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Abstract: This thesis presents results of the first variational calcu-
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ΛHe and
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ΛLi, using our recently developed
Fermionic Molecular Dynamics (FMD) code. The rele-
vance of the variation of the parity projected trial state
(VAPπ) is discussed. We found rather weak dependence
of the Λ separation energies on the type of the VNN po-
tential in 4

ΛH and 4
ΛHe, however, it significantly increased

in 5
ΛHe. We observed a substantial difference between the

Λ separation energy spectra calculated using various VΛN

potentials. The proper choice of VΛN as well as the Fermi
momentum kF, which enters the YNG VΛN potentials as
a parameter, is thus crucial. The YNG VΛN potentials
without charge symmetry breaking terms yield the shift
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pernuclei 4
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ΛHe which is opposite to that observed.
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Chapter 1

Introduction

Hypernucleus is a nuclear system with non-zero strangeness containing besides neu-
trons and protons also one or more hyperons (Y = Λ, Σ, Ξ, Ω−). The study of
hypernuclei provides a unique opportunity to test models of baryon-baryon interac-
tions, as well as various nuclear models. Since hyperons are not affected by Pauli
blocking in the nucleus, they can penetrate deep in the nuclear interior and thus
serve as a probe of the nuclear medium. Moreover, hypernuclear production and de-
cay provide valuable information about reaction mechanisms and weak interaction.

Due to a rather short lifetime of hyperons (10−10 s) [1] the hyperon-nucleon
scattering data are rather scarce and the form of the Y N interaction is not so
strictly constrained as in the NN case. Therefore, selected hypernuclear data are
used as an input for various Y N interaction models.

The range of experimentally observed hypernuclei is quite broad. It starts from
the lightest hypernuclear system 3

ΛH and ends with the heavy hypernuclei 208
Λ Pb and

209
Λ Bi. So far, about 30 species of Λ hypernuclei have been observed. The most
precise information, including γ-ray transitions, is available for s-shell and p-shell
Λ hypernuclei up to mass number A=15 [2]. In general, Σ hypernuclei do not form
bound systems, except 4

ΣHe [3]. The existence of Ξ hypernuclei has not been con-
firmed with certainty yet. Finally, there is no evidence of Ω hypernuclei at present.
As concerns systems with more than one hyperon, only three ΛΛ hypernuclei were
measured: 6

ΛΛHe [4], 10
ΛΛBe [5] and 13

ΛΛB [6].
The systematic study of hypernuclei has been performed for more than 60 years.

The first hypernucleus was discovered by Danysz and Pniewski in 1953 [7]. They
registered in emulsion experiment a slowly decaying nuclear fragment (hypernucleus)
coming from the collision of the high energy (30 GeV) proton from cosmic rays with
the Ag or Br nucleus. In the late 1950’s and during 1960’s, numerous hypernu-
clei were discovered in nuclear emulsions exposed to proton, pion, or K− beams.
However, at this time the experimental data were limited only to the Λ separation
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INTRODUCTION

energies of the ground states of hypernuclei up to mass A=15 [8].
Considerable progress in hypernuclear physics started with the advent of counter

experiments in the 1970’s. The number of discovered hypernuclear species has been
more than doubled and their excitation spectra have been measured as well. Up
to now, many experimental laboratories and collaborations have contributed to the
increasing amount of information - CERN, BNL, KEK, JLab, JPARC, FINUDA,
GSI, and MAMI-C [9, 10, 11, 12, 13] and the hypernuclear spectroscopy became well
established experimental discipline. A new insight into the hypernuclear structure
was provided by the high-resolution γ-ray spectroscopy using 4π Ge detectors [9]
which allowed to measure excitation spectra of hypernuclei with astonishing resolu-
tion of few keV. Moreover, shrinking of the 7

ΛLi nuclear core due to the presence of
Λ was measured for the first time [14]. The above mentioned scientific advances in
experiment call for new, more sophisticated theoretical approaches.

The few-body Faddeev and Faddeev-Yakubovsky calculations are mainly limited
by the size of a hypernucleus – they are used in the description of 3-body and
4-body hypernuclear systems (3

ΛH, 4
ΛH, and 4

ΛHe). Their advantage is that they
can incorporate bare NN as well as ΛN interactions and also explicitly include
ΛN − ΣN mixing. Few-body calculations of weakly bound 3

ΛH [15, 16] and the Λ

separation energy spectra of 4
ΛH, and 4

ΛHe [16, 17] served as a precise test of various
phenomenological as well as chiral NN and ΛN potential models.

The intrinsic structure of hypernuclear systems is often studied within various
variational cluster calculations. In this approach, the nuclear core is represented by
explicit neutron (n), proton (p), deuteron (d), triton (t), 3He, and alpha (α) degrees
of freedom. Until recently, there have been performed 3-body and 4-body calcula-
tions up to 13

Λ C (αααΛ) [18, 19]. Hiyama et al. have presented very recently the
5-body cluster calculation of 11

ΛΛBe (ααnΛΛ) [20]. This method uses predominantly
effective G-matrix transformed NN , ΛN , and ΛΛ potentials [21] which are further
folded to the two-body interactions between the considered clusters.

The No Core Shell Model (NCSM) approach appeared suitable for the description
of light Λ hypernuclei in the same range as cluster models. The ab initio nature
of these calculations, as well as explicitly included Σ degrees of freedom make their
theoretical predictions highly valuable. The s-shell 3

ΛH, 4
ΛH, and 4

ΛHe hypernuclei [22]
and p-shell Λ hypernuclei up to 13

Λ C [23] were calculated using the NN and ΛN

chiral interactions.
The Λ separation energy spectra of s-shell, p-shell, and sd-shell hypernuclei were

reproduced with relatively high precision using shell-model calculations [2, 24]. In
this model, the core nucleus is described with a phenomenological Hamiltonian that
allows to reproduce its nuclear structure very accurately. The ΛN interaction in
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INTRODUCTION

hypernuclei can thus be studied closely without being obscured by the NN part.
The Λ hyperon is directly coupled to the eigenstates of well reproduced nuclear core
in total angular momentum and isospin. The ΛN interaction is purely effective,
however, ΛN − ΣN mixing is considered explicitly.

The study of Λ hypernuclei up to 48
Λ Sc were performed using the Antisymmetrized

Molecular Dynamics (AMD) model extended to hypernuclei (HyperAMD) [25, 26].
In AMD, each nucleon is represented by a Gaussian wave packet consisting of spatial,
spin, and isospin parts. The Gaussian width parameters are equal for each nucleon
but their position, spin, and isospin parameters may vary. The antisymmetrization
of the many-body wave function is ensured by its Slater determinant form. The
HyperAMD adopts the AMD approach for nucleons but also defines the Λ single-
particle wave function as a superposition of several Gaussian wave packets which
have the same width parameter as nucleons but their position and spin may be
arbitrary. The values of variational parameters of single-particle states are obtained
by minimizing the binding energy of the hypernuclear system.

Due to a large number of particles, heavier hypernuclei are exclusively described
by mean field models. The most commonly used is the Relativistic Mean Field
(RMF) approach [27] and Skyrme Hartree-Fock model [28, 29].

In recent studies [30, 31], the Fermionic Molecular Dynamics (FMD) model
proved to be a valuable tool for the nuclear structure studies. Like AMD, it ap-
proximates the many-body wave function by a Slater determinant of Gaussian wave
packets consisting of spatial, spin, and isospin parts. But unlike AMD, each nu-
cleon of the system is represented by a Gaussian wave packet with its own width
parameter. This property of the single-particle wave functions appeared to be cru-
cial. It provides the FMD calculations with very flexible single-particle basis, which
is suitable for the description of the cluster structure of light nuclei including halo
nuclei. The clusterization in the nucleus emerges as a consequence of the underlying
interactions between nucleons. However, the above virtues of FMD are achieved at
the cost of greater computational complexity as well as theoretical difficulty. It is
a question of serious interest how the presence of the Λ hyperon would affect the
clusterization phenomena in nuclear system. The study of hypernuclei within FMD
could yield new information about the ΛN interaction as well as Λ hypernuclear
structure.

In this thesis, we present the first application of the Fermionic Molecular Dynam-
ics model [32, 33, 34] in the structure calculations of the light s-shell Λ hypernuclei
4
ΛHe, 4

ΛH, and 5
ΛHe as well as the p-shell hypernucleus 7

ΛLi. We evaluated the Λ

separation energy and rms radii of the hypernuclear ground and excited states for
different NN and ΛN effective potentials in order to explore model dependence of
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INTRODUCTION

the calculations. We studied the effects in the nuclear core caused by the presence
of Λ. In Chapter 2, we briefly introduce the FMD model together with applied pro-
jection techniques. The NN and ΛN interactions as well as VNN and VΛN potential
models used in this work are presented in Chapter 3. The results of hypernuclear
structure calculations are discussed in Chapter 4. We summarize our findings in
Chapter 5 where our future plans are given as well. The antisymmetrization of the
many-body wave function and definitions of calculated expectation values are briefly
presented in Appendix A, while the details of analytical calculations of derivatives
used during the minimization of the binding energy are summarized in Appendix B.
The parameters and the operator form of the VNN and VΛN potentials are given in
Appendix C. The FMD program developed for the purpose of this work is briefly
introduced in Appendix D.
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Chapter 2

Fermionic Molecular Dynamics
model

Fermionic Molecular Dynamics is a non-relativistic many-body variational model
which describes systems of N interacting fermions. The antisymmetrized many-
body wave function is approximated by a Slater determinant with underlying single-
particle wave functions represented by Gaussian wave packets.

The model was first introduced by Feldmeier in 1990 [32] in order to study
heavy-ion reactions at energies below particle production. Already in this pioneer-
ing article, the first mention of the possibility of using FMD model to calculations
of ground states properties of nuclei appeared. First FMD calculations of binding
energies, Rrms radii and one-body densities in 4He, 6Li, 7Li, 8Be, 12C and 16O were
published in 1995 [33]. Few years later, Feldmeier, Neff, Roth, and Schnack devel-
oped the new Unitary Correlation Operator Method (UCOM) [35] which allowed
to describe nuclear ground states using more sophisticated NN potentials, such as
Afnan-Tang S3M [36] or Malfliet-TjonV [37] potentials. The UCOM was further
extended by Neff to include tensor correlations [38], which enabled to performed
FMD calculations with the realistic Argonne V18 and CD-Bonn potentials up to
mass A=60 [30]. Other FMD calculations of nuclei using realistic NN potentials
followed [30, 31, 39, 40].

2.1 Model many-body state

In this work we study baryonic systems consisting of nucleons and a Λ hyperon.
The baryons are treated as basic degrees of freedom with their internal structure
described by Gaussian wave packets, in analogy with molecules for which ’molecular
dynamics’ was originally formulated [41]. Since we are dealing with systems of N
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FERMIONIC MOLECULAR DYNAMICS MODEL

baryons, the wave function of the antisymmetrized many body state is described by
a Slater determinant

〈x1, . . . , xN | Â |Q〉 =
1

N !

∑
Pi

sgn(Pi)
〈
x1

∣∣ qPi(1)

〉
. . .
〈
xN
∣∣ qPi(N)

〉

=
1

N !
Det

∣∣∣∣∣∣∣∣∣
〈x1| q1〉 · · · 〈x1| qN〉

... . . . ...

〈xN | q1〉 · · · 〈xN | qN〉

∣∣∣∣∣∣∣∣∣ ,
(2.1)

where xi stands for generalized coordinate with space, spin and isospin parts, Pi
is the i-th permutation among single-particle states |qi〉, and Â is the antisym-
metrization operator (see Appendix A). If not specified explicitly, we will omit the
antisymmerization operator and will denote the antisymmetrized state by |Q〉 in the
following.

In the FMD model, each single-particle state |qk〉 is represented by a Gaussian
wave packet

|qk〉 = |ak, bk〉 ⊗
∣∣∣χ↑k, χ↓k〉⊗ |ξk〉 , (2.2)

where
∣∣∣χ↑k, χ↓k〉 (|ξk〉) denotes a spin (isospin) part. The shape of Gaussian wave

packet in coordinate space is

〈x| ak, bk〉 = exp

(
−(x− bk)2

2ak

)
, (2.3)

where ak stands for a complex width and bk denotes a complex vector. It is to be
stressed that in FMD each baryon is in principle described by a different Gaussian
width parameter. This represents a crucial difference from the otherwise very similar
AMD model [42]. It allows FMD to describe exotic effects in nuclear systems like
halo structure and clusterization [39, 40]. The spin part of a single-particle state∣∣∣χ↑k, χ↓k〉 is treated as a most general complex spinor. This formulation ensures good
rotational properties – it enables to rotate the state |qk〉 by an arbitrary space angle
Ω. In this work we study hypernuclear systems composed of the nuclear core and
the Λ hyperon and we do not consider change of the third projection of isospin ξk
of the k-th particle. Therefore, the isospin part |ξk〉 remains fixed during the whole
calculation and is represented by vectors |1/2〉, |−1/2〉 for nucleons and |0〉 for Λ.

In principle one can define the single-particle state |qk〉 as a superposition of an
arbitrary number of Gaussians

|qk〉 =
∑
i

Cki |aki, bki〉 ⊗
∣∣∣χ↑ki, χ↓ki〉⊗ |ξk〉 , (2.4)
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FERMIONIC MOLECULAR DYNAMICS MODEL

which leads to more precise description of exotic nuclear systems [30]. However, since
each additional Gaussian form in the sum increases the computational complexity
considerably, we will use just one Gaussian wave packet following (2.2).

An important advantage of the FMD single-particle basis are its properties under
translation, boost, parity and rotation operations. The action of the translation
operator Û(d) on the Gaussian wave packet can be expressed as

Û(d) |a, b〉 ⊗
∣∣χ↑, χ↓〉⊗ |ξ〉 = |a, b+ d〉 ⊗

∣∣χ↑, χ↓〉⊗ |ξ〉 ; (2.5)

and the boost operation with velocity v is

B̂(v) |a, b〉⊗
∣∣χ↑, χ↓〉⊗|ξ〉 = |a, b+ imav〉⊗

∣∣χ↑, χ↓〉⊗|ξ〉 · exp
{

imb · v − a

2
m2v2

}
,

(2.6)
where m denotes the mass of the particle represented by the Gaussian wave packet.
The parity operation represented by Π̂ can be written as

Π̂ |a, b〉 ⊗
∣∣χ↑, χ↓〉⊗ |ξ〉 = |a,−b〉 ⊗

∣∣χ↑, χ↓〉⊗ |ξ〉 . (2.7)

In the case of rotation by a space angle Ω, represented by the operator R̂(Ω), we
must take into account that it acts both in the coordinate and spin space R̂(Ω) =

R̂coor(Ω)⊗ R̂spin(Ω) and thus

R̂(Ω)
{
|a, b〉 ⊗

∣∣χ↑, χ↓〉⊗ |ξ〉} = R̂coor(Ω) |a, b〉 ⊗ R̂spin(Ω)
∣∣χ↑, χ↓〉⊗ |ξ〉 =

=
∣∣∣a, R̂coor(Ω)b

〉
⊗ R̂spin(Ω)

∣∣χ↑, χ↓〉⊗ |ξ〉 . (2.8)

For the antisymmetrized many-body state the translation by a vector d, boost by a
velocity v, rotation by an angle Ω, and the parity inversion are expressed by N -body
unitary operators in the following form

Û(d) = exp
{
−id · P̂ cm

}
= exp

{
−i
∑
i

d · p̂i

}
= Û1(d)⊗ . . .⊗ ÛN(d),

B̂(v) = exp
{
−iMv · X̂cm

}
= exp

{
−i
∑
i

miv · x̂i

}
= B̂1(v)⊗ . . .⊗ B̂N(v),

R̂(Ω) = exp
{
−iΩ · Ĵ

}
= exp

{
−i
∑
i

Ω · Ĵ i

}
= R̂1(Ω)⊗ . . .⊗ R̂N(Ω),

Π̂ = Π̂1 ⊗ . . .⊗ Π̂N .

(2.9)
This means that the shift of the whole Slater determinant by a vector d is equivalent
to the same shift of each single-particle state. The same holds also for the boost,
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FERMIONIC MOLECULAR DYNAMICS MODEL

rotation and parity operations.

