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ABSTRACT

Nézev prace: Studium exotickych hyperjader

Autor: Petr Posolda

Katedra (dstav): Ustav teoretické fyziky

Vedouci diplomové price: RNDr. Jifi Mares, CSc., Ustav jaderny fyziky, AVCR, Rez

e-mail vedouciho: mares @ujf.cas.cz

Abstrakt: Diplomovd prdce se zabyvd studiem vlastnosti exotickych hyperjadernych systémii,
konkrétné isotopii berylia, uhliku, kysliku a neonu za pritomnosti A a X hyperonu.
Vypocty byly provedeny v rdmci relativistické teorie stiedniho pole (RMF), kde je
(hyper)jddro popisovdna jako systém Diracovych spinorii (nukleonii, hyperonit)
interagujicich prostrednictvim (stiednich) mezonovych poli. Exotickd hyperjddra
byla popisovdna jako axidlné symetrickd. Vypocty hyperjader byly dosud provddeny
prevazné za predpokladu sférické symetrie. Tato prdce tedy rozsiruje dosud zndmé
predpovédi na oblast exotickych, obecné deformovanych systémii. Pro uvedend
hyperjddra byly provedeny numerické vypocty vazbovych energii, stredniho
kvadratického poloméru a studovdn vliv tenzorové interakce mezi w mezonem a /A
hyperonem na spin orbitdlni rozstépeni A hyperonového energetického spektra.
Potvrdilo se, Ze pritomnost A hyperonu zvySuje hodnotu vazbové energie systému a
naopak zmensuje jeho stredni kvadraticky polomeér. Pro X hyperony byl vyzkum
zaméren na moznost existence vdazanych stavii X hyperonu v atomovém jddre.
Ukdzalo se, Ze pro zminéné isotopy X* hyperjddro neexistuje, ale pro X~ hyperon

vdzané stavy v nekterych isotopech moZné jsou.

Klicova slova: Exotickd hyperjddra, A(X) hyperon, RMF teorie, Diracova rovnice,

Klein-Gordonova rovnice.
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Abstract: The thesis focuses on the study of properties of exotic hypernuclei, particularly
of beryllium, carbon, oxygen and neon isotopes with A and 2 hyperons. Calculations
were performed in the framework of the relativistic mean field theory (RMF) where
a (hyper)nucleus is treated as a system of Dirac spinors (nucleons, hyperons)
interacting via (mean) meson fields. The exotic hypernuclei were considered as
axial symmetric. Up to now, hypernuclear calculations have been performed under
assumption of spherical symmetry. This work thus extends hypernuclear calculations
to the region of exotic, generally deformed systems. For the above nuclei, the
numerical calculations of the binding energies and root mean square radii were
performed. Moreover, we studied influence of the tensor interaction between w
meson and A hyperon on the A spin-orbit splitting. The results confirmed that the
presence of the A hyperon increases values of the binding energy of a system and on
the contrary, it decreases its root mean square radius. We studied the possibility of
the existence of the X hyperon bound states in a nucleus. For the above isotopes, no
bound states were found for the 2" hyperons. On the other hand, weekly bound

states of the X~ hyperon are predicted for several isotopes.

Keywords: Exotic hypernuclei, A(X) hyperon, RMF theory, Dirac equation, Klein-Gordon

equation.



1. Introduction

A hypernucleus is a nuclear system containing at least one hyperon, i.e. a baryon with
nonzero strangeness. Since the hyperon is distinguishable from common nucleons, it
represents in the nuclear medium an ideal and unique probe of the deep nuclear interior and
makes possible to study mechanisms of various reactions by selecting particular channels
marked by strangeness. The added hyperon gives a new dimension to the traditional nuclear
world constituting a many-body baryon system (the hypernucleus becomes a first step to
flavor nuclei). Hypernuclei also allow one to test directly nuclear models and models for
baryon-baryon interaction in the strange sector. Week decays of hyperons give a tool for
investigating week interactions and propagation of pions in the medium. Due to the special
role of strangeness, hypernuclei may be well suited for investigation of (possible) subhadronic
degrees of freedom. Strange particles (hyperons and possibly kaons) occur at a moderate
density of about 2-3 times normal nuclear density in neutron stars matter [1]. These new
particles influence the properties of the equation of state of the matter and consequently the
global properties of neutron stars [2].

