclei.

The aim of this thesis is a theoretical description of single-particle spectra of
A hypernuclei. We consider a hypernucleus as a many-body problem and, subse-
quently, we calculate its single-particle spectra using a mean-field approach. Mean
field is constructed self-consistently by the Hartree-Fock method employing effective
NN and AN interactions instead of purely phenomenological ones [12]. In this work,
we implement two types of realistic NN interactions [I3] [I4]. The hypernuclear part
is described by two effective AN potentials derived from the Nijmegen model [I5] [16].
We do not implement directly three-body NNN forces. Instead, we add a density-

dependent nucleon-nucleon (DDNN) interaction term to simulate their effect [I7].



This work is organized as follows: Chapter Pl briefly introduces various theoretical
approaches used in hypernuclear structure calculations, as well as our model. We
present and discuss our results in Chapter The main conclusions of this work,
as well as future plans are given in Chapter @l The harmonic oscillator basis and

respective matrix elements used in our calculations are summarized in Appendix [Al
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Chapter 2
Hypernuclear many-body problem

Hypernuclear many-body problem consists in theoretical description of properties
of hypernuclear many-body systems (i.e. systems of hyperons and nucleons) and
solution of respective equations of motion. In general, the complete solution of
quantum many-body problem is rather complex and up to now it has been done only
for three-body (Fadeev equations) and four-body (Fadeev-Yakubovski equations)
hypernuclear systems [I8, 19, 20]. The main advantage of these calculations is
that they use the free-space NN and AN interactions directly with the minimum of
approximations.

Theoretical study of many-body systems with the mass number A > 4 is a
complicated issue. Among many-body models which use realistic interactions belong
for example No Core Shell Model [21], 22], Coupled Cluster Model [23], Fermionic
Molecular Dynamics [24], 25], Self-Consistent Green’s Function Method [26], and
Green’s Function Monte Carlo Model [27]. The main disadvantage of these models is
that their computational complexity rapidly increases with the number of particles in
the studied system. As a consequence, they are not commonly used for a description
of hypernuclei above the sd-shell.

Heavier hypernuclei are studied within mean-field models [28]. Widely used is
the Relativistic Mean Field (RMF) model [29, B0]. In this approach, the nucleons
and hyperon are described as Dirac fields interacting via the exchange of meson
fields. Another category of the mean-field models are those which use as an input
phenomenological NN interactions as Skyrme [31) B2] and Gogny [33] potentials.

The applicability of the aforementioned models with respect to the size of the
many-body system is not strictly defined. In general, the ab-initio models are used

for description of systems with A > 3 and the mean-field models for A > 10.
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Recently, the mean-field model constructed from realistic two-body nucleon-nucleon

interactions was introduced and applied in ordinary nuclei [34], as well as hypernu-

clei [12].

2.1 Mean-field model based on realistic two-body

baryon interactions

In our calculations, we describe a hypernucleus as a many-body system consisting
of the nuclear cor and the A hyperon. Overall properties of the hypernucleus are

given by the Hamiltonian
H=T+ VL VN _ T, (2.1)

where T stands for the sum of kinetic energy operators of each nucleon and A, NN
denotes the sum of the two-body NN potentials between any two nucleons, VAN ig
the two-body potential between the A hyperon and each nucleon of the nuclear core,

and fCM is the center of mass kinetic energy of the hypernuclear system

A
~ 1 2 S5
TcM:m<2;Pa+ZPa'Pb>, (2.2)

where indices a, b run over all baryons (i.e. the A hyperon and each nucleon of the
nuclear core). The symbol M stands for the average mass of the proton and neutron.
It is to be noted that while the mass difference of protons and neutrons is negligible,
the A hyperon is heavier than the nucleon. However, the different mass of A is not
considered in Eq. (22]).

The nuclear core is described by self-consistent mean field constructed by the
Hartree-Fock (HF) method. It is a microscopical approach in which the nuclear
mean field is generated by averaging over all mutual NN interactions. These inter-
actions can be either realistic or phenomenological. When the nuclear mean field
is constructed the A particle is inserted into the nucleus. Then the equations of
motion of the A hyperon are solved in the mean nuclear potential.