2.1.1 Intrinsic state

In the study of (hyper)nuclear structure we are interested in intrinsic properties of
the many-body system and not in its center of mass (cms) position and momentum.
It is desirable to fully separate the intrinsic and cms part of the many-body wave
function

〈x1, . . . ,xn| Q〉 = 〈ζ1, . . . , ζn| Qintr〉 〈Xcm| Qcm〉 , (2.10)

where 〈Xcm| Qcm〉 denotes the cms component and Xcm the cms coordinate. The
〈ζ1, . . . , ζn| Qintr〉 stands for the intrinsic wave function with the following definition
of intrinsic coordinates

ζi = xi −Xcm, Xcm =
1

M

∑
i

mixi, (2.11)

wheremi is a mass of the i-th particle andM is the total mass of the system. The re-
sulting intrinsic wave function would not depend on the choice of the reference frame
and would be translationally invariant. However, the aforementioned factorization
becomes quite difficult in the Slater determinant basis and can be applied only in a
few special cases. One of them is a Slater determinant composed of Gaussian wave
packets of equal width parameter a, as in AMD [43].

Unlike the AMD model we would like to use different width parameters, which
enables better description of the cluster structure. This is the reason why we cannot
follow the above separation of the cms motion and have to choose other approaches
to suppress unfavorable cms effects.

Since we are not able to separate the cms part of the many-body wave function
perfectly, it remains entangled with the intrinsic state and the FMD many-body
state |Q〉 is not translationally invariant. We would like to have ensured, that the
symmetry operations like parity and rotation (2.9) acting on the many-body state
|Q〉 affect only its intrinsic part. But since

〈x1, . . . ,xn| Π̂ |Q〉 = 〈−x1, . . . ,−xn| Q〉 ,

xi = ξi +Xcm → −xi = −ξi −Xcm,

〈x1, . . . ,xn| R̂(Ω) |Q〉 =
〈
R̂−1(Ω)x1, . . . , R̂

−1(Ω)xn

∣∣∣ Q〉 ,
xi = ξi +Xcm → R̂−1(Ω)xi = −R̂−1(Ω)ξi + R̂−1(Ω)Xcm,

(2.12)
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FERMIONIC MOLECULAR DYNAMICS MODEL

this is fulfilled only when the center of mass position is equal to zero.

2.2 Expectation values

The FMD single-particle state basis is not orthogonal as can be clearly seen from
the single-particle state overlap matrix nkl

nkl = 〈qk| ql〉 = RklSklTkl,

Rkl = 〈ak, bk| al, bl〉 =

(
2π

a∗kal
a∗k + al

)3/2

exp

(
− b∗k − bl

2(a∗k + al)

)
,

Skl =
〈
χ↑k, χ

↓
k

∣∣∣ χ↑l , χ↓l 〉 = χ↑∗k χ
↑
l + χ↓∗k χ

↓
l ,

Tkl = 〈ξk| ξl〉 = δkl,

(2.13)

with space Rkl, spin Skl and isospin Tkl overlap matrices.
Because of the nonorthogonality of the single-particle basis we express the ex-

pectation values of one and two-body operators Ô[1] and Ô[2] through inverse overlap
matrices [33]

O[1] =
〈Q| Ô[1] |Q〉
〈Q| Q〉

=
∑
kl

〈qk| Ô[1] |ql〉 olk,

O[2] =
〈Q| Ô[2] |Q〉
〈Q| Q〉

=
∑
klmn

〈qk, ql| Ô[2] |qm, qn〉 (omkonl − onkoml).

(2.14)

where olk stands for an element of the inverse overlap matrix o = n−1. Hence we
must evaluate the matrix o together with one or two-body matrix elements of an
arbitrary operator Ô. For derivation of the expectation value formula for one-body
operators Ô[1] see Appendix A.

2.3 Time-independent variational method

The Hamiltonian describing a hypernuclear system is defined in the form

Ĥ = T̂intr + V̂NN + V̂ΛN , (2.15)

where T̂intr denotes the intrinsic kinetic energy operator and V̂NN (V̂ΛN) is the two-
body NN (ΛN) potential.
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To determine the form of the intrinsic kinetic energy operator T̂intr, i.e. kinetic
energy of the internal motion, we express first the intrinsic momentum operator η̂i
of the i-th baryon

η̂i = p̂i −miV̂ cm = p̂i −
mi

M
P̂ cm, P̂ cm =

∑
i

p̂i, (2.16)

where we take into account the definition of intrinsic coordinates (2.11). Here,
V̂ cm and P̂ cm denotes the velocity and momentum operator of the center of mass,
respectively, and p̂i is the momentum operator of the i-th baryon. The operator
T̂intr is then defined as

T̂intr =
∑
i

η̂i
2

2mi

=
∑
i

[
p̂i −

mi

M
P̂ cm

]2

=
∑
i

p̂i
2

2mi

− 1

2M

∑
ij

p̂ip̂j =

= T̂ −
∑
i

p̂i
2

2M
− 1

M

∑
i<j

p̂ip̂j = T̂ − T̂ [1]
cm − T̂ [2]

cm = T̂ − T̂cm.

(2.17)

The Hamiltonian can be then expressed in the form

Ĥ = T̂ − T̂cm + V̂NN + V̂ΛN . (2.18)

The ground state of a hypernuclear system is determined within the time-independend
variational method. The binding energy EB of the many-body system is defined as
a minimum

EB = min
q1,...,qN

〈Q| Ĥ |Q〉
〈Q| Q〉

,

under following conditions

< X̂cm >2 = 0, < P̂ cm >2= 0, Re(ak) > 0,

(2.19)

where the expectation value of the intrinsic Hamiltonian Ĥ is minimized with respect
to single-particle state parameters q1, . . . , qN . In this sense the symbol qi means a
set of twelve independent real parameters of th i-th single-particle state |qi〉.

To solve this problem numerically we implemented the Sequential Quadratic
Programming (SQP) method for nonlinear optimization with equality or inequality
constraints [44]. The equality bounds < X̂cm >2= 0 and < P̂ cm >2= 0 ensure
that we can later safely use symmetry operators (2.9) and project out parity and
total angular momentum eigenstates of the hypernuclear system. The condition
Re(ak) > 0 must be met in order to have well-define Gaussian wave packets. The
case Re(ak) = 0 describes situation when a Gaussian wave packet turns into a delta
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function with localized position and infinite momentum. Gaussian wave packets
with Re(ak) < 0 are not integrable functions.

To conclude, we obtain as a result the value of the binding energy EB and sets of
the parameters of single-particle states q1, . . . , qN which define the many-body state
|Q〉 with the lowest energy with respect to the constraints.

2.4 Parity and total angular momentum eigenstates

So far we discussed the antisymmetrized many-body state |Q〉 as a result of varia-
tional principle. However, this state need not be an eigenstate of the total angular
momentum and parity and hence we would not describe hypernuclear ground and
excited states properly. In fact, the result of the minimization process |Q〉 is in gen-
eral a linear combination of individual eigenstates of the total angular momentum
and parity |Q; Jπκ〉

|Q〉 =
∑
κ

|Q; Jπκ〉CJπκ. (2.20)

Since we want to calculate observables for the hypernuclear states with well-defined
quantum numbers, we introduce two kinds of projections. The first one is performed
by the parity projection operator P̂ π and the second one by the total angular mo-
mentum projection operator P̂ J

MK , followed by a K-mixing procedure.

2.4.1 Parity eigenstates

In the definition of a parity eigenstate we make us of the parity projection operator

P̂ π =
1

2

(
1 + πΠ̂

)
, (2.21)

where π stands for the parity eigenvalue. The eigenstate is then defined as

|Q; π〉 =
1

2

(
|Q〉+ πΠ̂ |Q〉

)
(2.22)

and the expectation value of an arbitrary operator Ô has the form

O =
〈Q; π| Ô |Q; π〉
〈Q; π| Q; π〉

=

=
〈Q| Ô |Q〉+ π 〈Q| ÔΠ̂ |Q〉 − 1

2

(
〈Q|

[
Π̂, Q̂

]
Π̂ |Q〉+ π 〈Q|

[
Π̂, Q̂

]
|Q〉
)

〈Q| Q〉+ π 〈Q| Π̂ |Q〉
.

(2.23)

20
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2.4.2 Total angular momentum eigenstates

The total angular momentum projection is performed using the Generator Coordi-
nate Method (GCM). We take into account properties of the rotational group SO(3)
generated by the total angular momentum operator Ĵ and we use the corresponding
projection operator [45]

P̂ J
MK =

2J + 1

8π2

∫
dΩDJ

MK

∗
(Ω)R̂(Ω). (2.24)

Here, R̂(Ω) denotes the rotation operator (2.8), J is the total angular momentum
eigenvalue, M and K its third projection in the laboratory and intrinsic reference
frame, respectively , and DJ

MK
∗
(Ω) stands for the Wigner D-function

DJ
MM ′(Ω) = 〈JM | R̂(Ω) |JM ′〉 . (2.25)

The projection operator fulfills the following relation [45]

P̂ J†
M ′K′P̂

J
MK = δM ′M P̂

J
K′K . (2.26)

Parity and total angular momentum projected states are then expressed as

|Q; JπMK〉 = P̂ J
MK |Q; π〉 =

2J + 1

8π2

∫
dΩDJ

MK

∗
(Ω)R̂(Ω) |Q; π〉 . (2.27)

Since the projected states (2.27) are not linearly independent, we define orthog-
onal eigenstates as

|Q; JπMκ〉 =
∑
K

|Q; JπMK〉CJπκ
K , (2.28)

where the complex coefficients CJπκ
K are obtained by diagonalizing the Hamiltonian

Ĥ (2.18) in a subspace spanned by the projected states |Q; JπMK〉. This leads to
a generalized eigenvalue problem∑

K′

HJπ

KK′C
Jπκ
K′ = EJπκ

∑
K′′

NJπ

KK′′C
Jπκ
K′′ , (2.29)

where HJπ

KK′ and NJπ

KK′′ are defined as

HJπ

K,K′ = 〈Q; JπMK| Ĥ |Q; JπM ′K ′〉 = 〈Q; π| ĤP̂ J
KK′ |Q; π〉 ,

NJπ

K,K′′ = 〈Q; JπMK| Q; JπM ′′K ′′〉 = 〈Q; π| P̂ J
KK′′ |Q; π〉 .

(2.30)

It is exacting to calculate the matrices HJπ

KK′ and NJπ

KK′′ due to the integration
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over the space angle Ω in the projection operator (2.24). After expressing the in-
tegration in terms of Euler angles α, β and γ, the Hamiltonian and overlap matrix
acquire the form

HJπ

KK′ =
2J + 1

8π

∫
dα dβ dγDJ

KK′
∗
(α, β, γ) 〈Q; π| ĤR̂(α, β, γ) |Q; π〉 ,

NJπ

KK′′ =
2J + 1

8π

∫
dα dβ dγDJ

KK′′
∗
(α, β, γ) 〈Q; π| R̂(α, β, γ) |Q; π〉 .

(2.31)

The Wigner D-functions can be further expressed as

DJ
KK′(α, β, γ) = e−iKαdJKK′(β)e−iK′γ, (2.32)

where dJKK′(β) denotes the small Wigner d-function. The integration is performed
numerically on the grid. We take 10 grid points for the integrations over angles α
and γ and 20 Gauss-Legendre grid points over angle β, as suggested in Ref. [46].

The expectation value of an arbitrary scalar operator is calculated for the parity
and total angular momentum eigenstates as [45]

OJπκ =
〈Q; JπMκ| Ô |Q; JπMκ〉
〈Q; JπMκ| Q; JπMκ〉

=

∑
KK′ C

Jπκ
K CJπκ

K′ O
Jπ

KK′∑
KK′′ C

Jπκ
K CJπκ

K′′ N
Jπ
KK′′

,

where

OJπ

KK′ =
2J + 1

8π

∫
dα dβ dγDJ

KK′
∗
(α, β, γ) 〈Q; π| ÔR̂(α, β, γ) |Q; π〉 .

(2.33)

2.5 Variation after projection

As we discussed in section 2.4, the result of the variational method, the many-body
state |Q〉, is a linear combination of the individual eigenstates |Q; Jπκ〉. Quite fre-
quently, only a limited number of eigenstates is relevant in the linear combination
(2.20) while the other states are realized at a level of numerical noise. The projec-
tion of these ‘suppressed’ eigenstates is not meaningful and thus it is reasonable to
exclude them. One possibility is to perform variation of a projected state (VAP). In
this work, we perform variation after parity projection (VAPπ) due to manageable
computational requirements. This procedure increases the abundance of odd or even
parity eigenstates in the resulting state. It is also possible to apply variation of the
angular momentum projected state (VAPJ) or the angular momentum plus parity
projected state (VAPJπ). These three options were compared in calculations of 12C
[46]. Another possibility is to put additional constraints during variation (2.19).
The expectation value of the Hamiltonian is then minimized with respect to fixed
values of experimentally observed quantities.
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Chapter 3

Interactions

Due to the variational nature of the FMD model, it is necessary to express each
interaction matrix element analytically as a function of the single-particle states
variational parameters. Therefore, we are limited to potentials that are expressed
in operator form. The most general operator structure of the VNN potential allowed
by symmetries [47] is

V̂NN =Vc(r̂
2, p̂2, L̂2) + V σ(r̂2, p̂2, L̂2)σ̂1.σ̂2 + VT (r̂2, p̂2, L̂2)Ŝ12(r̂)+

+ VLS(r̂2, p̂2, L̂2)L̂.Ŝ + V(LS)2(r̂
2, p̂2, L̂2)(L̂.Ŝ)2+

+ VTp(r̂
2, p̂2, L̂2)S12(p̂) + V τ

c (r̂2, p̂2, L̂2)(τ̂1.τ̂2)+

+ V στ (r̂2, p̂2, L̂2)(σ̂1.σ̂2)(τ̂1.τ̂2) + V τ
T (r̂2, p̂2, L̂2)S12(r̂)(τ̂1.τ̂2)+

+ V τ
LS(r̂2, p̂2, L̂2)(L̂.Ŝ)(τ̂1.τ̂2) + V τ

(LS)2(r̂
2, p̂2, L̂2)(L̂.Ŝ)2(τ̂1.τ̂2)+

+ V τ
Tp(r̂

2, p̂2, L̂2)Ŝ12(p̂)(τ̂1.τ̂2),

(3.1)

where each of the operator terms can be accompanied by an arbitrary combination of
the squares of the relative distance, momentum, and orbital angular momentum op-
erators denoted as r̂2, p̂2, and L̂

2
, respectively. Here, Ŝ is the total spin operator of

the two-nucleon system Ŝ = ŝ1 + ŝ2 and σ̂ = (σ(1), σ(2), σ(3)) ( τ̂ = (σ(1), σ(2), σ(3)) )
denotes the vector of the Pauli matrices σ(i) acting in spin (isospin) space. The
tensor operators Ŝ12(p̂) and Ŝ12(r̂) can be expressed as Ŝ12(p̂) = 2[3(Ŝ.p̂)2 − Ŝ2

]

and Ŝ12(r̂) = 2[3(Ŝ.r̂)2 − Ŝ2
].

Among the NN interactions that are given in operator form different versions
of the Argonne VNN potentials are widely used. The Argonne V14 potential [48]
does not consider the dependence on p̂2 and Ŝ12(p̂) and consists of 14 operator
terms. The Argonne V18 potential [49] has the same operator structure as V14 but
it contains in addition four operator terms describing the charge symmetry breaking
(CSB) of nuclear forces.
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In contrast to theNN interaction, the form of the hyperon-nucleon VY N potential
is not so strictly constrained by limited Y N scattering data and hypernuclear data.
Therefore, it does not make much sense to consider its full operator structure and a
simplified VY N operator form is often used instead [2]

V̂Y N = Vc(r̂
2) + V σ(r̂2)σ̂1.σ̂2 + VT (r̂2)S12(r̂) + VLS+(r̂2)L̂.Ŝ

+
+ VLS−(r̂2)L̂.Ŝ

−
,

(3.2)
where L̂.Ŝ

+
and L̂.Ŝ

−
stand for a symmetric L̂.(ŝY +ŝN) and antisymmetric L̂.(ŝY−

ŝN) spin-orbit interaction. In this work, we consider only VΛN potentials.
The three-body forces play an important role in nuclear as well as Λ hypernu-

clear structure calculations. It was found that they successfully refine theoretical
predictions of the binding energies [50, 51, 52]. In the case of realistic in-medium ΛN

interactions the conversion between Λ and Σ hyperon known as the ΛN −ΣN mix-
ing has to be considered. Since the ΛN scattering data are rather scarce, few-body
calculations of light Λ hypernuclei play an important role in testing of various VΛN

potential models. Several types of VΛN potential models which take into account
ΛN −ΣN mixing have been suggested - the Nijmegen SC89 [53], Nijmegen SC97a-f
[54], Nijmegen ESC04 [55, 56], and Jülich ‘04 [57]. However, their predictions for
hypernuclei differ from each other. Nogga et al. concluded that out of the SC89,
SC97a-f, and Jülich ‘04 potentials only SC89, SC97e, SC97f, and Jülich ‘04 give the
bound hypertriton 3

ΛH [16, 17]. They also showed that the theoretical predictions of
the Λ separation energy and the level ordering of the 4

ΛHe 0+ ground and 1+ excited
state vary among different VΛN potential models [16]. Akaishi et al. performed con-
sistent study of the ΛN−ΣN coupling in s-shell Λ hypernuclei [58, 59]. They found,
that the binding problem of the 3

ΛH, 4
ΛH, 4

ΛHe, and 5
ΛHe hypernuclei can be solved

by the attractive coherent and repulsive incoherent parts of the ΛN −ΣN coupling.
Moreover, the main contribution of the attractive part was found equivalent to the
three-body ΛNN force.

