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Abstract: This thesis deals with the interaction of antibaryons with
the nuclear medium. We calculated p̄, Λ̄, Σ̄ and Ξ̄

bound states in selected nuclei within the relativistic mean-
field (RMF) model, employing the G-parity motivated
antibaryon–meson coupling constants. Possible deviations
from the G-parity were taken into account by introducing
a scaling factor. The self-consistent dynamical calculations
using various RMF parametrizations revealed huge polar-
ization effects inside a nucleus due to the presence of an
antibaryon. The central density reaches about 3 times the
normal nuclear density. The antibaryons feel strong at-
tractive potential and are thus deeply bound in nuclei. We
incorporated the p̄ absorption in the nuclear medium by
including the phenomenological imaginary part of the op-
tical potential which was constrained by fits to p̄-atomic
data. We took into account the reduction of the phase
space available for the annihilation products which led to
a significant suppression of the p̄ absorption widths.
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Abstrakt: V tejto diplomovej práci sa zaoberáme skúmaním interak-
cie antibaryónov s atómovými jadrami. Uskutočnili sme
výpočty viazaných stavov p̄, Λ̄, Σ̄ a Ξ̄ vo vybraných ató-
mových jadrách v rámci relativistickej teórie stredných polí
(RMF), pri výpočtoch sme použili antibaryón–mezónové
väzbové konštanty získané pomocou G-parity. Možné od-
chlýky od presnej G-parity sme zobrali do úvahy zave-
dením škálovacieho parametra. Selfkonzistentné dynami-
cké výpočty odhalili silné polarizačné efekty v jadre spô-
sobené prítomnosťou antibaryónu. Centrálna hustota v
jadre vzrástla asi trojnásobne oproti normálu. Zistili sme,
že antibaryóny cítia v jadre silné priťahovanie a sú následne
hlboko viazané. Vo výpočtoch sme uvažovali absorpciu p̄
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fenomenologického optického potenciálu. Jeho parametre
boli určené z fitov na p̄-atómové dáta. Ďalej sme uvažovali
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viedlo k dramatickému poklesu antiprotónových šírok.
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Chapter 1

Introduction

The study of interactions of antibaryons with a nucleus is a source of valuable
information about the behavior of the antibaryon (B̄) in nuclear matter, the in-
medium B̄N interaction and nuclear dynamics. It may serve as a test of models of
baryon–baryon interaction as well as of various nuclear models.

The possibility of the existence of antibaryon–nucleus bound states has attracted
considerable interest in recent years. Numerous articles has been written on this
topic [1, 2, 3, 4, 5]. Much attention has been devoted to the antiproton–nucleus
interaction and the possibility of producing the p̄–nucleus bound states at future
experimental facilities [1, 6]. However, the experimental information about the p̄–
nucleus interaction is still rather limited.

The experiments aiming at exploring the p̄–nucleon interaction has been per-
formed since the discovery of the antiproton in 1955 [7]. In the 1960’s, the p̄ annihi-
lation was studied by stopping antiprotons in a bubble chamber in experiments at
the Brookhaven National Laboratory (BNL) and CERN [8]. Later, reactions with
p̄ were explored at the LEAR facility, CERN [9]. The p̄ elastic and inelastic scat-
tering off nuclei and proton knock-out reactions were analyzed in order to get more
information about the p̄–nucleus potential. The measurements of the differential
cross-section for the p̄ elastic scattering off 12C at 46.8 MeV at LEAR revealed a
deep absorptive and a shallow attractive part of the p̄–nucleus potential [10]. The
Crystal Barrel Collaboration studied annihilation channels as a function of the p̄
momentum [11]. The p̄ interaction with protons and nuclei at rest and very low mo-
menta was investigated in the Obelix experiment (see [12] and references therein).

Valuable information about the p̄–nucleus optical potential has been provided by
antiprotonic atoms [13, 14]. An antiprotonic atom is a sort of an exotic atom which
is created whenever an electron in atomic orbit is replaced by a negatively charged
hadron. As the (anti)hadron (e.g. p̄, π−,Σ−, K−) is much heavier than the electron
it gets considerably closer to the nucleus. Consequently, it interacts with the nucleus
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INTRODUCTION

not only electromagnetically but also by strong interaction. The strong interaction
causes energy shifts (ε) and widths (Γ) of atomic levels, which are measured by
experiment. The strong interaction shifts and widths can be calculated by adding
an optical potential into the relevant equation of motion. The imaginary part of
this potential describes absorption of the (anti)hadron in the nuclear medium.

The optical potential in a ‘tρ’ form was used to fit 107 data points of X-ray and
radiochemical data [15]. Various shapes of the nuclear density distribution were
used in those fits. Unfortunately, the optical potential could be determined at radii
where the nuclear density reaches just a few per cent of the central nuclear density.
The global fits led to the potential with the attractive real part about 110 MeV deep
and the absorptive imaginary part about 160 MeV deep when extrapolated into the
nuclear interior [15].

The results of the above analyses indicate that p̄ would not penetrate into the
nuclear interior because it annihilates at the surface region due to the strong ab-
sorption in the nuclear medium. No evidence for p̄–nucleus bound state has been
obtained so far [16].

The theoretical predictions of antiproton–nucleus bound states are based on the
symmetry between the NN and N̄N potential. The NN and N̄N potentials are
related to each other by the G-parity transformation. In the framework of the
meson exchange theory, the N̄N potential inspired by the G-parity transformation is
strongly attractive and has no repulsive core [17]. This suggests that the antiproton
should be bound deeply in the nucleus. Similar predictions based on the G-parity
transformation can be made about the potentials for Λ̄, Σ̄, Ξ̄ antihyperons.

In recent years, frequently used approaches to the study of nuclear structure
are based on relativistic models which describe a nucleus as a system of strongly
interacting nucleons and mesons. These models are formulated in the framework of
the relativistic quantum field theory. Relativistic models of a nucleus have become
quite popular because they naturally incorporate the spin-orbit force and account
for nuclear matter saturation. The prototype of such an approach is the relativistic
mean-field model (RMF) [18, 19]. The RMF model proved to be efficient tool for
calculating various properties of finite nuclei, such as binding energies, root mean
square (RMS) radii and single particle spectra [20].

Antiproton bound states in 16O and 208Pb were calculated within the RMF model
using G-parity motivated p̄ coupling constants by Bürvenich et al. [1]. The self-
consistent calculations, taking into account the rearrangement of the nuclear core,
led to a strong binding of the antiproton inside a nucleus. They also revealed large
compression of the nucleus induced by the presence of the p̄. The central density
reached values about 2− 4 times the normal nuclear density.
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INTRODUCTION

The annihilation of the p̄ in the nuclear medium was studied as well. It may
seem that the p̄ has to annihilate immediately in the nucleus and, therefore, it can
not live long enough to create an observable bound state. However, the phase space
available for annihilation products can be considerably suppressed for the antiproton
deeply bound in a nucleus. Consequently, many annihilation channels are simply
closed in the medium. Taking into account the phase space suppression, the life
time of the bound antiproton–nucleus system has been estimated to 2 − 20 fm in
Ref. [1].

In Ref. [2], the dynamical transport model [21] was used to calculate the time
needed for the formation of a compressed p̄–nucleus system. The calculations re-
vealed that, after the creation of the initial state, it takes about 4− 10 fm to reach
the maximal central density of order 2− 3ρ0 (where ρ0 = 0.16 fm−3) in a p̄-nucleus
system. They have also demonstrated, that the p̄ annihilation in the nucleus could
lead to the multifragmentation of the nucleus. This might serve as an observable
signature for the antiproton–nucleus bound state.

Hyperons and antihyperons are interesting particles with non-zero strangeness.
A hyperon represents a suitable probe for studying the nuclear structure as it is not
restricted by the Pauli principle in the nuclear medium. A nucleus containing one or
more hyperons is called a hypernucleus. Hypernuclei are widely explored systems in
many experiments [22, 23]. They provide valuable information about baryon–baryon
interactions in the nuclear medium, nuclear structure, as well as weak interaction
[24].

Antihyperon–nucleus bound states were studied in Ref. [1], where the calcu-
lations of Λ̄ embedded in several nuclei were performed. The Λ̄ was found to be
deeply bound in the nucleus and its presence caused sizeable compression of the
nuclear core. The same effect could be expected also in nuclei containing other anti-
hyperons. The question of the antihyperon annihilation in the nuclear medium was
examined as well [1]. It is assumed that the Λ̄ could live quite long in a nucleus.
The suppression of the phase space available for the annihilation products should
be more pronounced than in the case of the antiproton. It is due to the presence of
a heavy kaon in the lowest mass annihilation channel.

New experiments with highly energetic antiprotons of 1 − 15 GeV are planned
at the FAIR facility (Darmstadt). One of its parts, the PANDA experiment [6],
is going to explore the interaction of antiprotons with nucleons and nuclei in or-
der to study the hadron structure. These measurements are expected to provide
us with new information about the p̄N potential and p̄ annihilation in the nuclear
medium. Moreover, the information about the antihyperon–nucleon potential may
be obtained in the antiproton–nucleus reaction via the production of antihyperon–

11



INTRODUCTION

hyperon pairs after the antiproton–proton annihilation [25].

In this thesis, the interaction of selected antibaryons, namely p̄, Λ̄, Σ̄ and Ξ̄, with
nuclei is studied. We performed detailed calculations of various nuclear systems
throughout the periodic table within several RMF models, taking into account dy-
namical effects due to the strongly interacting antibaryon. While considering the
annihilation of the antiproton in the nuclear medium we took into account the re-
duction of the phase space available for the decay products of the deeply bound p̄. In
the second chapter, the RMF model is introduced and the equations of motion for a
nucleus with an antibaryon are derived. The results of self-consistent calculations of
antibaryon bound states in selected nuclei are discussed in Chapter 3. Conclusions
are summarized in Chapter 4. The notation used in this work is briefly introduced in
Appendix A, while the details of numerical calculations are presented in Appendix
B.
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Chapter 2

Relativistic mean-field approach

In this work, the interaction of antibaryons with nuclei is described in the frame-
work of the RMF model [18, 19]. In this model, (anti)baryons are treated as
Dirac fields ψ interacting via the exchange of meson fields. The meson fields are
sorted by their internal angular momentum J , parity P , isospin T and only fields
with natural parity are employed. The formalism incorporates the following fields:
isoscalar-scalar field σ responsible for the medium range attraction between nucleons,
isoscalar-vector field ωµ which mediates the short range repulsion, isovector-vector
field ~ρµ which allows to adjust isovector properties of nuclei, and massless vector field
Aµ which mediates the electromagnetic interaction. The RMF model is based on
two approximations: the mean-field approximation and the no-sea approximation,
which allow us to solve the equations of motion.