We intend to find the eigenvalues ¢; of the Hamiltonian (2.I]) and the correspond-

ing hypernuclear wave functions in the form

Dy = PP, .., Tg) - O (F ), 7)), (2.3)

!By the term nuclear core we denote the subsystem of respective hypernucleus consisting only

of protons and neutrons.
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Here, the index ¢ denotes the hypernuclear state. The wave function ®; is the product

i
of proton ¢P and neutron ¢" parts obtained from the Hartree-Fock calculations, and
the A single-particle wave functions

2.1.1 Hartree-Fock method

The starting point of this method is the following Hamiltonian for A identical par-
ticles

1 .
N V_'aa_'a
£ oM 2Z (T, )

(2.4)
where T = s

a

w1 357 1s the kinetic energy operator and \7(Fa, ) is the two-body
potential acting between particles a and b

The equations of motion are derived using the variational method

8(¢|H|p) = (56| H|$) = 0,

(2.5)

where ¢ is a many-body wave function of the considered system. Since we are

dealing with nucleons, which are fermions, the antisymmetrization of the total wave
function is obtained by the Slater determinant

Pu(m) () ... Ya(m)

S, T, 1?1(:_’2) 1?2('7?2) ¢A§F2)

CyTa) =

1
VAl

V1(Ta)  a(Ta) Ya(ra)

The single-particle wave functions v; satisfy the normalization condition

(il) = /d?’r i (F)]* = 1.

(2.7)
The energy functional (¢|H|¢) is then defined as follows

(0|H1]6) = Z/d3 P2 (7)

+ % Z [ e v e )

—%é?//d%&ﬂ¢ﬂﬁw

STV (). (28)
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The variation of the energy functional (28] together with the normalization condi-
tion (27) yields the equation

5 [(6116) — ex((alui) 1) = W{ Z JEERAGRTG
A
5 30 [ [ v e Y ()

A
32 // drd®n O (P05 (7 Yo 7 () (7)

~a( f@rueun-1) -0 (29)

Eq. [29) can be after the partial derivation expressed as
S e +Z / @1 oY ey (7 o )

—Z/d3r’v (7, 7 )5 (7 ) (P (7)) = by (7), (2.10)

where ¢; are the single-particle energies. Again, Eq. (2I0) can be rewritten into

the more elegant form

h2
() + /d%’ w7V (F) = exths(7), (2.11)
where u(7,7’) is the mean-field potential defined as
A
u(F 7)) =0(F =7 / &P (7 (F ) (F )
j=1
A
= () (F )i (). (2.12)
j=1

Second quantization

In our work, we use the HF method in a formalism of second quantization. In this
formalism, the Hamiltonian (24)) is rewritten in terms of creation and annihilation

operators a' and a, respectively

Zt”a a; + — Z Z]k,loz a»alak, (2.13)

zgkl

Here, one-body and two-body operators are expressed as matrices where ¢;; = (z|f |7)

is the matrix element of the kinetic operator 7' and VZ]N,S is the antisymmetrized

14



matrix element of the two-body operator VNN
Vin = (VNN kL) = (VN k) = (5| VN kL= 1)

Indices 1, j, k, [ represent single-particle states. The ground state A-body wave func-

tion can be expressed in terms of single-particle creation operators as
A
HF) = [ all0). (2.14)

where |0) denotes the vacuum (i.e. a state without particles). The product in (ZI4])
runs over A lowest occupied states.