Nowadays, the NN potentials based on the chiral pertrubation theory (ChPT)
[60, 61, 62] play a dominant role in structure calculations of light hypernuclei.
Haidenbauer et al. extended the formalism to the strangeness sector and derived
Y N interaction in the leading order (LO) [63] and next-to-leading order (NLO) [64]
of the ChPT. The LO Y N interaction together with N3LO NN interaction [65] were
successfully used in the first ab initio No Core Shell Model (NCSM) calculations of
the s-shell [22] and p-shell Λ hypernuclei up to 13

Λ C [23].
The realistic as well as effective NN and ΛN potentials are strongly repulsive at

short distances between two particles. This behavior reflects the internal structure
of baryons and prevents them to get too close to each other, to a distance of less

24



INTERACTIONS

than about 0.5 fm (approximate size of N and Λ). Various many-body models (in-
cluding FMD) use a Slater determinant as an approximation of an antisymmetrized
many-body wave function. However, the structure of the Slater determinant is not
able to reflect the hole in the two-body density caused by the strong short-ranged
correlations due to the repulsive core of interaction. Moreover, the non-vanishing
two-body density at relative distance close to zero gives unrealistically high momenta
and hence high kinetic energy which makes it impossible to describe bound systems
[30]. There are several transformation methods which fix this incompatibility and
soften or remove the repulsive core. In this work, we applied the G-matrix trans-
formed ΛN interaction [21] and the Unitary Correlation Operator Method (UCOM)
transformed VNN potentials [35].

3.1 Potentials used in this work

We use several types of relatively simple VNN and VΛN potentials which were avail-
able during the recent development of our FMD code. The three-body NNN and
Y NN forces were not considered in our calculations at this point and the ΛN −ΣN

mixing is not explicitly taken into account, however, its contribution is included in
the VΛN potentials through the G-matrix. The operator structure of the applied VNN
and VΛN potentials, their parameters, as well as the manner in which the Coulomb
interaction VC is taken into account are given in Appendix D.

3.1.1 VNN potentials

In our calculations, we adopted following two-body VNN potentials - the Volkov V2
(V2M0.0 and V2M0.6) [66] , Afnan-Tang S3M (ATS3M) [36], and Malfliet-Tjon V
(MTV) [37]. The last two interactions have too strong repulsive core, therefore we
use their UCOM transformed versions [35].

The Volkov V2 potential was introduced as an effective soft-core NN interaction
which may be used in many-body techniques based on Slater determinants. It was
constructed with respect to three criteria: “the s-wave scattering length should not
be too far from the singlet and triplet scattering lengths, the effective range should
not be too different from the triplet and singlet effective ranges, and the binding
energy and size of 4He should be given with the appropriate shell-model Slater
determinant” [66].

The Afnan-Tang S3 VNN potential [67] was determined by fitting the low-energy
nucleon-nucleon scattering data (up to 100 MeV) and experimental binding energies
and radii of 3H and 4He. The modified version S3M of this potential has in addition

25



INTERACTIONS

a phenomenological repulsive term in the odd channel which allows to describe
heavier systems. Since the modified version includes the strongly repulsive core, we
implement UCOM transformed version in our calculations.

The Malfliet-Tjon V was designed to reproduce the binding energy of 3H and
the nucleon-nucleon phase shifts up to 300 MeV. Due to its strongly repulsive core
we use again its UCOM softened version.

3.1.2 VΛN potentials

Hypernuclear calculations presented in this work are performed using G-matrix
transformed YNG ΛN interactions [21]. We implemented five different two-body
VΛN potentials: YNG-JA (JA), YNG-JB (JB), YNG-ND (ND), YNG-NF (NF),
and YNG-NS (NS). The important feature of the YNG interactions is their Fermi
momentum dependence which describes the nuclear medium surrounding the Λ hy-
peron. Therefore, it is necessary to use a different Fermi momentum parameter kF

for each hypernuclear system. The kF dependence is rather steep, hence, the deter-
mination of the suitable value of kF may become a delicate problem. In most cases,
the Fermi momentum value is selected to reproduce the experimental value of the
Λ separation energy [18].

The YNG-JA and YNG-JB ΛN potentials are based on the G-matrix trans-
formed Jülich model-A and model-B [68], respectively. The model-A considers only
single-particle exchange diagrams whereas the model-B contains also higher order
processes. The YNG-ND, NF, and NS ΛN interactions are determined to simulate
the G-matrix transformed one-boson-exchange Nijmegen potential model-D, F and
soft core model-S [53], respectively.
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Chapter 4

Results

In this chapter, we present the first results of the calculations of light hypernuclei
using our recently developed FMD code.

The physical quantities used as an input in this work are given in Table 4.1. We
applied identical values of the proton and neutron rest masses [69] as in the previous
FMD nuclear structure studies [34, 35], which allowed us to compare directly the
nuclear part of our FMD program with the earlier calculations. The rest mass of the
Λ hyperon mΛ and the value of the neutron charge mean-square radius 〈r2

n〉 were
taken from [1]. We used the experimental value of the proton charge rms radius√〈

r2
p

〉
extracted from the ep scattering data (2010 CODATA) [70].

Table 4.1: The experimental values of the physical quantities used in our calcula-
tions: proton (mp), neutron (mn), and Λ (mΛ) rest mass, neutron charge mean-

square radius 〈r2
n〉 and proton rms radius

√〈
r2
p

〉
.

Physical input
mp 938.27231 MeV
mn 939.56563 MeV
mΛ 1115.683 MeV
〈r2
n〉 -0.1161 fm2√〈
r2
p

〉
0.8775 fm

4.1 Numerical solution of the variational method

(convergence, VAPπ)

First, we study the convergence of the FMD model within two different minimization
algorithms - the SQP [44] and L-BFGS-B [71]. In SQP, the expectation value of
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the binding energy EB is minimized under additional constraints - with respect to
equality bounds < X̂cm >2= 0, < P̂ cm >2= 0, and box constraints Re(ak) > 0. In
L-BFGS-B, EB is minimized only with respect to box constraints Re(ak) > 0. In
Section 2.1.1, we mentioned that the action of a parity operator on a many-body
state |Q〉 affects only the intrinsic coordinates if< X̂cm >= 0. Since L-BFGS-B does
not consider the equality bounds, we do not apply this algorithm to minimization
involving parity operators. Hence, we use L-BFGS-B only in the case of nuclear
calculations performed by variation of the basic FMD state (V) to test the more
advanced SQP algorithm.

In Figure 4.1, we compare the convergence of the 3He FMD calculations using
both L-BFGS-B and SQP minimization algorithms. The variation is performed for
the basic FMD state (V) and the VNN ATS3M potential. In the case of L-BFGS-B
algorithm (left panel), we plot the value of the binding energy EB of 3He in each
iteration step. We observe that the algorithm converges to EB = −5.403 MeV.
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Figure 4.1: The convergence of the 3He FMD calculations using the L-BFGS-B (left
panel) and SQP (right panel) algorithms. The binding energy EB is shown in each
iteration step. In case of SQP algorithm, the values of < X̂cm >2 and < P̂ cm >2 in
each iteration are presented as well. Both calculations are performed by variation
of the basic FMD trial state (V) using the ATS3M VNN potential.
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However, the resulting state |Q〉 does not have the position and momentum of the
center of mass square equal to zero. The right panel of Fig. 4.1 shows the convergence
of the 3He calculation using the SQP algorithm with equality bounds < X̂cm >2= 0

and < P̂ cm >2= 0. We plot the values of EB, < X̂cm >2, and < P̂ cm >2 in
each iteration step. Due to the non-trivial minimization of the binding energy EB

with respect to the equality bounds the SQP algorithm converges much slower.
Both algorithms converge to the same value of the 3He binding energy, however
the resulting state |Q〉 in SQP in addition satisfies the bounds < X̂cm >2= 0

and < P̂ cm >2= 0 within desired precision. We successfully tested the consistency
between aforementioned algorithms on the 3H, 4He, 6Li, and 7Li nuclei using various
VNN potentials.

The minimization of the binding energy EB with respect to < X̂cm >2= 0 allows
to perform the variation of the parity projected trial FMD state VAPπ and to apply
the YNG VΛN potentials in their spin-parity channels (see Appendix C). In Fig-
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Figure 4.2: The convergence of the 3He (left panel) and 4
ΛHe (right panel) FMD

calculations using the SQP algorithm. The binding energy EB as well as the values
of < X̂cm >2 and < P̂ cm >2 in each iteration step are presented. Both calculations
are performed by variation of the even parity projected FMD trial state (VAP+)
using the ATS3M VNN potential. In the case of 4

ΛHe, the VΛN part is described by
the NF potential.
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ure 4.2, we show the minimization of the 3He and 4
ΛHe binding energies with respect

to < X̂cm >2= 0 and < P̂ cm >2= 0 using the SQP algorithm. In both calculations,
we used the ATS3M VNN potential and we performed the variation of the even parity
projected FMD state (VAP+). In the case of 4

ΛHe, we described the ΛN interaction
using the YNG-NF potential with kF = 0.763 fm−1. We observe, that the VAP+ min-
imization of the 3He binding energy converges to the value EB = −5.452 MeV which
lies slightly below the minimum EB = −5.403 MeV calculated with the variation of
the basic FMD state (V) in Figure 4.1. The reason of this improvement is that the
VAP+ trial state is the even eigenstate of the parity operator, therefore, it provides
better description of the 1/2+ ground state of 3He. From Figure 4.2, we can directly
assess the Λ separation energy as BΛ ≈ EB(3He; +) − EB(4

ΛHe; +) = 1.028 MeV,
neglecting the total angular momentum projection.

The 4
ΛHe hypernucleus has the 0+ ground state and 1+ excited state. The Λ

separation energies in the parity and total angular momentum projected 0+ and 1+

states of 4
ΛHe, calculated using the ATS3M VNN and YNG-NF VΛN (NF) potentials

are shown in Figure 4.3. The results of the variation of a basic FMD trial state
(V) are compared with the results for the even parity projected trial FMD state
(VAP+). Clearly, the VAP+ leads to larger Λ separation energies of the both 0+
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Figure 4.3: The Λ separation energies BΛ of 4
ΛHe obtained using the variation of

a trial FMD state (V) and variation of an even parity projected trial FMD state
(VAP+), calculated with the ATS3M VNN and NF VΛN potentials. Variated trial
states are further projected on the 0+ ground and 1+ excited states.
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and 1+ states while the 0+ − 1+ splitting remains almost unchanged. This finding
holds for all VNN and VΛN potentials used in our calculations.

It is to be noted that the results of previous calculations of ordinary nuclei [46]
suggest that the effect of VAPπ would be larger in more deformed hypernuclei. In
the following we will present only the VAPπ results which we consider more suitable
for the description of hypernuclear bound states.

4.2 s-shell Λ hypernuclei

4.2.1 4
ΛHe hypernucleus

In this part, we present our theoretical study of 4
ΛHe in the framework of FMD

model. In order to check our numerical code, we first calculated the core nucleus
3He and compared our results with similar calculations done by Neff using the same
input [72]. In Table 4.2, we present the binding energy EB, total rms radius RT,
and charge rms radius Rcharge in 3He calculated for the angular momentum and
parity projected state 1/2+. The calculations were performed for the variation of
the even parity projected state (VAP+) using the V2M0.0, V2M0.6, MTV, and
ATS3M potentials. The experimental values of 3He binding energy and charge rms
radius are shown in Table 4.2 for comparison.

Table 4.2: The binding energies EB, total rms radii RT, and charge rms radii Rcharge

of 3He obtained using the variation of an even parity projected trial FMD state
(VAP+) and further projection on 1/2+ state. The calculations are performed using
the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials. The results are compared
to the experimental values of EB and Rcharge.

3He (1/2+) V2M0.0 V2M0.6 MTV ATS3M Exp.
EB [MeV] -7.180 -7.180 -6.449 -5.554 -7.718043(2) [73]
RT [fm] 1.581 1.581 1.441 1.422
Rcharge [fm] 1.792 1.792 1.670 1.670 1.9506(14) [74]

In the 4
ΛHe hypernucleus, the Λ separation energies BΛ = EB(3He; 1/2+) −

EB(4
ΛHe; J+) in the 0+ ground state and 1+ excited state were measured –Bexp

Λ (0+) =

2.39(3) MeV [75] and Bexp
Λ (1+) = 1.15(4) MeV [76]. In Figure. 4.4, we compare the

Λ separation energy spectra in 4
ΛHe calculated with the ATS3M VNN potential and

five different VΛN potentials - the JA, JB, ND, NF, and NS. The value of Fermi
momentum kF = 0.8 fm−1 adopted from previous hypernuclear cluster calculations
[21] was used for each VΛN . In the case of the JA, JB, and ND ΛN potentials,
the variation procedure VAP+ reaches the binding energy minimum that almost
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Figure 4.4: The Λ separation energies BΛ of 4
ΛHe obtained using the variation of an

even parity projected trial FMD state (VAP+), calculated with the JA, JB, ND, NF,
and NS VΛN potentials (kF = 0.8 fm−1) and the ATS3M VNN potential. Variated
trial states (+) are further projected on the 0+ and 1+ eigenstates. In case of the
JA, JB, and ND VΛN potentials the projected 0+ states were not obtained with
sufficient numerical accuracy, therefore, their BΛ is not shown.

exactly corresponds to the 1+ ground state. This fact was checked by calculating
their corresponding < L̂2 >, < Ŝ2 >, and < Ĵ2 > expectation values. Consequently,
we were not able to project out 0+ eigenstates with a sufficient numerical accuracy.
Therefore, they are not plotted in the figure. The resulting 1+ ground state is in
contradiction to experiment. This indicates a wrong ordering of the energy levels,
which was also supported by previous calculations [21]. The minimization of the
binding energy for the NF and NS VΛN potentials yields the correct order of the Λ

separation energy levels, in agreement with experiment. However, the NS VΛN po-
tential clearly overestimates the experimental value of the 0+ − 1+ splitting. Thus,
we consider the YNG-NF VΛN potential as the most reliable out of the ΛN potentials
discussed here and we applied it in the following 4

ΛHe FMD calculations.
In Figure 4.5, we plot the total, nucleon, and Λ one-body densities in 4

ΛHe many-
body state |Q〉 denoted as ρ (4

ΛHe), ρnuc(
4
ΛHe), and ρΛ(4

ΛHe), respectively. The
parameters of the 4

ΛHe many-body state are determined with the variation of the
even parity projected trial FMD state |Q; +〉 = 1

2
(|Q〉 + Π̂ |Q〉) (VAP+) using the

ATS3M VNN , and NF (kF = 0.8 fm−1) VΛN potentials. For comparison, we also
show the total one-body density of the 3He ρ (3He) calculated with the VAP+ using
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the same VNN potential. We observe that ρΛ (4
ΛHe) is slightly shifted to the right

from the coordinate origin while the ρnuc(
4
ΛHe) is shifted to the left. Nevertheless,

the center of mass of the 4
ΛHe is located in the center. It is to be noted that after

the projection on the total angular momentum J all densities are located in the
center. The distribution of the total density of 4

ΛHe in the plot seems to be spherical,
however, the calculated inertia tensor indicates small deformation of the 4

ΛHe state
|Q〉. A thorough comparison of ρnuc (4

ΛHe) and ρ (3He) shows that ρnuc (4
ΛHe) is

slightly more dilute due to the presence of Λ. This finding is in agreement with the

Figure 4.5: The total (ρ (4
ΛHe)), nucleon (ρnuc(

4
ΛHe)), and Λ (ρΛ(4

ΛHe)) one-body
densities of the 4

ΛHe state |Q〉, shown in the xy,z=0 plane. The total one-body
density of the 3He state |Q〉 (ρ (3He)) is presented as well. The parameters of the
4
ΛHe and 3He states |Q〉 are calculated by variation of the even parity projected
states |Q; +〉 = 1

2
(|Q〉 + Π̂ |Q〉) with the VNN ATS3M potential. The VΛN part of

4
ΛHe is described by the NF potential (kF = 0.8 fm−1). The densities are in units of
the nuclear saturation density ρ0 = 0.16 fm−3.
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Figure 4.6: The Λ separation energies BΛ of 4
ΛHe obtained using the variation of

an even parity projected trial FMD state (VAP+) calculated with the MTV VNN
potential. The VΛN part is described by the NF potential with different values of
the Fermi momentum kF. The variated states (+) are further projected on the 0+

ground and 1+ excited states.

difference between Rcore(
4
ΛHe) and RT(3He) presented in Table 4.3 and Table 4.2,

respectively.
An important aspect of the YNG potentials is their Fermi momentum depen-

dence. The calculations presented so far were performed for one particular value of
the Fermi momentum, kF = 0.8 fm−1. In Figure 4.6, we present the Λ separation
energies BΛ in 4

ΛHe, calculated with the same VNN and VΛN potentials, but three
different values of kF. The value kF = 0.763 fm−1 was determined from the calcula-
tions of the 3He rms radius [77] and kF = 0.72 fm−1 was used as a test value. We
observe that the Fermi momentum acts as a scaling factor - Λ separation energies
increase rapidly with decreasing kF. The 0+ − 1+ splitting changes only slightly
(tens of keV) and also has an increasing tendency with decreasing kF.

