Chapter 1
Introduction

The theoretical nuclear physics in the low-energy regime aims to study the prop-
erties of atomic nuclei as bound systems of nucleons. Most microscopic models of
nuclear structure are rooted in the non-relativistic quantum mechanics [I]. It is as-
sumed that nucleons are ”point-like” particles despite general empirical evidence of
their inner quark-gluon structure. The quark and gluonic degrees of freedom, as well
as non-nucleonic degrees of freedom (mesons, A), are considered at most for con-
struction of the interactions among nucleons. Differently, in the high-energy regime
and especially in the heavy-ion collisions, theoretical framework of quantum field
theory, specifically Quantum Chromodynamics (QCD) is used. Here, the quark and
gluon degrees of freedom are relevant and various statistical methods are employed
to study the equation of state and other properties of nuclear matter. [cite?]

In this thesis, we restrict ourselves to the theoretical description of nuclear struc-
ture in the low-energy regime. Two main issues must be resolved, first the formula-
tion of the force acting among nucleons and, second, the application of this force in
quantum many-body methods. There are several approaches to the construction of
the nucleon-nucleon (NN) potential.

The first class of the NN potentials is of phenomenological type. These effective
forces rely on a set of parameters which are usually fitted directly to the bulk prop-
erties of certain set of doubly-magic nuclei [2]. Examples of the effective potentials
are the Skyrme [3] and Gogny [4] forces. These interactions are traditionally used in
self-consistent mean-field models. Within these approaches, the ground-state prop-
erties of the nuclear systems are described by using the Hartree-Fock (HF) method
while the excitation spectra are calculated within the Random Phase Approximation
(RPA), or its extensions, in the quasi-boson approximation [2].

The NN potentials of the second class are derived from the microscopic theory of

the NN scattering and reproduce the experimental phase shifts. These potentials are
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often called realistic or high-precision. They are either inspired by the idea of meson
exchanges, such is the case of Nijmegen [5], Argonne V18 [6], and CD-Bonn [7], or
are derived from the effective field theory which satisfies all symmetries of QCD
with nucleons and pions as the degrees of freedom (ChPT potentials) [§]. The
perturbative character of the ChPT allows to improve step by step the precision
of the NN interactions by going into the higher orders of perturbation. Starting
from the next-to-next-to leading order (N2LO), the NNN interactions appear. A
detailed discussion of the ChPT can be found in Refs. [9, 10]. Using the bare
realistic NN potentials as the input for various nuclear models often brings practical
computational challenges which are caused by the slow convergence or the presence
of the strong repulsive core in these forces. Typically, the renormalization methods,
such as Viow—k [1I], SRG [12], UCOM [13], and G-Matrix [14] are introduced to
address these difficulties. The G-Matrix can be also interpreted as an effective
potential which describes the NN interaction inside the nuclear medium [15].

The second issue of nuclear physics is to solve the many-body problem with given
interactions among nucleons. Theoretical nuclear physics adopts various physical
models to describe the nuclear observables, such as the binding energy, charge radius
and the excitation spectra.

The lightest nuclear systems with A = 3 and A = 4 can be described di-
rectly from the free-space NN interactions by solving the Fadeev [16] and Fadeev-
Yakubovsky [I7] equations, respectively.

Generally, nuclei up to A &~ 50 can be described by ab initio methods. These
models describe the nuclear structure with minimum of approximations. However,
their computational complexity rapidly increases with A. Examples of ab initio mod-
els are No Core Shell Model [1§], Coupled Cluster Model [19], Fermionic Molecular
Dynamics [20], Self-Consistent Green’s Function Method [21], and Green’s Function
Monte Carlo Method [22].

The structure of nuclei starting from O up to the heaviest elements is often
described by the self-consistent mean-field models, such as the Hartree-Fock (HF)
or Hartree-Fock-Bogoliubov (HFB) methods [23].

The HF calculations starting from the renormalized realistic potentials yield un-
realistic single-particle spectra with too big gaps between the major shells as well as
unrealistic nuclear radii. These phenomena have been shown in an HF calculation
with the Argonne V18 + UCOM interaction [24] and independently in a calcula-
tion based on the CD-Bonn + Vi, interaction [25]. In both studies, the realistic
NN potential was corrected by the phenomenological density-dependent (DD) term
which simulates the effect of the three-body NNN interactions. The DD term was

found to be of crucial importance for generating the single-particle spectra in qual-
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itative agreement with the empirical ones. The self-consistent mean field generated
by the HF method with the realistic NN interactions corrected by the DD term was
used as a starting point for the beyond mean-field calculations of several medium and
heavy nuclei within the Equation of Motion Phonon Method (EMPM) [26], 27, 2§].
The EMPM solves a set of equations of motion to generate a multi-phonon basis
that can be used for diagonalizing the nuclear Hamiltonian. The many-body corre-
lations in the nuclear eigenstates obtained in the EMPM calculations are crucial for
the description of the nuclear ground-state properties [29] as well as the properties
of the excited states [30], 31}, 32} 33].

The crucial importance of the DD term in the aforementioned calculations calls
for the direct implementation of the three-body NNN force which naturally occurs
in the potential derived from the ChPT.

Throughout this work, the chiral NN + NNN potential up to the next-to-next-to
leading order N?LOy,; [34] is employed. The parameters of the N?LO,,; potential
were fitted not only to reproduce the experimental phase shifts of the NN scattering
but also other properties of light nuclear systems [34]. Thus, it is more suitable
interaction for calculations of medium-mass and heavy nuclear systems than the
standard bare chiral interactions. However, it remains very desirable to include also
short-range correlation effects into our Hamiltonian, although this task is beyond

the scope of this thesis.

The theory of nuclear structure can be extended to study exotic nuclear systems,
namely hypernuclei. A hypernucleus is a bound nuclear system, in which a hyperon
with non-zero strangeness (A, Y, Z,€)) is present. With the exception of the X%
the hyperons decay predominantly weakly which results in their rather long lifetime
~ 10710 5. The first hypernucleus has been observed in 1952 by J. Pniewski and M.
Danysz [35]. To this day, approximately 30 species of the A hypernuclei have been
discovered starting from the lightest hypernucleus 3H to the heaviest hypernuclear
systems 3°°Pb and 3%®Bi. Experimental study of hypernuclei have been performed
by many collaborations worldwide (CERN, BNL, KEK, FINUDA, JLab, JPARC,
GSI, MAMI-C) [36, 137, 38].

Several A-nucleon (AN) potentials — both bare and effective — have been devel-
oped for implementation in hypernuclear models. Examples of these potentials are

effective G-Matrix potentials derived from the Nijmegen model ESC08 [39], Jiilich
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meson exchange model [40], and the chiral AN interaction at the LO [41] and recently
at the NLO [42].

In Ref. [43], the hypernuclear mean-field model based on realistic baryon-baryon
forces has been introduced. The NN interactions were described by the chiral
NNLO,pt with parameters fitted to minimize the effect of the three-body force [44].
However, the effect of the three-body force was non-negligible. Therefore, the po-
tential NNLO,py was corrected by the phenomenological density-dependent (DD)
term which simulated the effect of the NNN forces. The AN force was described by
the effective G-matrix Nijmegen interaction with parametrization ESC08c [45].

The main drawback of the G-matrix Nijmegen potential is the strong dependence
on the Fermi momentum kp. This parameter is evaluated self-consistently by the
Thomas-Fermi Approximation from the overlap density calculated by the Average
Density Approximation [37]. In addition, the symmetric spin-orbit (SLS) and anti-
symmetric spin-orbit (ALS) parts of the potential are not treated explicitly but only
within the Scheerbaum Approximation [45 [37]. This would not allow us to study
the dependence of hypernuclear spectra on the spin part of the AN potential beyond
the approximation of mean field.

In this thesis, the NA-NA channel of the chiral LO YN potential is employed as
the AN force [41]. The results of hypernuclear calculations presented in this thesis
document the effect of the NNN interactions on the behavior of the A hyperon in

the nuclear medium.

The main focus of our research is the study of the spectra of medium-mass and
heavy single-A hypernuclei. Our long-term goal is to provide an ab initio description
of structure of these hypernuclei. The thesis provides first steps towards this goal.
We implement the Hamiltonian based on realistic baryon chiral forces and develop
two methods based on mean-field approximation - the Hartree-Fock (HF) method
in the proton-neutron-A (p-n-A) formalism and the extension of the Tamm-Dancoff
Approximation (TDA), nucleon-A TDA (NA TDA) method. In this work, we do
not address several issues. Namely short-range correlations, A — ¥ mixing in the
YN interaction, and the many-body correlations. The solution of these issues is
beyond the goal of this thesis which is the implementation of the full three-body
NNN interactions into the formalism of hypernuclear mean-field model and study

the effect of the NNN forces on the description of hypernuclei.
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This thesis is organized as follows: The derivation of the Hartree-Fock method
in the proton-neutron-A formalism is shown in Chapter 2l In Chapter [3 coupling
of the A to the nuclear core is described within the NA TDA method which is an
extension of the Tamm-Dancoff Approximation. Numerical implementation of the
three-body NNN force is described in Chapter [d] We discuss our results in Chapter
We summarize our conclusions in Chapter[6] We define the matrix elements of the
used Hamiltonian in harmonic oscillator basis in Appendix [A] In [B], we discuss the
J-scheme formalism and we reformulate equations of the HF and NA TDA methods

in this formalism.



Chapter 2

Hypernuclear mean-field model

with three-body interactions

We describe the single-A hypernucleus as a many-body system consisting of the
nuclear core and one A hyperon. Properties of the hypernucleus are determined by

the Hamiltonian
H=T7N + TA + NN + NNN + AN + ANN fCM‘ (2.1)

Here, TN and T denote the sums over kinetic operators of nucleons and the A
particle, respectively. The terms VY and VAN stand for sums over the two-body
NN and AN potentials. Sums over the three-body interactions are included in the

terms VNN and VANY . The term fg v denotes the center-of-mass kinetic operator

fcM=2[(A_1 STESIA (ZP +2ZP Pb), (2.2)

a=1 a<b

where M ~ 938 MeV is the mass of a nucleon, M, ~ 1116 MeV is the mass of the
A hyperon, A is the baryon number, and P, is the momentum operator of the a-th
particle.

The hypernuclear mean field is constructed self-consistently by the Hartree-Fock
(HF) method. In Section [2.1, we derive the HF method for a system of identical
fermions with the two-body interactions in the formalism of the second quantization.
In Section 2.2 we show the HF method for the single-A hypernuclei including the
three-body NNN and the ANN interactions in the proton-neutron-A formalism.
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2.1 Hartree-Fock method in the second quantiza-
tion

In this section, we show the derivation of the Hartree-Fock equation in the formalism
of second quantization, i.e. in terms of creation (annihilation) operators af ().

Let us consider a system of A identical fermions interacting through the two-body
potential ‘7(771,7?2). The Hamiltonian of this system in the second quantization is

given by

~ 1
H = Z tiola; + 1 Z Vijklazajalak, (2.3)
]

ijkl

where o [0) = |i) creates the single-particle state |i) and a;|i) = |0) annihilates the
single-particle state |i). The ket |0) denotes the particle vacuum. In the Eq. (2.3)),
the matrix elements of the kinetic operator read t;; = (i|T|7) and the matrix elements

of the potential operator are antisymmetrized
Vi = {1V (71, 7) k) — (g |V (7, Pk = (@|V (7 i) [k = 1k). (2.4)

The antisymmetrized ground-state wave function of the studied system is a Slater

determinant

wo) = [Lallo), 25

where the product in Eq. (2.5) runs over the lowest single-particle states.

Throughout our work, we express all physical states in the basis of spherical
.|.

harmonic oscillator. The creation and annihilation operators «;, a; correspond to

the single-particle states |i) as |i) = a/|0). The wave functions |i) can be expanded

T

into another basis represented by the operators a}', o;. The bases states |i) and |i’)

and their corresponding creation and annihilation operators are connected through

a unitary transformation U
i) = Z Uisli), (2.6a)
J
]

o = ZajU;} = Z U}iaj. (2.6¢)
ij ij
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The inverse transformation satisfies

— Z Usli", (2.7a)
af = Z Utall = Z ofur, (2.7b)
Z Ujicl,. (2.7¢)

T

The basis represented by the operators «;', o, is denoted as the self-consistent basis.

The ground state in the self-consistent basis is defined as the Hartree-Fock state
[HF)

A
|HF) = Ha? 0). (2.8)

It is convenient to define the density matrix of the HF state p'"
piF = (HF| ooy [HF). (2.9)
Using the transformation equations ([2.7h)) m ) leads to the following relation
phiF Z Uy Ul (HF | o) of|[HF). (2.10)

Let us prove the following 1dent1ty
(HF|ajlaj[HF) = (HF|{o}], o/ }|HF) — (HF|ajo;![HF)

— 0 (HF|HF) — (HF |0l |HF) = 6y, Vhk:ep <ep,  (2.11)
where ¢, is the energy of the k-th level and ep is the energy of the highest occupied
level (the Fermi level). We denote the occupied state k as k — occ.. For all occupied
single-particle states k, the expression (2.10|) gives

pjz Z Ukz gk = Z Ukz - UTU*) (212)

k—occ. k—occ.