By using the variational principle
§(HF|H|HF) = 0, (2.15)

together with the Wick’s theorem [35] the Hamiltonian ([2I3) can be expressed as

H= Z {tw + Z o HF|akal\HF)} ala; (2.16a)

=) Z VN (HF|a}ay[HF) (HF |ala,|HF) (2.16b)
ijkl

+ - Z ]kl ‘alal jaag: (2.16¢)
zgkl

where : aTaTalak denotes the normal ordering of operators aTaTalak Eq. (ZIGa)

defines the matrix elements of the mean-field operator

{tm + Z kilj HF\akal|HF>} = 0;5€;. (2.17)

The expression in Eq. (2I6H) contributes to the total ground state energy Eup of
the system

BEyp = Zgz - Z o (HF |af ay|HF) (HF |afa)|HF), (2.18)

zgkl
where ¢; are the single-particle energies. The last term in Eq. (ZI6d) denotes the
residual interactions between the nucleons and does not contribute to the ground
state energy of the system.

The many-body problem is then solved iteratively by using the following algo-

rithm:

15



1. Express the matrix elements ¢;; and VAN

skl 0 a single-particle basis defined by

operators aj, a;,
2. Calculate the matrix h;; (217,

3. Diagonalize the matrix h;; and obtain the new single-particle states defined

ai

by operators a;', a; and the new single-particle energies &}

4. Use the new states as an input for the next iteration.

This loop is repeated until the convergence condition is fulfilled, i.e. when

le; — €| < 6,

7

where ¢ is a small number. We solve the respective equations of motion for protons
and neutrons separately. The explicit calculations can be performed in an arbitrary
single-particle basis. In our calculations, we adopt the spherical harmonic oscillator
(HO) basis which is described in more detail in Appendix [Al

2.1.2 Hypernuclear mean field

The part of the Hamiltonian (2I]) which describes the interaction of the A hyperon

can be expressed in the formalism of second quantization as follows

thj Zc]—i—z ]kla clak, (2.19)

ijkl

where a!(a;) are nucleon creation (annihilation) operators and ¢/ (¢;) are creation
(annihilation) operators of the A hyperon. First, we diagonalize the matrix (2171

for both protons and neutrons separately and we obtain the following equations

£+ ub = 0y, (2.20a)
£+ ul = 6,e7, (2.20Db)

where € and ' are proton and neutron single-particle energies, respectively. The

terms w;; in Egs. (Z20a) and (2.20D)) are defined as

nglplk Vi;llp?lm (2.21a)

2

u?g = Vz‘kjlplk + Vkiljﬂlk? (2.21b)
where pj. is proton and neutron density matrix

pi = (HF|aja[HF),, a=p,n. (2.22)

16



Then the single-particle energies and wave functions of the A hyperon are obtained

by solving the equation

Ul = 8yel, (2.23)
where uf} is defined as
A n n
U% = ViduPin + Vkif}ﬂlk' (2.24)

We solve the equations of motion of A independently with the proton and neutron
densities p; and pJ}, respectively obtained from the HF calculation of the nuclear
core. The matrix elements #;;, VI, and VA used in Bqs. (2.21a), (2210), and

)

([223]) are expressed in the spherical HO basis and described in more detail in Ap-
pendix [Al

2.2 NN and AN interactions

The self-consistent mean field model used in this work is based on realistic NN inter-
actions. We use the chiral next-to-next-to leading order NN potential N2L00pt [13].
This two-body potential is optimized to minimize the effect of three-body NNN
interactions. Nevertheless, their effect is still non-negligible. It was demonstrated
that the calculations performed purely with two-body NN interactions give unreal-
istic nuclear density distributions [12]. Due to this fact, we add a density dependent
NN interaction (DDNN) term [17]

. C . PR
VNP = 2214 By)p <“ ‘g ”) 5(, — %) (2.25)

to the Hamiltonian (1)) which simulates the effect of NNN forces. Here, C, is the
coupling constant which enters the DDNN term as a free parameter. The symbol
P, = s(I+ &1 - 72) denotes the spin exchange operator.

To describe the AN interaction we adopt the G-matrix transformed (YNG) po-
tentials derived from the Nijmegen model ESCO08a [16] and ESCO08c [I5]. The central

part of the YNG AN interaction is given in a Gaussian form

3 2
,
G(r;kr) = Z(ai + bikp + c;k) exp <_E) , (2.26)

i=1 i
where a;, b;, ¢;, and [5; are real parameters and kp is the Fermi momentum which
simulates the properties of G-matrix in the nuclear medium. Besides the central
part, the AN interaction contains the symmetric and antisymmetric spin-orbit terms

which are included in our calculations as well. They are described in detail in

17



Ref. [16].