The kF affects not only the binding of the Λ hyperon in the nuclear medium but
also the modification of the nuclear core. In Table 4.3, we present our results of
4
ΛHe calculations for three different kF. Each calculation is performed using the NF
ΛN interaction and the VAP+ variation. We show the results for two different VNN
potentials - MTV (only central) and ATS3M (spin-isospin dependent). We observe
that the total, Λ, and nucleon rms radii decrease with decreasing kF. Therefore, we
conclude that the 4

ΛHe hypernucleus becomes more compact with decreasing Fermi
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Table 4.3: The binding energies EB, total rms radii RT, charge rms radii Rcharge,
Λ rms radii RΛ, rms radii of the nuclear core Rcore, and differences ∆Rcore =
Rcore(

4
ΛHe; J+)−RT(3He; 1/2+) of 4

ΛHe obtained using the variation of an even parity
projected trial FMD state (VAP+) and further projection on the 0+ ground state
and 1+ excited states. The calculations are performed using the MTV, and ATS3M
VNN potentials. The VΛN part is described by the NF potential with different values
of the Fermi momentum kF.

4
ΛHe

MTV ATS3M
0+ 1+ 0+ 1+

k
F

=
0.

8
fm
−

1

EB [MeV] -7.588 -6.876 -6.611 -5.791

RT [fm] 1.649 1.649 1.635 1.636
Rcharge [fm] 1.812 1.812 1.815 1.816
RΛ [fm] 1.761 1.761 1.751 1.753
Rcore [fm] 1.442 1.442 1.428 1.428
∆Rcore [fm] 0.001 0.001 0.006 0.006

k
F

=
0.

76
3

fm
−

1

EB [MeV] -7.960 -7.234 -7.009 -6.191

RT [fm] 1.629 1.629 1.616 1.617
Rcharge [fm] 1.801 1.801 1.805 1.805
RΛ [fm] 1.726 1.726 1.715 1.716
Rcore [fm] 1.435 1.435 1.421 1.421
∆Rcore [fm] -0.006 -0.006 -0.001 -0.001

k
F

=
0.

72
fm
−

1 EB [MeV] -8.424 -7.677 -7.508 -6.658

RT [fm] 1.607 1.607 1.595 1.595
Rcharge [fm] 1.788 1.788 1.792 1.793
RΛ [fm] 1.686 1.686 1.677 1.677
Rcore [fm] 1.426 1.426 1.412 1.413
∆Rcore [fm] -0.015 -0.015 -0.010 -0.009

momentum.
The comparison of the 4

ΛHe rms radius of the nuclear core Rcore in Table 4.3
with the total rms radius RT in 3He, given in Table 4.2, indicates the extent of the
changes in the nuclear core due to the presence of Λ. The corresponding difference
∆Rcore = Rcore(

4
ΛHe) − Rcore(

3He) is shown in Table 4.3. We observe that for kF =

0.8 fm−1 the 3He nuclear core slightly increases when Λ is bound in the system. On
the other hand, in the case of kF = 0.763 fm−1 and kF = 0.72 fm−1 the nuclear core
shrinks.

Figure 4.7 illustrates the modification of the nucleon one-body density distribu-
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Figure 4.7: The difference between the nucleon radial one-body density (ρnuc(
4
ΛHe))

of the 4
ΛHe state |Q〉 and total radial one-body density (ρ (3He)) of the 3He state

|Q〉. The parameters of the 4
ΛHe and 3He states |Q〉 are calculated by variation of

the basic FMD state (V) with the VNN MTV potential. The VΛN part of 4
ΛHe is

described by the NF potential with different values of the Fermi momentum kF. The
densities are in units of the nuclear saturation density ρ0 = 0.16 fm−3.

tion in the 4
ΛHe hypernucleus with respect to 3He. The FMD calculations of 3He and

4
ΛHe were performed using the MTV VNN and NF VΛN potentials by the variation
of the basic FMD trial state (V). In this case the resulting many-body states of the
variation process |3He;Q〉 and |4ΛHe;Q〉 are spherically symmetric. This allows us to
study the radial density distribution difference ρnuc(

4
ΛHe)(r) − ρ (3He)(r) for three

selected values of kF. We observe that for kF = 0.72 fm−1 the difference is positive
around the center of coordinates while it becomes negative for kF = 0.763 fm−1.
The difference near the origin is even more negative for kF = 0.8 fm−1.

To a first approximation, the binding of the Λ hyperon in a nuclear system is
mainly determined by the ΛN interaction. However, since the nuclear part of the
total Hamiltonian (2.18) also participates in the variation process, the impact of the
presence of the hyperon on the nuclear structure should depend on the VNN poten-
tial as well. This feature allows us to indicate the effects coming from the nuclear
core description. In Figure 4.8, we plot the Λ separation energies BΛ of the 4

ΛHe

hypernucleus calculated for the same VΛN potential (NF) but three different VNN
potentials - the MTV, ATS3M, and V2M0.6 potentials. We observe, that the sepa-
ration energy BΛ corresponding to an intrinsic state before the angular momentum
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Figure 4.8: The Λ separation energies BΛ of 4
ΛHe obtained using the variation of an

even parity projected trial FMD state (VAP+) calculated with the V2M0.6, MTV,
and ATS3M VNN potentials and the NF VΛN potential. The variated trial states
(+) are further projected on the 0+ ground and 1+ excited states.

projection (denoted by ’+’) varies only slightly within tens of keV. However, after
the angular momentum projection the Λ separation energies of the ground 0+ and
excited 1+ states differ by few hundreds of keV, which is also reflected in the 0+−1+

splitting.
In Table 4.4, we present energy differences between the individual contributions

to the binding energies of the 0+ and 1+ states in 4
ΛHe, calculated with the V2M0.0,

Table 4.4: The differences between the BΛ(0+) and BΛ(1+) Λ separation energies
expressed in the form of individual contributions to the 0+ - 1+ splitting (in MeV).
The Tint, VNN , V σ

NN , VΛN and V σ
ΛN denote intrinsic kinetic energy, spin-independent

part of VNN , spin-dependent part of VNN , spin-independent part of VΛN and spin-
dependent part of VΛN . The calculations are performed with the V2M0.0, V2M0.6,
MTV, and ATS3M VNN potentials and the NF (kF = 0.763 fm−1) VΛN potential.

VNN potential ∆Tint ∆VNN ∆V σ
NN ∆VΛN ∆V σ

ΛN |BΛ(0+)−BΛ(1+)|
V2M0.0 10−4 10−4 - 10−5 0.626 0.626
V2M0.6 10−4 10−5 10−5 10−4 0.625 0.626
MTV-UCOM 10−4 10−5 - 10−4 0.726 0.726
ATS3M-UCOM 0.023 0.027 0.048 0.006 0.767 0.817
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V2M0.6, MTV, and ATS3M VNN potentials and the NF (kF = 0.763 fm−1) VΛN

potential. We observe that the size of the |BΛ(0+)− BΛ(1+)| splitting comes dom-
inantly from the spin-dependent part of the VΛN potential (∆V σ

ΛN). Furthermore,
the size of BΛ splitting changes considerably for various VNN potentials, as they
predict a different level of the nuclear core modifications due to the presence of Λ.

4.2.2 4
ΛH hypernucleus. Mirror hypernuclei 4

ΛHe and 4
ΛH

Properties of the NN and ΛN interactions can be studied through mirror hypernu-
clei 4

ΛHe and 4
ΛH. In the latter hypernuclear system, the experiment measures the

same order of the Λ separation energy BΛ levels as in the case of 4
ΛHe - the 0+ ground

state and one 1+ excited state. The experimental values are Bexp
Λ (4

ΛH; 0+) = 2.04(4)

MeV [75] and Bexp
Λ (4

ΛH; 1+) = 1.04(5) MeV [76]. The differences between the Λ

separation energies of 4
ΛHe and 4

ΛH denoted as Eshift = BΛ(4
ΛHe) − BΛ(4

ΛH) in the
individual BΛ levels are Eexp

shift(0
+) = 0.35 MeV and Eexp

shift(1
+) = 0.11 MeV. Since

the YNG potentials do not distinguish between neutron and proton, the difference
between the Λ separation energies comes exclusively from the NN -potential descrip-
tion of the nuclear core.

The binding energy EB, total rms radius RT, and charge rms radius Rcharge of
3H which forms the core of the 4

ΛH are shown in Table 4.5. The calculations are
performed with the VAP+ using the V2M0.0, V2M0.6, MTV, and ATS3M VNN

potentials. Again we compared our results with the FMD calculations of Neff [72].
Experimental value of EB is shown for comparison.

Table 4.5: The binding energies EB, total rms radii RT, and charge rms radii Rcharge

of 3H obtained using the variation of an even parity projected trial FMD state
(VAP+) and further projection on the 1/2+ state. The calculations are performed
using the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials. The results are
compared to the experimental value of EB.

3H (1/2+) V2M0.0 V2M0.6 MTV ATS3M Exp.
EB [MeV] -7.191 -7.191 -6.463 -5.545 -8.481798(2) [73]
RT [fm] 1.581 1.581 1.440 1.422
Rcharge [fm] 1.743 1.743 1.617 1.568

In Table 4.6, we summarize the results of our VAP+ calculations of the 0+ and
1+ states in 4

ΛH. The Λ separation energy BΛ, change in the rms radius of the
nuclear core ∆Rcore, and the energy difference Eshift = BΛ(4

ΛHe) − BΛ(4
ΛH) were

calculated using the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials and the
YNG-NF VΛN potential with kF = 0.763 fm−1. We observe that the nuclear core of
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Table 4.6: The binding energies EB, Λ separation energies BΛ, differences BΛ(4
ΛHe)−

BΛ(4
ΛH), total rms radii RT, charge rms radii Rcharge, Λ rms radii RΛ, rms radii of

the nuclear core Rcore, and differences ∆Rcore = Rcore(
4
ΛH; J+)−RT(3H; 1/2+) of 4

ΛH
obtained using the variation of an even parity projected trial FMD state (VAP+)
and further projection on the 0+ ground and 1+ excited states. The calculations
are performed using the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials. The
VΛN part is described by the NF potential with the value of Fermi momentum
kF = 0.763 fm−1.

4
ΛH

V2M0.0 V2M0.6
0+ 1+ 0+ 1+

EB [MeV] -8.529 -7.892 -8.529 -7.899
BΛ [MeV] 1.338 0.701 1.338 0.708
BΛ(4

ΛHe)−BΛ(4
ΛH) -0.020 -0.005 -0.020 -0.016

RT [fm] 1.734 1.734 1.734 1.734
Rcharge [fm] 1.857 1.858 1.858 1.858
RΛ [fm] 1.798 1.799 1.799 1.799
Rcore [fm] 1.553 1.553 1.553 1.553
∆Rcore [fm] -0.028 -0.028 -0.028 -0.028

4
ΛH

MTV ATS3M
0+ 1+ 0+ 1+

EB [MeV] -7.976 -7.243 -7.048 -6.209
BΛ [MeV] 1.513 0.780 1.503 0.664
BΛ(4

ΛHe)−BΛ(4
ΛH) -0.002 0.005 -0.048 -0.027

RT [fm] 1.629 1.629 1.616 1.616
Rcharge [fm] 1.749 1.749 1.700 1.700
RΛ [fm] 1.726 1.726 1.716 1.716
Rcore [fm] 1.435 1.435 1.420 1.421
∆Rcore [fm] -0.005 -0.005 -0.002 -0.001

the 4
ΛH hypernucleus shrinks due to the presence of Λ for all VNN potential types.

The negative value of Eshift for all NN interactions indicates that the calculated
spectrum of 4

ΛH lies slightly above the 4
ΛHe spectrum (the difference is about tens of

keV). Our results are thus in contrast to current experimental data.

Coulomb interaction

We tried to fix the aforementioned inconsistency in the calculated spectra of the mir-
ror hypernuclei 4

ΛHe and 4
ΛH by considering the Coulomb interaction. In Table 4.7,

we present our VAP+ results for the 3He nuclear system calculated including the
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Coulomb interaction for the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials.
The contribution of the Coulomb interaction to the binding energy EC calculated
as the difference between the binding energies of the system with and without the
Coulomb repulsion, EC = ECoul

B − EB, is also presented. As expected, the 3He rms
radii increase due to the Coulomb repulsion. The contribution EC to the 3He binding
energy differs only slightly for various VNN potentials (tens of keV).

Table 4.7: The binding energies EB, Coulomb energies EC = ECoul
B − EB, total rms

radii RT, and charge rms radii Rcharge of 3He obtained using the variation of an
even parity projected trial FMD state (VAP+) and further projection on the 1/2+

ground state. The calculations are performed using the V2M0.0, V2M0.6, MTV,
and ATS3M VNN potentials with (+C) and without (no C) the Coulomb repulsion.

3He (1/2+)
V2M0.0 V2M0.6 MTV ATS3M

no C + C no C + C no C + C no C + C
EB [MeV] -7.180 -6.457 -7.180 -6.457 -6.449 -5.656 -5.554 -4.753
EC [MeV] 0.723 0.723 0.793 0.801
RT [fm] 1.518 1.595 1.581 1.595 1.441 1.454 1.422 1.434
Rcharge [fm] 1.792 1.807 1.792 1.806 1.670 1.683 1.670 1.681

In Table 4.8, we show the VAP+ results of 4
ΛHe calculations using the V2M0.0,

V2M0.6, MTV, and ATS3M VNN potentials. The hypernuclear part is described
by the YNG-NF VΛN potential with kF = 0.763 fm−1 and the Coulomb repulsion
between protons is considered. We observe that the contribution of the Coulomb
interaction to the 4

ΛHe binding energy EC is only slightly different from EC in 3He

presented in Table 4.7. Consequently, the Λ separation energy remains almost un-
changed and we do not observe any significant modification of Eshift.

The Coulomb interaction shifts the calculated BΛ(0+) and BΛ(1+) energy levels
in 4

ΛHe slightly downwards, even more below the BΛ levels in 4
ΛH. The calculated

Λ separation energies in the mirror hypernuclei 4
ΛHe and 4

ΛH thus remain in conflict
with experimental spectra. We conclude that the relative position of the calculated
BΛ spectra in 4

ΛHe and 4
ΛH mainly depend on the applied ΛN interaction. The

YNG VΛN potentials used in our calculations do not contain the Charge Symmetry
Breaking (CSB) operator terms which would distinguish between the Λp and Λn

interactions. There are several attempts which describe the CSB effects in 4
ΛHe

and 4
ΛH by adding a phenomenological operator term to the VΛN potential [19, 78].

Another way is to include Λ− Σ mixing explicitly in the hypernuclear calculations
[17].
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Table 4.8: The binding energies EB, Coulomb energies EC = ECoul
B − EB, Λ sepa-

ration energies BΛ, differences BΛ(4
ΛHe) − BΛ(4

ΛH), total rms radii RT, charge rms
radii Rcharge, Λ rms radii RΛ, rms radii of the nuclear core Rcore, and differences
∆Rcore = Rcore(

4
ΛHe; J+) − RT(3He; 1/2+) of 4

ΛHe obtained using the variation of
an even parity projected trial FMD state (VAP+) and further projection on the 0+

ground and 1+ excited states. The calculations are performed using the V2M0.0,
V2M0.6, MTV, and ATS3M VNN potentials considering the Coulomb repulsion.
The VΛN part is described by the NF potential with the value of Fermi momentum
kF = 0.763 fm−1.