Exotic hypernuclei are hypernuclear isotopes with surplus or deficit of neutrons. The
physics of nuclei in the vicinity of the neutron drip line has been studied in last decades and
number of effects have been observed, e.g. a new type of clusters (neutron halo) and the N-Z
dependence of NN interaction (shell occupancy). The A hyperon is known to make the
nuclear core more stable, so A-hypernuclei have an interesting possibility of extending the
neutron drip line from that obtained by ordinary nuclei [3, 4]. The experimental research of
exotic A hypernuclei is nowadays under way in leading world laboratories. To mention a few,
in KEK, the production of neutron-rich A-hypernucleus was observed [5]. The hypernuclei

A'’Li were detected as a product of the in-flight (=", K*) double charge-exchange reaction on
a''B target. In Frascati (Italy), there was observed f\H and Z\H in the (K giop, n") reaction [6].
The vast majority of known experimental data is on A hypernuclei. ¥ hypernuclei have
been studied theoretically and have been searched for in CERN [7] and KEK [8, 9]
experiments since eighties. Unfortunately, no £ hypernuclear bound state has been confirmed
in BNL experiments [10] with improved statistics, except y He. Moreover, the analysis of X
atom data [11, 12] revealed that the central Z-nucleus optical potential is repulsive inside the
nucleus and only slightly attractive at the nuclear surface. On the other hand, the £ hyperon,

due to the Coulomb or isovector interaction, could be bound in an exotic nucleus.



Calculations of exotic £ hypernuclei and investigations of their possible existence have not
been performed yet.

In this thesis, the relativistic mean field (RMF) theory is used as a framework. The
RMEF theory as an approximation of quantum hadrodynamics (QHD) was proposed by
Walecka in reference [13]. The model describes a nucleus as a system of Dirac nucleons
interacting in a relativistic covariant manner via meson fields. The meson fields are treated as
mean fields, i.e. as non-quantal c-number fields. Wide variety of nuclear applications has been
successfully calculated within the RMF concept, which proved its applicability (for references
see [14]). Since the first derivation of the RMF theory, several developments have been
suggested to improve the original model. The introducing of the 6(®)-meson nonlinear terms
provided the correction of the nuclear compressibility and improved the description of the
nuclear structure. The spin-orbit (s-0) interaction for the A hyperon is very small contrary to
the s-o interaction for nucleons. The tensor interaction between the @ meson and the hyperon
was included into the Lagrangian and the negligible A spin-orbit splitting was explained quite
naturally using quark model [15, 16].

The RMF calculations of hypernuclei are mostly performed in assumption of spherical
symmetry of the nuclear system. It is obvious that for exotic hypernuclei, i.e. strings of
hypernuclear isotopes, it is desirable to consider deformation of these isotopes and therefore
perform calculations assuming axial symmetry.

In the next section, we will present the RMF model, introduce the corresponding
Lagrangian and derive equations of motion for the case of spherical and axial symmetry. In
section 3, we will present parameterizations used in this work. The results of the calculations
of A and X exotic hypernuclei are discussed in section 4. Finally, the conclusions are drawn in

section 5.



2. Relativistic mean field theory for (hyper)nuclei

In the relativistic approach, the interaction between particles (baryons in our case) is
not described by instantaneous force but it is mediated by fields, which are independent
degrees of freedom. In the particular case, quantum hadrodynamics (QHD) [13], it is usual to
consider meson fields with the lowest internal angular momentum J and isospin T. This
presumption is in agreement with the spectrum of existing mesons and is justified also by the
OBE potentials [17]. The fields taken into account are therefore scalar mesons (J=0) or vector
mesons (J=1) and accordingly isoscalar (T=0) or isovector (T=1) mesons. Furthermore, as we
are working with nuclear states having natural parity n=(-1)’ the currents with unnatural parity
will have zero expectation value in the RMF approximation [18]. Thus, n- and n-fields are not

considered in this work. Consequently, the meson fields used in our approach are

o isoscalar - scalar field o(x")

o isoscalar — vector field o, (x")
isovector - vector field p* (x")

y massless vector field A (x") , the photon

The o-field produces strong attraction between nucleons at medium range, the o —field
mediates short-range repulsion, the p-field adjusts the isovector properties of finite nuclei and
the photon does the electromagnetic interaction.

Widely used approximation of QHD is the relativistic mean field theory (RMF)
proposed by Walecka and Serot in ref. [13]. It is based on two main approximations. In order
to illustrate these approximations, we present a very simple example with the Lagrangian

density where nucleons y are coupled by just a scalar field
c=wliya, -My+L0"c0,0-mc?)-g 7 21
=yliy’d, - y/+5 0d,0-m,0" )-8, ¥yyo, (2.1)

In the mean-field approximation, the nucleons are treated as if they do not interact with each
other directly, but they rather move mutually independently within the nuclei and their

interaction is mediated by mean meson fields. Thus, even though this model is based on the



quantum field theory, the fields y and ¢ in (2.1) are not treated fully as quantum fields in the

RMF model. The meson field operators are taken as their expectation value
6—>(o)=0 (2.2)

and therefore all meson fields are treated as classical c-number fields. Next, since the

nucleons are moving mutually independently, the nucleon field operator ¥ can be expanded

in all times in terms of single particle states a as
=2y, )d,. (23)

Here a, is the annihilation operator for a nucleon in the state o and y,(x") is the single particle

wave function. The corresponding scalar density can be written as

A
<" 171// :> = pvac.pol. + ZW&I//& ’ (24)

a=1

where the first term isolates the vacuum polarization and the second one corresponds to the
contribution of the A nucleons in a nucleus. To omit the first term means to neglect the
quantum field effects and include only the summation over occupied particle states. This is
the second, so-called no-sea approximation. Step by step derivation and reasoning of this
approximation is given in refs. [13,18].