The Fermi momentum kp can be either considered as a free parameter or it can

be fixed by the Thomas-Fermi approximation

e = (377%)1/3, (2.27)

where (p) is defined by the Average Density Approximation (ADA) [16]

O LGN (2.28)

Here, py(7) is the nuclear density distribution and py (7) is the A density distribution.

The Fermi momentum kp is evaluated self-consistently in our calculations.

18



Chapter 3

Results

In this work, we study the spectra of the A hyperon bound in 'O, °Ca, and 2°8Pb.
These nuclei are doubly-magic and spherically symmetric which makes them suit-
able for calculations in our model. In this chapter, we present all possible A single-
particle energy states in a given basis — single-particle states with both positive and
negative energies. The negative energy states represent actual A bound states and
are the main subject of this thesis. The states with positive energy are possible
excitations of the A hyperon and have further applications in beyond mean-field
calculations [36]. In our study, we neglect the core polarization effects and A — X
mixing [37]. Throughout this work we use the notation 4 X for a nucleus X with a
mass number A containing one A particle.

We employ the chiral N?LO,,; [I3] NN interaction to derive the nuclear mean
field in our calculations. We use the effective YNG AN interaction derived from
the Nijmegen model ESC08¢ [15] to describe the interaction of A hyperon with the
nuclear mean field.

In order to calculate the hypernuclear spectra, we first need to describe correctly
the nuclear core. It is due to the fact that the AN interaction depends on the
Fermi momentum kg which is a function of nuclear density (see Eq. (Z21)). The
Hartree-Fock calculations performed exclusively with the two-body NN interaction
do not give correct nuclear density distributions and, consequently, the Root Mean
Square (RMS) radii. The nuclear density distribution is unreasonably compressed
and yields much smaller RMS radii than are the experimental values [12]. There-
fore, we add the phenomenological density-dependent DDNN interaction term (see

Eq. (Z23)) to obtain reasonable nuclear density distributions.
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The RMS radius is defined as

Ta =\ (1%)a = /d?’r 7200 (7, (3.1)

where p,(7) is a density distribution of either protons (« = p) or neutrons (o = n).
The quantity measured in experiments is the proton charge radius rg, related to

as follows
ren =1/ (r%)p + ¢, (3.2)

where ¢? is the proton form factor, ¢* = 0.64 fm? [38]. First, we compare the nu-
clear density distributions calculated with the realistic NN interaction with results
of the Relativistic Mean Field (RMF) model [29], a phenomenological model fitted

to reproduce bulk properties of selected nuclei.

Qo8- l I I 4
16
006 —— RMF
EZ7A EXPT
L e
E
@ 004
a
002
5 i Tk e et
0 2 r(fm) 4

Fig. 3.1: The measured charge density distribution py, (EXPT) [38] in O compared
with the result of the RMF model.

In Fig. Bl there is a comparison of the measured charge density distribution in
160 with the results of the RMF model. We fit the coupling constant C, of the
DDNN interaction term to the RMF nuclear density distributions in 60, 4°Ca, and
28Ph to obtain reasonable density distributions and RMS radii. The results for C,
together with corresponding charge radii rg, and experimental values 7" are shown
in Table Bl Our calculations are performed with the basis parameters N, = 10
and hw = 16,12, and 8 MeV for 190, 4°Ca, and 2°*Pb, respectively. The parameters
Niax and Aw are described in detail in Appendix [Al
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Fig. 3.2: The nuclear density distributions in 1°0, %°Ca, and ?°*Pb calculated within
the RMF model (dashed line) compared with our results calculated with C, from
Table Bl (solid line) and with C, = 0 (dash-dotted line).