4
ΛHe (Coulomb)

V2M0.0 V2M0.6
0+ 1+ 0+ 1+

EB [MeV] -7.775 -7.153 -7.773 -7.149
EC [MeV] 0.741 0.732 0.742 0.740
BΛ [MeV] 1.318 0.696 1.316 0.692
BΛ(4

ΛHe)−BΛ(4
ΛH) -0.020 -0.005 -0.022 -0.016

RT [fm] 1.745 1.745 1.745 1.745
Rcharge [fm] 1.919 1.919 1.918 1.918
RΛ [fm] 1.806 1.806 1.806 1.806
Rcore [fm] 1.564 1.564 1.564 1.564
∆Rcore [fm] -0.031 -0.031 -0.031 -0.031

4
ΛHe (Coulomb)

MTV ATS3M
0+ 1+ 0+ 1+

EB [MeV] -7.157 -6.429 -6.224 -5.430
EC [MeV] 0.803 0.805 0.785 0.761
BΛ [MeV] 1.501 0.773 1.471 0.677
BΛ(4

ΛHe)−BΛ(4
ΛH) -0.012 -0.007 -0.032 0.013

RT [fm] 1.638 1.638 1.624 1.625
Rcharge [fm] 1.812 1.812 1.814 1.814
RΛ [fm] 1.731 1.732 1.721 1.722
Rcore [fm] 1.445 1.445 1.430 1.430
∆Rcore [fm] -0.009 -0.009 -0.004 -0.004

4.2.3 5
ΛHe hypernucleus

An important feature of the 5
ΛHe hypernucleus is its rather compact 4He nuclear core,

which is a double magic nucleus. Therefore, the modifications of the 4He core due
to the presence of the Λ hyperon are expected to be almost negligible. In the case of
5
ΛHe, only the energy of the 1/2+ ground state was measured, BΛ = 3.12(2) MeV [75].

First, we present our VAP+ results for the 4He core nucleus. In Table 4.9, we show
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the binding energy EB, total rms radius RT, and charge rms radius Rcharge of 4He for
the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials. The experimental values
of the 4He are shown for comparison. We observe that the V2M0.0 and V2M0.6 VNN
potentials provide reasonable description of 4He, while the MTV potential overbinds
the system.

Table 4.9: The binding energies EB, total rms radii RT, and charge rms radii Rcharge

of 4He obtained using the variation of an even parity projected trial FMD state
(VAP+) and further projection on the 0+ ground state. The calculations are per-
formed using the V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials. The results
are compared to the experimental values of EB, and Rcharge.

4He (0+) V2M0.0 V2M0.6 MTV ATS3M Exp.
EB [MeV] -28.794 -28.794 -30.399 -28.095 -28.296† [79]
RT [fm] 1.454 1.454 1.320 1.327
Rcharge [fm] 1.664 1.664 1.549 1.554 1.681(4) [80]

†no error reported

In the previous calculations [18], the Fermi momentum parameter kF of YNG
VΛN potentials was chosen to reproduce the experimental Λ separation energy in
the 5

ΛHe ground state. In our FMD calculations, we adopted the same approach for
different VNN potentials in order to investigate model dependence.

In Figure 4.9, we plot the calculated Λ separation energy BΛ in 1/2+ ground
state of 5

ΛHe using the YNG-NF ΛN interaction with different values of kF - 0.880,
0.895, 0.910, 0.925, and 0.940 fm−1. Various VNN potential models are considered
- V2M0.0, V2M0.6, MTV, and ATS3M. We observe that the value of BΛ increases
linearly with decreasing kF for all NN interactions. In the case of the V2M0.0 and
V2M0.6 NN potentials we receive identical behavior of the BΛ(kF). The MTV VNN

potential model shifts the BΛ(kF) upward, while for the ATS3M NN potential the
BΛ(kF) line is moved downward. The optimal values of kF that reproduce the exper-
imental Λ separation energy for each VNN potential are then determined using the
linear regression. We receive the following Fermi momenta - kV2M0.0

F = 0.904 fm−1,
kV2M0.6

F = 0.904 fm−1, kMTV
F = 0.909 fm−1, and kATS3M

F = 0.892 fm−1. We clearly
see that the optimal values of kF for the above NN potentials are rather different.

In Table 4.10, we summarize our FMD VAP+ results for 5
ΛHe using the V2M0.0,

V2M0.6, MTV, and ATS3M VNN potentials. The ΛN interaction is described by
the YNG-NF potential. Based on the above discussion, we adopt the value of the
Fermi momentum parameter kF = 0.900 fm−1 that best reproduces (in bulk) the
experimental value of the BΛ(1/2+) for various VNN interactions used in this work.
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Figure 4.9: The dependence of the Λ separation energy BΛ in the 1/2+ ground state
of 5

ΛHe on the value of the Fermi momentum kF, calculated using the VAP+ and the
V2M0.0, V2M0.6, MTV, and ATS3M VNN potentials. The VΛN part is described by
the NF potential. The dependence for each VNN potential is fitted (blue line) and
the optimal value of kF which reproduces the BΛ = 3.12(2) MeV [75] (dashed line)
is determined.

Table 4.10: The binding energies EB, Λ separation energies BΛ, total rms radii RT,
charge rms radii Rcharge, Λ rms radii RΛ, rms radii of the nuclear core Rcore, and
differences ∆Rcore = Rcore(

5
ΛHe; 1/2+)−RT(4He; 0+) of 5

ΛHe obtained using the vari-
ation of an even parity projected trial FMD state (VAP+) and further projection on
the 1/2+ ground state. The calculations are performed using the V2M0.0, V2M0.6,
MTV, and ATS3M VNN potentials. The VΛN part is described by the NF potential
with the value of Fermi momentum kF = 0.900 fm−1.

5
ΛHe (1/2+) V2M0.0 V2M0.6 MTV ATS3M
EB [MeV] -31.966 -31.966 -33.651 -31.070
BΛ [MeV] 3.172 3.172 3.252 2.975

RT [fm] 1.598 1.598 1.501 1.501
Rcharge [fm] 1.740 1.740 1.636 1.641
RΛ [fm] 1.780 1.780 1.742 1.724
Rcore [fm] 1.446 1.446 1.324 1.333
∆Rcore [fm] -0.008 -0.008 0.004 0.006
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4.3 p-shell Λ hypernucleus 7
ΛLi

In this section, we present our study of the p-shell hypernucleus 7
ΛLi. The γ-ray

transitions between the individual energy levels of 7
ΛLi allowed to measure the Λ

single-particle spectrum with relatively high accuracy [9]. Therefore, the study of
7
ΛLi serves as a good test of various hypernuclear models as well as VΛN potentials.

In our calculations of 7
ΛLi, we were limited to the ATS3M VNN potential, as the

only potential out of those considered here capable of describing the nuclear core
heavier than 4He. The V2M0.0, V2M0.6, and MTV VNN interactions noticeably
overbind the 6Li core and therefore do not yield physically meaningful results.

In order to check our numerical code, we first calculated the core nucleus 6Li and
compared our results with similar calculations done by Neff using the same ATS3M
VNN potential [72]. In Table 4.11, we present the binding energies EB, total rms radii
RT, and charge rms radii Rcharge in 6Li determined for the angular momentum and
parity projected states (’J+’). The calculations were performed for the variation of
the even parity projected state (VAP+). The experimental values of the 1+ ground
state binding energy in 6Li is shown in Table 4.11 for comparison. The calculated
1+ ground state in 6Li is less bound (by about 8 MeV) and the Rcharge is smaller
than the experimental value, as well. We observe that our results of rms radii in all
projected states differ only slightly from each other.

Table 4.11: The binding energies EB, total rms radii RT, and charge rms radii
Rcharge of 6Li obtained using the variation of an even parity projected trial FMD
state (VAP+) and further projection on J+ states. Only the eigenstates obtained
with sufficient numerical accuracy are shown. The calculations are performed using
the ATS3M VNN potential. The results are compared to the experimental values of
EB of the 6Li ground state.

6Li
ATS3M

Exp.
1+ 3+ 2+ 1+

EB [MeV] -23.837 -20.299 -20.298 -20.297 -31.993† [79]
RT [fm] 2.049 2.060 2.060 2.060
Rcharge [fm] 2.203 2.213 2.213 2.213

†no error reported

The calculated excitation energy (Ex = EB(J+)− Eg.s
B ) spectrum of 6Li is com-

pared with the measured excitation levels [81] in Figure 4.10. The ground state
quantum numbers 1+ are in agreement with experiment. However, the excitation
levels in 6Li are not well reproduced. We observe a wrong ordering as well as posi-
tion of individual excitation levels which are grouped around the Ex = 3.54 MeV.
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Figure 4.10: Comparison of the calculated (left panel) and experimental [81] (right
panel) excitation spectra of 6Li. The calculated energies Ex(J+) = EB(J+) − Eg.s

B

of each J+ level in 6Li are determined from values in Table 4.11.

This indicates that a more sophisticated NN potential is required for the correct
description of 6Li.

We present our VAP+ calculation of 7
ΛLi using the same ATS3M VNN potential in

Table 4.12. The ΛN interaction is described by the YNG-NS VΛN potential with the
Fermi momentum parameter kF = 0.95 fm−1 adopted from the previous studies [21].
We also applied the YNG-NF ΛN interaction (using the same kF), however, we
did not get any Λ bound state in BΛ in 7

ΛLi. For the YNG-NS VΛN potential,
the calculated Λ separation energy in the 7

ΛLi ground state is about 1.5 MeV off
the experimental value Bg.s., exp

Λ = 5.58(3) MeV [75], and moreover, its quantum
numbers are Jπ = 3/2+ instead of experimentally determined 1/2+. The negative
value of ∆Rcore = Rcore(

7
ΛLi; J+)− Rg.s

T (6Li) in each angular momentum and parity
projected state of 7

ΛLi indicates that the nuclear core shrinks due to the presence of
Λ. This finding is in agreement with the observed nuclear core modification in 7

ΛLi

which confirmed the “glue-like” role of the Λ hyperon [14].
In Figure 4.11, we compare the calculated excitation energy spectrum of 7

ΛLi

with the results of hypernuclear γ-ray spectroscopy. Our calculation (left panel)
exhibits considerable inconsistency with measured experimental data (right panel).
This can be partly attributed to the rather simple ATS3M VNN potential that is not
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Table 4.12: The binding energies EB, Λ separation energies BΛ, total rms radii RT,
charge rms radii Rcharge, Λ rms radii RΛ, rms radii of the nuclear core Rcore, and
differences ∆Rcore = Rcore(

7
ΛLi; J+) − Rg.s.

T (6Li) of 7
ΛLi obtained using the variation

of an even parity projected trial FMD state (VAP+) and further projection on
J+ states. Only the eigenstates obtained with sufficient numerical accuracy are
shown. The calculations are performed using the ATS3M VNN potential and NF
VΛN potential with the value of Fermi momentum kF = 0.950 fm−1.

7
ΛLi

ATS3M
3/2+ 1/2+ 7/2+ 3/2+ 5/2+

EB [MeV] -27.853 -24.128 -24.115 -24.014 -23.930
BΛ [MeV] 4.016 0.291 0.278 0.177 0.093

RT [fm] 1.944 1.949 1.950 1.950 1.950
Rcharge [fm] 2.124 2.130 2.130 2.130 2.130
RΛ [fm] 1.845 1.843 1.843 1.843 1.843
Rcore [fm] 1.929 1.936 1.936 1.936 1.936
∆Rcore [fm] -0.120 -0.113 -0.113 -0.113 -0.113
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Figure 4.11: Comparison of the calculated (left panel) and experimental [9] (right
panel) excitation spectra of 7

ΛLi. The calculated energies Ex(J+) = EB(J+) − Eg.s
B

of each J+ level in 7
ΛLi are determined from values in Table 4.12.
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able to satisfactorily describe the 6Li nuclear core (see Fig. 4.11), which affects the
theoretical prediction of the excitation spectrum in 7

ΛLi.

Cluster structure in 7
ΛLi

The effect of the Λ hyperon on the internal cluster structure of 6Li is an interesting
issue. Various cluster model calculations explicitly assume that the 7

ΛLi hypernuclear
system is composed of the alpha, deuteron, and Λ degrees of freedom (αdΛ) [21].
On the other hand, the FMD model allows us to study the structure of 7

ΛLi as a
consequence of the variation method and the baryon-baryon interactions involved.

In Figure 4.12, we show the total, nucleon, and Λ one-body densities in 7
ΛLi

many-body state |Q〉 denoted as ρ (7
ΛLi), ρnuc(

7
ΛLi), and ρΛ(7

ΛLi), respectively. The
parameters of the 7

ΛLi many-body state are determined within the variation of the
even parity projected trial FMD state |Q; +〉 = 1

2
(|Q〉 + Π̂ |Q〉) (VAP+) using the

ATS3M VNN , and YNG-NS (kF = 0.95 fm−1) VΛN potentials. For comparison, we
also present the total one-body density ρ (6Li) calculated with the VAP+ using
the same VNN potential. The ρnuc(

7
ΛLi) clearly indicates the internal α + d cluster

structure of the nuclear core where the α (d) cluster is located in the upper-right
(lower-left) part of the plot, while the ρΛ(7

ΛLi) is affected by the the Λ hyperon
which is located in the middle. The comparison between the ρnuc(

7
ΛLi) and ρ (6Li)

one-body densities reveals the “glue-like” role of Λ which moves the α and d clusters
forming the nuclear core closer together.
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Figure 4.12: The total ρ (7
ΛLi), nucleon (ρnuc(

7
ΛLi)), and Λ (ρΛ(7

ΛLi)) one-body den-
sities of the 7

ΛLi state |Q〉, shown in the xy,z=0 plane. The total one-body den-
sity of the 6Li state |Q〉 (ρ (6Li)) is presented as well. The parameters of the 7

ΛLi
and 6Li states |Q〉 are calculated by variation of the even parity projected states
|Q; +〉 = 1

2
(|Q〉 + Π̂ |Q〉) with the VNN ATS3M potential. The VΛN part of 7

ΛLi is
described by the NS potential (kF = 0.950 fm−1). The densities are in units of the
nuclear saturation density ρ0 = 0.16 fm−3.
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Chapter 5

Conclusions

In this work, we presented the first hypernuclear calculations using our recently
developed Fermionic Molecular Dynamics (FMD) code. We studied the s-shell Λ

hypernuclei 4
ΛH, 4

ΛHe, and 5
ΛHe and p-shell Λ hypernucleus 7

ΛLi in order to discuss
main features of our calculations. The ground as well as excited states of hypernu-
clear systems were obtained variationally. We compared the convergence and the
results of the variation for two different types of trial many-body states - the basic
FMD state (V) and even parity projected FMD state (VAP+). The NN and ΛN

interactions were described by several kinds of relatively simple VNN potentials -
the V2M0.0, V2M0.6, MTV and ATS3M, and VΛN potentials - the YNG-JA, JB,
ND, NF, and NS which were available during the development of our FMD code.
The wider range of NN and ΛN interactions allowed us to illustrate the potential
model dependence of our calculations. We studied structure of light nuclear as well
as Λ hypernuclear systems and the modification of the nuclear structure due to the
presence of the Λ hyperon.

A substantial part of this work was devoted to the development of the FMD code.
We used two different algorithms - the L-BFGS-B and SQP which minimize the ex-
pectation value of the binding energy. In order to test their correct implementation,
we successfully checked that in case of nuclear calculations with the basic FMD trial
state (V), both algorithms converged to the same minimum of the particular nuclear
system. The implementation of the more advanced SQP algorithm proved to be cru-
cial for later development of this work. It allowed us to impose additional equality
bounds, and thus, minimize the expectation value of the binding energy involving
parity operators. Therefore, we were able to apply the YNG VΛN potentials in their
spin-parity channels but also improve the variation using basic FMD trial state (V)
by the variation using parity projected trial state (VAPπ). We revealed that the
VAPπ with the parity coinciding with the parity of the ground or excited states of
(hyper)nuclei yields in general lower binding energy minimum and therefore pro-
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vides better description of the variated system. However this improvement due to
the consideration of equality bounds comes at a cost of greater computational com-
plexity. The correctness of our FMD code was tested on hypernuclear calculations
and its nuclear part was compared with the results of Neff [72].

We considered several versions of the YNG VΛN potentials. We observed that
their predictions for hypernuclei rather differ from each other, only the NF and NS
VΛN potentials reproduce correct ordering in the 4

ΛHe excitation spectrum. However
the NS clearly overestimates the experimental value of the 0+− 1+ splitting in 4

ΛHe.
In the calculation of 7

ΛLi, the NF potential did not bind the Λ in the 6Li nuclear
core, therefore, we presented our results for the YNG-NS VΛN potential. We were
not able to distinguish whether this inconsistency between NF and NS in the 7

ΛLi

description was purely due to the VΛN potentials or because of the 6Li nuclear core
which were not satisfactorily reproduced.