The next step of this calculation is construction of the energy functional

(HF|H|HF) =Y t;;(HF|o]a;|HF) + - ZVW (HF|aalqyau[HF).  (2.13)

i Ukl

The second term in Eq. (2.13) with the transformation relations (2.7D)), (2.7d) gives
(HF|afalogoy [HF) = U U ULUL (HF|of o oo [HF)

ot~ pj o P Tq
opqr

Z U:)kz U;j Ulr qu (50(] 5177" - 507” 6?‘1)

opgr—occ.
= Z (U* UkoU* Ulp U* UZOU* Ukp)
op—occ.
= (UTU)(UTU )i — (UTU")u(UTU )y (2.14)
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The proof of the identity
(HF |/l oo/ |HE) = 00y0pr — OorOpgs  V0,D i €0,6p < EF (2.15)

opTTrTq

is analogous to the one in Eq. (2.11)). The energy functional (2.13]) therefore reads

(HF|H[HF) =Y > t,;ULU;

ij o—occ.
1
12 X VU = 13 X VauUULULY;
ijkl op—occ. 'L]kl op—occ.
= th UTU* ]z Z‘/ijl UT kz (UTU*)lj
zykl
- Z Vi (U U)u(UTU" ). (2.16)
ijkl

We minimize the functional (2.16|) with respect to the variation of the transfor-

mation U

5<HF|}A[]HF>5U+ §(HF|H|HF)

6(HF|H|HF) = == S

oU* = 0. (2.17)
In general, U is an unitary matrix, hence we get two equivalent conditions

S(HF|H|HF)
sU o

S(HF|H|HF)
SU* B

Variation of the functional in Eq. (2.16]) with respect to U* gives

(2.18a)

(2.18b)

§(HF|H|HF) 1 )
o, Ztm ot ZZVMM(UTU )1iUko
ikl

1
+ 1 ; %pkl(UTU*)kiUlo

1
—1 > Voi(UTU)i5Uso

jkl

1
-7 > Vi (U U130k (2.19)
ikl

Due to hermiticity and antisymmetry, the matrix elements V;;x; satisfy the following
identities

Vise = = Vi = =Vijie = Vik, (2.20a)

Vit = Vitij- (2.20b)



CHAPTER 2. HYPERNUCLEAR MEAN-FIELD MODEL WITH
THREE-BODY INTERACTIONS

Applying (2.20a)) and (2.20b) on (2.19)) yields the equation

% = {tpj +) Vpka(UTU*)lk} Ul =0. (2.21)
P j Kl

J

The unitarity of the matrix U presents following restriction
(UTU*)gp — I, = 0. (2.22)
The variational problem with the restriction ([2.22)) is expressed as

{(HF|H|HF> — e [UTU - 11}}

- Z {tm + Z Vot (UTU), } Zg,,ﬂ U, = 0. (2.23)

By substituting the density matrix identity (2.12)) we obtain the equation

Z {tm + Z mkﬂplf,ﬁF} Uy, = Z eplpi U, (2.24)
J Kl J

which represents an eigenvalue problem of the matrix h,,, defined as

5U

P = tn + > Vinknt Pl = EmOmn, (2.25)
kl
where we rename indices p — m, j — n. Equation ([2.25)) is called the Hartree-Fock
equation. Through diagonalization of h,,, we obtain a self-consistent basis |i') which
is connected to the HO basis |i) by the unitary transformation U;;, see Eq. (2.7a)).
The Hamiltonian (2.3 can be rewritten into the form in which the creation and
annihilation operators are normal ordered. For this procedure we use the Wick’s

theorem [46] and obtain the new expression of the Hamiltonian
H=Euw+HY + H®. (2.26)

Operators Eyp, H M and H® are defined as follows

EHF - th j’L +5 Z‘/;jk’lpkz p]l ) (2273“)

A0 -3 (1 zv) 2m)
i kl

~ 1

H(Q) — Z ;C; V;jkl ICKTOéTOélOék : (227(3)

10
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T T ]

where : ;o : and :a;rozjalak: denote the normal ordering of the operators o; o; and
aTaTalak, respectively. Normal ordered operators satisfy
(HF| -aTaj; IHF) = (HF| :a}'a/;: [HF) = 0,
(HF| :alal joqay s [HF) = (HF| :oz?oz;roz;oz;: |HF) = 0. (2.28)

Therefore, the value of the element (HF|H|HF) is equal to the energy of the ground
state Eyp which is defined by the Eq. (2.27a). The terms HO and H® in Eq.
and represent one-body and two-body parts of the Hamiltonian
(2.26). The operators in Egs.(2.274), (2.27b), and are expressed in the

self-consistent basis spanned by the single-particle states |i’) as

EHF = Z E; —% Z Vk‘ik’ia (229&)

1—occ. i,k—occ.

W :Zgl Mol (2.29b)

Z Vz]k:l Oé CY TO&EOKZ . (229(3)
ijl
Here, Vz’jkl denote the matrix elements V;;;; transformed into the self-consistent basis

") by the equation

Viga = (5 |VEL KT = UK) = Vg Us U UL UL (2.30)

opqr

2.2 Hartree-Fock method in the proton-neutron-

A formalism with three-body interactions

In this section, we generalize the Hartree-Fock method for a single-A hypernucleus,
the system consisting of Z protons, N neutrons and one A particle. We use a
notation 4X = (Z,N,1), where A = Z + N + 1. We consider the subsystem
(A=1)X = (Z,N,0), where (A — 1) = Z + N, to be the nuclear core.
Proton-neutron-A (p-n-A) formalism adopts creation and annihilation operators
at, a for protons, bt, b for neutrons and ¢f, ¢ for the A particle. Moreover, we suppose

that kinetic and potential operators in hypernuclear Hamiltonian (2.1)) are defined

11
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as following sums of operators:

N =T° 4+ 77,
VNN = ey pen g
PNA _ A 4 o
VNNN Vppp + Vnnn ‘7ppn + ‘7pnn7
VNNA _ vppA + VnnA + ‘7pnA

The Hamiltonian of the hypernuclear system ([2.1)) is in the second quantization

in p-n-A formalism defined as:

Zt” Zaﬁzzt bib; +Ztm cle

Ty Z wkla aTalak +7 Z V;?EszbTblbk + Z Vl]kla al Jaay,

l]kl zykl ijkl
nApt t
Z z]k CzCLk + E Viimbic;ciby
Ukl ijkl
vere aldlalanama; + 1 e DL DTbE bbb
z]klmn ’L EUnUmti 36 igklmn™i EYnUmYl
zyklmn ijklmn
1
E ppn Z pn
+ Z ‘/;]k’lmn i Jb b nOma + ‘/Z]klmn zbjb b bmal
ijkzlmn zgklmn
E ppA E nnA Tt
+ ‘/ijlmn 1 Ckcnamal + ZJk:lmnb b ckcnb bl
z]klmn z]klmn
pnA
+ Z ‘/Uklmn P ]Ckcnbmal
ijklmn

(2.32)

The matrix elements of the kinetic operator, as well as all interaction terms in the

HO basis in Eq. (2.32) are expressed in Appendix

The ground state of this system is described by the wave function

[Wo) = [Wo)p ® |[Wo)n @ [Wo)a,

(2.33)

where |Uy), and |¥), are Slater determinants of protons and neutrons and |W¥g)a

is the single-particle wave function of the A hyperon. Respective wave functions in

12
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Eq. (2.33)) are defined as follows
Wo)s H al|0),
W) Ilwm

[Wo)a = cf]0).

(2.34a)

(2.34D)

(2.34c)

Indices 7z and j run over Z and N lowest occupied states in the proton and the neutron

potential wells, respectively. Unitary transformations for each type of creation and

annihilation operators are defined as

ZAw a6 = Zaa
ZBZJ ) Zb B},
ol = Z Cigcy ¢ = ch i
ij ij
Ground-state wave function in the self-consistent basis gives
[HF) = [HF), ® [HF), @ [HF),,
where
IHF), H all)o)y,

[HF)n = Hbé*\f)),
i=1

HE), = f[0).

Respective density matrices read

b= o(HF|ala;[HF),,
P?j = n<HF|b;‘[bj|HF>n7
pi = A(HF|clc;|HF),.

13

(2.35a)
(2.35D)

(2.35¢)

(2.36)

(2.37a)

(2.37b)

(2.37¢)
(2.37d)

(2.38a)
(2.38b)
(2.38¢)
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We construct the energy functional (HF|H|HF) as follows:

(HF|H[HF) =

Z 2. (HF |afa;|HF) + ) % (HF|b]b;[HF) + ) 2 (HF |c[¢;|HF)
ij ij
+ - ngl HF |afala,ay,|HF) + — Z o, (FIF|b] blbyby, |HF)
zgkl z]kl

+ ZV;EII;Z HF|a’zb3blak|HF + ZVEQI HF|aZC cax|HF)

ijkl ijkl
+ ) VI (HF bl cle,by | HF)

z]kl

—l— — Z |2 HF|a!a! akanamal|HF>

z]klmn

+ 3 Z Vi (HF |60} bbby [HF)
z]klmn

+ - Z K?,ﬁfmn HF|aIa}b£bnamal|HF)
zgklmn

+ - Z Vi (HF|afblblb,by,a|HF)
z]klmn

+5 Z Vil (HF |ala}cl camai HF)
Uklmn

- Z vt (HF[bIblcfc,by,by|HF)
Uklmn

+ Y Vi (HF[alblcke,byal[HE). (2.39)

ijklmn

We express the following identities for the three-body terms:

(HF| ot} anama [HE) = (ATA ) (AT A7), (ATA%), 0 — (AT A7) (AT A" (AT A%),00
— (ATA") e (AT A) i (AT ATy — (AT A7) (AT A5 (AT A"y
+ (AT A (AT Ay (AT A ) s — (AT A" (AT A) o (AT A ) i,

(HF |b{b1bL bbby [HF) =

(BT B*)1(B" B*)j(B" B*) i —

(2.40)

(B B")ur(B" B")i;(B" B")mi

— (BT B)yui(B" B")uj(B" B*)ii — (B" B*) (B B*)15(B" B )i
+ (BT B*); (BT B ) (BT B )i — (B"B*)it(B* B*)j (B" B ) ns.
(2.41)

14
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The terms which contain multiple types of particles satisfy

(HF|afalb]byanma|HF) = (HF|alalam,q|HF), ,(HF[blb,|HF),, (2.42a)
(HF|a[blc] c,bpma|HF) = (HF|ala)|HF), o (HF[blb,[HF), 5 (HF|cfc,|HF),.
(2.42b)

By minimizing the energy functional (2.39) with respect to the unitary transforma-
tions A, B, and C we obtain three Hartree-Fock equations — one for each type of

particles. The HF equation for protons:

1

n n A A

£+ Y VERoh o+ D Vil + Y Vel + 5 > VR P
Kl Kl Kl

klmn

1 nn n n n n A A

klmn klmn klmn

nA n
+ Z Vi?kzmnpmkpﬁz = £} 0;j. (2.43)

klmn

The HF equation for neutrons:

1
n nn n n nA A nnn n n
b + Z Vi + Z Vk%ljpfk + Z VikjiPu + 2 Z VikljmnPmkPi
kl Kl kl

klmn

1 n nn n nmA n A

klmn klmn klmn

+ Z ‘/krﬁrﬁnjpfnkpﬁl = &, 045 (2.44)

klmn

The HF equation for the A hyperon:

1 1

A A nA n A nnA n n

iy + E :Vlgljpfk + E VP + 5 E Vilimni Pk Pri T B E Vietimnj PmkPri
il il

kilmn klmn

nA n
+ Z Vkr;imnjpfnkpnl = 5?51‘1* (2.45)

klmn

After solving the Hartree-Fock equations (2.43)), (2.44)), and (2.45)) we obtain three
self-consistent bases represented by the operators (a'f,a’), (V7,0), (¢f,c). Using

the Wick’s theorem [46] on the hypernuclear Hamiltonian ([2.32)) gets us separable

Hamiltonian of the form
H=Ew+HY+H® 4 O, (2.46)

where Epp is the ground-state (HF) energy, HW is a one-body operator, H® is
a two-body operator, and H® is a three-body operator. Here, the HF energy is

15
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defined as
Eyur = P n - g v v
HF — € + g + € = 5 ijij 5 Zjlj ijij
i—occC. i—occ. i—occ. 4j—occ. 4j—occ. ij—occ.
—nA 1 —ppp 1 —nnn —ppn
- § : ijij E : Vijij - g § , Vijlcijk - g § Vijkijk - § Vijkijk
1j—occ. 3j—occ. ijk—occ. ijk—occ. ijk—occ.
—pnn —ppA —nnA pnA
- E Vijkijk - § Vijkijk: - § : ijkijk -2 § z]kz]k’ (247)
ijk—occ. ijk—occ. ijk—occ. ijk—occ.

The one-body operator H® reads
Zg callal: —l—Zé? A —l—Z& i, (2.48)
the two-body operator H® is defined as follows

ZVW alafajal,: +- ZVW VBT + S VT, sl ba)

zgkl z]kl igkl
/T/T// /T/T// ppp ot

+ E VUkl a; C; Cay: + E Vzgk:l i G abyt ++ E E Vi imkim @ @ Q@

1]kl ijkl z]kl m—occ.

/T 11070 —ppn oo,
+ - Z Z vz]mklm : b bb +- Z Z igmklm * Gy CL Qg :
zjkl m—occ. zykl m—occ.
T7Ppn /T Ity T7pnn 1ttty .

_'_Z Z Vmijmkl b b s Z Z le]mkl b b bb

ijkl m—occ. z]kl m—occ.

T7pnn . /T s —ppA oo

+Z Z Vijmklm : b b S Z Z igmklm * “a; CL a;ay -

ijkl m—occ. z]kl m—occ.

SN T il ZZ WY,
+ Vm'ijmkl : Cla’k +- vz]mklm : b b b

ikl m—occ. zgkl m—occ.

}:E:_HHA ./T/T// E:E: PnA TVl -
+ Vmijmkl : b + Vz]mklm 1a; bj blak :

ijkl m—occ. ijkl m—occ.

Zz—pnA e+ Y oo it
+ Vimjk:ml : clak + memkl b’L gl G0 <, (249)

ijkl m—occ. ijkl m—occ.

the three-body part is defined as

~ 1 — —nnn
B9 = LS T s 3 T

36 ijklmn * z]klmn
ijklmn zyklmn
2 : y/Ppn . /T /T 1ty } : y/pnn /T 1ty 1ty .
+ - Vz]klmn et bkbn mal + Vz]klmn : b blc n’m l
zgklmn zgklmn
2 : PPA ot } : T7anA IT rt /T IRV
+ - ijklmn * (l Cl Cp Cr@ szklmn : b b b
zgklmn zjklmn
y7PA PRAR NP NP
+ Z Viiktmn © @ b Cp Cpbay . (2.50)
ijklmn
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CHAPTER 2. HYPERNUCLEAR MEAN-FIELD MODEL WITH
THREE-BODY INTERACTIONS

The interaction matrix elements in the Eqgs. (2.47)), (2.49), (2.50) are represented in

the self-consistent basis. L.e. they are transformed from the interaction elements in

the HO basis by the relations equivalent to the Eq. (2.30)).
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Chapter 3
Coupling of A with nuclear core

In this chapter, we introduce the coupling of the A particle with the nuclear core
within the theoretical framework of the extended Tamm-Dancoff Approximation
(TDA). The extension is denoted as the nucleon-A Tamm-Dancoff Approximation
(NA TDA).