In Fig. B2, we compare the nuclear density distributions calculated with C, from
Table B in 0, 4°Ca, and 2°®Pb with the respective RMF density distributions.
We present the nuclear density distributions calculated with C', = 0 as well to show
the importance of the DDNN interaction term. The nuclear density distributions
calculated with the fitted values of the coupling constant C, are in a good agreement
with those calculated within the RMF model whereas the nuclear density distribu-
tions calculated without the DDNN term (C, = 0) are unrealistic.

The correct nuclear density distributions are used to obtain the Fermi momenta

Table 3.1: The fitted values of the coupling constants C, and corresponding charge

radii 74, in 10, *°Ca, and ?*Pb compared with the experimental values r5" [39].

C, MeV-Am°]  rg, [fm] 75 [fm]

160 1600 2.72 2.70
0Ca 2100 3.48 3.48
208PT, 3300 5.47 5.50
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Fig. 3.3: The A single-particle energies ¢ in ', O as a function of N,,,,. Experimental

data [40] are shown as filled circles with error bars for comparison.

kg for each hypernucleus considered (see Eq. (2.27)). The results for kg are shown
in Table

In Fig. and B4 the A single-particle energies in 1O and *} Ca are shown as
a function of N... The parameter hw is fixed to 16 MeV in IZ\O and 12 MeV in
4 Ca. States with the negative energy exhibit fast convergence with respect to Nyax
in both hypernuclei and are in a good agreement with experimental data. Positive
energy states do not converge. This issue is beyond the scope of this thesis and we
do not discuss it further. In Fig. and [3.6], we present the A single-particle ener-
gies in {0 and *}Ca as a function of hw, calculated for fixed value of N, = 10.
We can see that the converged states with negative energies remain almost constant
and do not depend on the choice of Aw for hw > 6 MeV.

Table 3.2: The values of Fermi momentum kg in 40, *} Ca, and *}Pb.

hypernucleus 70 4 Ca 29Pb

ke fm™'] 120 129 1.33
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Fig. 3.4: The A single-particle energies £* in *Ca as a function of Ny,... Experi-
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Fig. 3.5: The A-single particle energies ¢* in 10 as a function of fiw. Experimental

data [40] are shown as filled circles with error bars for comparison.
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Fig. 3.6: The A single-particle energies £* in *} Ca as a function of fw. Experimental

data [41] are shown as filled circles with error bars for comparison.

Next, we explore the dependence of A single-particle spectrum on the choice
of NN and AN interaction in order to study the potential model dependence of our
calculations. In Fig. 377 we compare the A single-particle energies in '} O calculated
with different choices of NN and AN interactions. We use the NN interactions
N?LOyp and CD-Bonn+Vigy i [14] with cut-off parameter A = 2.6 fm~' and the
YNG AN interactions derived from the ESC08 model — ESC08a and ESC08¢ [16], [15].
We include the DDNN term into the CD-Bonn NN interaction as well, and fit the
value of the coupling constant C), again to obtain the nuclear density distribution
consistent with the RMF model. We get the same value of the coupling constant
C, = 1600 MeV-fm® as in the case of the N?LO,p,y NN interaction. The corresponding

1

value of the Fermi momentum is kg = 1.20 fm™". We present our result for the

following combinations of the NN and AN interactions:
(i.) N?LOyp + YNG-Force (ESC08c),

(ii.) N2LOp + YNG-Force (ESC08a),

(ili.) CD-Bonn + YNG-Force (ESC08a),

(iv.) CD-Bonn + YNG-Force (ESCO08c).
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Fig. 3.7: The A single-particle energies £* in {0 calculated for various combina-
tions of NN and AN interactions (i.), (ii.), (iii.), and (iv.) (see text for details).

Experimental data [40] are shown as filled circles with error bars for comparison.

The A single-particle energies calculated for different combinations of NN and AN
interactions do not deviate much from each other and correspond with the experi-
mental data.