2.1 Model Lagrangian density

The starting point of the RMF model is the effective Lagrangian density for a
system of nucleons interacting via the exchange of aforementioned meson fields:

L = ˆ̄ψ[iγµ∂µ−mN−gσσ̂−gωγµω̂µ−gργµ~τ · ~̂ρµ−eγµ
1

2
(1 + τ3)Âµ]ψ̂

+
1

2

(
∂µσ̂∂

µσ̂ −m2
σσ̂

2
)
− 1

2
(
1

2
Ω̂µνΩ̂

µν −m2
ωω̂

µω̂µ)

− 1

2
(
1

2
~̂Rµν · ~̂Rµν −m2

ρ~̂ρµ · ~̂ρµ)− 1

4
F̂µνF̂

µν

− 1

3
g2σ̂

3 − 1

4
g3σ̂

4 +
1

4
d(ω̂µω̂µ)2 ,

(2.1)

where the arrow denotes an isovector quantity and ~τ is the triplet of Pauli matrices;
mN denotes the mass of the nucleon; mσ, mω, mρ are the masses of the σ-, ω- and
ρ-meson; gσN , gωN , gρN and e are the coupling constants of the corresponding fields
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RELATIVISTIC MEAN-FIELD APPROACH

with nucleons. The g2, g3 and d represent the strengths of the scalar σ and vector
ω field self-interaction. All considered fields in the above Lagrangian density are
treated as quantum fields. The field tensors Ĝµν (Ĝ = Ω̂, F̂ ) and ~̂Rµν of the vector
fields are defined as:

Ĝµν = ∂µĜν − ∂νĜµ ,

~̂Rµν = ∂µ~̂ρν − ∂ν ~̂ρµ − gρN(~̂ρµ × ~̂ρν) .
(2.2)

2.2 Model approximations

In order to simplify the handling with quantum fields, the mean-field approxi-
mation is applied. It means that all quantum fluctuations of the meson fields are
omitted and the fields are treated as classical ones. Practically, we replace all meson
quantum fields with their expectation values, e. g.:

σ̂ → σ = 〈σ〉 , (2.3)

and similarly for the other fields. The nucleons then behave like independent parti-
cles moving in the meson mean fields.

The no-sea approximation consists in omitting the contribution from vacuum
polarization. It means that we neglect the contribution of antiparticles and take
into account only the contribution of A nucleons in the nucleus. The nucleon field
operator can be expanded in terms of the single particle states α as

ψ̂ =
∑
α

ψα(xµ)âα , (2.4)

where âα is the annihilation operator for a nucleon in the state α and ψα(xµ) is
the single particle wave function. The densities reduce then to sums over the single
particle states, e. g. the scalar density

ˆ̄ψψ̂ =
A∑
α=1

ψ̄αψα , (2.5)

where the sum runs over the A nucleons bound in a nucleus.
Furthermore, we are interested in stationary states and spherically symmetric

nuclei. The stationarity implies that all time derivatives of the fields will vanish.
Rotational invariance implies that all spatial components of the fields will be zero
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as well

σ̇ = 0, ω̇µ = 0, ~̇ρµ = 0, Ȧµ = 0 , (2.6)

〈ωi〉 = 0, 〈~ρi〉 = 0, 〈Ai〉 = 0 for i=1,2,3 . (2.7)

We assume that single particle states do not mix isospin, i. e., only the neutral
component of the isovector ρ-meson field is considered. After the above assumptions,
only the σ, ω0, ρ0 and A0 fields remain. The time dependence of the (anti)baryon
wave function is as follows

ψα(x) = e−iε
αtψα(~x) , (2.8)

where εα are the single particle energies.

2.3 RMF model for a nucleus with an antibaryon

When we adopt the above approximations, the Lagrangian density (2.1) for a
system of nucleons and antibaryons will acquire the form

LRMF =
∑
j=N,B̄

ψ̄αj (iγµ∂
µ −mj − gσjσ − gωjγ0ω0 − gρjγ0τ3ρ0 − eγ0

1 + τ3

2
A0)ψαj

− 1

3
g2σ

3 − 1

4
g3σ

4 +
1

4
dω4

0 −
1

2
[(∇iσ)2 +m2

σσ
2]

+
1

2
[(∇iω0)2 +m2

ωω
2
0] +

1

2
[(∇iρ0)2 +m2

ρρ
2
0] +

1

2
(∇iA0)2 .

(2.9)

Using the Hamilton’s variational principle with respect to given fields ψj, σ, ω0, ρ0,
and A0, we derive the equations of motion for a system of interacting nucleons and
antibaryons. The Dirac equation for the nucleons and antibaryons is as follows

[−i~α~∇+ β(mj + Sj) + Vj]ψ
α
j = εαj ψ

α
j , j = N, B̄ , (2.10)

where
Sj = gσjσ, Vj = gωjω0 + gρjρ0τ3 + ej

1 + τ3

2
A0 .
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RELATIVISTIC MEAN-FIELD APPROACH

The Klein–Gordon equations for meson fields read

(−4+m2
σ + g2σ + g3σ

2)σ = −
∑
j

gσjρSj ,

(−4+m2
ω + dω2

0)ω0 =
∑
j

gωjρVj ,

(−4+m2
ρ)ρ0 =

∑
j

gρjρIj ,

−4A0 =
∑
j

ejρQj ,

(2.11)

where ρSj, ρVj, ρIj and ρQj are the scalar, vector, isovector and charge densities,
respectively, defined as

ρSj =
∑
α

ψ̄αj ψ
α
j ,

ρVj =
∑
α

ψ̄αj βψ
α
j ,

ρIj =
∑
α

ψ̄αj βτ3ψ
α
j ,

ρQj =
∑
α

ψ̄αj β
1 + τ3

2
ψαj ,

(2.12)

where the sums run over all occupied single-particle states α. The system of Dirac
and Klein–Gordon equations (2.10) and (2.11) represent a self-consistent problem
which is to be solved by iterative procedure. At the beginning, we start from a
reasonable estimate of the meson and electromagnetic fields and solve the Dirac
equation. It yields the nucleon and antibaryon wave functions which are used to
evaluate the densities (2.12). Then, the densities are used as a new source terms
in the Klein–Gordon equations (2.11) to calculate new meson and electromagnetic
fields. These are again inserted into the Dirac equation which yields nucleon and
antibaryon spinors for the next iteration. This procedure is repeated until the self-
consistency is reached. A detailed numerical solution is given in Appendix B.

After we obtain the solution for nucleon, antibaryon and meson fields we can
calculate physical quantities characterizing the system, such as the total binding
energy, (anti)baryon separation energy, density distributions, and root mean square
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(RMS) radii. The total binding energy for the system of nucleons and antibaryon is

−B = E + ECMS − AmN −mB̄

=
∑

α (εαN −mN) + (εαB̄ −mB̄)

− 1

2

∫
d3x (−gσN σρSN + gωN ω0ρVN + gρN ρ0ρIN + eA0ρQN)

− 1

2

∫
d3x (−1

3
g2 σ

3 − 1
2
g3 σ

4 + 1
2
dω4)

− 1

2

∫
d3x (−gσB̄ σρSB̄ + gωB ω0ρV B̄ + gρB̄ ρ0ρIB̄ − eA0ρB̄)

− 30.75 (A+ 1)−1/3[MeV] ,

(2.13)

where ECMS is the center-of-mass energy, εαj is the single particle energy of the
(anti)baryon. The RMS radius is defined as

rRMS =

√∫
V

r2ψ̄αψαdV . (2.14)

2.4 Density–dependent RMF model

When investigating the interaction of an antibaryon with a nucleus we found
strong polarization of the nuclear core. The presence of the antibaryon in the nucleus
causes massive changes in the nuclear density distribution. The core density reaches
3 − 4 times the normal nuclear density. The models with constant couplings do
not necessarily describe correctly the behavior of the nucleus when extrapolated to
such high densities. A density dependence of coupling constants was introduced in
order to improve the equation of state of nuclear matter at higher densities. The
parameters of the density–dependent model are fitted in such a way that the model
describes well not only the properties of finite nuclei and nuclear matter in the
vicinity of saturation point but also at higher densities.

In the density–dependent RMF model proposed by Typel and Wolter [26], the
meson–nucleon coupling constants gσN , gωN and gρN become a function of the vector
density ρVN . The dependence of gσN , gωN on the baryon density is of the form

giN(ρVN) = giN(ρ0)fi(x) , i = σ, ω , (2.15)

where
fi(x) = ai

1 + bi(x+ di)
2

1 + ci(x+ di)2
(2.16)

is a function of x = ρVN/ρ0 and ρ0 denotes the saturation density of nuclear matter.
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The coupling for the ρ meson has an exponential character

gρN(ρV N) = gρN(ρ0)exp[−aρ(x− 1)] . (2.17)

The parameters ai, bi, ci, di and aρ are obtained from fits to nuclear properties and
constrained by conditions on the functions fi(x). In this model, the meson self
interactions are set to zero, i. e. g2 = g3 = d = 0.

The Lagrangian density for the density–dependent model has formally the same
form as (2.1), only the coupling constants now depend on the vector density ρVN .
The density dependence leads to an extra term appearing in the Dirac equation

[−i~α~∇+ β(mj + Sj) + Vj]ψ
α
j = εαj ψ

α
j , j = N, B̄ , (2.18)

where
Sj = gσjσ, Vj = gωjω0 + gρjρ0τ3 + ej

1 + τ3

2
A0 + ΣR . (2.19)

The rearrangement term ΣR, which comes from the density dependence of coupling
constants, acquires the form

ΣR =
∂gωN
∂ρVN

ρVNω0 +
∂gρN
∂ρVN

ρINρ0 −
∂gσN
∂ρVN

ρSNσ . (2.20)

The Klein–Gordon equations for meson fields with density–dependent coupling con-
stants will maintain their form as in (2.11). Due to the density dependence (DD)
of the couplings, the rearrangement term will appear in the equation for the total
binding energy

−B = EDD + ECMS − AmN −mB̄

=
∑

α=1 (εα −mN) + (εB̄ −mB̄)

− 1

2

∫
d3x (−gσN σρSN + gωN ω0ρVN + gρN ρ0ρIN + eA0ρQN + 2ΣR)

− 1

2

∫
d3x (−gσB̄ σρSB̄ + gωB̄ ω0ρVB̄ + gρB̄ ρ0ρIB̄ − eA0ρB̄)

− 30.75 (A+ 1)−1/3[MeV] .