The NA TDA method describes the spectra of hypernuclei consisting of one A
particle bound to the even-odd nuclear core. The hypernuclear wave functions are
constructed by the annihilation of one nucleon from even-even nuclear system and
then coupling of the even-odd core with the A particle through the AN interaction.

This chapter is organized as follows: In Section [3.1] we introduce the standard
TDA method. In Section we introduce the NA TDA method as a generalization
of the TDA. In Section [3.3] we discuss possible extensions of our theoretical approach

to general coupling of the A with multi-particle-hole excitations of the nuclear core.

3.1 Tamm-Dancoff approximation

The Hartree-Fock wave function describes the hypernuclear ground state
within the mean-field approximation. The general excitations of this state can be
represented as the sum of one-, two-, and many- particle-hole excitations of the HF
ground state. Here, we restrict ourselves on the basic approach, i.e. one-particle-hole
excitations. This approach is called the Tamm-Dancoff Approximation (TDA).
The starting point of the TDA is the self-consistent basis obtained in the HF
calculations. The operator which creates the particle-hole excitation is defined as

follows:

Ql = 2 (Cpirajdr+ CM¥iH) (3.1)

ph
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CHAPTER 3. COUPLING OF A WITH NUCLEAR CORE

where af, a’- (b, b) denote the proton (neutron) creation and annihilation opera-
tors with respect to the particle (p) and hole (h) single-particle states in the self-
consistent basis. In this thesis, we refer to the operator QL as the phonon operator.

We use a following phase convention
[7) = law jn ) = (=1} ey G, —my,). (3.2)

The need for this convention arises from the fact that the hole single-particle states
|h) transform under rotations as a jm spherical tensor [47]. The coefficients i’
(Cy) in Eq. represent the linear combinations of the proton (neutron) particle-
hole (ph) excitations.

The derivation of the TDA method starts from the hypernuclear Hamiltonian in
the separable form with all matrix elements expressed in the self-consistent
basis. The HF density in the self-consistent basis is defined as

P = (HF|dd/ |HF) = Z Sy (3.3a)
P = (HF [0, [HF) = Z S (3.3b)
ph = (HF|i ¢ |HF) = Z G- (3.3¢)

We introduce the normal ordered interaction elements in the two-body part of the

Hamiltonian (2.49))

T7PP.gen _ wpp Z [f7pPp n A ]
Vijkl - Vijk:l + szmkln Prm + Vz]mklnpnm + Vzgmklnpnm ) (34&)

V?jnklg "= V?ﬁd + Z :Vlzq;;zklnpnm + Vz]mkln Prm + Vzgmklnpgm: ; (3.4b)
Vi =Vt 2 ViriaiiPhn + VP + VimanPom |+ (3:40)
V?jjl\f}gen = szkl + Z [ munkl gm + V?;?knlﬁzm: ) (34d)
V?jjl\f’lgen = Vijkl + Z [ mijnklPrm T Vi:zl;nkl_fbm_ : (3.4e)

—5Pp,gen —>nn,gen —pn,gen —>pA,gen —>nA,gen
The matrix elements Vi, Vi s Vi Vi Vi represent the two-body

interaction corrected by the presence of the three-body force in the A-body nuclear
system. The terms in Eq. correspond to the residual three-body interaction.
It is the remaining part of the three-body force which was not summed into the
parts of the Hamiltonian Fyr, I/-j(l), and H®
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CHAPTER 3. COUPLING OF A WITH NUCLEAR CORE

The two-body part H® of the Hamiltonian (2.46) is expressed with the normal-

ordered two—body matrix elements as

(2) o vaﬁjen - /Taga;ﬁ += ZV?;;lgen : /Tb/Tb/b/ .

1]kl z]kl
T7Pn,gen 1oty d pA,gen /T /T ror
+ E szkl DAy bj bl D+ E :mGl : Ckal
ijkl ijkl
T7nA.gen /J[ /T 1.
+ E Vi 2 bicjaby: (3.5)
ijkl

The TDA method is based on the following equation of motion

The commutator [H,Q!] in Eq. (3.6) can be evaluated term by term from the
Hamiltonian (2.46]). The HF energy Eyr is and thus

[EHFa QZJIHF> =0. (3~7)
Furthermore, we show that

[HD,QI)HF) = > (eh — e)CyPafaf HF)
ph

+ Z enCUrbIbHE). (3.8)

The two-body part of the Hamiltonian commutes with the phonon operator as fol-

lows:

A, QUHE) { ST gt - ST ST

ph pi1hi ph p1ha
T7Pgen ~upg st TrPbngen ~yn /T
+ Z Z Vhp1ph10ph bplb + Z Z vhmphlcph p1ah1 } |HF>
ph pi1hi ph pi1h1
(3.9)

The term [H®, QI]|HF) does not contribute to the TDA equation,
(HF|Q/[H®, Q}]HF) = 0. (3.10)
Substituting (3.8) and (3.9)) into the TDA equation (3.6) leads to the eigenvalue

problem

p
(€ — &n)0pp Onn cvp cup
Vpn gen Vpn,gen ph p'h
TV R p'hh'p
ph /Pmeen p_ b

Vhp/ph’ (8}7 8h>6pp/6hh’
—pn,gen CVJI Cl/;n/
+Vp/ﬁlp ph p h

(3.11)
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CHAPTER 3. COUPLING OF A WITH NUCLEAR CORE

—nA,gen

—pA,g .
It should be noted that the operators ijkl and V.~ get subtracted in
the commutators. Therefore, the AN interaction does not contribute to the TDA

equation (3.11)).

3.2 NA TDA method

The principle of the NA TDA method is the annihilation of one nucleon from the
even-even nuclear system and coupling of this even-odd (or odd-even) core with the
A hyperon. In analogy to the Eq. (3.1), the NA TDA phonon operators are defined

as

Rl = Z riePheial, (3.12a)
ph

Rl a= > ririeivl (3.12b)
ph

The equations of motion of the NA TDA method are again formulated in analogy
to the TDA:

(HF| R,/ pA[H RVPA]|HF> = (EP* — BEyp)dy., (3.13a)
(HF|Rys o[ H, R} A]|HF) = (B2 — Eygp)d,0. (3.13b)

By inserting the Hamiltonian H as a sum of terms Egp, HY, H®, and H®, we

evaluate the commutation relations [H, R! oa) and [H, R;n Al term by term,

[Evr, Rl ,\)[HF) =0, (3.14a)
[Enr, R} ,\)[HF) =0, (3.14b)
[H(l VpA]lHF> 2(53 - gl}DL)TV A /T d |HF> (315&)
ph
[HD, RY AHF) =" (e — et b [HF), (3.15b)
ph
17 A,gen
[H®, REAHE) = = > Vi, b an, [HF), (3.16a)
pihi ph
—mnA,gen
[H R’t nA |HF Z thmiw glb |HF> (3'16}3)
pihi ph
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CHAPTER 3. COUPLING OF A WITH NUCLEAR CORE

Again, it applies that

(HF|Ry pa[H®, R]

v,pA

The substitution of the Eqs. (3.15a)) and (3.16al) into Eq. (3.13a)) (and Egs. (3.15b))
and (3.16b)) into Eq. (3.13b))) leads to

v/ pA v,pA T7pA,gen
(HF| Ry [H, B JJHE) = 35 pptpn ( e8 — D)y O — vgp,g,p),

J[HF) = (HF|R, o [H®, RT ]|HF) = 0. (3.17a)

ph p'K
(3.18a)
v/ nA VHA n —nA,gen
<HF‘RV HA[H RI/ nA ’HF Z T ’h’ ph ( 1/3\ - €h>6pp/5hh/ - Vﬁp/ﬁglp) '
ph p'K
(3.18h)
Eqgs. (3.18a) and ([3.18b]) correspond to the following eigenvalue problems:
—pA,gen v, v
> (= = RV = Vi ) Tt = (B2 = Bue)righ (3.19a)
ph
n —nA,gen vn n
3 (@Q NG O — vgp,%p) read = (B — Bye)rtnt, (3.19b)
ph

In practice, VZ(;IZ)A = VZ»(,?Z)A
the NA TDA method which includes the three-body ANN interactions but we have

not implemented the ANN interactions themselves in the numerical calculations.

. We have developed a mathematical formalism of

Here, we study the indirect effect of the NNN force which is accounted for in the

HF calculations of the nuclear core (i.e. construction of the self-consistent basis).

3.3 General coupling of A with multi-particle-hole

excitations of nuclear core

In Chapter 2 we derived the Hartree-Fock method in the proton-neutron-A for-
malism which is suitable for description of hypernuclear systems which consist of
even-even nuclear core and one bound A hyperon.

In Section [3.1] we discussed the excitations of the even-even nuclear core within
the TDA method as a general superposition of one-particle one-hole excitations of
the HF' ground state.

In Section[3.2] we generalized the TDA method and derived the NA TDA method
which can be used for the calculations of hypernuclei with even-odd (or odd-even)
nuclear core and one bound A hyperon.

The methods which are used for calculations of hypernuclear spectra (HF and

NA TDA) can be understood as a starting point for two different generalizations of
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CHAPTER 3. COUPLING OF A WITH NUCLEAR CORE

the Equation of Motion Phonon Method (EMPM) [26, 27, 28]. Within the EMPM
we split the Hilbert space into the direct sum of the n Hilbert subspaces:

H=HoDH1PHD...DH,. (320)

In the first generalization we consider the coupling of the A particle with exicta-
tions of the nuclear core and thus construct the Hilbert subspaces in the following

way:

Ho = {dJ|HF), @ [HF), } , (3.21a)
Hy = {Q, I HF), ® [HF),} (3.21b)
Hy = {Q}, QLI HF), ® [HF),} , (3.21c)
H,={Q,Ql,...Ql dIHF), ® [HF),} . (3.21d)

The diagonalization of the hypernuclear Hamiltonian in the Hilbert space
defined in such way is suitable for description of hypernuclear systems with even-
even core and one A particle.

In the second generalization we consider the excitations of the hypernuclear
system created through the pA TDA (and nA TDA) method. The Hilbert subspaces

are then generated as follows:

Ho = {Rl,p(n)A’HF>p ® |HF>n} ; (3.22a)
Hy = {QL1 R}, aHF)p ® |HF>n} : (3.22b)
H2 - {QLlQLQR:E,p(n)A|HF>P ® ‘HF>H} 5 (322(3)
Hn = {QL@LQ QL R lHF), @ IHF>n} : (3.22d)

Similarly, diagonalization of the Hamiltonian (2.32)) in this Hilbert space is suitable
for description of hypernuclei with even-odd (or odd-even) nuclear cores and one A

particle.
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Chapter 4

Numerical implementation of the

three-body force

The Hartree-Fock equations (2.43)), (2.44)), and (2.45) are solved numerically by the

code which is an extension of the code that was used for the study of multipole
response in neutron-rich nuclei [25].

All interaction elements of the NN, AN, and the NNN interactions are represented
and stored in the J-scheme formalism (see Appendix . [.e. we work with the J-

~ J,pp J,pn
coupled two-body elements ‘/(niliji)v(njljjj)7(nklkjk)v(nllljl)’ (miliga),(nil5395),(nalrdr),(nilidn)?
Jnn J,pA JnA

(naliga),(nglsd3)s(melide),(malig)? " (nalida) (nglsd;),(nelide)s(ruligi)? (niliji)v(njljjj)v(nklkjk):(nllljl)’and

. J] 7J127J7T/ 7T127T
with the JT-coupled three-body elements ‘/(nljiji)7(njl;§j),(nklkjk)7(nl 170), (oo ) (o)

We need to place restrictions on the indices i, j, k, [, m,n which enumerate the
(neleje) configurations within the NNN matrix elements to reduce the demands on
the computer memory. We can use the antisymmetry and store only the matrix

elements for the indices

(4.1a)
I >m>n. (4.1b)

Furthermore, we can use the fact the the NNN matrix elements are hermitian. Thus

we can introduce another restriction which can be defined as (ijk) > (Imn), e.g.
(i-10% +5-10%+ k) > (1-10% + m - 10% 4 n). (4.2)

In Eq. (4.2)), we suppose that we work within a single-particle basis with dim < 103.

The matrix elements of the NNN interaction that are not stored due to the

restrictions (4.1al), (4.1b)), and (4.2]) need to be reconstructed on the fly.