The influence of the Fermi momentum parameter kF of the YNG VΛN potentials
on hypernuclear observables was studied as well. We found rather strong dependence
on kF. In the s-shell hypernuclei the Fermi momentum acts as a scaling factor – the
Λ separation energies increase with decreasing kF. The 0+ and 1+ splitting in 4

ΛH

and 4
ΛHe changes only slightly. We also observed that rms radii of s-shell hypernuclei

decrease with decreasing kF, and thus, they become more compact.
We tested the effect of variousNN interactions on the predictions of hypernuclear

observables. We found that the description of the nuclear core using different VNN
potentials has to be taken into account. The differences in the Λ separation energies
between considered VNN potentials are relatively small in 4

ΛH and 4
ΛHe, however, their

significance grows in 5
ΛHe. We found that these effects could be partly solved in 5

ΛHe

by choosing a suitable value of kF for each VNN potential separately. However, this
procedure can not be straightforwardly extended to hypernuclei with rather rich
excitation spectrum, since the Fermi momentum also affects the spacing between
individual excitation levels.

The Λ separation energies of s-shell hypernuclei were satisfactorily reproduced.
However, the calculation of the p-shell 7

ΛLi hypernucleus yielded considerable incon-
sistency with experimental data, which we attributed to the rather simple ATS3M
VNN potential used. We conclude that in the future it will be necessary to apply
more sophisticated NN interactions. We also studied the experimentally observed
shift between the BΛ spectra of mirror hypernuclei 4

ΛH and 4
ΛHe with and without

the Coulomb repulsion. Their relative position depends mainly on the applied ΛN

interaction. The YNG VΛN potentials used in our calculations do not contain the
Charge Symmetry Breaking (CSB) operator terms which would distinguish between
the Λp and Λn interactions. Therefore the calculated BΛ spectrum in 4

ΛHe is shifted
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downward with respect to 4
ΛH, which is in contradiction to the experiments. There

are several attempts which describe the CSB effects in 4
ΛHe and 4

ΛH by adding a
phenomenological operator term to the VΛN potential [19, 78]. Another way is to
include Λ− Σ mixing explicitly in the hypernuclear calculations [17].

We conclude that the s-shell hypernuclei have too compact nuclear core to be
noticeably modified by the presence of the Λ hyperon. In our s-shell calculations,
the Λ hyperon is localized roughly in the center of nuclear core and causes almost
negligible modifications. However, in 7

ΛLi, the Λ hyperon is localized just in the
middle between the α and d cluster of the 6Li nuclear core and pulls them closer
together. This revealed the “glue-like” role of the Λ, which is in agreement with the
experiment [14].

As a next step, we should incorporate more sophisticated VNN and VΛN poten-
tials, such as those derived from chiral effective field theory. Moreover, Λ−Σ mixing
which plays important role in realistic hypernuclear calculations should be included.
It is also desirable to study the role of three body forces. We also intend to extend
our calculations to heavier hypernuclei and investigate the effect of the Λ hyperon
on the intrinsic nuclear clusterization.
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Appendix A

Expectation values of
antisymmetrized many-body FMD
state

In this Appendix, we briefly discuss the antisymmetrization of the FMD many-body
wave function and we present the derivation of the one-body expectation value for-
mula (2.14). We give a brief description of some observables and also techniques
concerning their calculations. Since we evaluate the expectation values of the anti-
symmetrized many-body state |Q〉 analytically using Eqs. 2.14, we also present the
expressions for one and two-body matrix elements of corresponding operators.

Antisymmetrized many-body wave function in FMD

We adopt the antisymmetrization operator Â in a form

Â =
1

N !

∑
Pi

sgn(Pi)P̂i, (A.1)

where P̂i denote the permutation operators acting among all particles in the N -
body state. Consequently, the antisymmetrized many-body FMD wave function
is expressed as a Slater determinant (2.1) where the generalized coordinate |xi〉 =

|xi, χi, ξi〉 stands for position, spin, and isospin of the i-th fermion. In this work,
we describe systems consisting of three mutually distinguishable types of baryons -
protons, neutrons, and the Λ hyperon.

In Eq. A.2, we demonstrate on the example of 5
ΛHe that the many-body wave

functions defined in Eq.2.1 are properly antisymmetrized. This is ensured by the
third components of isospin.
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EXPECTATION VALUES OF ANTISYMMETRIZED MANY-BODY
FMD STATE
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In the following Eqs. A.3-A.6, we will explicitly denote the antisymmetrized
many-body FMD state as |QA〉 to distinguish it from the non-antisymmetrized
many-body state |Q〉. It is to be stressed that in the main text, the subscript
’A’ for the antisymmetrized state is omitted. The expectation value formula (2.14)
for a one-body operator Ô[1] can be derived as follows

〈QA| Ô[1] |QA〉
〈QA| QA〉

=
〈Q| Ô[1] |QA〉
〈Q| QA〉

=

=
1

Det|n|
{〈q1| ⊗ . . .⊗ 〈qN |}
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k

1̂⊗ . . .⊗ Ô[1]
k ⊗ . . .⊗ 1̂

{ 1

N !
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∣∣qPi(1)

〉
⊗ . . .⊗
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〉
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=
1

Det|n|
∑
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∑
Pi

sgn(Pi)
〈
q1

∣∣ qPi(1)

〉
. . . 〈qk| Ô[1]

∣∣qPi(k)

〉
. . .
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〉
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〈qk| Ô[1] |ql〉 olk,

(A.3)

where the element olk of the inverse matrix o is related to the single-particle overlap
matrix n (2.13) as follows

olk =
(−)k+lDet|nk,l|

Det|n|
. (A.4)

The Det|nk,l| stand for the determinants of adjunct single-particle overlap matrices
to n. The derivation of the expectation value of an arbitrary two-body operator Ô[2]

in Eqs. 2.14 is straightforward using the same procedure.
The overlap of two different antisymmetrized many-body FMD states |Q1

A〉 and
|Q2

A〉 can be expressed as

〈
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〉
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j

〉
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(A.5)
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where |q1
i 〉 and

∣∣q2
j

〉
stand for the single-particle states (2.2) of the many-body state

|Q1
A〉 and |Q2

A〉, respectively, and the n12 =
〈
q1
i

∣∣ q2
j

〉
denotes their single-particle

state overlap matrix (2.13).
The off-diagonal matrix elements of an arbitrary one-body operator Ô[1] between

two different FMD many-body states |Q1
A〉 and |Q2

A〉 can be expressed as〈
Q1
A

∣∣ Ô[1]
∣∣Q2

A

〉
=
∑
kl

〈
q1
k

∣∣ Ô[1]
∣∣q2
l

〉
o12
lk

〈
Q1
A

∣∣ Q2
A

〉
and in case of an arbitrary two-body operator Ô[2] as〈

Q1
A

∣∣ Ô[2]
∣∣Q2

A

〉
=
∑
klmn

〈
q1
k, q

1
l

∣∣ Ô[2]
∣∣q2
m, q

2
n

〉
(o12
mko

12
nl − o12

nko
12
ml)
〈
Q1
A

∣∣ Q2
A

〉
.

(A.6)

Description of calculated observables

One-body densities

We use the definition of the total one-body density operator

ρ̂(x) =
∑
i

δ(x̂i − x) (A.7)

which yields the one-body matrix elements in the form

〈qk| δ(x̂− x) |ql〉 = exp

(
−

(b∗k − x)2

2a∗k

)
exp

(
−(bl − x)2

2al

)
SklTkl, (A.8)

where al, bl stand for the complex parameters of single-particle state |ql〉 defined in
(2.2). The Skl and Tkl denote spin and isospin overlap matrix (2.13). The proton,
neutron, nucleon, and Λ one-body density operators ρ̂p(x), ρ̂n(x), ρ̂nuc(x), ρ̂Λ(x)

are given as follows

ρ̂p(x) =
∑
i

δ(x̂i − x)P̂ p
i , P̂ p

i = 2(τ̂3 + 1/2)τ̂3,

ρ̂n(x) =
∑
i

δ(x̂i − x)P̂ n
i , P̂ n

i = 2(τ̂3 − 1/2)τ̂3,

ρ̂nuc(x) =
∑
i

δ(x̂i − x)P̂ nuc
i , P̂ nuc

i = 2|τ̂3|,

ρ̂Λ(x) =
∑
i

δ(x̂i − x)P̂Λ
i , P̂Λ

i = 2(1/2− |τ̂3|),

(A.9)

where the operator τ̂3 is defined so that it returns the third projection of the isospin
ξk of the single-particle state |qk〉. The matrix elements yield the same analytical
form as in (A.8) except that the selecting operators P̂ p

i , P̂ n
i , P̂ nuc

i , and P̂Λ
i are non-

zero only for protons, neutrons, nucleons, and Λ, respectively.
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Root mean-square radii

The operator of the total mean-square radius R2
T is defined in the form

R̂2
T =

1

M

∑
i

mi(x̂i − X̂cm)2 =

=
∑
i

x̂2
i

mi(M −mi)

M
− 2

M

∑
i<j

x̂ix̂jmimj,
(A.10)

where mi denotes the mass of the i-th particle and the M stands for the total
mass. The matrix elements of the one and two-body contributions to the R̂2

T are
proportional to :

〈qk| x̂2 |ql〉 = (3αkl + ρ2
kl)nkl, αkl =

a∗kal
a∗k + al

, ρkl =
alb

∗
k + a∗kbl
a∗k + al

,

〈qk, ql| x̂⊗ x̂ |qm, qn〉 = (ρkm.ρln)nkmnln,

(A.11)

where nkl, nkm, and nln are elements of the single-particle state overlap matrix
(2.13). The operators of the proton, neutron, nucleon and Λ mass mean-square
radii denoted as R̂2

p, R̂2
n, R̂2

nuc, and R̂2
Λ are defined as R2

x(x = p, n, nuc,Λ)

R̂2
x =

1

Mx

∑
i

P̂ x
i mi(x̂i − X̂cm)2 =

=
∑
i

x̂2
i

(
mi(M − 2mi)

MMx

P̂ x
i +

m2
i

M2

)
+
∑
i<j

x̂ix̂j

(
2Mx − (P̂ x

i + P̂ x
j )M

M2Mx

)
mimj.

(A.12)

Where Mx is the total mass of the relevant kind of particles defined by the index x.
In our hypernuclear calculations, we calculate the mean-square radius of the

nuclear core R2
core which is defined as the nucleon mean-square radius with respect

to the nucleon center of mass

X̂nuc =
1

Mnuc

∑
i

mix̂iP̂
nuc
i , (A.13)

where Mnuc is the total mass of nucleons in the hypernuclear system. The P̂ nuc
i is

the selecting operator defined in Eqs. A.9. The operator R̂2
core has the form

R̂2
core =

1

Mnuc

∑
i

miP̂
nuc
i (x̂i − X̂nuc)2 =

=
∑
i

x̂2
i

mi(Mnuc −mi)

M2
nuc

P̂ nuc
i − 2

M2
nuc

∑
i<j

x̂ix̂jmimjP̂
nuc
i P̂ nuc

j .
(A.14)
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We implement the definition of the charge rms radius Rcharge as

Rcharge =

√
R2
p +

〈
r2
p

〉
+
N

Z
〈r2
n〉, (A.15)

where R2
p denotes calculated proton mean-square radius. The

〈
r2
p

〉
and 〈r2

n〉 stand
for the experimentally measured values Table. 4.1 of the charge mean-square radii
of the proton and neutron, respectively.
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Appendix B

Analytical derivatives

The algorithms L-BFGS-B [71] and SQP [44] used in this work to minimize the
expectation value of the Hamiltonian Ĥ (2.18) denoted as H require during the
minimization process the evaluation of the gradient ∂H

∂p
for a set of variational

parameters. Here, p denotes the array of these single-particle state parameters
(2.2). Its size may become quite large – for an N -body system, there are overall
12 × N real parameters (six complex per each single-particle state (2.2)), and the
same number of derivatives of H is to be calculated.

If one tries to evaluate each element of the gradient ∂H
∂p

numerically, the approxi-
mate values of the derivatives could cause significant errors during the minimization
and the aforementioned algorithms fail to converge. On the other hand, a sufficient
accuracy of the numerical derivatives is connected with increased computational
complexity, which makes the FMD calculations impracticable. Consequently, we
must evaluate all derivatives analytically. In the following we give the brief descrip-
tion of these calculations which were partially introduced already in ref. [34].

In this Appendix we will denote the i-th complex parametr of the d-th single-
particle state |qd〉 as qµ, where µ = (d, i). The expectation value of the Hamiltonian
H is a function of the complex parameters qµ (q∗µ) of the |qd〉 (〈qd|) vectors. The
derivative of H with respect to the real part of the complex parameter qµ can be
expressed as

∂H

∂Re qµ
=
∂H

∂qµ

∂p

∂Re qµ
+
∂H

∂q∗µ

∂q∗µ
∂Re qµ

=
∂H

∂qµ
+
∂H

∂q∗µ
=

(
∂H

∂q∗µ

)∗
+
∂H

∂q∗µ
=

= Re
∂H

∂q∗µ
− iIm

∂H

∂q∗µ
+ Re

∂H

∂q∗µ
+ iIm

∂H

∂q∗µ
= 2Re

∂H

∂q∗µ
,

(B.1)
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and with respect to the imaginary part of qµ as

∂H

∂Im qµ
=
∂H

∂qµ

∂qµ
∂Im qµ

+
∂H

∂q∗µ

∂q∗µ
∂Im qµ

= i
∂H

∂qµ
− i

∂H

∂q∗µ
= i

(
∂H

∂q∗µ

)∗
− i

∂H

∂q∗µ
=

= iRe
∂H

∂q∗µ
+ Im

∂H

∂q∗µ
− iRe

∂H

∂q∗µ
+ Im

∂H

∂q∗µ
= 2Im

∂H

∂q∗µ
,

(B.2)

where we take into account that the expectation value H is a real function. Con-
sequently, the derivatives with respect to a real or imaginary part of qµ can be
both obtained by calculating the complex derivative of H with respect to complex
conjugate parameters q∗µ which simplifies their evaluation.

The derivatives of the one-body contributions H [1] to the expectation value H

with respect to q∗µ can be analytically expressed as

∂H [1]

∂q∗µ
=

∂

∂q∗µ

(∑
kl

〈qk| Ĥ [1] |ql〉 olk

)
=

=
∑
l

∂

∂q∗µ
〈qd| Ĥ [1] |ql〉 old +

∑
kl

〈qk| Ĥ [1] |ql〉
∂

∂q∗µ
olk,

(B.3)

where we take into account the analytical expression for H [1] given in Eq. (2.14).
The old (olk) stands for the element of the inverse matrix o to the single-particle
overlap matrix n (2.13). The derivative of olk with respect to q∗µ can be obtained by
multiplying n and o = n−1

∑
r

nprork =
∑
r

〈qp| qr〉 ork = δpk, (B.4)

applying derivative with respect to q∗µ

∑
r

∂

∂q∗µ
〈qp| qr〉 ork +

∑
r

〈qp| qr〉
∂

∂q∗µ
ork = 0, (B.5)

multiplying by olp and sum over p

∑
p

olp
∑
r

∂

∂q∗µ
〈qp| qr〉 ork+

∑
p

olp
∑
r

〈qp| qr〉
∂

∂q∗µ
ork = 0,

∑
p

olp
∑
r

δpd

(
∂

∂q∗µ
〈qd| qr〉

)
ork +

∑
r

∑
p

olp 〈qp| qr〉︸ ︷︷ ︸
δlr

∂

∂q∗µ
ork = 0.

(B.6)
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This yields the expression for the derivative of the olk with respect to q∗µ

∂

∂q∗µ
olk = −old

∑
r

(
∂

∂q∗µ
〈qd| qr〉

)
ork. (B.7)

We obtain the final expression for the derivatives of the one-body contributions
H [1] to the expectation value H with respect to q∗µ by substituting (B.7) into (B.3)

∂H [1]

∂q∗µ
=
∑
l

[
∂

∂q∗µ
〈qd| Ĥ [1] |ql〉 −

∑
kr

(
∂

∂q∗µ
〈qd| qr〉

)
ork 〈qk| Ĥ [1] |ql〉

]
old. (B.8)

The derivatives of the two-body contributions H [2] to the expectation value H

with respect to q∗µ can be analytically expressed as

∂H [2]

∂q∗µ
=

∂

∂q∗µ

(∑
klmn

〈qk, ql| Ĥ [2] |qm, qn〉 (omkonl − onkoml)

)
=

= 2
∑
lnm

∂

∂q∗µ
〈qd, ql| Ĥ [2] |qm, qn〉 (omdonl − ondoml)+

+
∑
klmn

〈qk, ql| Ĥ [2] |qm, qn〉 (
∂

∂q∗µ
omkonl + omk

∂

∂q∗µ
onl −

∂

∂q∗µ
onkoml − onk

∂

∂q∗µ
oml) =

= 2
∑
lnm

[
∂

∂q∗µ
〈qd, ql| Ĥ [2] |qm, qn〉 −

∑
kr

(
∂

∂q∗µ
〈qm| qr〉

)
ork 〈qk, ql| Ĥ [2] |qm, qn〉

]
(omdonl − ondoml),

(B.9)

where we again take into account the analytical expression of H [2] given in Eqs. (2.14)
and we apply (B.7) for the derivative of the inverse overlap matrix elements.