(2.21)

2.5 Antibaryon–nucleus interaction

When we intend to describe the antibaryon–nucleus interaction within the RMF
model, we need to know the strength of the antibaryon–meson coupling. In the
framework of the meson exchange theory, the BN and B̄N interactions are related
by the G-parity transformation. It involves the charge conjugation and a rotation
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in isospin space Ĝ = Ĉexp(−iπI2). The G-parity is a general rule and reflects the
basic symmetries of strong interaction. It links states with the same isospin quantum
number and transforms, e. g., a nucleon to an antinucleon

Ĝ |N〉 = |N̄〉 , (2.22)

where |N〉 and |N̄〉 denotes a nucleon and antinucleon state, respectively [27].
All non-strange mesons are eigenstates of Ĝ with eigenvalue ±1, e. g., a system of

n pions has eigenvalue (−1)n. The contribution of various mesons to B̄N interaction
will then differ from BN interaction by their G-parity eigenvalue. According to this
rule, the potential for an antibaryon can be obtained by the transformation of the
baryon potential

VB̄N =
∑
m

GmVm , (2.23)

where m denotes the exchanged meson and Gm denotes the value of the G-parity
for the meson field.

In the RMF model, we use the meson fields σ, ω, ρ and photon field γ to describe
the nucleon–nucleus interaction. The meson fields σ, ρ and photon field γ have
positive G-parity, while the ω field has negative G-parity. In case of the p̄–nucleus
interactions, the coupling constants for the antiproton will be then in the following
relationships to the nucleon coupling constants

gσp̄ = gσN , gωp̄ = −gωN , gρp̄ = gρN . (2.24)

The nuclear ground state is well described by an attractive scalar potential |S| '
350 MeV and a repulsive vector potential |V | ' 300 MeV. The resulting total poten-
tial for slow nucleons is S + V ' −50 MeV. However, for the antiproton the vector
potential becomes attractive due to the G-parity transformation and, therefore, we
obtain really deep central potential S − V ' −650 MeV. It indicates that the p̄
would be bound very strongly in a nucleus. However, the exact G-parity symmetry
is an idealization. The fits to p̄-atomic data give the real part of the p̄ potential in
the range of 100−300 MeV in the nuclear interior. This deviation from the G-parity
may be caused by many-body effects and by the annihilation of the p̄ in the nucleus.
Therefore, we use scaled antiproton–meson coupling constants in our calculations

gσp̄ = ξ gσN , gωp̄ = −ξ gωN , gρp̄ = ξ gρN , (2.25)

where the parameter ξ is from interval 〈0, 1〉 and is considered to have the same
value for all fields involved.
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The couplings of the vector mesons ω and ρ to hyperons were determined using
SU(6) symmetry relations [28, 29, 30]. The values of σ coupling constants were
fitted to yield empirical hyperon potentials in the nuclear medium [28, 31, 32, 33].
The coupling constants for the Λ,Σ and Ξ hyperons are as follows:

gσΛ = 0.621gσN , gωΛ = 2/3gωN , gρΛ = 0 ,

gσΣ = 0.5gσN , gωΣ = 2/3gωN , gρΣ = 2/3gρN ,

gσΞ = 0.299gσN , gωΞ = 1/3gωN , gρΞ = 2/3gρN .

(2.26)

To obtain the antihyperon–meson couplings we applied again the G-parity transfor-
mation to hyperon–meson couplings. The ω meson reverses its sign and becomes
attractive. This again indicates that antihyperons would be bound considerably
deeper in the nucleus than hyperons. Especially, the Σ hyperon is unbound in the
nucleus while the Σ̄ is bound very strongly in our model (see Fig. 3.15).

2.6 Parametrizations used in the RMF model

The relativistic mean-field model represents an effective theory that contains
several parameters which need to be adjusted phenomenologically. These parameter
sets, which define the masses of meson fields and meson–nucleon coupling constants,
are obtained by fitting nuclear matter and finite nuclei properties (saturation point,
binding energies, RMS radii, ...). Basically, there are two groups of parametrizations:
linear and nonlinear. The linear models [34] have advantage in their simplicity
and numerical stability. They describe reasonably well finite nuclei and nuclear
matter saturation properties. However, they yield too large nuclear compressibility
(K ∼ 500 MeV). The nonlinear parametrizations contain extra nonlinear terms
for the scalar σ field and vector ω field (and extra parameters g2, g3 and d). The
nonlinear RMF models give very good description of nuclear matter properties as
well as the characteristics of finite nuclei [35, 36]. In our calculations, we employed
the nonlinear parameter sets TM1 (for heavier nuclei) and TM2 (for light nuclei)
introduced by Sugahara and Toki [37]. For the density dependent model we adopted
the TW99 parameter set [38]. It is capable of describing the nuclear properties in
similar fashion as the nonlinear parametrizations. The parameter sets TM1, TM2
and TW99 are listed in Table 2.1.
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Table 2.1: The parameters of the TM1, TM2 and TW99 models.

TM1 TM2 TW99

mN [MeV] 938 938 939 aσ 1.365469
mσ [MeV] 511.198 526.443 550 bσ 0.226061
mω [MeV] 783 783 783 cσ 0.409704
mρ [MeV] 770 770 763 dσ 0.901995
gσN 10.0289 11.4694 10.7285 aω 1.402488
gωN 12.6139 14.6377 13.2902 bω 0.172577
gρN 9.2644 9 .3566 7.3220 cω 0.344293
g2 [fm−1] -7.2325 -4.4440 0 dω 0.983955
g3 0.6183 4.6076 0 aρ 0.515000
d 71.3075 84.5318 0 - -
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Chapter 3

Results

We performed self-consistent RMF calculations of antibaryon–nucleus bound
states. We added p̄, Λ̄, Σ̄, Ξ̄ into the 1s1/2 state of the following nuclei: 16O,
40Ca, 90Zr and 208Pb, and examined the properties of such systems. We calculated
nuclear binding energies, nuclear and p̄ density distributions, RMS radii and single
particle energies. We performed static as well as dynamical calculations. In the
static case, the rearrangement of the nucleus due to the presence of the antibaryon
was neglected (the source terms for antibaryons were not added into the right hand
sides of the Klein–Gordon equations (2.11)). In the dynamical case, the polarization
of the nuclear core caused by the antibaryon, as well as the dynamical influence of
the nuclear medium on the antibaryon, were considered.

In this work, we will denote AXB̄ the nucleus AX with one antibaryon B̄.

In the first part of this chapter, the results of the calculations of the systems
16Op̄, 40Cap̄, 90Zrp̄ and 208Pbp̄ for scaling factor ξ = 0.25, 0.5, 0.75, 1 are discussed.
The absorption of the p̄ in the nucleus is not considered in this section. The results
of calculations with constant nucleon–meson couplings and density–dependent cou-
plings are compared. The annihilation of the p̄ in a nucleus is studied in Section
3.2. In the last section of this chapter, the calculations of nuclei with antihyperons
Λ̄, Σ̄ and Ξ̄ are presented.

3.1 Interaction of p̄ with nuclei

In this section, we will demonstrate that the antiproton embedded in the nucleus
interacts very strongly with the nucleons of the core. The mean fields acting on both
the antiproton and nucleons become sizeable, which causes considerable changes
in the nuclear structure. In Figure 3.1, the scalar and vector potentials acting
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Figure 3.1: The scalar (top) and vector (bottom) potentials felt by the p̄ in various
nuclei, calculated for ξ = 1 in the TM (left) and TW99 (right) model. The dotted
lines correspond to the scalar and vector potentials (shown with reversed sign) in
16O, 40Ca, 90Zr and 208Pb.

on p̄ in the systems 16Op̄, 40Cap̄, 90Zrp̄, and 208Pbp̄ are plotted. The calculations
were done for both parametrizations TM and TW99 and for ξ = 1. The scalar
and vector potentials for p̄ are both attractive due to the G-parity transformation.
We also present the scalar and vector potentials in ordinary nuclei for comparison
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Figure 3.2: The total potential acting on the antiproton (p̄) and nucleon (N) in
16Op̄ (top) and 208Pbp̄ (bottom), calculated for ξ = 1 in the TM (left) and TW99
(right) model. The total potential felt by a nucleon in 16O and 208Pb is plotted for
comparison.

(it is to be noted that the vector potential is displayed with reversed sign). We
observe extremely deep p̄ potentials, particularly in the central region of the nucleus
(r ≤ 2 fm), the depth of the vector potential being about half of the scalar one.
This corresponds with the position of the antiproton in a nucleus, which is found to
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Figure 3.3: The nucleon and antiproton densities in 16Op̄, 40Cap̄, 90Zrp̄ and 208Pbp̄,
calculated for ξ = 1 in the TM model.

be localized in the very center of the core. At larger distances, the scalar and vector
potentials are comparable with the corresponding ones in ordinary nuclei, especially
in heavier systems like 40Cap̄, 90Zrp̄ and 208Pbp̄. Both models yield approximately
the same depths of the p̄ scalar as well as vector potentials. The TW99 model gives
slightly shallower potentials; the differences between their depths in the presented
nuclei are smaller than in the TM model.

In Fig. 3.2, the total potentials felt by the p̄ and nucleons in 16Op̄ and 208Pbp̄
are plotted. They were calculated for ξ = 1 within the TM and TW99 model.
The total potentials acting on nucleons in ordinary nuclei 16O and 208Pb are shown
for comparison. The total depth of the p̄ potential in both models is tremendous,
around 1700 MeV in the central region of both nuclei. This indicates that the p̄ feels
strong attraction from surrounding nucleons. And on the contrary, the nucleons feel
stronger attraction in the presence of the p̄ (compare the dashed and dotted line
in the figure). A similar situation holds for 40Cap̄, 90Zrp̄ as well. It implies that a
nucleus with an antiproton will be deeply bound in the case of the p̄ couplings with
exact G-parity symmetry.