In the code, we implement the following equations for protons (neutrons), re-
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spectively,
(n)
t?nllljl),(n i1575) 5]1]] 5mzmj
Jpp nn) p(n) (2J + 1)
+ Z Z (naliga),(nelign),(n5555), (nzluz)p(nzluz) (nilrgr) 6lllk 5jljk 6mimj m
J nkllk]k ¢
i
7l np) n(p) (2J +1)
+ Z Z (naliga),(nelign),(n5555), (nzlm)p(nzlwz) (nelrdr) 5lllk 5]J]k 5mzmj m
J nkllk]k v
nilig
v/ pAmA) A(A) (2J+1) 1
+ ;n%k (niligs) (”klwk) (n5l535), (nalugt) Pruli) (niclie i) 5lllk5]l]k6mlmj (2]2 + 1) (2]k T 1)
il

PSP DD

nplpjeme niligim nmlmimmm nalpjnmn

{ 1 Vppp(nnn) p(n) p(n)

2 niligimg,nglejeme,niligimg Pz l]]j m; sMmlm JmMm nnlnjnmn, pnmlm]mmm Ml ieme pnnln]nmnvnlll]lml

L+ pon(ppn) n(p) n(n)
2 nilijimg ngljeme,niliiimyngligm;, nmlmjmmm,nnlnjnmnpnmlm]mmm,nklk]kmkpnnlnjnmn,nlll]lml

4 Vppn(pnn) p(n) n(n) }

+

nzlz]zmzvnklk]kmk7nlll]lml7n]lj]jmj 7nmlmjmmm77’bnln]nmnpnm m]mmnunklkjkmkpnn Ingnmn,nili5img

The elements of the NNN interactions in Eq. (4.3)) are decoupled into the M-scheme
from the JT-coupled elements on the fly by using the transformation equations
(B.9),(B.10), (B.11), and (B.12)). In addition, the following HF equation for the A

hyperon is implemented,

A
t(”ili]z) (nyl555) 5l b 6]’37 6m iy
on (2J +1)
—+ Z Z ‘/(nklk]k (nsliji),(naligy), (nJ ]jj)p(nzlul) (nilkir) (slklzéjkjlfsmlmy (2] + 1)
J o nglidk
il
o (27 +1)
+ Z Z Vv(nklkjk (niligi),(naligy),(njl ]Jj)p(nllljl) (nrledx) 5lkll5]k]l5m7,m] (2] + 1)
J nkllkjk
niligi

The HF code can run either in the static or in the dynamic mode. The code in
the static mode at first solves the equations for protons and neutrons (4.3) without
the proton-A and the neutron-A interactions. Afterwards, it solves the equation
for the A hyperon. In the static mode, the properties of protons and neutrons
in the nuclear core are not affected by the presence of the A hyperon. We use the

static mode for calculations of the bare nuclear core. The code in the dynamic mode
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solves the equations and self-consistently for the whole hypernucleus. We
use the dynamic mode for calculations of the A single-particle spectra.

The HF method is implemented in the spherical HO basis. This basis is infinite.
In practical calculations, the basis is truncated by the maximal major shell number
Nnax. Le. the single-particle configuration space is defined as a set of the single-
particle states {|i) : 2n; + I; = N; < Npax}- The number n; stands for the principal
quantum number and [; is the orbital angular momentum. The two-body interaction
operators are represented as the matrix elements of the products of the two single-
particle states |i)|j) = |ij), |k)|l) = |kl) (see equations (A.7a)), (A.7D]). The two-
particle basis is truncated consistently with the single-particle basis by the number
N2 Te. the two-particle configuration space is defined as a set of the states
{lig) :2n; +1; +2n;+1; = N; + Nj < 2Npax = Nr(nla%z} Similar logic applies to the
three-body operators which are represented as matrix elements of products of the
three single-particle states |i)|7)|k) = |ijk), |[[)|m)|n) = |lmn). The three-particle
basis is truncated by the number NUZ | The configuration space is defined as a set of
the states {|ijk) : 2n;+1i4+2n;+1 420+l = Ni+N;j+ Ny, < 3Npax = N }. The
conditions Néﬁz = 2N,.x and Nr(nlff ) = 3Nmax lead to computational problems for
any configuration space bigger than Ny.x = 5. In such space, it is very complicated
to generate, store, and operate with all three-body interaction matrix elements.
For this reason we constrain the configuration space by the following condition
N = Nl = Nt .

The width of the potential well of the spherical harmonic oscillator is given by
the parameter hw. In this work, the parameter Aw is fixed to 16 MeV.

In the NA TDA method, the three-body NNN interaction does not enter the
equations explicitly as in the case of the HF method in the p-n-A formalism. The
residual three-body interaction defined in the Eq. does not contribute to the
NA TDA Eqgs. and (3.19b)), respectively. The NNN force contributes only
to the generalized two-body interaction terms defined in Egs. - (3.4¢). These

matrix elements are called generalized interaction elements.
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Chapter 5

Results

In this thesis, we study the effect of the three-body NNN interaction on the de-
scription of nuclei 0, 1°Ca, Ca, and the single-A hypernuclei }'O, {'Ca, {°Ca,
150, 1Ca, ¥Ca. We calculate the radial density distributions, charge radii, nucleon
single-particle spectra, and binding energies of °0, 4°Ca, and **Ca in the mean-field
approximation by solving the Hartree-Fock (HF) Eq. in the static mode. The
single-A hypernuclei }7O, 3!Ca, and {°Ca, which consist of one A hyperon bound to
the even-even nuclear core, are described by the HF method in the proton-neutron-A
(p-n-A) formalism. We calculate their A single-particle spectra by solving the HF
Egs. (4.3) and in the dynamical mode. The single-A hypernuclei }°O, Ca,
and PCa consist of one A particle bound to the even-odd nuclear core. We generate
their energy spectra by first solving the HF Egs. and in the static mode
and then solving the NA TDA Eq. (3.19b).

In our calulcations, we do not assume short-range correlations in our Hamilto-
nian, A — ¥ mixing in the YN interaction [48], and many-body correlations. These
issues are beyond the scope of this thesis.

We employ the chiral N2LOg,; NN and NNN interaction [34] which represents
the force acting among nucleons. The force acting between the A hyperon and the
nucleons is described by the NA-NA channel of the chiral LO YN interaction [41].

The configuration space was fixed by Npa.x. We use the constraint Np., =
N2 = NUZ) | The parameter hw was set to 16 MeV for all calculations.

5.1 Calculations of 90, *°Ca, and **Ca

In this section, we study the nuclei 0, 4°Ca, and **Ca within the mean-field ap-
proximation. First we check the convergence of the radial density distributions,

charge radii, and the nucleon single-particle energies. Then we study the effect of
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the NNN force on these observables.
The radial density distribution p(r) is defined as follows:

p(r) = pp(r) + pu(r), (5.1)

where p,(r) and p,(r) are proton and neutron density distributions, respectively.

We calculate the proton radial density distribution p,(r) as:

po(r) = %Z ST R (7, b) R (1, ) Ay Age (2 + 1), (5.2)

1j k—occ.

The neutron radial density distribution p,(r) is of the form:

pu(r) = i > > R (r.b) Ry, (r,0) Biy Bri(24k + 1). (5.3)

ij k—occ.

The functions R, (r,b) and R, (r,b) in Egs. and are the radial parts of
the HO wave functions and are discussed in detail in Appendix [A] The matrices A
and B represent the unitary transformations between the HO and the self-consistent
bases and are defined in Chapter [2]

In Fig. [5.1] the radial density distributions of %0, “°Ca, and *3Ca for Ny, =
6,8,10, and 12 are plotted. These density distributions were calculated with NN
and NNN interactions. In 160, the density distributions exhibit rapid convergence.
In 4°Ca, the curves show slower convergence and differ for short distances under
~ 1 fm. In %8Ca, the convergence is not reached. The configuration space is too
small for this nucleus. We expect to reach the convergence in larger spaces.

In Figs. [5.2] and [5.4] the radial density distributions of °0, %°Ca, and **Ca,
calculated with and without the NNN force, along with the ones calculated with the
relativistic mean-field (RMF) NL-SH model [49], are shown. The RMF NL-SH is a
phenomenological model which reproduces empirical density distributions [50]. The
density distributions calculated within our model are the converged ones obtained
for Npmax = 12. The NNN force has a repulsive effect which flattens and expands
the density distributions. Moreover, the calculations which implement the NNN
interaction yield results in qualitatively much better agreement with the empirical
data.

Similar effect of the NNN force is observed for the charge radii. The mean-square
charge radius (r%) of a nucleus 4Xy is defined as follows [51]:

1 N 31
2 2 2 2
(r3,) = (1 - Z) )+ Fot ZRat o (5.4)
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Fig. 5.1: The radial density distributions p(r) of the nuclei °O, 4°Ca, and **Ca
calculated with the two-body plus three-body (NN + NNN) interaction for Ny =
6,8,10,12.

where R, = 0.8775(51) fm, R? = 0.1149(27) fm?, and 31@202 ~ 0.033 fm?. The term

z
<7"12)> in Eq. (5.4) is the point proton mean-square radius
(r?) = M (5.5)
Pe [drrpp(r) '

The results are shown in Table The quantity (rq,) is calculated as (rq,) =
\/m . Nuclear charge radii calculated only with the NN interaction are unrealisti-
cally compressed, whereas charge radii calculated with the NN + NNN interaction
are qualitatively in better agreement with the available experimental data.

In the HF method, the value Eup approximates the ground-state energy of a
given nucleus. The calculated binding energy per nucleon is defined as:

BE Eyr

A A
The binding energies per nucleon of the 90, °Ca, and **Ca are shown in Table [5.2}
The repulsive character of the NNN force decreases significantly the binding energy

(5.6)
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Fig. 5.2: The radial density distribution p(r) of O calculated only with the two-
body (NN) interaction (red line), with the two-body plus three-body (NN + NNN)
interaction (green line), and with the RMF model NL-SH [49] (blue line).

to unrealistic values. Generally, the binding energies calculated by the HF method
from the realistic nucleon interactions do not reproduce experimental data [51]. In
order to obtain realistic binding energies, we need to implement beyond mean-field
correlations into our model.

Next, we study the convergence of the neutron single-particle energies €. The
neutron single-particle energies calculated with the (NN + NNN) interaction are

shown in Fig. [5.5] For all states which lie under the Fermi level, the convergence

Table 5.1: The charge radii (ry,) of the 0, *°Ca, and *®Ca calculated only with the
NN interaction (NN) and the charged radii of the 10, °Ca, and *®Ca calculated
with the NN 4+ NNN interaction (NN + NNN), compared to the experimental data
(exp) taken from [52].

(ren) [fm]
AX NN NN + NNN exp
160 2.24 2.96 2.70
OCa 2.62 3.68 3.48

BCa 2.59 3.60 3.47
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Fig. 5.3: The radial density distribution p(r) of *°Ca calculated only with the two-
body (NN) interaction (red line), with the two-body plus three-body (NN + NNN)
interaction (green line), and with the RMF model NL-SH [49] (blue line).

is reached. However, the convergence is much slower for all unoccupied levels. The
convergence properties of the proton single-particle energies € are analogical to the
neutron ones. Therefore, we do not present them in this thesis.

In Figs. [5.6} [5.7} and[5.8] the neutron single-particle energies 7 of the 60, 4Ca,
and #8Ca calculated only with the two-body NN interaction are compared to the
ones calculated with the two-body plus three-body (NN + NNN) interaction. The
parameter Np., is fixed to 12. The empirical energies extracted from experimental

data are shown as well.

Table 5.2: Binding energies per nucleon BE/A calculated with the NN interaction
(NN) and with the NN + NNN interaction (NN + NNN) in 60, %°Ca, and 8Ca

compared to the experimental values (exp).

BE/A [MeV]
AX NN NN + NNN exp
60 7.36 2.66 7.98
0Ca 11.65 2.31 8.55
BCa 12.95 1.93 8.67
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Fig. 5.4: The radial density distribution p(r) of Ca calculated only with the two-
body (NN) interaction (red line), with the two-body plus three-body (NN + NNN)
interaction (green line), and with the RMF model NL-SH [49] (blue line).

The empirical values of the binding energies are determined from the differences
between binding energies of doubly-magic nuclei °0O, “°Ca, and **Ca and the corre-
sponding neighboring odd-even nuclei. The single-particle energies of the unoccupied

levels are calculated by the equations

£(1°0) = BE('°0) — BE('70), (5.7a)
e"(*Ca) = BE(**Ca) — BE(*'Ca), (5.7b)
£"(**Ca) = BE(**Ca) — BE(*Ca), (5.7¢)

where B(#X) is the binding energy of the given nucleus. The single-particle energies

of the occupied levels are obtained by

e"(*0) = BE(**0) — BE(*°0), (5.8a)
e"(*Ca) = BE(*Ca) — BE(*Ca), (5.8b)
e"(**Ca) = BE(*"Ca) — BE(*Ca). (5.8¢)

The repulsive NNN interaction quenches the gaps between the major shells. The
implementation of the NNN interaction yields results in better agreement with the

available experimental data.
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Fig. 5.5: The neutron single-particle energies ! of the nuclei °0O, 1°Ca, and **Ca
calculated with the two-body plus three-body (NN + NNN) interaction for Npy.x =
6,8, 10, 12.

We conclude that the effect of the three-body NNN interaction qualitatively
improves the description of the radial density distributions, the charge radii, and
nucleon single-particle energies in the studied nuclei (150, 4°Ca, and **Ca). These
observables are crucial for the description of hypernuclear properties within the HF
method in the p-n-A formalism and the NA TDA method.

The proton (neutron) density p, (p,) influences the A single-particle energies
through the HF Eq. (4.4). The proton (neutron) single-particle energies e’ (e?') have
main impact on the hypernuclear spectrum in the NA TDA Eq. and .

The NNN interaction has a significant effect on the binding energies as well.
The values of the binding energies calculated with the (NN + NNN) interaction
underestimate the empirical data. However, our goal is to calculate the hyper-
nuclear spectra which are more affected by the density distributions and neutron
single-particle energies than by the binding energies of the nuclear cores. To reach

satisfactory description of the nuclear ground-state properties, the HF ground state
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Fig. 5.6: The neutron single-particle energies & of O calculated with only two-
body (NN) interaction and with two-body plus three-body (NN + NNN) interaction.

The empirical data (exp) [53] are shown for comparison.

needs to be corrected by the many-body correlations [51]. The implementation of

NN + NNN

these correlations is beyond the scope of this thesis.
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Fig. 5.7: The neutron single-particle energies @' of “°Ca calculated with only two-
body (NN) interaction and with two-body plus three-body (NN + NNN) interaction.

The empirical data (exp) [53] are shown for comparison.
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Fig. 5.9: The A single-particle energies ¢ in 170, 3!Ca, and {°Ca calculated with
the (NN + NNN) interaction for Ny., = 6,8, 10, and 12.

5.2 Calculations of }'O, {'Ca, and ’Ca

The hypernuclei 7O, 1! Ca, and {°Ca consist of one A particle bound in the even-even
nuclear cores 160, 4°Ca, and *8Ca, respectively. We calculate the A single-particle
energies in these hypernuclei by the HF method in the p-n-A formalism solved in
the dynamical mode (see Chapter [4)).