To conclude, the evaluation of analytical derivatives using Eqs. B.8 and Eqs. B.9
can be done quite effectively. The overall calculation is transformed to the sums
over one and two-body matrix elements, their derivatives, elements of inverse single-
particle overlap matrix o, and derivatives of single-particle overlap matrix n, which
makes the calculation computationally manageable.
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Appendix C

Parameters and the operator form of
the VNN and VΛN potentials

The effective two-body VNN and VΛN potentials used in this work may consist of
the following operator terms

V̂c(T̂p) = V̂ (x̂1 − x̂2),

V̂ σ
c (T̂ σp ) = V̂ (x̂1 − x̂2)(σ̂1.σ̂2),

V̂ τ
c (T̂ τp ) = V̂ (x̂1 − x̂2)(τ̂1.τ̂2),

V̂ στ
c (T̂ τσp ) = V̂ (x̂1 − x̂2)(σ̂1.σ̂2)(τ̂1.τ̂2),

V̂ π
c = V̂ (x̂1 − x̂2)Π̂,

V̂ πσ
c = V̂ (x̂1 − x̂2)Π̂(σ̂1.σ̂2),

T̂r =
←−
∂

∂|x̂1−x̂2|(x̂1 − x̂2)2V̂ (x̂1 − x̂2)
−→
∂

∂|x̂1−x̂2| ,

T̂~r =
←−
∂

∂(x̂1−x̂2)
V̂ (x̂1 − x̂2)

−→
∂

∂(x̂1−x̂2)
,

T̂ σr =
←−
∂

∂|x̂1−x̂2|(x̂1 − x̂2)2V̂ (x̂1 − x̂2)
−→
∂

∂|x̂1−x̂2|(σ̂1.σ̂2),

T̂ σ~r =
←−
∂

∂(x̂1−x̂2)
V̂ (x̂1 − x̂2)

−→
∂

∂(x̂1−x̂2)
(σ̂1.σ̂2),

T̂ τr =
←−
∂

∂|x̂1−x̂2|(x̂1 − x̂2)2V̂ (x̂1 − x̂2)
−→
∂

∂|x̂1−x̂2|(τ̂1.τ̂2),

T̂ τ~r =
←−
∂

∂(x̂1−x̂2)
V̂ (x̂1 − x̂2)

−→
∂

∂(x̂1−x̂2)
(τ̂1.τ̂2),

T̂ τσr =
←−
∂

∂|x̂1−x̂2|(x̂1 − x̂2)2V̂ (x̂1 − x̂2)
−→
∂

∂|x̂1−x̂2|(σ̂1.σ̂2)(τ̂1.τ̂2),

T̂ τσ~r =
←−
∂

∂(x̂1−x̂2)
V̂ (x̂1 − x̂2)

−→
∂

∂(x̂1−x̂2)
(σ̂1.σ̂2)(τ̂1.τ̂2),

(C.1)

where σ̂ = (σ(1), σ(2), σ(3)) ( τ̂ = (σ(1), σ(2), σ(3)) ) is the vector of the Pauli matrices
σ(i) acting in spin (isospin) space and T̂i denote UCOM transformed potentials. The
V̂ (x̂1− x̂2) which describes the radial dependence of each operator term in (C.1) is
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expressed for both VNN and VΛN potentials as a sum of Gaussians

V̂ (x̂1 − x̂2) =
∑
i

γiexp

(
−(x̂1 − x̂2)2

2κi

)
, (C.2)

where the parameters γi and κi determining the shape of V̂ differ for each particular
operator term in (C.1). The Gaussian form significantly simplifies the analytical
calculation of matrix elements which are the essential part of the variational method.

The analytical calculations of the two-body matrix elements 〈qk; ql| V̂ (T̂ ) |qm; qn〉
of individual operator terms (C.1) in the FMD basis for V̂ (x̂1 − x̂2) expanded as
the sum of Gaussians (C.2) were already performed in Ref. [34].

a) VNN potentials
Volkov V2 potential

The effective Volkov V2 potential [66] is originally given in the form

V̂NN = V̂ (x̂1 − x̂2)(1−M +MP̂ x),

V̂ (x̂1 − x̂2) = Vaexp

(
−(x̂1 − x̂2)2

α2

)
+ Vrexp

(
−(x̂1 − x̂2)2

ρ2

)
,

Va = −60.65 MeV, α = 1.80 fm,

Vr = 61.14 MeV, ρ = 1.01 fm,

(C.3)

whereM denotes the Majorana parameter and P̂ x stands for the Majorana exchange
operator. In our calculations, we replace the P̂ x by the product of the spin and
isospin exchange operators P̂ x = −P̂ σP̂ τ and we apply the VNN potential in the
form

V̂NN =

(
1−M − M

4

)
V̂ (x̂1 − x̂2)− M

4
V̂ (x̂1 − x̂2)(σ̂1.σ̂2)−

− M

4
V̂ (x̂1 − x̂2)(τ̂1.τ̂2)− M

4
V̂ (x̂1 − x̂2)(σ̂1.σ̂2)(τ̂1.τ̂2) =

=V̂c + V̂ σ
c + V̂ τ

c + V̂ στ
c .

(C.4)

We use the Volkov V2 potential with the Majorana parameterM = 0.0 andM = 0.6.
The potential parameters γi and κi in these cases are given in Table C.1

62



PARAMETERS AND THE OPERATOR FORM OF THE VNN AND VΛN

POTENTIALS

Malfliet-Tjon V5

The UCOM transformed Malfliet-Tjon V5 potential [35] has the following operator
structure

V̂NN = T̂p + T̂r + T̂~r + V̂c, (C.5)

where the individual operator contributions to the potential are defined in (C.1).
The Gaussian parameters γi and κi of each operator term were determined in [34]
and are given in Table C.2.

Afnan-Tang S3M

The UCOM transformed Afnan-Tang S3M potential [35] distinguishes between the
individual spin and isospin channels, therefore, its operator structure is more com-
plex than in the previous cases

V̂NN = T̂p+T̂r+T̂~r+V̂c+T̂
σ
p +T̂ σr +T̂ σ~r +V̂ σ

c +T̂ τp +T̂ τr +T̂ τ~r +V̂ τ
c +T̂ στp +T̂ στr +T̂ στ~r +V̂ στ

c ,

(C.6)
where the definition of the individual operator terms is given in (C.1). The Gaussian
parameters γi and κi of each operator term were also determined in [34] and are given
in Table C.3.

b) YNG VΛN potentials
For the description of the ΛN interaction we apply YNG Jülich potentials YNG-JA
and YNG-JB [21], and YNG Nijmegen potentials YNG-ND, YNG-NF, and YNG-NS
[21]. They are given in the spin-parity 1E, 3E, 1O, and 3O channels, where 1 (3)
denotes the spin-singlet (triplet) and E (O) stands for even (odd) parity. The VΛN

potential is represented in each channel by its parameters in a three-range Gaussian
form

V̂ΛN =
3∑
i

(ai + bikF + cik
2
F)exp

(
−(x̂Λ − x̂N )2

β2
i

)
, (C.7)

where ai, bi, ci, and βi determined to fit the corresponding G-matrix [21] are given in
Table C.4 A typical property of the YNG potentials is their dependence on the Fermi
momentum kF which characterizes the nuclear medium surrounding the Λ hyperon.
Therefore, kF has to be determined for each hypernuclear system separately. We de-
scribe individual spin-parity channels using the parity projection operator P̂ π (2.21)
and the spin-singlet (spin-triplet) projection operator P̂ 1 (P̂ 3)

P̂ 1 =
1

4
(1− σ̂1.σ̂2), P̂ 3 =

1

4
(3 + σ̂1.σ̂2). (C.8)
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The YNG VΛN potential is then expressed as the sum over all spin-channel contri-
butions 1E, 3E, 1O, and 3O

V̂ΛN = V̂1EP̂
1P̂+ + V̂3EP̂

3P̂+ + V̂1OP̂
1P̂− + V̂3OP̂

3P̂− (C.9)

that yields the following operator structure

V̂ΛN =
1

8
(V̂1E + 3V̂3E + V̂1O + 3V̂3O) +

1

8
(V̂1E + 3V̂3E − V̂1O − 3V̂3O)Π̂+

+
1

8
(−V̂1E + V̂3E − V̂1O + V̂3O)σ̂1.σ̂2 +

1

8
(−V̂1E + V̂3E + V̂1O − V̂3O)Π̂σ̂1.σ̂2 =

=V̂ c + V̂ πΠ̂ + V̂ σσ̂1.σ̂2 + V̂ πσΠ̂σ̂1.σ̂2.

(C.10)

c) Coulomb interaction
In this work, we implement the Coulomb potential acting between protons in a form

V̂C =
1

4πε0

e2

|x̂1 − x̂2|
=

α

|x̂1 − x̂2|
, (C.11)

where α is the fine structure constant. The two-body matrix elements of the
Coulomb potential in the FMD basis can be expressed analytically [46] as

〈qk; ql| V̂C |qm; qn〉 = α 〈qk; ql|
1

|x̂1 − x̂2|
|qm; qn〉 =

=
α√
ρ2
klmn

erf

√ ρ2
klmn

2αklmn

nkmnln,

αklmn = αkm + αln, αkm =
a∗kam
a∗k + am

, αln =
a∗l an
a∗l + an

,

ρklmn = ρkm − ρln, ρkm =
amb

∗
k + a∗kbm
a∗k + am

, ρln =
anb

∗
l + a∗l bn
a∗l + an

,

(C.12)

where erf() stands for the error function and ak, bk, al, bl, am, bm, an, and bn are the
parameters of the single-particle states |qk〉, |ql〉, |qm〉, and |qn〉, respectively (2.2).
The nkm and nln denote the elements of the single-particle state overlap matrix
(2.13).

However, the analytically expressed two-body matrix elements 〈qk; ql| V̂C |qm; qn〉
are numerically problematic when the numerator and denominator in the expression
erf (
√
z) /
√
z are evaluated separately [72]. Therefore, we substitute this term in the
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vicinity of z=0 by the Padé approximant of order [5/6]

1√
ρ2
klmn

erf

√ ρ2
klmn

2αklmn

 =

[
z =

ρ2
klmn

2αklmn

]
= 2αklmn

erf (
√
z)√

z
=

= 2αklmnR
5/6
0 (z),

(C.13)

where R5/6
0 (z) denotes the Padé approximant of order [5/6] in the vicinity of z=0.

Tables of potential parameters

Table C.1: The parameters γi and κi determining the radial part (C.2) of each
operator term (C.4) of the Volkov V2 VNN potential [66]. We show the potential
parameters calculated for the Volkov V2 potential with the Majorana parameter
M = 0.0 and M = 0.6 that are used in this work.

M=0.0 M=0.6
Term γi [fm−1] κi [fm2] Term γi [fm−1] κi [fm2]
Vc 0.309841 0.51005 Vc 0.077460 0.51005

-0.307358 1.62000 -0.076840 1.62000
V σ
c , V

τ
c , V

τσ
c -0.046476 0.51005

0.046104 1.62000
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Table C.2: The parameters γi and κi [34] determining the radial part (C.2) of each
operator term (C.5) of the UCOM transformed Malflied-Tjon V VNN potential [35].

Term γi [fm−1] κi [fm2] Term γi [fm] κi [fm2]
Vc 12.0615649 0.001 Tr 0.0048797 0.040

6.9548944 0.004 4.4652639 0.016
4.5938999 0.016 1.0242148 0.064
1.5692365 0.064 0.2123215 0.128
0.0684969 0.128 0.4855731 0.256
0.2954898 0.256 0.1459136 0.512
-0.3882999 0.512 -0.0911690 0.768
-0.2140002 1.024 0.0423697 1.024
-0.0513097 2.048 -0.0096523 1.560
0.0020267 3.072 0.0026643 2.048
-0.0035886 4.096 -0.0001517 3.072

Term γi [fm−1] κi [fm2] Term γi [fm3] κi [fm2]
Tp -25.1110040 0.001 T~r 0.0010597 0.016

-8.0591920 0.004 -0.0801659 0.064
-2.8301404 0.016 0.0563154 0.128
-0.7378560 0.064 -0.1181166 0.256
-0.9694262 0.128 -0.277750 0.512
-1.4223256 0.256 0.0040732 1.024
4.6797041 0.512 -0.0004244 2.048
-6.8409021 0.768
5.6644282 1.024
-3.7329947 1.536
3.3334832 2.048
-2.1378830 2.560
0.7013693 3.072
-0.0466316 4.096
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Table C.4: The parameters ai, bi, ci, and βi of the YNG-JA, JB, ND, NF, and
NS VΛN potentials [21] determining the shape of the radial part (C.7) in different
spin-parity channels.

YNG-JA
Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm] Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm]
1E -25.82 -12.51 2.437 1.25 1O -14.54 3.615 -0.875 1.25
1E -389.4 401.2 -136.0 0.70 1O 144.7 27.50 -5.000 0.70
1E 859.0 -303.2 188.8 0.45 1O 734.6 76.37 3.125 0.45
3E -45.01 4.620 0.7500 1.25 3O -25.91 5.410 0.500 1.25
3E -296.6 218.3 -92.50 0.70 3O 248.1 210.9 -123.1 0.70
3E 1094 -504.6 230.0 0.45 3O 615.3 -1260 734.8 0.45

YNG-JB
Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm] Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm]
1E -44.36 3.435 -2.875 1.25 1O -10.25 3.008 -0.7625 1.25
1E 0.2853 -2.842 0.1562 0.70 1O 134.2 45.22 -8.125 0.70
1E 491.9 122.3 39.38 0.45 1O 739.4 25.85 13.75 0.45
3E -32.77 -1.595 1.375 1.25 3O -21.36 10.29 -3.125 1.25
3E -430.9 379.7 -135.6 0.70 3O 347.6 -48.10 22.50 0.70
3E 967.8 -599.4 248.1 0.45 3O -10.33 277.5 -63.75 0.45

YNG-ND
Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm] Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm]
1E -12.05 2.163 -0.8488 1.50 1O -6.05 0.8124 -0.2266 1.50
1E -302.6 125.7 -48.33 0.90 1O -103.1 21.65 -5.016 0.90
1E 1178 -350 231.6 0.50 1O -334.4 542.6 -98.69 0.50
3E -12.38 2.98 -0.7153 1.50 3O -9.714 2.041 -0.5137 1.50
3E -256.7 129.1 -47.43 0.90 3O -108.7 20.20 -5.033 0.90
3E 872.4 -284.8 167.7 0.50 3O 1023 171.8 -30.58 0.50

YNG-NF
Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm] Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm]
1E -10.71 3.086 -1.205 1.50 1O -3.446 0.622 -0.1691 1.50
1E -270.5 123.1 -44.91 0.90 1O 1.328 0.3701 -0.3445 0.90
1E 806.2 -188.9 141.6 0.50 1O 1284 387.4 -88.63 0.50
3E -12.16 2.776 0.1632 1.50 3O -9.047 3.361 -0.8142 1.50
3E -273.3 146 -57.09 0.90 3O -59.88 16.42 -3.890 0.90
3E 877.8 -242.4 177.2 0.50 3O 748.8 411.2 -117.8 0.50

YNG-NS
Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm] Ch ai [MeV] bi [MeV.fm] ci [MeV.fm2] βi [fm]
1E -9.019 4.616 -2.101 1.50 1O -1.319 0.3964 0.03037 1.50
1E -253.9 151.5 -43.78 1.00 1O -2.478 -2.176 1.934 1.00
1E 704.0 -421.8 126.6 0.55 1O 993.6 -12.75 39.08 0.55
3E -9.783 0.903 1.061 1.50 3O -4.475 2.164 -1.773 1.50
3E -176.0 131.8 -39.86 1.00 3O 10.21 -15.28 11.12 1.00
3E 595.4 -375.0 141.8 0.55 3O -581 426 -0.1282 0.55
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Appendix D

FMD program

In this Appendix, we give a brief introduction to the FMD program developed in this
work. The main goal of the code is to calculate the ground as well as excited states
of light hypernuclei and to study their structure with the FMD model. The program
was written so that we were able to test critical parts of our code by comparing each
step as well as results of nuclear calculations with a similar FMD code developed in
GSI. The tested FMD program was then extended to hypernuclei.