We study the influence of the DDNN interaction term on A single-particle spec-
trum as well. We performed calculations of the A single-particle energies in }!Ca
with Npax = 10 and Aw = 12 MeV for the following combinations of C, and kg:

(i) C, = 2100 MeV-fm®, kp = 1.29 fm~",
(ii.) C, =0, kg = 1.29 fm~!,
(iii.) C, =0, kp = 1.49 fm~",

In the case (i.), the coupling constant C,, is fitted to match the RMF nuclear den-
sity distribution in “°Ca. Its value is C\, = 2100 MeV-fm®. The Fermi momentum
kp = 1.29 fm™! is calculated for this particular choice of C,. In calculation (ii.),
we set the coupling constant C, = 0 and leave the value of the Fermi momentum
kp = 1.29 fm~! from calculation (i.). In (iii.), the new value of the Fermi momen-
tum kp = 1.49 fm~! is calculated in order to be consistent with the nuclear density
distribution for C, = 0.
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Fig. 3.8: The A single-particle energies e* in 4} Ca calculated for different values of
C, and kp (see text for details). Experimental data [4I] are shown as filled circles

with error bars for comparison.

The results of these calculations are presented in Fig. The A single-particle
energies calculated in (i.) are in agreement with available experimental data. The
A single-particle energies calculated in (ii.) yield larger gaps between the Os, Op,
and 0d levels, as well as unrealistic spin-orbit splitting of Op and 0d levels [30]. The
A single-particle energies calculated in (iii.) are shifted upwards with respect to
previous calculations (i.) and (ii.), and do not correspond with experimental data.

In Fig. B9 the A single-particle energies in 2} Pb are shown as a function of fiw.
The results are very unstable even for the negative energy states and vary signifi-
cantly with hw. In order to examine this issue, we first check the nuclear density
distribution for each Aw considered.

In Fig. 310, we show the comparison of nuclear density distributions in studied
nuclei calculated for various hw with the RMF density distributions. The nuclear
density distributions in **O and #°Ca do not deviate much from each other for dif-
ferent fw (except hw = 4 MeV). However, the nuclear density distribution in 2°*Pb

changes drastically with hw.
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Fig. 3.11: The A single-particle energies £* in 2’{Pb calculated with the coupling

constants C, and Fermi momenta kg from Table as a function of hw. Experi-
mental data [42] are shown as filled circles with error bars for comparison.

To stabilize the A single-particle spectrum in 2’ Pb with respect to parameter hw
we fit the coupling constant C), for each hw separately. We calculate the new values of
the Fermi momenta kr which correspond to the fitted values of C, for each hw. The
results are shown in Table[3.:3] With these new parameters we calculate the A single-
particle energies for each hw and present them in Fig. B.I1l The A single-particle
energies calculated with refitted values of C,, still depend considerably on the model
parameter hw. This problem occurs due to the small size of the single-particle basis
for 29Pb. The convergence of single-particle spectra in the Hartree-Fock method
depends on the number of unoccupied major shells. For N,., = 10 there are only
4 unoccupied major shells for neutrons and 5 unoccupied major shells for protons
in 2%9Pb. This number of unoccupied major shells is not sufficient to reach the

convergence in 2 Pb.

28



Table 3.3: The fitted values of coupling constant C,, and corresponding values of kg
in 2YPb for each Aw.

hiw [MeV]  kp [fm™!] C, [MeV-fm°]
4 1.30 2200
6 1.32 3300
8 1.32 3300
10 1.33 3300
12 1.34 4300
14 1.38 5300
16 1.38 7300
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Chapter 4
Conclusions

In this work, we studied the properties of the A single-particle spectra in 10, 4} Ca,
and °YPb. We used the Hartree-Fock method in the HO basis to generate a nuclear
mean field from the realistic NN interaction N2LO,p;. The phenomenological DDNN
interaction term was included to describe correctly the nuclear density distributions
in considered nuclei. We fitted the coupling constant C, of the DDNN interaction
term to match the nuclear density distributions in 60, 4°Ca and 2°Pb with the
results of the Relativistic Mean-Field model. The AN interaction was described by
the YNG interaction model ESC08 in which the Fermi momentum entered as a free
parameter. We fixed the value of the Fermi momentum kp for each studied hyper-
nucleus via the Thomas-Fermi approximation.