In Fig. , the A single-particle energies in 17O, 4'Ca, and 1°Ca are shown for
Nmax = 6, 8,10, and 12. The A single-particle states with negative energies represent
the bound states of the A hyperon and reach quick convergence in all considered
hypernuclei. The states with positive energies represent possible excitations of the
A particle and their convergence is much slower.

In Figs. and and there are A single-particle energies £% in the
hypernuclei 'O, 4!Ca, and ?’Ca calculated with and without the NNN interaction.
The results in 'O and 3°Ca are compared to available empirical data. The A
single-particle energies are systematically shifted upwards in energy with respect to

empirical data. However, the relative energies between the major shells, denoted as
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Fig. 5.10: The A single-particle energies e of the }7O calculated with only two-body
(NN) interaction and with two-body plus three-body (NN + NNN) interaction. The

empirical data (exp) [54] are shown for comparison.

double arrows, are in qualitatively better agreement with the available data.

The YN interaction used in our model is derived only in the leading order and
thus it is strongly dependent on the cutoff parameter A [41]. In Fig. the A
single-particle energies of the 7O, 4'Ca, and ?°Ca for the cutoff parameter A\ = 550
and 600 MeV for N,.. = 12 are shown. We observe that the A single-particle
spectra of all hypernuclei are shifted upwards by using the YN interaction with the
higher cutoff A\. The relative energies between the single-particle levels depend on
A as well. However, this dependence is very small in comparison to the influence of
the NNN force which we discuss in this text.

We conclude that the effect of the NNN interaction qualitatively improves the
description of the A single-particle energies in §' O, 1!Ca, and ?°Ca with respect to
available experimental data. We do not compare the absolute values of calculated
energies to the empirical data, since the A single-particle spectra shift upwards with
higher values of the cutoff parameter \. Instead, we compare the relative energetic
gaps between the major shells. Here the effect of the NNN force is crucial. The
relative gaps between the major shells are in much better qualitative agreement

with empirical values if we include the NNN force in our calculations.
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Fig. 5.11: The A single-particle energies e of the 3!Ca calculated with only two-
body (NN) interaction and with two-body plus three-body (NN + NNN) interaction.

The empirical data (exp) [55] are shown for comparison.
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Fig. 5.12: The A single-particle energies e of 4!Ca calculated with only two-body
(NN) interaction and with two-body plus three-body (NN + NNN) interaction.

38



CHAPTER 5. RESULTS

41
1 Ca

10

0ds /s

e — 1s1/9
0ds/2 0d
oo r— E 3/2
5 —’ 151/2 0"::T —
0ps/o —_ A=
+ h— XN
.‘a“ 0p1/2 7 6.1/ MeV ::o“ 5/2

6.5 MeV
Op1/2 = 0
P1/2

7.6|MeV
K 8.0|MeV

Op3/2
9.9 MeV

g

g
& | Opspe
g

—)P: 7.0/ MeV ]

Jl
1T

.5|MeV

8.5/MeV & 0y,
-10 A

T6MeV i 05,

e}
LI L L L L LN L R

1561 !
550 600 550 600 550 600

A [MeV] A [MeV] A [MeV]

Fig. 5.13: The A single-particle energies e} of 170, 4!Ca, and 3’Ca calculated with
the (NN 4+ NNN) interaction for cutoff parameter of the YN interaction A = 550
and 600 MeV.

39



CHAPTER 5. RESULTS

[ I £ | |
BOE RN
10 F F E
:=======|=£ EE EE E
§ R i 5
Y C I Yiomymm T .
% SF E3 E3 E
= F ¥ = ¥ ]
L £ Inim 4 -
= F_._._LlF ¥ ]
SR T ED E
| E EE— — e EE —_— E
EN: T T i 3
N -SF =+ i o =i
- I i——3 ]
10F + F =
- ¥ ¥ =
- T FoeT ]
_15:| L v Fro v F o
6 8 1012 6 &8 1012 6 8 1012

Nmax Nmax Nmax

Fig. 5.14: The relative energies (E™ — Eyy) of 150, 1°Ca, and $3Ca calculated for

Niax = 6,8,10, and 12.

5.3 Calculations of }°0, {’Ca, and {°Ca

The NA TDA method is used for calculations of hypernuclei with A hyperon bound
to even-odd nuclear core. Such hypernuclei are typically produced in experiments
through (7, K*) reactions [56]. In this section, we calculate the energy spectra of
hypernuclei 0, °Ca, and }¥Ca.

In Fig. the relative energies (E}* — Eyp) with respect to the ground-state
energy Fgp of 150, 1°Ca, and Ca calculated with (NN + NNN) interaction for
Ninax = 6,8,10, and 12 are shown. We calculate the energies of hypernuclei with
respect to the energies of the ground state Fyp of considered nuclei — 90, 4°Ca,
and **Ca. The red lines in Fig. represent the states with negative parity, the
blue lines represent the states with positive parity. In °Ca and 3*Ca, the states are

coupled in multiplets. The lowest energy levels shown in Fig. exhibit quick
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Fig. 5.15: The relative energies (E* — EM) 160 calculated with respect to the lowest
energy level of }°0 with only the two-body interactions (NN) and with the two-body
plus three-body interactions (NN + NNN). The experimental data (exp) [57] are

shown for comparison.

convergence.

In Fig. [5.15] the relative energies (B2 — E#) of O calculated with respect to
the lowest states 17 and 47, respectively, are shown for two-body (NN) interaction
and two-body plus three-body (NN + NNN) interaction and compared to the ex-
perimental data [57]. The implementation of the NNN interaction yields results in
qualitatively much better agreement with the experiment.

In Fig. [5.16] the relative energies (EM — E™) of 9Ca and $*Ca calculated
with respect to the lowest state 17 and 4~, respectively, are shown for two-body
(NN) interaction and two-body plus three-body (NN 4 NNN) interaction. The
implementation of the NNN force shows similar effect as in the case of }°0O. The
gaps between the multiplets of levels, as well as the gaps within each multiplet, are
quenched.

In Fig. the relative energies (E™* — Eyp) with respect to the ground-state
energy Eyr of 150, 1°Ca, and Ca calculated with the (NN + NNN) interaction are
shown for the cutoff parameter A = 550 and 600 MeV. The spectra are systematically
shifted upwards in energy with higher A\. The relative distances among the levels
or the multiplets of levels change with respect to A. However, this effect is much

smaller compared to the effect of the NNN force.
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interactions (NN) and with the two-body plus three-body interactions (NN + NNN).

The implementation of the NNN interaction qualitatively improves the descrip-
tion of the energy spectra of 00, °Ca, and *Ca. In 1°0, the ordering of the states
is in good agreement with experiment. The energies show qualitative improvement
with the addition of the NNN force. In 1°Ca and $2Ca, the levels form multiplets.
Again, the gaps between multiplets and the single levels shrink when the NNN force

is implemented.
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Chapter 6
Conclusions

In this work, we studied the effect of the three-body NNN force on the properties
of the single-A hypernuclei }'O, {'Ca, ?Ca, 150, 1°Ca, and Ca, and their corre-
sponding doubly-magic cores. We derived the proton-neutron-A (p-n-A) formalism
of the Hartree-Fock (HF) method that includes the three-body NNN and ANN in-
teractions. This method was used for calculations of the hypernuclei with one A
particle coupled to the even-even nuclear cores — §' O, 4'Ca, and {°Ca. In addition,
we derived the NA Tamm-Dancoff approximation (NA TDA). The NA TDA was
used for description of the hypernuclei with one A particle coupled to the even-odd
nuclear cores — 10, 1°Ca, and {*Ca. The principle of the NA TDA method is the an-
nihilation of one neutron (proton) from the even-even nuclear system and coupling
of this even-odd (odd-even) core with the A hyperon. Moreover, we laid out two
possible extensions of both used methods — the HF method in the p-n-A formalism
and the NA TDA method — towards more general formalism. In this formalism,
the A particle and the NA TDA phonon operators would be coupled with general
multiphonon excitations of the nuclear core generated by the Equation of Motion
Phonon Method (EMPM).

We implemented the chiral N°LOg,; NN and NNN potential as interaction among
nucleons, and the AN-AN channel of the chiral LO YN potential that represented
the two-body AN interaction. Although the whole theoretical formalism was derived
with the three-body ANN force, we did not yet implement any version of the ANN
interaction. The computer code for the HF method in the p-n-A formalism could
run in the static or dynamical mode. In the static mode, the code solved first the
HF equations for the bare nuclear core using only the NN and NNN interaction.
The HF equation for the A particle was solved independently. The HF code in the
static mode was used for the description of the nuclei °O, 4°Ca, and **Ca, and also
as the starting point for the NA TDA calculations of the hypernuclei 50, Ca,
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and Ca. The HF code in the dynamical mode solved all HF equations together
in each iteration. The dynamical mode was used for the description of hypernuclei
170, 11Ca, and ’Ca.

We studied the nuclei **O, % Ca, and “®Ca by using the HF code in the static
mode. We studied the convergence of the radial density distributions, charge radii,
nucleon single-particle energies, and the binding energies with respect to the size
of the basis determined by the maximal oscillator shell number number N.,. The
maximal configuration space in our calculations was Np,.x = 12, where we applied
the constraint Ny, = Nr(nlf}z = Né}f}f’ ). We reached convergence for the nuclei 10
and “°Ca. We need to perform calculations with larger Ny, in order to reach con-
vergence for the #Ca. We showed the effect of the NNN force on the radial density
distributions, charge radii, nucleon single-particle energies, and the binding energies
of the studied nuclei by comparing the results calculated with and without the NNN
interaction. We found that the inclusion of the NNN force significantly improves the
description of the radial density distributions, radii, and relative distances among
the nucleon single-particle energies in the studied nuclei. The binding energies cal-
culated within our model underestimated the empirical data. This was caused by
the fact, that we did not take into account many-body correlations. Their imple-
mentation was beyond the scope of this thesis. However, the most decisive influence
on the description of the hypernuclear spectra had the nuclear density distributions
and the nucleon single-particle energies which entered the HF and the NA TDA
equations.

The single-A hypernuclei 'O, 4!Ca, and ?’Ca were calculated by the HF code
in the dynamical code. These hypernuclei consisted of one A hyperon bound to
the even-even nuclear core. We studied their A single-particle spectra. The states
with negative energies ¢* quickly reached convergence with respect to the Nyax.

A required bigger configuration space for reaching the

The states with positive ¢
convergence. The NNN force quenched the gaps between the major shells and yielded
results in qualitatively much better agreement with the available empirical data. The
YN force implemented in our model was strongly dependent on the cutoff parameter
A. We found that with the change of A, the spectra systematically shifted in energy.
The relative distances between between the A single-particle energies depended on A
as well, but the change was much smaller than the one caused by the studied effect
of the NNN force.

The single-A hypernuclei }°0, °Ca, and $¥Ca were studied using the NA TDA
method. We studied their energy spectra. We found that the spectra of all studied
hypernuclei reached convergence with respect to the Ny... Moreover, we explored

that the NNN force improves the description of the spectrum of the *O with respect
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to the available experimental data. The NNN force quenched the relative distances
between the energy states of °0 and yielded results in good qualitative agreement
with the experiment. The energy states of the 1°Ca and {®Ca formed multiplets.
We found that the effect of the NNN force was quenching the relative distances
among multiplets, as well as the distances among the levels within each multiplet.
We explored, that the energy spectra of 0, 1°Ca, and ¥Ca depended on the cutoff
parameter of the YN potential A\. The change of A resulted in systematic shift of
the spectra in energy. The relative distances among levels and multiplets of levels
changed as well. However, the change of the relative distances was not as significant
as the one caused by the NNN force.

In our work, we discovered that the implementation of the three-body NNN
force into the self-consistent mean-field model improves significantly the description
of hypernuclear spectra. However, our method needs further improvements. The
most straightforward improvement is the implementation of a YN force that does
not depend on the cutoff parameter. It would also be desirable to implement the
three-body ANN force and take into account the A — 3 mixing. We plan to reach
all of these goals by implementing the SRG chiral LO YN interaction.

Moreover, we would like to perform calculations of the HF method in the p-n-A
formalism and the NA TDA method coupled with the multiphonon configurations
of the nuclear core generated by the EMPM.
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Matrix elements in spherical

harmonic oscillator basis

The basis of the spherical harmonic oscillator is constructed from the single-particle

states |i) which are denoted with the quantum numbers n, [, j, and m:
|7) = [niligimi), (A1)

where n; is the principal quantum number, [; is the orbital angular momentum,
Ji is the total angular momentum, and m; is the projection of the total angular

momentum. The numbers [;, j; and m; satisfy the following relations

1 1
li— =1 <7 <L+, A2
5| <i<ieg (A.20)
The wave function 9, j,m, () of the state |i) is defined as follows:

wnilijimi = Rnili (7", b) : [Yit(qﬁ, Q) ® X%} . (A3)

Jimg
The radial part R,,,(r,b) of the wave function in (A.3)) is defined as

b2r2

2n,! (il
n (br)lngfz)(bzrz)e_ 2, (A.4)

(5 1)

Ry (r,b) = b2

41
where Lg;ﬂ) are the generalized Laguerre polynomials.

Below we express the matrix elements of the kinetic operator, as well as all
interaction terms used in the Hamiltonian (2.32)) in the HO basis. The kinetic
matrix elements 7", ¢4 in (2.32) are expressed as:

1y 0 Vg
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OSCILLATOR BASIS

~2

M
1 1 3
M
_l_

1 1
57%}\/7% (’I’LZ + lz + §> 5ninj+1 6lilj 5]1]] 5’mimj

1 1
—+ 571&]\/71] (nj + lj + 5) 5ni+1 njéliljémimj] ; (A5)

~2

A 1 ! l;j P 1]
i L+ (A-1)iE JIE 9Ny | A

1 1 3
1— —hw | 2n; +1; + = | 0nyn; 000,05, Omsm.;
( ) [ () s

A

1 1
+ 577&)\/711 (nz + 1+ 5) 5nmj+15hlj6j¢jj 5mim]‘

1 1
+ 5%\/7% (n]’ + lj + 5) 5n¢+1 njéliljdmimj] . (AG)

The matrix elements of the two-body potentials in ([2.32]) are defined as:

- P, P,
pp,nn j/ppon _ kl — lk A.
Vijhi <” (A—1)M + M, > ’ A
_ P, P
Vpn,pA,nA _ .. Vpn,pA,nA . 1 2 kLY. A.7b
ijhl <” (A—1)M + M, (A.Tb)
Py-P;

The antisymmetrized matrix elements (ij| i |kl — lk), as well as the sym-

1)M~+Mp
metrized matrix elements (ij|m_%'—]5_im|kl> are generated by the CENS code [58].