The nuclear density distribution together with the corresponding p̄ density cal-
culated for ξ = 1 in the TM model are shown in Fig. 3.3. We can see that the p̄ is
localized in the center of each nucleus up to ∼ 1.5 fm and there is a corresponding
increase of the core density distribution in the central region for all nuclei. The
nucleons are compressed in the central region since they are strongly attracted by
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the antiproton.
In Fig. 3.4, the nuclear density distribution in 16Op̄ and 208Pbp̄ is plotted as a

function of the scaling parameter ξ for both RMF models. The nuclear density in
16O and 208Pb is shown for comparison. In both p̄ nuclei, there is a significant rise
in the central nuclear density with increasing parameter ξ. We witness some sort
of saturation for ξ = 0.75, then the density slightly decreases. The saturation can
be explained by the growth of the repulsive force, mediated by the ω field, between
nucleons as they get close to each other. This saturation appears in both models.
The central density in a nucleus with the antiproton in the 1s1/2 reaches 3− 4 times
the normal nuclear density. An interesting issue is to examine to what extent is the
nucleus affected by the antiproton. In the case of light 16O, the presence of the p̄
affects the entire nucleus. On the other hand, in 208Pb, the antiproton influences
only the central part of the nucleus up to ∼ 2 fm. The outer region of the nucleus
remains unchanged, the nucleons here are almost unaffected by the presence of the
antiproton. It is a consequence of the short range of the p̄N interaction. There
are apparent differences between the TM and TW99 model. In the TM2 model,
the central density in 16Op̄ is much more lower than in the TW99 model for all ξ
since the latter model gives a lower value of nuclear compressibility (K = 240 MeV)
than the former one (K = 344 MeV). Therefore, the nucleons are allowed to get
closer to each other and the nuclear density increases more significantly. On the
other hand, the nuclear density distribution in the central region of 208Pbp̄ is similar
in both models. The nuclear compressibility of the TM1 model (K = 281 MeV)
is now closer to the TW99 model. Moreover, the p̄ potential in the central region
of 208Pbp̄ is slightly shallower for the TW99 model which affects also the density
distributions. This is illustrated in the lower part of Fig. 3.5, where the p̄ densities
calculated within the TM1 and TW99 models are compared.

In Fig. 3.5, we present the p̄ density distribution in 16Op̄ and 208Pbp̄ for different
values of ξ, calculated in the TM and TW99 model. The p̄ density in both nuclei
gradually increases with an increasing value of the parameter ξ up to ξ = 0.5 when
the p̄ density reaches its maximum and then starts to decrease until ξ = 1. In
the RMF model, the nucleon in a nucleus moves in mean-fields created by ALL
nucleons including itself. It means that the nucleon feels a kind of “attraction” as
well as “repulsion” from itself. In an ordinary nucleus, this effect is negligible (and
decreases with increasing nucleon number A). However, while the potential acting
on a nucleon in an ordinary nucleus is about 50 MeV deep, the scalar and vector
potentials acting on the antiproton are both attractive and much deeper, see Fig.
3.1. The effect of the p̄ self-interaction then becomes pronounced (note that the
p̄ vector self-interaction is repulsive). In order to exclude the p̄ self-interaction we
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Figure 3.4: The nucleon density distribution in 16Op̄ (top) and 208Pbp̄ (bottom),
calculated for different values of the parameter ξ in the TM and TW99 model.

modified our computing program correspondingly. In Fig. 3.6, we can see the density
distribution of the p̄ in 16Op̄ and 208Pbp̄ in the TM model compared with density
distribution of the p̄ in the same nuclei with excluded p̄ self-interaction. When the
p̄ self-interaction is excluded, the p̄ density increases with increasing value of the
parameter ξ and reaches much higher values. It has to be mentioned that the effect
of the p̄ self-interaction starts to be dominant for ξ ∼ 0.5. Therefore, the p̄ density
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Figure 3.5: The density distribution of the p̄ in 16Op̄ (top) and 208Pbp̄ (bottom),
calculated for different values of the parameter ξ in the TM and TW99 model.

distribution in Fig. 3.5 saturates at this value of ξ. For lower values of the scaling
parameter ξ, the effect is less important. The core density in a nucleus where the
p̄ self-interaction is eliminated reaches higher values, as well, and the whole system
is more bound (up to 15%). One should object that all calculation from now on
should be performed without the p̄ self-interaction. However, as will be shown in the
next section, the information from p̄ atoms tell us that the strength of the realistic
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Figure 3.6: The density distribution of the p̄ in 16Op̄ (top) and 208Pbp̄ (bottom),
calculated for different values of the parameter ξ in the TM model with (left) and
without (right) the p̄ self-interaction.

p̄–nucleus interaction corresponds to ξ ' 0.2− 0.3. For this scaling, the effect of the
p̄ self-interaction is negligible.

The difference between the proton and neutron densities (the isovector density
∆ρ = ρp − ρn) in 16Op̄ calculated within the TM2 and TW99 model is displayed in
Fig. 3.7 for various values of ξ. In the case of the TM2 model, the proton density
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Figure 3.7: The difference between the proton and neutron densities ∆ρ = ρp − ρn
in 16Op̄, calculated for different values of the parameter ξ within the TM2 (top) and
TW99 (bottom) model. The case of 16O is shown for comparison.

becomes higher than the neutron density in the center of the nucleus. There is an
evident massive rearrangement of the nuclear structure due to the presence of the
antiproton. Protons are more concentrated around the p̄ than neutrons because
they feel strong isovector and Coulomb attraction from the antiproton. On the
other hand, neutrons feel isovector repulsion due to the same isospin projection as
p̄. The rearrangement of the nucleus is significant in region up to ∼ 2 fm. This
corresponds with the antiproton location in the nucleus. In the density–dependent
model TW99, we see only a minor effect of the proton and neutron rearrangement
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Figure 3.8: The difference between the proton and neutron densities ∆ρ = ρp − ρn
in 208Pbp̄, calculated for different values of the parameter ξ within the TM1 (top)
and TW99 (bottom) model. The case of 208Pb is shown for comparison.

in the center of the nucleus 16Op̄. However, when we look closer, it is more evident
that the proton density is slightly higher than the neutron density in the central
region, but this difference decreases with increasing value of ξ. This behavior can
be explained by the decreasing strength of the nucleon–ρ meson coupling with the
increasing nucleon density. As can be seen in Fig. 3.9, the ρ meson coupling drops
substantially in the central region of 16Op̄ and consequently the strength of the ρ
field is smaller. Therefore, protons do not feel such strong isovector attraction and
neutrons do not feel such strong isovector repulsion in the center of the nucleus.
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Figure 3.9: The dependence of the density dependent coupling constants on radial
coordinate r in 16Op̄ and 208Pbp̄ for corresponding meson fields, calculated for ξ = 1
in the TW99 model. The radial dependence of the nucleon-meson coupling in normal
nuclei (dotted lines) is shown for comparison.

The difference between the proton and neutron densities in 208Pbp̄ is displayed
in Fig. 3.8 for different values of ξ, calculated within the TM1 and TW99 model.
There is again a considerable rearrangement of the nuclear structure in the TM1
model. But there is strong polarization of the nucleus for the TW99 model, as well.
Since 208Pb contains more neutrons than protons, the effect of the small ρ-meson
field in the central region (see Fig. 3.9) causes that neutrons are more concentrated
in the center than protons.
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Figure 3.10: The single particle energies of protons (red) and neutron (blue) in 16Op̄,
calculated for ξ = 1 in the TM2 (left) and TW99 (right) model. The single particle
energies of protons and neutrons in 16O are displayed in the middle of each graph.

The single particle energies of protons and neutrons in 16Op̄ calculated within the
TM2 and TW99 model are displayed in Fig. 3.10 for ξ = 1. We can observe that pro-
tons and neutrons in the 1s1/2 state are bound really deeply in the p̄ nucleus. There
is noticeable influence of the ρ meson. In the TM2 model, protons are more bound
than neutrons because of the isovector attraction which is stronger than Coulomb
repulsion. On the other hand, protons and neutrons in the density dependent model
are bound similarly deep due to the weak ρ-meson field in the central region of the
nucleus. The coupling of the repulsive ω field decreases with density faster than the
σ coupling (see Fig. 3.9) and this influences the deeper binding of nucleons in the
TW99 model. The spin-orbit splitting in the p shell is much larger in 16Op̄ than
in the ordinary nucleus. It is proportional to the sum of the absolute values of the
scalar and vector potential (it follows from the nonrelativistic reduction of the Dirac
equation) which is considerably larger in the case of 16Op̄. As a consequence, the
nucleons in the 1p1/2 level in 16Op̄ are shifted upward and are even less bound than
in 16O. The spacing between the 1s and 1p levels is bigger because of the deeper
and narrower potential well in the p̄ nucleus.

The single particle energies in 90Zrp̄ calculated for ξ = 1 within the TM1 and
TW99 model are shown in Fig. 3.11. The antiproton causes here similar effects as in
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Figure 3.11: The single particle energies of protons (red) and neutron (blue) in 90Zrp̄,
calculated for ξ = 1 in the TM1 (left) and TW99 (right) model. The single particle
energies of protons and neutrons in 90Zr are displayed in the middle of each graph.

16Op̄. The large spin-orbit splitting even results in the rearrangement of the p, d and
f single particle levels in 90Zrp̄. The single particle energies of protons and neutrons
in the 1s1/2 state are again considerable. However, the higher nucleon energy levels
are almost unchanged by the presence of the p̄. It is due to the short range of the
p̄N interaction.
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Table 3.1: The p̄ 1s single particle energies Ep̄, total binding energies B, and binding
energies per particle B/A (in MeV) in p̄ nuclei, calculated statically for ξ = 1
within the TM and TW99 model (the binding energies of normal nuclei are shown
in parentheses).