We studied the dependence of the A single-particle energies ¢* in 130 and 4 Ca
on the basis parameters N,,., and hw. We found that the negative energy states
had converged rather fast and did not depend much on the basis parameters Ny, .
and hw.

We performed calculations of the A single-particle spectra in the ' O with differ-
ent choices of NN and AN interactions. We considered two types of NN interactions:
NQLOopt and CD-Bonn+ Vi _1, as well as two AN interactions ESC08c and ESC08a.
The calculated A single-particle spectra did not change significantly with different
NN and AN potential models.

We explored the dependence of the A single-particle energies £*

in ¥ Ca on
the coupling constant €, and the Fermi momentum kp. First, we calculated the
spectrum for C, = 2100 MeV-fm®, the value fitted to reproduce the RMF nuclear
density distribution in *°Ca, and for corresponding kp = 1.29 fm~! calculated using
the Thomas-Fermi approximation. The results were in a good agreement with ex-
perimental data. Next, we set ), = 0 and left the Fermi momentum from previous

calculation, kp = 1.29 fm~!. We observed larger gaps between 0s, Op, and 0d lev-
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els, as well as larger spin-orbit splitting of Op and 0d levels. Then we set C, = 0
and calculated the relevant value of kp = 1.49 fm~!. The results were substantially
shifted with respect to the previous two cases and did not correspond with available
experimental data.

We studied the dependence of A single-particle energies e* in 2} Pb on the param-
eter lw as well. We discovered that the A single-particle energies were unstable and
varied considerably with Aw. We found that the nuclear density distribution in 2°*Pb
differed drastically for each Aw considered whereas the nuclear density distributions
in 1°0 and *°Ca remained very similar to each other for different fiw. Therefore, we
fitted the coupling constant C, for each hw independently and calculated respective
values of the Fermi momenta. However, the A single-particle energies remained un-
stable with respect to hw. We concluded that the size of the basis for N., = 10

was not sufficient to reach the convergence of the A single-particle states in 2%} Pb.

In our work, we discovered that the self-consistent mean-field model based on the
chiral NN and YNG AN interaction derived from the Nijmegen model had several
drawbacks and would need further improvements. Calculations in our basis were
restricted due to its limited size. The largest available basis was for N,,., = 10 since
the calculations with larger N,., were not feasible in the current version of our
code due to the computational complexity. Consequently, our basis was too small
to reach the convergence in 2}Pb. Therefore, it would be desirable to perform the
calculations for larger N ,.

Next, we did not implement the three-body NNN interactions directly but we
simulated their effect with the phenomenological DDNN interaction term. In future,
we plan to introduce the chiral N2LO NNN interaction which is consistent with the
chiral NQLOopt NN interaction. It will be desirable to employ other realistic AN
interaction as well, such as those derived from the Effective Field Theory [43].

We plan to take into account A — ¥ mixing and effect of the ANN interaction in
our future calculations. In addition, we aim to study the core polarization effects
and correlations from the beyond mean-field configurations.

Moreover, we would like to use our model in deformed single-particle basis. This
will allow us to study hypernuclei with nuclear cores that do not have doubly-closed
shells.
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Appendix A

Matrix elements in spherical

harmonic oscillator basis

The spherical harmonic oscillator basis consists of the single-particle states denoted
by quantum numbers n,l, j, and m, where n is the major quantum number, [ is
the orbital angular momentum, j is the total angular momentum, and m is the
projection of total angular momentum. The quantum numbers [, j, and m satisfy

the following relations
1 1
— < 9 < — Al
‘l 2'_]_l+2, (A.1a)

m=—j,—j+1,....5—1,7. (A.1b)

The energy of a given state is defined as

3
Ey=hw|2n+1+=], (A.2)

~—— 2

N
where we define the number of the major shell N. The size of the basis is determined
by the maximal major shell number N.., i.e. the basis is spanned by the major
shells N = 0,1,..., Ny - Another parameter of HO basis is hw - the oscillator
frequency which determines the width of the oscillator potential well.