The matrix elements of the three-body NNN interaction in Hamiltonian ({2.32))
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are defined as:

Vf;,fﬁm = (@jk:|Vppp|lmn — Inm + nlm — nml + mnl — min), (A.8a)

ikbmn, = (i7k|V™lmn — Inm 4 nlm — nml 4+ mnl — min), (A.8b)
VR = (i§K[VPP" |lmn — min), (A.8¢)
Vit = (kIVP™ lmn — Inm), (A.8d)
VER o = (ik|VPPMlmn — min), (A.8¢)

Virbivan = (iK|V"" | lmn — min), (A.8f)
Vo = (i3k[VP Imn). (A.8¢)

The interaction matrix elements (ij|17pp’nn|kl — k), (ij|‘A/pn|kl>,
Vi kimns Viikimn V;};ﬁm, V himn Were provided to us by Petr Navrétil. The interaction

matrix elements (ij|VPA|kl), (ij|V"4|kl) were provided to us by Daniel Gazda.
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Appendix B
J-scheme formalism

The formalism which uses the eigenstates as defined in (A.1) is called the M-scheme.
If the studied system exhibits spherical symmetry, we can develop a formalism which
disregards the projections of the total angular momenta and represents the eigen-

states as sets of three quantum numbers

This formalism is called the J-scheme.
The matrix elements of the kinetic operator of protons, neutrons, and the A

particle, respectively, are transformed into the J-scheme formalism as follows

p __ 4P

tnilijimi,njljjjmj - t(nilz‘ji) (njl;d;) 5 (SJUJdmZmJ" (B'2a)
n

tnilijimi,njljjjm] t(nl 1i3:),(njl555) 51 lj 5]1]] 5mzmj7 (BQb)
A _ A

tnilijimi,njljjjmj - (niliji),(n]-lﬂj 5 6]1]] 5mzmj' <B2C)

Analogically, the matrix elements of the density matrices of protons, neutrons, and

the A particle, respectively, read

— P .
pmlijim,-,njl]-jjmj - p( niligi),(njl ]]J)5lilj6]i]j5mimj (B3a)
n __ n
pnilijimi,njljjjmj - p nllljl) (nJ ]j])él l; 5.71]] 5mzmj7 (ng)
_ A
Ionilijz-mi,njljjjmj - p(nllljz),(njljj] 5 5]z]j§m1mj' <B3C)
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APPENDIX B. J-SCHEME FORMALISM

The transformations of the matrix elements of the two-body NN and AN interaction

operators into the J-scheme are expressed as:

2 . . = E :Ct’mifmf CJmetm s
nglijimgmglijimg nglyjeme,nilyjimyg Jimg,Jimg T, J1my mg+my,mi+m;
J
viee o N (B.4a)
(niligi),(nils35),(nelrde)s(nalign)?
pn A = E :C‘fmifmj ¢t s
nilijimi,ngligimg gl ieme,nilijimg Jimi,gimg ~ emag,gimg MMMy
J
J7pn B 4
‘/(niliji):(njljjj)7(”klkjk)7(nllljl)’ ( ) b)

nn A A R E :Ct’mifmf‘ Jmtm s
niligimi,ngligimg el ieme,nilijim Jimi,gimg ~ jemae,gimg © M Ty
J

v (B.4c)

(niligi),(nil535)s(nilede),(nilign)’

VpA OJmi"ij CJmk.—i-ml 5
nilijimi,nglijimg el jeme,nilijim j : Jim,Jjmg . jemp,gimg C Mk M m+m;
J

e (B.4d)

(naliga),(nsl535)s(nalide),(nilign)?

nA . Jm;+m; CJmk—i-ml 5
nilijimi,ngligimg neleieme,nilijimg — § : Jimi,gimg ~ emae,gimg M T m -y
J

v ma (B.4e)

(nligi),(njlids),(nelidn),(mligi)’
where the symbols

Jmierj

— (i 717 A A Jmy+my
Jimaygimg (Jimi, gymg|J mi+myg),  C;

e vy = Ik, Jima | J my+my),

represent the Clebsch-Gordan coefficients. The transformation of the matrix ele-

ments of the three-body interactions requires the following relations

‘”111]'17 nalajo, n3lsjs; Jia, JM> =

— J12 M2 JM . . .
= E E leml,ijQCJmMu,hmg|n151]1m17n212]2m2>n313]3m3>, (B-5)

mimam3 Mz

[n1lijima, nalajoma, nalzjzms) =
= Z Cj‘]llﬁ}mzcﬂﬁiffn?}?m!nllljb nalaga, n3lsjs; Jia, J mi+mo+ms).  (B.6)
Ji2J

Here, the symbol J;5 stands for the angular momentum which couples the angular
momenta j; and j5. The symbol J stands for the coupling of the angular momenta
Ji2 and j3. In addition, we can introduce the isospin quantum number ¢ and its
projection m;. Each type of particles can be expressed with distinctive values of ¢
and m; — protons (¢ = 3,m; = +3), neutrons (¢ = 5,m; = —3), and the A hyperon

2
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APPENDIX B. J-SCHEME FORMALISM

(t =0,m; =0). The equations (B.5]) and can be rewritten into the JT-coupled

form

\n1lijite, nalajota, nglsjsts; JioTia, JMT Myp) =

Jio M2 JM T12MT12 T Mt
z : z : z : § :leml ]2m20J12M12,j3m3Ct1m11,t2mt2OTIQMle,tgmt3

mimam3 Mig miy migmig Mrp,,

X |nqlyjimatimy, , nalajomatamy,, nglsjsmstsme,), (B.7)
and

|n1lyjimatimy, , nolsjomatamy,, nglsjsmstsme,)

_ § ' E CJlgmlerzchmlerngmg Clemt1+thCTmt1+mt2+mt3

Jimau,jame ~ Jigmi+mae,jsms T timey tamiy T Tiomey +mig t3mig
Ji1oJ T12T
X [nilyjity, nalagota, nslsgsts; JioTia, Jmy + mo + msTmy, +my, +my,).  (B.8)

In analogy to Egs. (B.4a))-(B.4€), we can introduce the relations between the three-

body interaction matrix elements in the JT-scheme and in the M-scheme:

PPP
nilijim; Pz l].]j m; Nl jeme il Jimynmlm fm MmN ln jnmn

_ § E 012m1+mJCsz+mJ+mk CJ12mz+mmCJml+mm+mn

Jimigimg 7 Jomitmy,jiemy - JimnimMm - Ji2mitmm,jnmn
J12J12
T{y=1,T12=1,T=3%,J{5,J12,J (B.9)
(naliga),(nilid5)s(nalede),(nlidn);(mmlmdm ), (nnlngn) )
nnn
nilijima,mgligimg nile jkme il jimynmlm jmmm nnln jnmn
E E J12ml+m]C‘]ml+m]+mk ClemlermC«Jmlerermn
JiMi,J515 2m1+m],]kmk IMmpLImMm — Jiomp+mm,jnmn
J12J12
T{2:l,T12:1,T:%7J{2,J12,J (B 10)
(nzlz]1)7(n]lj.7j)7(nklk]k)7(nlll.7l)7(n’mlm]m)7(nnl'ﬂ]’n)’ :
ppn

nilijima gl gimg el jeme nili gimenmlm jm MmNl jnmn

_ E E Jigmitmj ~Jmi+m;+my J12mz+mmCsz+mm+mn
Ji

i, Jimg 7 Jigmitmydgmy  JimsimMm ~ J12mi+mm,jnmn
J12J{2 J

2 =1 T=1T=1, 015, 12,7
3 (niliji)y(njljjj)7(nklkjk)7(nllljl)7(nmlmjm)7(nnlnjn)

1‘,T’ =1,T12=1,T=3,7}5,J12,J B
12 s 412 i 257125712,
(nzlz.jz)7(njljj])7(nklk.7k)7(nlll]l)7(nmlm]m)7(nnln.7n) ’ ( 11)
3
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pnn
nilijim; 3T lj]j mj Nl demeniliiimenmlm immm Nnln jnmn

o Z Z J12m1+m]Csz+m]+mk J12ml+mmCJml+mm+mn

JiMg,J5 15 2m1+m] JeMmE — JIML,ImMm Jiomp+mm,jnmn
J12J12 J

1T, =0,T1=0,T=1,J{5,J15,]
2 (nllljl)7(n]lj.7])a(nklkjk)v(nlll.]l)7(nmlmjm)7(nnlnjn)

n 1 pTa=LTi2= 1 =5 Tl Ji2,
6 (nll’LJ’L)7(“]l]j])7(nklk]k:)7(nlll]l)’(nmlm.7m)7(nnln.]”7«)

1 T =1T1=1,T=2 7}, J12,
3 (niliji)v(njljjj)7(nklkjk)7(nllljl)7(n7nl7nj'm)7(nnlnjn)

_|_

T 1,=1T1=0,T=1 715, J12,7

+ 2\/§ (niligi),(nil535),(nelidr)s(nalig)s(nmlmdm ), (nnlnin)

L 1,=0Ta=1,1=1 J},, J12,J

2\/5 (niligi),(nil535), (nalrde),(alidn)s(nmlmdm ), (nnlnin)

ppA
nilijima,mligimg nil jkme il fimynmlm jmmm nnln jnmn

_ Z Z 12mz+m]CJmi+mj+mk lezml—i-mmCJml-i-mm-i-mn

JiMisJ5m; J’Qmi—i-mj,]kmk JmpimMmm — Jiomp+mm,jnmn

) , (B.12)

J12J12
T{,=1,T12=1,T=1,J1,,J12,J
X 127 . 12 ) . . .
‘/(niliji)v(n]'lj]j)7(nklkjk)a(nlll]l)a(nmlmjm)7(nnln]n)7 (B 13)
pnA
nilijimi,ngligimg neleieme nilijimenmlm imMm,nnln jnmn
_ Z Z J12m1+m;CJm¢+mj+mk CJ12ml+mmCJml+mm+mn
JiMg,J5 15 12mi+mj7jkmk JMLImMam — J1amy+mm,jnMmn
Jizdiy
Lo, =1 T =1,7=1,00,, 712,7
9 " (niligi),(njlj3),(nklkde),(nalige),(Ramlmgm ), (nnlnjn)
1 71,20, 112=0,1=0,7,,J12,J
- 12—V, 412=Y,1 =U,J499,J12,
+ 2‘/(niliji)v(”]’ljjj)a(nklkjk)7(nllljl)y(”mlmjm)v(nnlnjn) ) (B14)
nnA
niligima,ngligimg el deme i jimenmlm jmmMm,nnln jnmn
Z Z 2m1+m3 Jmi+mi+my Jlgml-l—mmCJml-i-mm-i-mn
- Jima,Jimg Y Tl gmitmg,geme - JimsImMam S J12mitmam, jn
J12J12
T, =1,T12=1,T=1,J!,,J12,J
X 12 - ) ‘7 E) 127 ) ) ) ) . .
‘/(nz'liﬂi)a(njlﬂj)y(nklkjk)v(”llljl)7(nmlm3m)a(”nln3n) <B 15)

B.1 Hartree-Fock equations in the j-scheme for-

malism

In this section we show the Hartree-Fock equations in the J-scheme formalism. We

substitute matrix elements of the one-body, the two-body, and the three-body op-

erators transformed into the J-scheme to respective Hartree-Fock equations in the
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M-scheme (2.43)), (2.44)), and ([2.45)). We obtain the corresponding HF equations for

protons, neutrons, and the A hyperon in the J-scheme:

tp

(niligs),(n;l ng)élilj 053 Omym;
VP (2J +1)
+ Z Z (niliga),(nelidn),(njl35), (mlljl)p(nllljl) (nilkir) 5lllk5jzjk§mlmj m

J ngleik
il

e (2J +1)
+ Z Z (niligi),(nalidn),(njl5d;), (nzlwz)p(nlluz) (nilrjx) 5lllk5jjjk6mimj (232 + 1)

Jnglidk
nili g

Iwh N (2J+1) 1
D D Vil tmadui i) i Pt et O O Omim, (25i +1) (2jr +1)

Jonglidk
nili g

(2J +1)
+ B Z Z 2] ‘l’ 1 Jz]J 5lmlk5]m]k 6llln5]l]n5mzmg X

nglede Japd
nmlm]m

niliji
nnln]n

T ,=1,T12=1 Tff ,J12,J12,J
(nklkjk) (nllljl) (”z 1]1) (”mlm]m) (nnann) (n] JJJ)p(”mlme) (nklkjk)p(”nlnjn) (nllljl)

2J +

Nl jk J12J
nmlm]m
nylig
nnln]n
T ,=1,T12=1 Tff ,J12,J12,J n
(nklk]k) (nlll]l) (77/1 z]z) (nmlm]m) (nnln]n) (n] 7]3)p(nmlm3m) (nklk.]k)p(nnl’ﬂjn)’(nllljl)

(2J +1)
+_ > Z (2, + 1) 5%5mlmj5lklm5jkjm5lzln5jm

nplige Ji2J
NmlmJm
i
Nnlnjn
T{,=1,T12=1,T=3 J12,J12,J n n
(nklkjk),(nllljl),(niliji),(nmlmjm),(nnlnjn),(njljjj)p(nmlmjm)v(nklkjk)p(nnlnjn)v(nllljl)

(2J +1)
+ 9 Z Z ] ‘l’ 1 5]1]J 5m1mj5lklnL5jkjm5llln5jljn

nglege Ji2J
nmlm]m

niliji
nnln]n

T{,=0,T12=0,T=3,J12,J12,J 0
mzm (mil), (el o) (o)) (25 3) il ) (i) P i) ()