Ep̄ B B/A

16Op̄
TM2 -755.9 -884.2 (-128.6) -52.0
TW99 -740.0 -860.4 (-120.6) -50.6

40Cap̄
TM1 -658.1 -1002.4 (-344.4) -24.5
TW99 -786.0 -1111.6 (-325.7) -27.1

90Zrp̄
TM1 -647.6 -1433.3 (-785.7) -15.8
TW99 -784.1 -1528.7 (-744.6) -16.8

208Pbp̄
TM1 -623.0 -2257.7 (-1634.8) -10.8
TW99 -766.2 -2271.7 (-1505.4) -10.9

The p̄ single particle energies, the total binding energies, and binding energies
per particle in selected nuclei, calculated statically with ξ = 1 within the TM and
TW99 model, are shown in Table 3.1. The p̄ single particle energies represent the
solution of the corresponding Dirac equation. In the static calculations, the single
particle energies are identical with the p̄ binding energies and their absolute values
decrease with increasing A in the TM model. In the TW99 model, 16Op̄ violates
this sequence. The binding energies of the p̄ nuclei are substantially larger than the
binding energies of the corresponding normal nuclei. The considerable compression
of a nucleus caused by the p̄ manifests itself by the binding energies per particle
B/A which are extremely large particularly in lighter nuclei (and decrease with A).

In Table 3.2, we present the p̄ 1s single particle energies, p̄ binding energies, total
binding energies, and binding energies per particle in 16Op̄, 40Cap̄, 90Zrp̄ and 208Pbp̄.
The presented quantities are results of the dynamical calculations with ξ = 1 within
the TM and TW99 model. The binding energy of a p̄ nucleus considerably increases
in both models. The TM model gives similar p̄ single particle energies as the TW99
model (except 16Op̄). On the other hand, the p̄ binding energies in the TM model
are somewhat higher. Both models predict quite similar values of the energies Ep̄,
as well as Bp̄ in all nuclei under consideration (except the TM2 model in the case
of 16Op̄). When we compare the results of the static and dynamical calculations in
Tables 3.1 and 3.2, we see that the p̄ single particle energies calculated dynamically
are approximately twice as high as those calculated statically. The total binding
energies in dynamical calculations are considerably higher, as well. Further, there
is a significant difference between the p̄ single particle energies and the p̄ binding
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Table 3.2: The p̄ 1s single particle energies Ep̄, total binding energies B, antiproton
binding energies Bp̄, and binding energies per particle B/A (in MeV) in p̄ nuclei,
calculated dynamically for ξ = 1 within the TM and TW99 model.

Ep̄ Bp̄ B B/A

16Op̄
TM2 -1212.4 -1131.3 -1259.9 -74.1
TW99 -1130.9 -993.5 -1114.1 -65.5

40Cap̄
TM1 -1097.2 -1019.9 -1364.3 -33.3
TW99 -1107.5 -989.2 -1314.9 -32.1

90Zrp̄
TM1 -1119.6 -1012.9 -1798.6 -19.8
TW99 -1130.0 -987.6 -1732.2 -19.4

208Pbp̄
TM1 -1107.5 -1016.4 -2651.2 -12.7
TW99 -1124.9 -990.3 -2495.7 -11.9

energies in the dynamical calculations. This is due to the polarization effects in
nuclei caused by the antiproton. The binding energies per particle reach tremendous
values. We can see that the highest energy per particle is in 16Op̄, with B/A = 74

and 65 MeV for the TM2 and TW99 model, respectively. The binding energy per
particle decreases with increasing nucleon number A.

Table 3.3 shows the total binding energies, p̄ 1s single particle and binding ener-
gies together with the difference between the p̄ single particle and binding energies,
calculated for different values of the scaling parameter ξ in 16Op̄ within the TM2
model. We can observe how the binding energy of the nucleus, and the p̄ single parti-
cle and binding energy increase with increasing value of the parameter ξ. Moreover,
the difference between the p̄ single particle energy and the p̄ binding energy is getting
larger with ξ. It shows how big are the polarization effects in the nucleus.

Table 3.3: The total binding energies B, p̄ 1s single particle energies Ep̄, antipro-
ton binding energies Bp̄ and the difference between the single particle energies and
binding energies Ep̄−Bp̄ of the p̄ (in MeV) in 16Op̄, calculated dynamically for given
values of ξ within the TM2 model.

16Op̄ TM2 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1

B -353.6 -678.5 -994.1 -1259.9
Ep̄ -265.2 -623.4 -948.6 -1212.4
Bp̄ -225.0 -549.9 -865.5 -1131.3

Ep̄ −Bp̄ -40.3 -73.5 -83.1 -81.1
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3.2 p̄ annihilation in a nucleus

An inseparable part of the p̄–nucleus interaction is the annihilation of the p̄ in
the nuclear medium. Since the RMF model does not address the absorption of the p̄
in the nucleus we adopted the imaginary part of the optical potential in a ‘tρ’ form
from the optical model phenomenology:

2µVopt(r) = −4π

(
1 +

µ

mN

A− 1

A

)
b0ρ(r) , (3.1)

where µ is the p̄–nucleus reduced mass. While the density ρ was treated as a dynam-
ical quantity determined within the RMF model, the parameter b0 was constrained
by fits to p̄-atomic data [15].

The global fits to the p̄-atomic data give a single value for the imaginary part
of b0, Imb0 = 1.9 fm for all nuclei considered. Together with the parameter Imb0

from global fits we adopted a single scaling factor ξ = 0.2 for the real part of the p̄
potential. However, the fits to the data for particular nuclei give somewhat different
parameters: Imb0 = 0.35 fm for 16O, Imb0 = 2.0 fm for 40Ca and Imb0 = 2.5 fm for
208Pb. The corresponding values of the scaling parameter ξ needed to fit the data
were ξ = 0.35, 0.15 and 0.25 for 16O, 40Ca and 208Pb, respectively.

In our calculations, we added the imaginary part of the optical potential Vopt to
the real RMF p̄ potential and defined the width of the p̄ state Γp̄ = 2ImEp̄. We
performed calculations for the above sets of parameters Imb0 and ξ, determined by
the fits to p̄-atomic data.

The strongly interacting antiproton embedded in the nucleus causes a consider-
able rise of the nuclear density, which leads to an increased p̄ decay width. On the
other hand, the antiproton in the nucleus is deeply bound even for ξ ' 0.2 − 0.3.
Since the energy available for the annihilation in the nuclear medium is

√
s = mp̄ +

mN − Ep̄ − EN , the phase space available for the annihilation products is consid-
erably suppressed for the deeply bound p̄. Therefore, the width Γp̄ is a result of
the above two competing effects. In order to incorporate the phase space reduction,
we introduced suppression factors. We considered various vacuum N̄N annihilation
channels listed together with corresponding thresholds and branching rations Bc in
Table 3.4. We used the phase space suppression factors for the vacuum two-body
annihilation channels in the form

fs =
M2

01

s

√
[s− (m1 +m2)2][s− (m1 −m2)2]

[M2
01 − (m1 +m2)][M2

01 − (m1 −m2)2]
Θ(
√
s−m1 −m2) , (3.2)

where m1, m2 are the masses of the annihilation products and M01 = mp̄ + mN .
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Table 3.4: The annihilation channels for N̄N at rest in vacuum.
channel

√
s [GeV] Bc [%]

2π 0.27 0.38
3π 0.41 2.5
πρ 0.91 5.1
4π 0.54 12.5
πω 0.92 0.6
2ρ 1.54 0.9
5π 0.68 31.0
ρω 1.55 2.3
6π 0.82 17.2
ωη 1.32 1.5
2ω 1.54 3.0
7π 0.97 5.9

The values of the suppression factors for the annihilation into 3 and more pions were
adopted from Ref. [1]. In Fig. 3.12, we can see the phase space suppression factors
fs as a function of the center-of-mass energy

√
s. The imaginary part ImVopt was

then multiplied by a corresponding suppression factor and branching ratio for each
vacuum annihilation channel from Table 3.4.
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Figure 3.12: The phase space suppression factor fs for various annihilation channels
as a function of the center-of-mass energy

√
s.
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Table 3.5: The total binding energies B, p̄ 1s single particle energies and p̄ widths
Γp̄ (in MeV) in 16Op̄, calculated for different ξ and Imb0=1.9 fm within the TM2
model.

SF
16Op̄ TM2 ξ = 0.2 ξ = 0.5 ξ = 1

B -292.6 -678.5 -1259.9
Ep̄ -192.3 -623.3 -1212.4
Γp̄ 145.4 43.1 2.8

no SF
B -272.4 -661.8 -1251.9
Ep̄ -175.6 -605.2 -1202.6
Γp̄ 552.3 780.0 752.2

In Table 3.5, we present the total binding energies, p̄ single particle energies and
widths in 16Op̄, calculated for different values of ξ and Imb0 = 1.9 fm within the
TM2 model. To demonstrate the crucial role of the phase considerations, we show
the results of the calculations with (SF) and without (no SF) suppression factors
for comparison. The energy of the p̄ and the total binding energy increase with the
increasing value of the parameter ξ in both cases. The larger is the energy of the
p̄ in the nucleus the lower is the energy available for annihilation. Consequently,
the phase space for annihilation products is significantly reduced which results in a
considerably smaller p̄ absorption width, which for ξ = 1 is only 2.8 MeV. In the case
without suppression factors, the p̄ widths are really huge, compare Γp̄ = 752 MeV
(no SF) with Γp̄ = 2.8 MeV (SF). Such a strong p̄ absorption contributes to repulsion
in the real part of the optical potential and, as a result, the antiproton is less bound
than in the case with SF.

The real and imaginary part of the p̄ potential calculated for ξ = 0.35, 0.15, 0.25

and Imb0 = 3.5, 2.0, 2.5 fm in 16Op̄, 40Cap̄ and 208Pbp̄, respectively, are displayed
in Fig. 3.13. The quite different scaling factors ξ in the studied nuclei result in
considerably different depths of ReVopt. In particular, the p̄ potential in 16Op̄ is
about 3 times deeper than the p̄ potential in 40Cap̄. Such a huge difference between
the p̄ potentials is hard to be explained by a theoretical model and thus seems
unrealistic. The differences between the imaginary p̄ potential are less pronounced
due to the effect of the suppression factors.

In Table 3.6, we present the total binding energies, p̄ single particle energies
and widths in selected nuclei, corresponding to the p̄ potentials shown in Fig. 3.13.
The differences between the depths of the potential in Fig. 3.13 result in a sizable
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Figure 3.13: The real (top) and imaginary (bottom) part of the p̄ potential in 16Op̄,
40Cap̄ and 208Pbp̄ for ξ = 0.35, 0.15, 0.25 and Imb0 = 3.5, 2.0, 2.5 fm, respectively,
calculated dynamically within the TM model.

Table 3.6: The total binding energies B, p̄ 1s single particle energies Ep̄ and widths
Γp̄ (in MeV), calculated self-consistently within the TM model for ξ = 0.35, 0.15, 0.25
and Imb0 = 3.5, 2.0, 2.5 fm.