We choose the object oriented C++ as the main programming language because
it is suitable for the description of the complicated structure of the FMD calculations
and because it simplifies future development of our code. However, some parts of
the program were written in FORTRAN F77. In our calculations, we used the
Linear Algebra PACkage (LAPAC) and Basic Linear Algebra Subprograms (BLAS)
numerical libraries (FORTRAN F90) as well as the Eigen project libraries (C++)
[82]. We implemented two optimization procedures - the DONLP2 which is based
on the Sequenetial Quadratic Programming method for nonlinear optimization with
equality or inequality constraints (SQP) [44] and the Limited memory Broyden-
Fletcher-Goldfarb-Shanno algorithm with Box constraints (L-BFGS-B) [71]. The
SQP serves as the main minimization algorithm in our FMD program. The L-
BFGS-B was implemented to test the more advanced SQP algorithm.

All procedures and functions are called from different header files to keep the
FMD code clear and easy-to-other improvements. Each header file “header.h” de-
clares thematically close procedures and functions whose source code is written in
the relevant “header.cpp” file. In Table D.1, we give the general overview of all com-
ponents of the FMD program together with their brief description. The compilation
process is done automatically by running the bash script “FMD1comp.sh”. The setup
of the compilation process, linkage of relevant libraries, and cooperation between the
parts of the code written in different programming languages are defined here. The
bash script creates the executable file of the FMD program called “FMD11”.
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FMD PROGRAM

Table D.1: The description of the content of the individual files of the FMD program.
The VNN (VΛN) potential parameters from Tables C.1-C.3 (Table C.4) are stored in
the VNN (VΛN) input files.

FMD File Description Type

Fe
rm

io
ni
c
M
ol
ec
ul
ar

D
yn

am
ic
s
so
ur
ce

fil
es

FMD11.cpp main body of the program C++
particle.h object class to store the single-particle parameters C++
particle.cpp source file to particle.h C++
matrices.h procedures to calculate the auxiliary matrices C++
matrices.cpp source file to matrices.h C++
interaction.h procedures working with interactions C++
interaction.cpp source file to interaction.cpp C++
observables.h procedures calculating observables C++
observables.cpp source file to observables.h C++
mathematics.h mathematical functions C++
mathematics.cpp source file to mathematics.h C++
lbfgsb1.f L-BFGS-B algorithm [71] f77
timer.f timer to L-BFGS-B algorithm f77
libdonlp2.a library containing DONLP2 algorithm (SQP) [44] f77
donlp2def.f file defining parameters of the DONLP2 algorithm f77
variation.f file connecting C++ FMD code with DONLP2 (f77) f77
wigner.f procedure calculating small Wigner d-functions f77
FMD1comp.sh compilation script bash

V
N
N

in
pu

t
fil
es

VOLV2M0.0.txt Volkov V2 M=0.0 parameters txt
VOLV2M0.0C.txt Volkov V2 M=0.0 parameters + Coulomb txt
VOLV2M0.6.txt Volkov V2 M=0.6 parameters txt
VOLV2M0.6C.txt Volkov V2 M=0.6 parameters + Coulomb txt
MTV.txt Malfliet-Tjon V parameters txt
MTVC.txt Malfliet-Tjon V parameters + Coulomb txt
ATS3M.txt Afnan-Tang S3M parameters txt
ATS3MC.txt Afnan-Tang S3M parameters +Coulomb txt

V
Λ
N

fil
es

YNG_JA YNG JA parameters txt
YNG_JB YNG JB parameters txt
YNG_ND YNG ND parameters txt
YNG_NF YNG NF parameters txt
YNG_NS YNG NS parameters txt
pottrans.cpp program generating VΛN input file for the given kF C++
input.txt initial parameters of the many-body FMD state |Q〉 txt
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Running the FMD program

First, we must compile the FMD code with the properly adjusted total number of
particles: protons, neutrons, and Λ’s. This is done in the files “FMD11.cpp” and
“matrices.h” described in Table D.1. The number of Λ’s has only two options - one
and zero. The FMD executable file “FMD11” has to be loaded with the following
arguments

FMD11 −NNpotential − ΛNpotetial − none − P, (D.1)

where “NNpotential” and “ΛNpotential” denote the name of the VNN and VΛN input
files in Table D.1, respectively. In the case of an ordinary nuclear system, the FMD
program does not use the VΛN input file during the calculation, however, an arbitrary
VΛN file has to be loaded. The none argument tells the FMD program to load the
initial parameters of the FMD trial state |Q〉 (2.1) from the input file “input.txt”.
The P argument controls the type of variation - P = 0 stands for the variation of the
basic FMD trial state, P = 1 stands for the variation of the even parity projected
FMD trial state, and P = −1 stands for the variation of the odd parity projected
FMD trial state.

When the program starts running, it first loads the initial parameters of the
many-body FMD state |Q〉 (2.1), VNN parameters, VΛN parameters, and the infor-
mation about the type of variation P . Then it enters the optimization procedure.

The SQP algorithm minimizes the expectation value of the total Hamiltonian
Ĥ (2.18) with respect to parameters of the many-body state |Q〉 and the equality
bounds < X̂cm >2= 0, < P̂cm >2= 0, and box constraints Re(ak) > 0 (2.19).
In each iteration, the expectation value of the Hamiltonian and its gradient with
respect to the parameters of the many-body FMD state are evaluated for a given
set of variational parameters proposed in this iteration.

Once the minimization procedure is terminated, the FMD program stores the
resulting variational parameters of the many-body FMD state |Q〉. Subsequently,
the observables listed in Table D.2 of the even (odd) parity projected state |Q; +〉
(|Q;−〉) (2.22) and the state without the parity projection |Q〉 are calculated. The
resulting variational parameters and calculated expectation values are summarized
in a text file

observables_intrinsic_′′NNpotential′′_′′ΛNpotential′′_n_p_l_P ′′0, 1,−1′′,

(D.2)
where n ,p, l are numbers of neutrons, protons, and Λ in the variated many-body
FMD state |Q〉, respectively, and ”0,1,-1” denote the type of the variational process.
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Table D.2: The calculated observables of the many-body FMD states.
Calculated observables

EB binding energy (2.19)
Ei individual operator contributionss of Ĥ (2.18) to the EB

RT total mass rms radius (A.10)
Rp proton mass rms radius (A.12)
Rn neutron mass rms radius (A.12)
RΛ Λ mass rms radius (A.12)
Rcore mass rms radius of the nuclear core (A.14)
Rcharge charge rms radius (A.15)

The total angular momentum projection described in Section 2.4.2 is performed
after the minimization. In case of odd (even) number of particles the FMD program
determines the parity projected angular momentum eigenstates

∣∣Q; J+/−〉 as well as
eigenstates without the parity projection |Q; J〉 for J=1/2 (0), 3/2 (1), 5/2 (2), 7/2
(3), and 9/2 (4). The expectation values listed in Table D.2 of each total angular
momentum and parity eigenstate obtained with a sufficient numerical accuracy are
summarized in the text file

ang_proj_observables_′′NNpotential′′_′′ΛNpotential′′_n_p_l_P ′′0, 1,−1′′.

(D.3)

Further improvements of the FMD program

The analytical calculations of gradients during the minimization process described
in Appendix B are the most critical, time consuming part of the program. The
computational complexity of these calculations considerably increases with the size
of the system. Therefore, further improvements in this part of the program are
needed. In the future, we plan to improve the efficiency of our calculations by
applying parallelization techniques which will allow us to consider heavier nuclear
as well as hypernuclear systems.

72



Bibliography

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86 (2012) 010001.

[2] P. Bydžovský, A. Gal, J. Mareš (Eds.), Topics in Strangeness Nuclear Physics,
Lecture Notes in Physics 724 (Springer 2007).

[3] S. Bart et al., Phys. Rev. Lett. 83 (1999) 5238.

[4] D. J. Prowse, Phys. Rev. Lett. 17 (1966) 782.

[5] M. Danysz et al., Nucl. Phys. 49 (1963) 121.

[6] S. Aoki et al., Prog. Theor. Phys. 85 (1991) 87.

[7] M. Danysz, J. Pniewski, Phil. Mag. 44 (1953) 348.

[8] D. H. Davis, Nucl. Phys. A 754 (2005) 3c.

[9] O. Hashimoto, H. Tamura, Prog. in Part. and Nucl. Phys. 57 (2006) 564.

[10] H. Tamura, M. Ukai, T. O. Yamamoto, T. Koike, Nucl. Phys. A 881 (2012)
310.

[11] M. Agnello et al. (The FINUDA Collaboration), Phys. Lett. B 622 (2005)
35.

[12] T. R. Saito et al., Nucl. Phys. A 881 (2012) 218.

[13] P. Achenbach et al. (A1 Collaboration), Int. J. Mod. Phys. E 19 (2010) 2624.

[14] H. Tamura et al., Nucl. Phys. A 670 (2000) 249.

[15] K. Miyagawa, W. Glöcke, Phys. Rev. B 48 (1993) 2576.

[16] A. Nogga, H. Kamada, W. Glöcke, Phys. Rev. Lett. 88 (2002) 172501.

[17] A. Nogga, Nucl. Phys. A 914 (2013) 140.

[18] E. Hiyama et al. , Prog. Theor. Phys. 97 (1997) 881.

[19] E. Hiyama, Nucl. Phys. A 914 (2013) 130.

73



BIBLIOGRAPHY

[20] E. Hiyama et al., Phys. Rev. Lett. 104 (2010) 212502.

[21] Y. Yamamoto et al., Prog. Theor. Phys. Suppl. 117 (1994) 361.

[22] D. Gazda et al., Few-Body Systems 55 (2014) 857.

[23] R. Wirth et al., Phys. Rev. Lett. 113 (2014) 192502.

[24] D. J. Millener, Nucl. Phys. A 914 (2013) 109.

[25] M. Isaka, M. Kimura, A. Dote, A. Ohnishi, Phys. Rev. C 83 (2011) 044323.

[26] M. Isaka et al., Phys. Rev. C 89 (2014) 024310.

[27] J. Mareš, B. K. Jennings, Phys. Rev. C 49 (1994) 2472.

[28] D. E. Lanskoy, Nucl. Phys. A 639 (1998) 157c.

[29] J. Cugnon, A. Lejeune, H.-J. Schulze, Phys. Rev. C 62 (2000) 064308.

[30] R. Roth, T. Neff, H. Hergert, H. Feldmeier, Nucl. Phys. A 745 (2004) 3.

[31] M. Chernykh et al., Phys. Rev. Lett. 98 (2007) 032501.

[32] H. Feldmeier, Nucl. Phys. A 515 (1990) 147.

[33] H. Feldmeier, K. Bieler, J. Schnack, Nucl. Phys. A 586 (1995) 493.

[34] T. Neff, Fermionische Molekulardynamik mit Konfigurationsmischungen und
realistischen Wechselwirkungen, Master’s thesis, (TU Darmstadt, 1998).

[35] H. Feldmeier, T. Neff, R. Roth, J. Schnack, Nucl. Phys. A 632 (1998) 61.

[36] R. Guardiola, A. Faessler, H. Müther, A. Polls, Nucl. Phys. A 371 (1981) 79.

[37] R. A. Malfliet, J. A. Tjon, Nucl. Phys. A 127 (1969) 161.

[38] T. Neff, Short-Ranged Central and Tensor Correlations in Nuclear Many-Body
Systems, Ph.D. thesis, (TU Darmstadt, 2002).

[39] T. Neff, H. Feldmeier, Nucl. Phys. A 738 (2004) 357.

[40] T. Neff, H. Feldmeier, R. Roth, Nucl. Phys. A 752 (2005) 321c.

[41] H. Feldmeier, J. Schnack, Rew. Mod. Phys. 72 (2000) 3655.

[42] Y. Kanada-En’yo, H. Horiuchi, Prog. Theor. Phys. Supp. 142 (2001) 205.

[43] H. Horiuchi, K. Ikeda (Eds.), Cluster models and other topics, (World Scien-
tific Publishing, 1986).

74



BIBLIOGRAPHY

[44] P. Spellucci, Math. Prog. 82 (1998) 413.

[45] T. Ring, P. Schuck, The Nuclear Many- Body Problem, (Springer, 2004).

[46] T. Neff, H. Feldmeier, Eur. Phys. J. Special Topics 156 (2008) 69.

[47] R. E. Marshak, S. Okubo, Ann. Phys. 4 (1958) 166.

[48] R. B. Wiringa, R. A. Smith, T. L. Ainsworth, Phys. Rev. C 29 (1984) 1207.

[49] R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Phys. Rev. C 51 (1995) 38.

[50] R. B. Wiringa, S. C. Pieper, J. Carlson, V. R. Pandharipande, Phys. Rev. C
62 (2000) 014001.

[51] R. B. Wiringa, S. C. Pieper, Phys. Rev. Lett. 89 (2002) 182501.

[52] A. R. Bodmer, Q. N. Usmani, J. Carlson, Phys. Rev. C 29 (1984) 684.

[53] P. M. M. Maessen, T. A. Rijken, J. J. de Swart, Phys. Rev. C 40 (1989) 2226.

[54] T. A. Rijken, V. G. J. Stocks, Y. Yamamoto, Phys. Rev. C 59 (1999) 21.

[55] T. A. Rijken, Y. Yamamoto, Phys. Rev. C 73 (2006) 044007.

[56] T. A. Rijken, Y. Yamamoto, Phys. Rev. C 73 (2006) 044008.

[57] J. Haidenbauer, U.-G. Meißner, Phys. Rev. C 72 (2005) 044005.

[58] Y. Akaishi, T. Harada, S. Shinmura, Khin Swe Myint, Phys. Rev. Lett. 84
(2000) 3539.

[59] H. Nemura, Y. Akaishi, Y. Suzuki, Phys. Rev. Lett. 89 (2002) 142504.

[60] S. Weinberg, Phys. Lett. B 251 (1990) 288.

[61] S. Weinberg, Nucl. Phys. B 363 (1991) 3.

[62] S. Weinberg, Phys. Lett. B 295 (1992) 114.

[63] H. Polinder, J. Haidenbauer, U.-G. Meißner, Nucl. Phys. A 779 (2006) 244.

[64] J. Haidenbauer et al., Nucl. Phys. A 915 (2013) 24.

[65] D. R. Entem, R. Machleidt, Phys. Rev. C 68 (2003) 041001.

[66] A. Volkov, Nucl. Phys. 74 (1965) 33.

[67] I. R. Afnan, Y. C. Tang, Phys. Rev. 175 (1968) 1337.

[68] B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys A 500 (1989) 485.

75



BIBLIOGRAPHY

[69] E. R. Cohen, B. N. Taylor, Rev. Mod. Phys. 59 (1986) 1121.

[70] P. J. Mohr, B. N. Taylor, D. B. Newell, Rev. Mod. Phys. 84 (2012) 1527.

[71] R. H. Byrd, P. Lu, J. Nocedal, SIAM J. on Sc. and Stat. Comp. 16,5 (1995)
1190.

[72] T. Neff, private communication.

[73] J. E. Purcell et al., Nucl. Phys. A 848 (2010) 1.

[74] D. Shiner, R. Dixson, V. Vedantham, Phys. Rev. Lett. 74 (1995) 3553.

[75] D. H. Davis, Contemp. Phys. 27 (1986) 91.

[76] M. Bedjidian et al., Phys. Lett. B 83 (1979) 252.

[77] M. Isaka, private communication

[78] E. Hiyama, Y. Yamamoto, T. Motoba, M. Kamimura, Phys. Rev. C 80 (2009)
054321.

[79] National Nuclear Data Center, Chart of nuclides [online]
URL:<http://www.nndc.bnl.gov> [cit. 2.5.2015].

[80] I. Sick, Phys. Rev. C 77 (2008) 041302(R).

[81] D. R. Tilley et al., Nucl. Phys. A 708 (2002) 3.

[82] The Eigen project [online]
URL:<http://eigen.tuxfamily.org> [cit. 2.5.2015].

76


	Introduction
	Fermionic Molecular Dynamics model
	Model many-body state
	Intrinsic state

	Expectation values
	Time-independent variational method
	Parity and total angular momentum eigenstates
	Parity eigenstates
	Total angular momentum eigenstates

	Variation after projection

	Interactions
	Potentials used in this work
	VNN potentials
	VN potentials


	Results
	Numerical solution of the variational method (convergence, VAPbold0mu mumu res-cit2) 
	s-shell  hypernuclei
	4He hypernucleus
	4H hypernucleus. Mirror hypernuclei 4He and 4H
	5He hypernucleus

	p-shell  hypernucleus 7Li

	Conclusions
	Expectation values of antisymmetrized many-body FMD state
	Analytical derivatives 
	Parameters and the operator form of the VNN and VN potentials
	FMD program