(2J+1)
+_ Z Z ] +1 5-71-]J5mlm]'5lklm6jkjm5lll'n5jljn

nleje Ji2J
NmlmIm

gy
nnln.jn

T{,=1,T12=1,T=1% J13,J12,J n
(k)N 30), s ) o) ), 158555 P oo o) () P ()
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2J + 1
+_ Z Z 2] +1 ]Uaamzmgélkl 5me6lll 6.7l.7n
nglpje Ji2d v

nmlm]m
i
nnln]n
T{,=1,T19=1,T=3,J12,J12,J

(nklk]k) (nllljl) (n4l z]z) (Mmlmjm),(nnlnin), (Tb] ]]7)p(nmlm]m) (Tbklk]k)p(nnln]n) (nilygr)

(2J +1)
Z Z ] + 1 j’L]J 5mzmj 6lklm6jkjm5llln5jljn
nkl g Jiad v

Nmlmim
nilygi
Nnlnjn
T{,=0,T12=1,T=%,J12,J12,]

(nklwk) (nalign)s(niligi),(nmlmdm) s (nnlngn),(n;l ]]J)p(nrnl'm]m) (nklk]k)p(nnln]n) (nalign)

2J + 1
Z Z 2] +1 531-7]5m1mj6lklm6jkjm(sllln5jljn
nklkjk Ji2J !

nmlmjm
gy
Nnlnin

T!,=1,T19=0,T=1 J15,J12,J p 0
(nrlrdr)s(nalign),(niligs), (”mlmjm),(nnlnjn),(njljjj)p(nmlmjm),(nklkjk)p(nnlnjn),(nllljl)

2J+1) 1
+ Z Z 2]@ —+ 1 2]71 + 1)5jijj 5mimj 5lklm6jkjm5hln5jljn

ngliie Ji2J

Nm, m]m
il
Nnlnin

T{y=%.T12=5,T=1,J12,J12,J b A
(nklk]k) (nlll.jl) (nzlzjz) (nmlmjm),(nnlnjn),(njljjj)p('flmlmjm),(’I’Lklkjk)p(nnlnjn),(nllljl)

(2J +1) 1
+ 3 2 Z (@5 £ 1) @2+ 1) 2e3sOmim; Ot O Ot Ot

nglpje Ji2J

N lmIm
il
Nnlnin
w Y= e Te=5.T=0u12.012, no oA '
(nklk]k) (nllljl) (nzlz.jz) (nmlm]m),(nnln]n),(n]l]]])p(nmlm]m)y(nklk]k)p(nnln]’ﬂ)v(nlll]l)

(2J +1) 1
+ 2 2 Z (@5 £ 1) 2+ 1) 2easOmim; Ot O Ot O

nplpje Ji2J
N lmIm

nily i
Nnlnin

T]y=1 Tio=1,T=1,J12,J12,J

(nilik), (nzluz) (niligi),(nmlmim),(nnlngn),(n;l ]Jj)p(nm mJm), (nklk]k)p(nn lngn),(niligr) —

95

p
=&; 51']"
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?niliji),(njljjj)(slilj5jijj5mimj
- (2J +1)
+ Z Z (nilige),(nelrdn),(njl575), (nzluz)p(”lllil) (i) 6lllk5ﬂ]k6mzm] (2] + 1)

J nileje
nli g

Jpn (2‘] + 1)
+ Z Z (naligs),(nelign),(nsl535), (nzluz)p(nllmz) (nelidr) 6lllk5jjjk5mimj (2]z + 1)

J nileje
nli gy

ynh (2J+1) 1
+ Z Z (n4ligs), (nklk]k) (nJ J]]) (nlll]l)p(nllljl) nklkjk 5lllk5.71]k6mzmj (2jz 4 1) (2jk 4 1)

J o nglede
nil gy

(2J +1)
+ o Z Z 2] + 1 jl]j 6lmlk5]m]k(sllln6Jl.]n5mzm]

nilpie JabJ
Nmlmim
nli gy
Nnlnjn
T12—1 T12 1 T_51J12aJ127J
(nklkjk) (nllljl) (nz z]z) (nmlm]m) (nnln]n) (nJ Jjj)p(nmlm]m) (nklk]k)p(nnlnjn) (nllljl)

(2J +1
[ Z Z 2,] +1 5]2]]5mzmj5lklm5jkjm(5llln5jljn

nglpje Ji2Jd
nmlm]m
nilyji
nnln]n
T{,=1,T12=1,T=3,J12,J12,J p
<nkzkak> (i) (i) (b o) (b (15835 (ol ) () P ) (a0

(2J + 1
+ 2 Z Z 2 +1 5j2.7] 6mlmj5lklm5jkjméllln5jljn
nlpje Ji2J jl

Nmlmim
nli gy
Nnlnjn

T12,1 Tio=1 Tff ,J12,J12,J p
(nilrgr),(nilign), (m i34)s(Mmlmdm),(nnlnjn),(n;l Jﬂy)p(nmlmjm) (naeliein) P (el (ali i)

(2J + 1
+ 9 Z Z 2 +1 632.7J 6mlmj5lklm5jkjméllln5jljn
nlpje Ji2J jl

nmlme
il
nnln]n
T{,=0,T12=0,T=1% J12,J12,J
(nklkjk) (ralige),(niligs)s(mbm gm)s(nnlngn), (05 m)p(nmlmam) (nklwk)p(nnlnﬂn) (naligin)

(2J +1)
+_ Z Z 2] +1 JZJJ5m1my5lklm5.7k]méllln5]l]n

nilpje Ji2J
N lmim
nilyji
Nnlnjn
T12—1 Ti2=1 T_, ,J12,J12,J
(nklkﬂk) (nlll]l) (nz z]z) (nmlm]’m) (nnlnjn) (nJ J]J)p(nmlmjm) (nklk]k)p(n"lnjn) (nllljl)
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2J + 1
+_ Z Z 2] +1 ]Uaamzmgélkl 5me6lll 6.7l.7n
nglpje Ji2d v

nmlm]m
nylig
nnln]n

T{,=1,T12=1,T=3,J12,J12,]
(nklk]k) (1), (niliga)s(mlm gm)s(nndngn ), (n ﬂi)p("mlm]m) (”’“l“’“)p(n"lmn) (malufo)

2J +1)
Z Z m]5mzmj5lkzm5jkjm5zlln5jzjn

nkl Tk J12J

NmlmIm

il

Nnlnjn
T{,=0,T19=1,T=%,J12,J12,J

(nklwk) (nalign)s(niligi),(nmlmdm) s (nnlngn),(n;l ]]J)p(nrnl'm]m) (nklk]k)p(nnln]n) (nalign)

(2J +1)
Z Z 5m]5mzmj5lklm5jkjm5zlln5mn

2
nklk]k JizJ ]Z

nmlm]m
niligy
Nnlnin

T!,=1,T12=0,T=1 J15,J12,J p 0
(nrlrdr)s(nalign),(niligs), (”mlmjm),(nnlnjn),(njljjj)p(nmlmjm),(nklkjk)p(nnlnjn),(nllljl)

2J+1) 1
+ Z Z 2]@ —+ 1 2]71 + 1)5jijj 5mimj 5lklm6jkjm5hln5jljn

ngliie Ji2J

Nm, m]m
il
Nnlnin

T{y=%.T12=5,T=1,J12,J12,J n A
(nklk]k) (nllljl) (nzlzjz) (nmlmjm),(nnln]n),(n]l]]])p(nmlm]’m)7(nklk]k)’0(nnln]n)v(nlll]l)

(2J +1) 1
+ 3 2 Z (@5 £ 1) @2+ 1) 2e3sOmim; Ot O Ot Ot

nglpje Ji2J
N lmIm
il
Nnlnin
% Vle 1 19=117=0,/12,J12,J
(nklk]k) (nllljl) (nzlz]z) (nmlm]m) (nnln]n) (n] ]]J)p(nmlm]m) (nklk]k)p(nn n]n) (nlll]l)

(2J +1) 1
+ 2 2 Z (@5 £ 1) 2+ 1) 2easOmim; Ot O Ot O

nplpje Ji2J
N lmIm

nily i
Nnlnin

T]y=1 Tio=1,T=1,J12,J12,J

(nklk]k) (nllljl) (nzlzjz) (nmlm]m) (nnln]n) (n] ]]J)p(nmlm]m) (nklk]k)p(nn n]n) (nlll]l) =

o7

n
&; 51']"
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A
t(niliji)»(nj 1345) 5lilj 6jijﬁ 6mimj
—_— (2J +1)
+ Z Z (naligs),(nelign),(nsl555), (nzlul)p(nzlm) (nilrjx) 6lkll(5]’“]l5mlmj 27, +1
(27i + 1)
J nkllqu
g
" (2J+1)
T Z Z (30 (i), (ng175) () P e ), ) Ot s Omirm (25: +1)
J nkllqu
il

(2J+1)
+ 9 Z Z + 1 JZ]J mzmg 5lklm6]wm5hln5jzyn
ngl Ji12J jz
k k]k 12

NmlmIm
nli gy
Nnlnjn

T2—17T12=1,T=1,J12,J p p
(nklkjk) (naligi),(niligi),(nmlmim), (nnlnjn),(n]-ljjj)p(nmlmjm),(nklkjk)p(nnlnjn),(nllljl)

(2J+1)
+_ Z Z +1 Jz]J mzm](slklmé]k]m(slllnéjljn

nlkJk J12J
Nm me
nli gy
Nn ln]n

5 VT12—1 T19o=1,T=1,J12,J
(nklk]k) (milig1),(niliga) s (mmlmdm)s(Pnlnjn),(njl Jjj)p(nmlm]m) (nklkjk)p(nnln]n) (nalygn)

(2J+1)
+ 5 § : § : Jz]J mzmjélklm(sjkjm(sllln(sjljn
l (25i +1)
nelpje Ji2J

Nmlmim
gy
Nnlnjn

1270 T12=0,T7=0,J12,J
(nklkjk) (i), (niligi), (”mlme) (Pnlngn),(n;l Jjg)p(nmlm]m) (nklkjk)p(nnln]n) (nalygn)

(2J —I—
+ 5 Z Z .71.7] mzmj5lklm5jkjm5llln5jljn

2
nplige Ji2J ]z

NmlmJjm

nili g
nnln]n
T{y=1,T12=1,T=1,J12,J D P . . :€A5
(nklkjk)7(nll1jl)7(niliji)»(nmlmjm)7(nnlnjn)v("jljjj)p("mlmjm)v("’“lkj’“)p(n"lnjn)’(nllwl) Lo
(B.18)

The HF energy corresponding to the minimized value of the energy functional (2.42)

is expressed in the J-scheme as follows:

28



APPENDIX B. J-SCHEME FORMALISM

_ p P
Enp = Z t(niliji)v(njljjj)p(njljjj) (niliga )(2‘72 + 1)5l Lj 53”1
nil;j;
n;l35;

+ Z t (niligi),(n;l;35) p(”JlJJ]) (niligs) (2jz + 1)51 L 531]3

n;l iJi
njl;j;
+ z : t(nz 1iji), n] J]] p(njlﬂj) (nil 1]2)5ll 531]3
n;l iJi
njl;j;
P P ..
+5 2 : Z 2J + 1 (nz Uz) (njl535),(niclk ), (nllljl)p(nklkjk)7(niliji)p(nllljl)v(njljjj)5l lkéjl]kél'lléjijl
n;l iJi
njl;jj
nilijk
mlm
J,nn n n
+35 2 : Z (27 +1) V(nz Ligi), (njljjj)v(nklkjk)7(nllljl)p(”klkjk):(niliji)p(”llljl):(”jljj]')(;l lkéj”’“él'lléﬁjl
nl ZJ’L
njl;jj
nilijk
il
J,pn ..
+ 2 : § : 2J+1) Vm ligi),(njlids),(nelin), (nllul)p(”klwk) (nil Uz)p(nllm) (n1535) 5l lk(sjl]kél'lldjijl
nlez
njl;j;
nilijk
nily i

(2J +1 JpA
+ Z Z 2]] + 1 m Ligi),(njtsd;3),(naeli i) (nllljl)p("klk]k) (nil uz)p(”zlmz) (njl335) 5l lkdﬂl]kél lléjl]l
nZ 74]74
n;l;j;
Nglejk
il

+ E E ymA ol ,0 5115 5115"
nzlz.h) (n;1535) (il gn)s(nalign) P (nelid ) (naliga) P (nlyge),(ngly55) Vil Y 35k Y10 Y 3idn
nl 1‘77/
njlij;
nlk
nllm

71 T12=1 Tff yJ12,J12,J
+ =D D> (N1 +1)Vm 113y (b)) (o) (b i)

nz zjz J J12
njl;j;
ngleJk
g
Nmlmim
Nnlnjn

P P P
X P matyi),(riti30) P o gon) o (515.35)P (it (e i) Ot 05 Ok s O o Ol O

>=1,T12=1 T** yJ12,J12,J
- (2 1)(2J + 1 | | %
+ Z Z J12 + J + )V”z Ligi),(njlids), (nklk]k) (nlig)s(nmlmim),(nnlnjn)

nz zjz L]JlQ

njl;j;

nlk

nli gy
nml'm]m

nnln]n

X p(nlll]l) (nz z]z)p(nm m]m) (ng g]g)p(nn n]n) nklk]k 51 lldjzjl(sl‘lméjjjm(slkln(sjkjm
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=1,T12=1,T=1,J12,J12,J
+ Z Z { 2J12 + 1)(2J + 1)‘/(77/1[1]1) (nJ J]]) (nklk]k) (nlll.jl)7("mlmjm)7(nnlnjn) X

nz 2.71 JJ12

njl;j;

ngle i

nilyji
NmlmIm

Nnlnjn

P % n
X p(nllljl),(ni 1jz)p(nmlmjm) (nj jjj)p(nn njn) (nklk]k)dl ll(s.]z]j 5l Im 5]]]m5lkl 5]k]n