16Op̄ TM2 40Cap̄ TM1 208Pbp̄ TM1

B -479.8 -438.8 -1817.5
Ep̄ -409.2 -101.0 -225.5
Γp̄ 144.8 182.0 269.7
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Figure 3.14: The real (top) and imaginary (bottom) part of the p̄ potential in 16Op̄,
40Cap̄ and 208Pbp̄ for ξ = 0.2 and Imb0 = 1.9 fm, calculated dynamically within the
TM model.

differences between the p̄ single particle energies; Ep̄ in 16Op̄ is 4 times larger than the
one in 40Cap̄ and about twice as large as Ep̄ in 208Pbp̄. Moreover, the total binding
energy in 16Op̄ is surprisingly larger than the one in 40Cap̄. On the other hand,
the widths Γp̄, which are controlled by the suppression factors, differ noticeably less
from each other, as shown in the last row of the Table 3.6.

Fig. 3.13 and Table 3.6 clearly indicate the insufficiency of the p̄-atomic fits to
determine the central depth of the p̄ potential. Namely the atomic data probe the p̄
potential at the nuclear surface and its shape in the interior is a result of extrapola-
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Table 3.7: The total binding energies B, p̄ 1s single particle energies Ep̄ and widths
Γp̄ (in MeV), calculated self-consistently within the TM model for ξ = 0.2 and
Imb0=1.9 fm.

16Op̄ TM2 40Cap̄ TM1 208Pbp̄ TM1

B -292.6 -477.1 -1774.4

Ep̄ -192.3 -152.9 -163.1

Γp̄ 145.4 182.6 169.3

tion within the applied model. From the above reasons we prefer a parametrization
determined from the global fits of the p̄-atomic data, which yields unified (and rea-
sonable) description of the p̄ interaction with nuclei in a large mass range.

In Fig. 3.14, the real and imaginary part of the p̄ potential for 16Op̄, 40Cap̄
and 208Pbp̄ are plotted, calculated dynamically within the TM model for the global
parameters ξ = 0.2 and Imb0 = 1.9 fm. The depths of the real part of the p̄
potential are approximately the same for all considered nuclei and reach nearly 300

MeV. The depths of ImVopt reflect the differences between the densities in the studied
nuclei. The absorption potential is the shallowest in 16Op̄ and the deepest in the
40Cap̄. Even if we consider the suppression of the phase space for the annihilation
products, the absorptive p̄ potential is still fairly strong in the center of a nucleus
where the antiproton is localized.

In Table 3.7, we present the total binding energies, p̄ single particle energies and
widths in selected nuclei, corresponding to the p̄ potentials shown in Fig. 3.14. The
suppression of the phase space is again taken into account. The p̄ single particle
energies are close to each other in all nuclei due to the similar depths of ReVopt. The
p̄ widths still remain large despite the considered suppression of the phase space.

In Table 3.8, we compare static and dynamical calculations with real, complex
and complex with SF potentials in 16Op̄ for ξ = 0.2 and Imb0 = 1.9 fm within the
TM2 model. While the static calculations give about the same values of Ep̄ and the
total binding energy in all three cases, the results of dynamical calculations differ
considerably. The polarization of the nucleus is significant even if the absorption
of the p̄ is involved—the difference between the p̄ single particle energies calculated
statically and dynamically is up to 55 MeV. In dynamical calculations, the real p̄
potential gives the largest p̄ energy Ep̄, while the complex potential without SF
yields Ep̄ about 20 MeV lower due to the “repulsive” effect of the strong absorptive
part in Vopt. The suppression of the phase space for annihilation products reduces
significantly the p̄ widths (more than 3 times in the case of dynamical calculations)
and leads to larger p̄ energy Ep̄, which is comparable with the real case.
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Table 3.8: The total binding energies B, p̄ 1s single particle energies Ep̄ and widths
Γp̄ (in MeV) in 16Op̄, calculated for ξ = 0.2 and Imb0=1.9 fm dynamically (Dyn)
and statically (Stat) with the real, complex and complex with SF potentials.

Real Complex Complex SF
Dyn Stat Dyn Stat Dyn Stat

B -294.5 -265.5 -272.4 -263.0 -292.6 -264.9
Ep̄ -193.7 -137.1 -175.6 -134.6 -192.3 -136.6
Γp̄ - - 552.3 293.3 145.4 116.8

It is to be noted that the fully self-consistent calculations of p̄ nuclei with a
complex potential including suppression factors were performed in this work for the
first time ever.

3.3 Interaction of antihyperons with nuclei

We studied the interaction of the Λ̄, Σ̄ and Ξ̄ antihyperons with 16O, 40Ca, 90Zr
and 208Pb. We added the antihyperon into the 1s1/2 state and performed self-
consistent dynamical calculations within the TM and TW99 models. In these first
calculations, we did not consider the absorption of the antihyperon in the nucleus.
We rather focused on the polarization effects in the nuclear core caused by the
antihyperon.

In this section, we will use the following notation: we will denote the antiparti-
cle to Σ+ as Σ̄+ and the antiparticle to Σ− as Σ̄−. The same convention is used for Ξ̄.

In Fig. 3.15, we present the potentials acting on the Λ,Σ0 and Ξ0 hyperons in
208Pb, calculated within the TM1 model. The Λ potential is about 30 MeV deep [24],
the Ξ0 potential is even shallower (∼ 15 MeV) [32] and the Σ0 potential is repulsive
in the nuclear interior with a shallow attractive pocket near the nuclear surface [31].
On the other hand, the antihyperon potentials are quite deep due to the G-parity
transformation of the ω field which becomes attractive. There is significant increase
of the antihyperon potential in the central region of the nucleus (the similar trend
was observed in p̄ nuclei, see Fig. 3.2). The depth of the potentials indicates that
the antihyperons will be bound more deeply in the nucleus than hyperons. The Λ̄

potential is the deepest due to the strongest coupling to the σ meson field, then
follows the Σ̄0 with the same coupling to the ω field but much weaker coupling to
the σ field. The depth of the Ξ̄0 potential is less than half of the above two potentials
since for the Ξ0 it holds giΞ ≈ giΛ

2
, where i = σ, ω (see equation (2.26)).
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Figure 3.15: The total potential in 208Pb acting on Λ,Σ0 and Ξ0 (top) and on Λ̄, Σ̄0

and Ξ̄0 (bottom), calculated dynamically for ξ = 1 within the TM1 model.

The nucleon density distributions in 16Op̄, 16OΛ̄, 16OΣ̄0 and 16OΞ̄0 , calculated
for ξ = 1 within the TM2 model are compared in Fig. 3.16. The corresponding
densities of the antibaryons are displayed as well. The insertion of the antihyperon
into the nucleus causes considerable increase of the central nucleon density. We can
see the different degree of the core polarization due to the embedded antibaryon.
Each antibaryon is localized up to ∼ 1.5 fm in the central region of the nucleus.
The densities of the Λ̄, Σ̄0 and Ξ̄0 are much higher than the p̄ density and even
exceed the central density of the nuclear core. It is due to the larger mass of the
antihyperons, concretely mΛ̄ = 1115 MeV, mΣ̄0 = 1193 MeV and mΞ̄0 = 1315 MeV
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Figure 3.16: The nuclear density distribution in 16Op̄, 16OΛ̄, 16OΣ̄0 and 16OΞ̄0 to-
gether with the density of the p̄, Λ̄, Σ̄0 and Ξ̄0, calculated for ξ = 1 within the TM2
model.

in comparison with the mass of the nucleon mN ∼ 938 MeV. Although the Ξ̄0 is
the heaviest particle here, it does not reach the highest density since the potential
it feels in the nucleus is about 400 MeV deep, in comparison with approximately
1000 MeV for Λ̄, Σ̄0 (see Fig. 3.15), and, therefore, it is bound much less in the
nucleus. The nuclear densities in 16OΛ̄ and 16OΣ̄0 are higher than in 16Op̄ since there
is no isovector field due to Λ̄ and Σ̄0 which would affect the nucleons in the core.

In Fig. 3.17, the isovector nuclear density ∆ρ = ρp − ρn in 16OΛ̄, 40CaΛ̄, 90ZrΛ̄

and 208PbΛ̄ is shown. We can see that the presence of the Λ̄ in the nucleus does
not affect much the relative distribution of protons and neutrons in the nucleus.
There is just tiny rearrangement in the central region of each nucleus (r ≤ 2.5 fm).
Being a neutral particle with zero isospin, Λ̄ does not directly affect the Coulomb
and isovector ρ-meson fields acting on nucleons (unlike the p̄ in nuclei).

The isovector nuclear density ∆ρ in 208PbΛ̄ calculated for ξ = 1 within the
TM1 and TW99 model is displayed in Fig. 3.18. In both models, the “isovector”
rearrangement of the nuclear core is small and the difference ρp − ρn is negative as
in the nucleus 208Pb. The TW99 model predicts larger changes of ∆ρ than the TM1
model because it gives lower value of the nuclear compressibility than the TM1
model (K = 240 vs. K = 281) MeV. Therefore, the Λ̄ antihyperon causes larger
dynamical effects in the proton and neutron density distributions. Moreover, in the
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Figure 3.17: The difference between the proton and neutron density ∆ρ = ρp − ρn
in selected nuclei with Λ̄, calculated for ξ = 1 within the TM model. The difference
between the proton and neutron density in normal nuclei (dotted lines) is shown for
comparison.
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Figure 3.18: The difference between the proton and neutron density ∆ρ = ρp − ρn
in 208PbΛ̄, calculated for ξ = 1 within the TM and TW99 model. The difference
between the proton and neutron density in 208Pb is shown for comparison.