The single-particle wave function of a state denoted by quantum numbers n, [, j, m

is defined as

'lvbnljm - Rnl(ra b) : [K(@? Q) ® X%] ) (Ag)
jm
where Y(¢, ) is the spherical harmonics, X1 is spinor both coupled in the total
angular momentum j and its projection m. Radial wave function R,,(r,b) is defined
as
b2r2

2n! 1
T I e (A4)

Ry(r,b) = b*/?
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1
where L,(f+2)(b2r2) is the Laguerre polynomial and b is the inverse oscillator length

IMBC277:UJ

The matrix elements ¢;; in the Hamiltonians (Z.13)), (ZI9) are defined as
~2

1 | P .

1 1 3
<1 — Z) |:§hw (2%1 -+ lz -+ 5) 6ninj5lilj6jijj5mimj

1 1
+ §hw n; (nZ +1; + 5)5nmj+15lilj5jijj5mimj
1 1

The right side of Eq. ([A.f) do not depend on the mass of considered particle.
However, the different mass of A has to be taken into account in the inverse oscillator
length (A25) which enters the radial wave function (A4).

The antisymetric matrix element V3 in Eq. (ZI3) is expressed as

R R B..P
NN .- |{7NN NN,DD 1 2
%jkl:<ZJV +V ~ S kl—lk>,

(A7)

where V™ stands for the realistic NN interaction and VN¥PP is the DDNN term
([225). The matrix elements of the NN interaction operator (ij [VNN|kL — 1K), as
well as the antisymmetrized matrix elements (i j|%|kl — lk) are generated by the
CENS code [44] and we do not show them explicitly. The matrix elements of the
DDNN term (ij|I7NN’DD|k:Z — k) are defined as

PPk — ) =

= (niligima, njlmg [VIPP gl g, maligimg — miligoma, mgglijime )

_ Z C‘;-]mi—i_mj CJmk+ml VDDyNNh], (A8)
7

imigimg  Jrmggimg gkl

Jmit+m; : : DD,NN;J
where C . are the Clebsh-Gordan coefficients. The matrix elements V;;,

are non-zero only for proton-neutron interaction

. C 1
ybbpnid 2o =945+ 1)(24; 4+ 1)(24, + 1)(25; + 1) ],

[2(—1)7s 99kt (1 4 (—1)li+lj+lk+ll)Cﬁ/%l/zcﬂll/zjlm

— (= 1)l (L — (=) (1 - (_1)J+lk+ll)C]L']i(l)/ij—l/QC]{COl/le—l/ﬂ' (A.9)
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In Eq. (A9), we use the radial integral I,.q

[ = / &1 p(7) R, (r, D) R, (7 ) Regay (7 5) R (1, ). (A.10)

The symmetric matrix element Vzé\,y in Eq. (Z.19) is expressed as

~ P P
Vi = <ij VAN - ;MAQ kl>7 (A11)

where the symmetrized matrix elements (zy\P 1Py |kl) are generated by the CENS
code [44]. The AN interaction in Eq. (220) is expressed in the form of one-body

matrix elements (nqly, S|G(r; kp)|nals, S)
<7”L1l1, S|G(’l“, k’p)‘nglg, S) =

= [XI X X;f] S A / 7’2d7’ Rmh (7’, brel)G(T’; kF)Rn2l2 (’l“, brel) [Xk & XZ]S 5 (A.12)

where y; represents spinor of the i-th particle and R,,(r, b.) are the radial wave
functions (A4 expressed in the relative coordinates. Their oscillator length by is

given as follows

brel - b ~ b s (A13)
where My =~ 938 MeV is the nucleon mass and M, ~ 1115 MeV is the mass of
the A hyperon. The two-body matrix elements <2'jHA/AN|k:l) are obtained from the

elements in Eq. (AI2) by the transformation introduced in [45].
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