1 2_1 T12 1T—*7J127J127‘]
+ 5212+ DT+ DV 1500, 00dedi)s (i) b (innn) ¥

)51 lldjz]j 5l Im 5];]m5lkl 5]k]n}

X Pt (ustid) Pt o) (051535) P o) (il

T{,=1,T12=1 T—§,J12,J12,J
+ Z Z { 2J12 + 1)(2J + 1)‘/(nzlzjz) (n] JJJ) (nklk]k) (nllljl)7(nmlmjm)7(nnlnjn) X

niliji S Jap

njl;j;

nlk
i

nmlm.]m

nnln]n

n n D
X p(nllljl)7(niliji)p(nmlmjm)7(njljjj)p(nnlnjn),(nklkjk)dl lldjz]j 6l lmdjj]mélklnéjk]n

1 . T e
+ §<2J12 + 1)(2J + 1)VT12 1,Th2=1,T=5,J12,J12,J

(niliji)7(njljjj)7(nklkjk)7(nllljl)7(nmlmjm)7(nnlnjn) X

n n p
X P lalie) (nitigi) P (oo g (51357 P o) (i) Ol 05 0Ly zm5mm5lkzn5mn}

Z Z (2J12 + 1)(2J + 1) 10, =1,T1o=1,T=1,7112,112,7
—|— — . . .\ X
2.]k + 1) (nz z]l) (n] ]]J) (nklk]k) (nlllJl)7(nmlme)7(nnZn]n)
nilijs  J,Ji2
njli;
niliik
nlig
nmlm]m
nnln]n

p(mlm) (nil z]z)p(nmlm]m) (njl Jjj)p(nnlnjn) (nalkdr) 51 1050 5l'lm5jjjm51kln5jkjn

(2J12 + 1)(2J + 1) 10,=1,T1o=1,T=1,712,12,7
+ 9 Z Z 2]]{3 + 1) (nz z]z) (TL] ]]j) (nklk]k) (nllljl)7(nmlmjm),(nnlnjn) X

nzlz]z J J12
njljj;
niliik
nlig
nm lm]m
nnln,]n

X ot (nstsi) P b (1517 POt gt 01t 072 001 O i Ot O

+ 1 Z Z { 2J12 + 1)(2J + 1)V 12_§,T12—§,T 0,J12,J12,J

(niligia) (ngl35), (i) (naligo) (b i ) (i)
nz 2.77, JJ12 2j + 1) Y
njl;j;
Ngleik
nilyji
nmlmjm
nnlnjn
A n
X pl(jnlll.jl)7(niliji)p(”ml7ﬂjm)7(njljjj)p(nnlejn),(nklkjk)(sl ll(s.]z]] 5l lm 5];]m5lkl 5kan
1 (2J12 + 1)<2J + 1) T{2=%,T12=%7T=17J127J127J
5 ij +1 (miliga),(njl595), (il dr ), (nalide)s(Rmlmdm)s(nnlngn) X
A n
X pl(pnllljl%(mliji)p(”mlmjm),(njljjj)p(nnlnjn),(nklkjk)él ll(;]z]J o lméjzjm(slklnéjwn}' (B.19)
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B.2 Tamm-Dancoff equations in the j-scheme for-

malism

The coefficients C};", C1}", thA, and 7 A in the TDA and NA TDA Eqs. (3.11)),

p

(3.19al), and ( are transformed into the j-scheme as:

P , :E (—1) Jh+thJmP Mh - oHopsd

nplpgpmp,nplpinmn JpMmp,jn—mn " (nplpip),(nalnin)’

orn ' :E (_ jh-‘rthJmP mp C#,HJ

nplpjpmp,nplpjnmn Jpmpdn—mn " (nplpjp),(nplngn)’

pA ‘ _§ : 1)t Jmp=mp  ppA,J
nplpgpmp,nplpinmn mepvﬂh mp" (nplpip),(nulnin)’

w,nA _ E : o jh+thJmp mp, wnA,J
nplpjpMp,Mplpjnmnp JpMp,dn—mp" (nplpjp),(nplnin)”

Jmp—my,
CJ Myp,jh—"Mp

Eq. (3.11) is in the j-scheme expressed as:

The symbols

pp,J’ pn,J’

. . . . v,p,J’
(s Ly Gyt )5 () (Lt Gt )Ml n) (mplplp),(nulngn)
(nh/lh/jh/):("plpjp) (nh/lh/jh/),(nplpjp)
nplpip pn,J’ ' ' nn,J’ ' ' P
nrlnin (Rnlndn),(Rpr Ly dpr) (Mt Lyt Gt )5 (Ml ) v, J' '
(nplpj lyr7 l,17 lyj (nplpjp),(nulnin)
plpdp) (Mpr Ly i) (gl dpe )y (nplpip)

v,p,J’

represent the Clebsch-Gordan coefficients.

(B.20a)
(B.20b)
(B.20c)

(B.20d)

The TDA

(np’lp’jp’)v(nh’lh’jh’)

vn,J'

(np’lp’jp’)v(nh’lh’jh’)
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pp,J pn,J’ pn,J’
The elements Ag "y 5 tmngn) By, ntnin) Bnndign) oot,0,)

(prlpr gt )s(nplpip) (Ut Gt )s(nplpdp) (nplpp) (Ut )

and AM™ in the Eq. (B.21]) are defined as:

(np/lp/j?y/%(nhlh,jh)
(g lpr it )s(nplpdp)

pp,J’ _ (P _ P L o
(np/lp/jp/),(nhlhjh) - (5nplpjp gnhlhjh)énpnp/5lplp/5]p]pl5nhnh15lhlh/5]h]h/
(”h'lh/jh/)y(”plpjp)

— =177 j / ]h J _le ;gen
+ Z(—l)J (20 4+ 1) { ! } V(nj?pi?p,),(nhzhjh),

J Jp Jw J! (npr by gpr ), (nplpgp)
(B.22a)
n,J’! _ J—Gp—jnr Jp Jn | 7 pngen
A?np/lp/jp/),(nhlhjh) - Z(_l) I (2J + 1) { . . , J/ } V(np’lp/jp’)r(nhlhjh)’
(sl dnt)s(mplpip) J Jp In (np by gt ) (nplpdp)
(B.22h)
n,J’ — J—j41—J jh jp’ J —J/,pn,gen
A(pnhlhjh)7(np/lp/jp/) - Z(_l) e (2J + 1) { TR R [ } V(nhlhjh)’(np’lp’jp’)’
(nplpdp),(mprlnrdns) J Jn Jp (nplpp),(neprlprdpr)
(B.22c¢)
nn,J’

P — n —_— n . . . .
(np/ lp/jp/ ),(nplpin) <€nplpjp 6nhlhjh )6”1’”;7’ 5lplp’ 5]10];)' 5nh”h' 5lhlh’ 53h]h’

(sl )y (nplpip)
T—jp—iips jp’ jh J —J/,nn,gen
+ Z(_l) P20 +1) { , } V(np/lp/jp/%(nhlhjh)'

J jp jh/ J (Rt lpr Jpt)s(Mplpdp)
(B.22d)
The NA TDA Egs. (3.19a]), (3.19b)) are in the j-scheme expressed as:
A
Z [(8("Plpjp) o a’5}()nhlhjh))67l?’n112’ dlplp’ 5jpjp’ 5nhnh’ 5lhlh’5jhjh’
NplpJp
nrlnin
YAy g I
J Jr' Jp J
—J',pA,gen v,pA,J’ . pA v,pA,J’
ngnhl?jhi)’(;lz)’lpl’jz?/)] " (nplogp).(nlnin) = (E7" — EHF)T(”p/lp'jp/)7(”;L/lh/jh/)’ (B.23)
Tpttpt Int )>\MeplpJp
A n
Z |:(€(”plpjp) - g(nhlhjh))(snpnp’ 6lplp’ 6jpjp' 5"h”h' 5lhlh15jhjh/
nplpjp
nplnjn
+ Z(_l)jp+jpl+jh+jh/+1(2j + 1) { jh jp/ J }
L J
J Jh Jp
XVJ/,nA,gen ‘ vaA,J’ o (EpA _E ) v,nA,J’ (B 24)
Enhl?]h.)’(;lf’lpl’jl?'i r(”plpjp)v(nhlhjh) - v HE r(np’lp’jp’)a(nh’lh/jh/)' ’
Nptbpt Int )\NplpJp
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g
The expressions ‘?h ].p represent the 6j-symbols.
I Jp
The generalized matrix elements are in the j-scheme defined as:
VJ ,PP,gen _ 7J'pp
(naligi),(njlids) — ¥ (niligi),(nglids),(nalide)s(maligi)

(nielkjr),(nalign)
DIPIEE
2J’ 1)
J nmlm]m +
nnln]n
—T1,=1,T12=1,T=3 7' J',J
(niligi), (n] ]]J) (nmlm]m) (nklk]k) (nlll]l) (nnln]n)p(nnlnjn) (nmlm]m)
L1l =1,T=1,7=3,7.0",J

—n

+

n 2T, =1T12=1,T=1,7",J',J .
— T, =1,Tyy=1,T=1,0",J',J A

(nilige)(n51335), (el g ) (Rl ie ) (i) (N in ) P (e ) (R b )

+V,

VJ ,an,gen —J/,nn
(niligi),(njl;35) = YV (niligs)s(nsli35),(neliiz),(nali)
(nilidr),(nalidi)
DIPIEEES
2J’ +1)
J nml'm.]m
Nnlnjn
—T1,=1T19=1,T=3 7' J',J —n

L+ L1y, =1T12=1,7=3,7.0",J

2T, =1,To=1,T=1 7, ]

_|_

V1271T12 1,7=1,J",J",J —_A
+ (niligs), (nglﬂg) (nmlmim),(neledn),(nilin), (nnln]n)p(nn lngn)s(Mmlmim)
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3 (iligi) (n51575), (o) (ki) () (o i) P (i) (L)

g (nilsge),(nsl535), (Rl ) (el ) (i) (e i ) P (e U in ) (e L i )

- —p
3 (niliji)v(njljjj)v(nmlmjm)a(nklkjk)v(nllljl)v(nnlnjn)p(nnlnjn)v(nmlmjm)

§ (niligi)(n1355) sl g )y (nilidin)s (i) (ki) P (i g ) (o i im)

(B.25)

(B.26)
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V J’ ,pn,gen - —J',pn
(niligs),(nslid5) = Y (naliga),(nsl555),(naclidn) , (raligy)
(nilkjr),(nilide)

(2J+1)
- ;nmlzmm 27 + 1)
Nnlnjn

1—1},=0,T12=0,7=1,7".0",J

5 (niligs), ("]lﬂg) (nmlmﬂm) (mrlrdr)s(niligi),(nnl an)p(”nlnﬂn) ("mlm]m)
1ot =1,1=1,1=1,7,0"J
6 (nl 1]1) (nj JJ]) (nmlm]m) (nklkjk) (nlll]l) (nnln]n)p(nnlnjn) (nmlmjm)
42 V T{,=1,T12=1T=1 7" J',J

3 nl 1.72) (nj j]]) (nmlm]m) (nklk]k) (nlll]l) (nnlnjn)p(nn n]n) (nm m]m)

1 T12_0 Tio=1,T=3,7",J",J pp
2\/_ (nili3i),(n5l535)s(nmlmdm),(nelede) (g0 (M lnn) I (nnlngn),(Rmlm jm)

+

1 T1271 T12=0,T=1 7" ,0",J A
2\/_ (niligi), njljjj)7("mlmjm)a(nklkjk)7(nllljl),(”nlnjn) (nnlnjn),(nmlmim)

1VT =1,T12=1,T=3,J",J',J —n
+ 3 (niligi),(nil535), (nmlmjm) (nrliir),(nilign), ("nlnjn)p(n"lnjn) (nmlmgm)
2 =T}, =1,T12=1,T=1,7" 0" ,J
3V 0l 17135). (b (i) (r113). ()P ), ()

L —17,=1,T10=1,7=1,0".0",J A

+

+ 5 (miligi),(nilid5),(nmlmgm), (nrlrdr),(nilign), (nnlnjn)p(”nlnﬂn) (nmlmim)
1 —77,=0,115=0,7=0,7",7" .7 —A
+ 5 (milige),(nil35),(mlmdm),(Nrlrde ) (nalige), (nnlnjn)p(”nlnﬂn) (nmlmim) (B27)
VJ’,pA,gen _ w7JpA
((”z‘llij]z:)v)(?jl;'éj))_ (niligi),(n5l555), (Nl i) (ralign)
NElejk),\NitiJi
(2J +1)
Yy ey
J nmlm]m
nnln]n
T127§,T127— T=1,J",J0",J
(nzlz]z) (n] JJJ) (nmlme) (nklkjk) (nlllJl) (nnlnﬂn)p(nnlnjn) ("mlWﬂWL)
41 1 —T{,=1 To=11T=1,0"7"J
2 (nili3i),(n5l535)s(Nmlmim)s(nele ), (nalidn), (”nlnjn)p(nnln]n) (nmlmim)
l—1l,=1To=1T=0,7",7",]
F 5V ilidi (st 1), b (i, (a0l Pt () (B.28)
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—J' ,nA,gen —J' nA

V(”z 1iga),(nilid5) = V' (naligi),(nsl5d5), (naledn),(nalide)
(nklkdr),(nilign)

(2J+1)
_l’_
DD D)
J nmlmjm
Nnlnjn
T12—§,T12 27T 1,J,J",J
(niligi), (”J JJJ) (nmlmim),(nelegn),(nilin), (nnln]n)’o(”nlnjn) (nmlmim)
Lo, =1 r=11=10"70"J
+ 5 (nilsji), (njlg]y) (nmlmim),(neledx), (i), (nnlnﬂn)p(nnlnﬂn) (nmlme)
l=1),=11,=1,1=0,0"0",J }

+ év(nzlﬂz) (njlg]g) (nmlmim),(neledx), (i), (nnlnﬂn)p(”nlnﬂn) (nmlme)

(B.29)

All interaction matrix elements V, as well as the density matrices p are expressed
in the self-consistent basis. The transformation between the elements in the HO and

in the self-consistent basis is the Eq. (2.30). The three-body terms with 7= 0 or 1
represent the elements of the ANN interaction and they are not implemented in the

NA TDA Eqgs. ) and -
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