TW99 model, the isovector ρ-meson field which compensates the Coulomb repulsion
of protons is significantly reduced in the central region of the nucleus (see Fig. 3.9).
Consequently, the difference between the proton and neutron densities increases.
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The effect of the isovector ρ field is illustrated in Fig. 3.19, where the difference
between the proton and neutron densities in 208PbΣ̄+ , 208PbΣ̄0 and 208PbΣ̄− is shown.
Calculations were performed for ξ = 1 within the TM1 model. The proton density
is considerably higher than the neutron density in the central region of the 208PbΣ̄+

nucleus. The Σ̄+ has a negative charge and the projection of isospin T3 = −1, so
protons feel Coulomb and isovector attraction from Σ̄+ and are thus more concen-
trated in the center of the nucleus than neutrons which feel isovector repulsion. The
same phenomenon was observed in the p̄ nuclei (see Fig. 3.8). In the case of Σ̄−,
the situation is just opposite: protons feel the Coulomb and isovector repulsion and
neutrons feel isovector attraction and, therefore, neutrons are more concentrated in
the central region of 208PbΣ̄− . The rearrangement of the core is considerable up to
∼ 1.5 fm which corresponds with the location of the Σ̄ in the nucleus. In 208PbΣ̄0 ,
the rearrangement of the ρp − ρn density distribution is minimal since the Σ̄0 is
neutral with zero isospin (it is similar to the case of Λ̄ nuclei).

The nucleon single particle energies in 16OΣ̄− , 16OΣ̄0 and 16OΣ̄+ calculated for
ξ = 1 within the TM2 and TW99 model, are displayed in Fig. 3.20. The nucleons in
the 1s1/2 state are very deeply bound due to the presence of the strongly interacting
Σ̄. The splitting between the 1s and 1p levels significantly increases due to the
deeper and narrower potential well in the Σ̄ nucleus. The spin-orbit splitting of the
p levels also increases since the spin-orbit interaction depends on the sum of the
absolute values of the vector and scalar potentials which are very deep in the Σ̄
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Figure 3.20: The nucleon single particle energies in 16OΣ̄− , 16OΣ̄0 and 16OΣ̄+ , cal-
culated for ξ = 1 within the TM2 (top) and TW99 (bottom) model. The nucleon
single particle energies in 16O are shown in the middle of each graph.

nucleus. Due to this larger splitting, the 1p1/2 level is even less bound than in the
ordinary nucleus. The same effect was observed in the p̄ nuclei (see Fig. 3.10). The
different binding of protons and neutrons in 16OΣ̄− and 16OΣ̄+ is due to the isovector
and Coulomb interactions which depend on the isospin projection of the Σ̄. In the
TW99 model, the protons and neutrons in the 1s1/2 level are more bound than
in the TM2 model. It results from the lower compressibility of the TW99 model.
Moreover, the repulsive ω field (and to a lesser extent also the attractive σ field)
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Table 3.9: The 1s single particle energies EB̄ of antihyperons and the total binding
energies B in 16O and 208Pb, calculated for ξ = 1 within the TM model (in MeV).

EB̄ B EB̄ B

16OΛ̄ -859.1 -901.4 208PbΛ̄ -790.9 -2317.7
16OΣ̄0 -760.8 -813.7 208PbΣ̄0 -698.6 -2237.2
16OΣ̄− -700.0 -777.9 208PbΣ̄− -608.7 -2181.0
16OΣ̄+ -711.3 -788.2 208PbΣ̄+ -638.1 -2214.7
16OΞ̄0 -356.4 -442.3 208PbΞ̄0 -295.3 -1882.6
16OΞ̄− -350.3 -437.0 208PbΞ̄− -283.0 -1869.7

is weaker due to the density dependence of the coupling constants in the TW99
model. The combination of the above effects causes that the nucleons are allowed
to get closer to each other and, consequently, they are more bound. The smaller
difference between the proton and neutron 1s1/2 single particle energies in 16OΣ̄−

and 16OΣ̄+ in the TW99 model is due to the weaker isovector ρ field in the center
of the nucleus. The protons and neutrons do not feel so strong isovector attraction
(repulsion) as in the TM2 model.

In Table 3.9, we present the 1s single particle energies EB̄ and the total binding
energies in 16O and 208Pb, calculated for ξ = 1 within the TM model. The total
binding energy of the nucleus with the antihyperon increases considerably when
compared with the binding energy of the original 16O and 208Pb, B = −128.6 MeV
and −1634.8 MeV, respectively. The antihyperon single particle energies are sizeable
as well. The most tightly bound antihyperon is Λ̄ while the Ξ̄ antihyperon is bound
almost 3 times less, as could be expected from inspection of the corresponding
potential depths in Fig. 3.15. The differences between the Σ̄0, Σ̄− and Σ̄+ single
particle energies, as well as the total binding energies B are caused by the interplay
between the Coulomb and isovector ρ-meson potentials. The same holds for Ξ̄0 and
Ξ̄−.

49



Chapter 4

Conclusion

In this work, antibaryon–nucleus bound states were calculated with the aim to
study dynamical effects caused by the presence of a strongly interacting antibaryon
in a nucleus. We added p̄, Λ̄, Σ̄ and Ξ̄ into the 1s1/2 state of selected nuclei across
the periodic table and performed self-consistent calculations within the RMF model.
We used different parametrizations of the RMF model; here we presented results for
the nonlinear TM1 and TM2 models, and the density–dependent TW99 model. The
antibaryon–nucleus interactions were constructed by the G-parity transformation of
the baryon–meson coupling constants. Possible deviations of the couplings from the
G-parity values were taken into account by introducing a scaling factor. Dynamical
and static calculations were performed in order to illustrate the core polarization
effects due to the strongly interacting antibaryon. We focused on nuclear density dis-
tributions, nuclear binding energies and antibaryon potentials, densities and single
particle energies.

A substantial part of this work was devoted to the antiproton–nucleus interac-
tion. Theoretical understanding of this interaction is needed for future experiments
with antiprotons at FAIR [39]. We revealed that the insertion of the antiproton
into the nucleus causes remarkable changes in the nuclear structure. The p̄ po-
tential becomes strongly attractive due to the G-parity transformation and, vice
versa, nucleons in a nucleus feel strong attraction from the p̄. The depth of the
antiproton potential reaches nearly 1700 MeV in both parameter sets, which results
in the deeply bound p̄ in the nucleus. However, the large increase of the p̄ potential
is restricted to the very center of the nucleus (r ≤ 2 fm) where the antiproton is
localized. We found strong polarization effects in the p̄ nuclei. The central nuclear
density considerably increases—it reaches about 3 times the normal nuclear density.
The nucleus 16Op̄ is affected as a whole by the presence of the antiproton, while in
the case of heavier nuclei such as 40Ca, 90Zr and 208Pb, the polarization effects are
significant only in the small central region of these nuclei and the rest of their vol-
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ume remains unchanged. These effects were observed in the both considered RMF
models.

The nucleon single particle energies in a nucleus are also affected by the deeply
bound antiproton—in particular, the 1s1/2 and 2s1/2 proton and neutron single par-
ticle energies become considerable. The spin-orbit splitting in p̄ nuclei is larger and
also the spacing between the 1s and 1p levels increases due to the deep and narrower
potential well. Huge dynamical changes in p̄ nuclei result in extremely large binding
energies, as well as binding energies per particle.

The antiproton in a nucleus feels an “attractive”, as well as “repulsive” self-
interaction which leads to the saturation of the p̄ density distribution and sub-
sequently to its decrease. The effects of self-interaction starts to be pronounced for
larger values of scaling parameter ξ. For the values of ξ ∼ 0.2− 0.3, which seem to
yield a realistic p̄–nucleus interaction, the effect is tiny and thus can be neglected.

We considered the absorption of p̄ in a nucleus. We adopted the imaginary part
of a phenomenological optical potential in our calculations to account for the anni-
hilation. Its parameters were constrained by fits to p̄-atomic data. We considered
N̄N annihilation at rest to various decay channels and took into account the phase
space suppression for the annihilation products due to the deeply bound p̄ in the
nuclear medium. The p̄ widths significantly decrease when the suppression of the
phase space is considered, however, they still remain sizeable for a realistic p̄–nucleus
interaction. We noticed that the p̄ absorption remarkably influenced the polarization
of a nucleus. Therefore, it is important to perform the calculations with the complex
p̄–nucleus potential fully self-consistently. Such calculations were performed in this
work for the first time ever.

We also performed first calculations of the nuclear bound states of various anti-
hyperons. Even though the Λ,Σ0 and Ξ0 hyperons are bound weakly in the nucleus
or are not bound at all, the corresponding antihyperons are deeply bound in a nu-
cleus due to the G-parity transformation. The Λ̄ and Σ̄ potential is about 1000 MeV
deep and the Ξ̄ potential reaches about 400 MeV. We observed similar polarization
effects in the nuclear core as in the case of the antiproton. We studied the role of
the isovector field ρ in nuclei with a bound antihyperon in both RMF models. The
nucleon single particle energies are significantly affected by the presence of the anti-
hyperon and the total binding energies increase as well. We found similar behavior
of the single particle energies as in the p̄ nuclei.

In further studies, it would be necessary to incorporate the absorption of an-
tihyperons in the nuclear medium and perform self-consistent calculations for the
complex antihyperon–nucleus potentials. Moreover, it would be desirable to con-
sider the energy dependence of the p̄–nucleus interaction, which would allow to
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describe not only p̄–nucleus bound states but also scattering processes. The study
of a possible formation of antibaryonic nuclear bound states, as well as post annihi-
lation dynamics of the nucleus is expected to be in great demand in view of future
experiments at FAIR [39].
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Appendix A

Notation and conventions

We adhere to the convention of Serot and Walecka [18]. Natural physical units
are chosen with ~ = c = 1. Contravariant xµ and covariant xµ four vectors are
written as

x ≡ xµ = (t, ~x), xµ = (t,−~x) , (A.1)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−~∇

)
, ∂µ ≡

∂

∂xµ
=

(
∂

∂t
, ~∇
)
. (A.2)

The Dirac equation for a free particle of mass M reads

(iγµ∂
µ −M)ψ = (i/∂ −M)ψ = 0 , (A.3)

where we use the Feynman “slash” notation /a = aµγ
µ. The gamma matrices

γµ = (γ0, ~γ) obey
γµγν + γνγµ = {γµ, γν} = 2gµν , (A.4)

where gµν is a metric tensor given by

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (A.5)

and in the standard (Dirac-Pauli) realization are given as

β = γ0 =

1 0

0 −1

 , ~α =

0 ~σ

~σ 0

 , ~γ = β~α =

 0 ~σ

−~σ 0

 , (A.6)
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with Pauli matrices defined by

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.7)

The nucleon wave functions are considered as isospin doublets, i. e.

ψi =

ψp
ψn

 , (A.8)

where ψp and ψn denotes proton and neutron wave functions, respectively.
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Numerical solution of the equations
of motion

We seek for a static solution of Dirac equation (2.10) in the form

ψ(xµ) = e−iεtψ(~x) . (B.1)

Then we have
Hψ(~x) = Eψ(~x) , (B.2)

where

H = [−i~α~∇+ β(mN + gσjσ) + gωjω0 + gρjρ0τ3 + ej
(1 + τ3)

2
A0] . (B.3)

is the single-particle Dirac Hamiltonian. The field ψ(~x) can be expanded using
positive uβ(~x) and negative vβ(~x) energy solutions as

ψ(~x) =
∑
β

âβuβ(~x) + b̂†βvβ(~x) (B.4)

in the Schrödinger picture. The operators âβ and b̂†β are the annihilation and creation
operators for baryons and antibaryons, respectively. They fulfill the well-known an-
ticommutation relations for fermions. The index β involves the full set of quantum
numbers describing the single-particle solution. Since the system is assumed spher-
ically symmetric and parity conserving, β contains the usual angular momentum
and parity quantum numbers. The Dirac Hamiltonian (B.3) is linear in ~p and so it
does not commute with angular momentum ~L. It also does not commute with spin
operator ~S =

~Σ
2
. But, if we define single-particle angular momentum operator as

~J = ~L+ ~S , (B.5)

55



NUMERICAL SOLUTION OF THE EQUATIONS OF MOTION

it is easy to show that (B.3) is rotationally invariant, i. e.

[H, Ji] = [H, ~J2] = 0 for i = 1, 2, 3 . (B.6)

Thus the quantum numbers j and m of angular momentum may be used to label the
states. Since Hamiltonian (B.3) obeys [H, ~S2] = 0, the spin s = 1/2 is a constant of
the motion. Moreover, by defining the operator

K = γ0[~Σ. ~J − 1/2] = γ0[~Σ.~L+ 1] , (B.7)

it is straightforward to show that [H,K] = 0, which provides another constant
of motion. This is a consequence of parity conservation. The eigenvalues of the
operator K are

−κ = ±(j + 1/2) , (B.8)

where κ is a non-zero integer, since

K2 = ~L2 + ~Σ.~L+ 1 = ~J2 + 1/4 . (B.9)

If we define the upper and lower component of the wave function by

ψ =

ψA
ψB

 (B.10)

and act on this wave function with K:

Kψ = −κψ =

−κψA
−κψB

 =

 (~σ.~L+ 1)ψA

−(~σ.~L+ 1)ψB

 , (B.11)

we find that ψA and ψB are eigenstates of (~σ.~L+1) with opposite eigenvalues. Since
~L2 = ~J2 − ~σ.~L− 3/4, it holds that

~L2ψA =[(j + 1/2)2 + κ]ψA ≡ lA(lA + 1)ψA , (B.12)
~L2ψB =[(j + 1/2)2 − κ]ψB ≡ lB(lB + 1)ψB . (B.13)

This implies that upper and lower components are separately eigenstates of ~L2,
although ψ is not. For given values of j and κ, the value of l may be determined
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from

j(j + 1)− lA(lA + 1) + 1/4 =− κ , (B.14)

j(j + 1)− lB(lB + 1) + 1/4 = κ . (B.15)

The two-component wave functions have fixed j and s = 1/2, therefore, lA and lB
must be j ± 1/2. Their angular momentum and spin parts are

Φκm =
∑
mlms

〈lmlsms|jm〉Ylml(θ, φ)χms ,

j = |κ| − 1/2, l =

 κ κ > 0

−(κ+ 1) κ < 0 ,

(B.16)

where Ylml is a spherical harmonic and χms is a two-component Pauli spinor. Thus,
the single-particle wave function in a central, parity conserving field may be written
as

ψαj (~x) = ψnκmtj (~x) =

 i[Gnκt
j (r)/r]Φκm

−[F nκt
j (r)/r]Φ−κm

 ζt , (B.17)

where ζt is a two-component isospinor and Gα
j and Fα

j is the large and small com-
ponent of the Dirac spinor (j = N, B̄), respectively. Because Hamiltonian (B.3)
commutes with the isospin operators T3 and T 2, the states may be labeled by their
charge or isospin projection t (t = 1/2 for protons and t = −1/2 for neutrons). The
principal quantum number is denoted by n. The phase choice in (B.17) leads to real
bound-state wave-functions Gα

j and Fα
j for real potentials in (B.2).

Once we have a general form of the solution in (B.17), we may now evaluate
the local meson source terms in the meson field equations. We assume that the
nuclear ground state consists of filled shells up to some value of n and κ. This is
consistent with spherical symmetry and is appropriate for doubly magic nuclei. We
also assume that all bilinear products of baryon operators are normal ordered. With
these assumptions, the local baryon density becomes

ρN(~x) = 〈F | : ψ̂†(~x)ψ̂(~x) : |F 〉

=
∑
β

u†β(~x)uβ(~x)

=
∑
α

(
2jα + 1

4πr2

)
(|Gα

N(r)|2 + |Fα
N(r)|2) , (B.18)

where |F 〉 is the filled-shell ground state and the colons imply that ψ†ψ is normal
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ordered. With these results, we can rewrite the meson field equations (2.11) as(
d2

dr2
+

2

r

d

dr
−m2

σ

)
σ(r) =gσNρS + g2σ + g3σ

2 + gσB̄ρSB̄

=gσN
∑
α

(
2jα + 1

4πr2

)
(|Gα

N(r)|2 − |Fα
N(r)|2)

+ gσB̄

(
1

4πr2

)
(|GB̄(r)|2 − |FB̄(r)|2)

+ g2σ + g3σ
2 , (B.19)

(
d2

dr2
+

2

r

d

dr
−m2

ω0

)
ω0(r) =− gωNρV + gωB̄ρV B̄ + dω3

0

=− gωN
∑
α

(
2jα + 1

4πr2

)
(|Gα

N(r)|2 + |Fα
N(r)|2)

+ gωB̄

(
1

4πr2

)
(|GB̄(r)|2 + |FB̄(r)|2)

+ dω3
0 , (B.20)

(
d2

dr2
+

2

r

d

dr
−m2

ρ

)
ρ0(r) =− gρNρI − gρB̄ρIB̄

=− gρN
∑
α

(
2jα + 1

4πr2

)
tα(|Gα

N(r)|2 + |Fα
N(r)|2)

− gρB̄
(

1

4πr2

)
tB̄(|Gp̄(r)|2 + |Fp̄(r)|2) , (B.21)

(
d2

dr2
+

2

r

d

dr

)
A0(r) =− eρp + eB̄ρB̄

=− e
∑
α

(
2jα + 1

4πr2

)
(tα + 1)

2
(|Gα

N(r)|2 − |Fα
N(r)|2)

+ eB̄

(
1

4πr2

)
(tB̄ + 1)

2
(|GB̄(r)|2 + |FB̄(r)|2) . (B.22)

The equations for the (anti)baryon wave functions are obtained by substituting
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(B.17) into (B.2)

d

dr
Gα
j (r) +

κ

r
Gα
j (r)− [εαj − gωjω0 − tagρjρ0(r)

− (tα + 1/2)ejA0(r) +mj − gσσ(r)]Fα
j (r) = 0 , (B.23)

d

dr
Fα
j (r)− κ

r
Fα
j (r) + [εαj − gωjω0(r)− tagρjρ0(r)

− (tα + 1/2)ejA0(r)−mj + gσjσ(r)]Gα
j (r) = 0 . (B.24)

The normalization condition that yields unit probability for finding each particle
somewhere in space is ∫ ∞

0

dr(|Gα
j (r)|2 + |Fα

j (r)|2) = 1 . (B.25)

The equations (B.19) - (B.24) are coupled nonlinear differential equations that
can be solved by an iterative procedure. For a given set of meson fields, the Dirac
equations (B.23) and (B.24) are solved by the Runge-Kutta method integrating
outward from the origin and inward from large r, matching the solutions at some
intermediate radius to determine the eigenvalues Eα

j . Analytic solutions in the
regions of a small and large r allow the proper boundary conditions to be imposed.
Once the baryon wave functions are determined, the source terms may be evaluated
and the meson fields calculated by integrating over the static Green’s function

D(r, r′;mi) =
−1

mirr′
sinh(mir<) exp(−mir>) . (B.26)

This Green’s function embodies the boundary conditions for exponential decay at
large r and vanishing slope for the fields at origin. For example, the solution of eq.
(B.19) for the scalar field reads

σ(r) =

∫ ∞
0

r′2dr′[−gσNρS(r′)]D(r, r′;mσ) . (B.27)

The new meson fields are used to compute the potentials entering the Dirac equa-
tions. The solution of the Dirac equations yields spinors for the next iteration. This
procedure is repeated until the self-consistency is reached.

The total energy of the system can be expressed as
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E = 〈F |H|F 〉 =

∫
d3x{1

2
[(∇σ)2 +m2

σσ
2]− 1

2
[(∇ω0)2 +m2

ω + ω2
0]

− 1

2
(∇A0)2− 1

2
[(∇ρ0)2 +m2

ρρ
2
0]+〈F | : ψ†[−i~α.~∇+ β(mN+gσjσ)

+ gωjω0 + gρjρ0τ3 + ej
1 + τ3

2
A0]ψ : |F 〉} .

(B.28)

The part involving baryon fields can be evaluated using the Dirac equation (B.3)∫
d3x

∑
α

εαj

(
2j + 1

4πr2

)
(|Gα

j (r)|2 + |Fα
j (r)|2) =

∑
α

εαj . (B.29)

For the meson terms, the exponential decay of the fields at large r permits the
following partial integration:∫

d3x
1

2
[(∇σ)2 +m2

σσ
2] =

1

2

∫
d3x[σ(−∇2 +m2

σ)σ]

=
1

2

∫
d3xgσρS(r)σ(r) ,

(B.30)

where the final equality follows from the equation (B.19). Similarly, we can rewrite
the other terms and therefore we can express the energy as

E =
∑
α

εαj + εαB̄

− 1

2

∫
d3x (−gσN σρS + gωN ω0ρV + gρN ρ0ρI + eA0ρp)

− 1

2

∫
d3x (−1

3
g2 σ

3 − 1
2
g3 σ

4 + 1
2
dω4)

− 1

2

∫
d3x (−gσB̄ σρSB̄ + gωB̄ ω0ρV B̄ + gρB̄ ρ0ρIp̄ − eB̄ A0ρB̄) .

(B.31)
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