Finally, it is necessary to stress that all the introduced meson fields are only inspired
by physical particles. Although their masses only slightly differ from them, in fact, they are
phenomenological components of the RMF nuclear model. Their masses and coupling
constants are fitted to the ground state properties of selected magic nuclei and nuclear matter
characteristics. Several successful parameterizations have been developed so far and some of

the most frequently used ones are applied in this work (see [19] for references).



2.1. Lagrangian density and equations of motion

Now, we will include into the Lagrangian density (2.1) the rest of the relevant meson

fields and, of course, the hyperon part as well. This paper is concerned with A and X

hyperons. Their main characteristics relevant for our calculations are listed in Table 1.

Table 1: Selected properties of hyperons considered in this work.

Particle | Mass [MeV] | Strangeness | Charge | Spin | Isospin
A 1115.6 -1 0 %) 0
¥ 1189.4 -1 -1 %) 1
20 1192.5 -1 0 Vs 1
" 1197.5 -1 1 %) 1

Since all the above hyperons have spin V2, they will be described analogous to nucleons by a

Dirac field. The Lagrangian density is a sum of the nucleon and hyperon part

where Y=X A.

L=Ly+L,,

The nucleon part £, is given by

Ly =V [i}/ﬂaﬂ
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where the arrow denotes the isovector quantities. The potential U(c) is a function

U(O')zé g,0” +i g,0" (2.1.3)

including nonlinear self-coupling terms. This form was proposed by Boguta and Bodmer [20]
to implement density dependence in order to improve the nuclear incompressibility, which
comes out too large in the original Walecka model. The constants g, and gs are, of course, the

others parameters of this model. The field tensors in (2.1.2) are given by

QY =0"w" —0"w"
R™ =9"p" -9"p" g, (p*xp") (2.1.4)
F* =0"A" —0"A".

Here, M, m,, m,, m, are the masses of the nucleon, 6-meson, w-meson and p-meson
respectively, and g,n, gwn, gon are the corresponding coupling constants.

The hyperon part L, is
L, =9,0iyd" —g,r.0" —(M, +g 0w, +L,+ L+ L,,,  (215)

where My is the mass of a hyperon, g,y (g,y) is the coupling constant for c-, ®- meson-
hyperon interaction.

The term

L = Zfﬁ%aw (0,0, b, (2.1.6)

. . i
represents the tensor interaction between the ® meson and a hyperon and o :5[7/" , 7/"].

The last two terms describe the hyperon interaction with the p-meson and photon. Since A is a

neutral, [=0 particle

LpA:LAA:O' 2.1.7)

11



In the case of a Z-hyperon

ng

- e
Ly+L, =-X, (7 7,05+ 74" (z,,2), )ZM : (2.1.8)

where

r=| Vo Vv, md 0| A 20 211, 2.1.9)
Vv, -y V2p" - pt

Before deriving equations of motion for the above Lagrangian, we make use of further
simplifying assumptions, which make calculations considerably easier. Since we are

interested in stationary states all time derivatives of densities and fields vanish
6=0, @,=0,p,=0,A,=0 (2.1.10)

and all the spatial components of 4-vectors are zero as well

w. =0, p,=0, A =0, where i=1,2,3  [18]. (2.1.11)

1

Further, we assume that the single particle states are pure proton or pure neutron states so they

do not mix isospin. Consequently, we take into account only the third, neutral component of

the isovector meson p. The remaining meson fields are therefore o, g, Ap and poo, which we

will denote simply p° and they are all time independent. Finally, the single particle wave

function has a form
v, (r.t) = expliet Jyr.(7), (2.1.12)

where ¢; is the single particle energy.

12



The next step is to derive the equations of motion from the Lagrangian density (2.1.1)

by using Hamilton variational principle. With all the above simplifications, we obtain:

[—io?ﬁ+,6(M + 8oy O )+ G @ + 8 Tsp" +e 273 AO}//,. =&Y, (2.1.13)

{_i&'ﬁ"'gwya)o'i'ﬂ(My +go‘Y6)+ 2]}/); ﬁ&'(iﬁwo)}/fy

y (2.1.14)
+ §Y):+ (ngWYpO te l//YAO)_ 5)»):— (gpz‘/fypo te l//YAO): &Yy
(_A+m§')o-:_g262_g363_Zgoivl/zl//i_gm’WYWY (2.1.15)
(CA+m2) @ = g BV, + 8 W BY, + izfﬁﬁ(vy&wy) (2.1.16)
i Y
CA+m)0" =3 gV TV + 8V, V'V, — 8V, V'V (2.1.17)
_1-7 _ _
—AAO:Zey/,ﬁ 23y/i+ez//+7°z//+—ec//z_7°z//z_. (2.1.18)
Let us denote the nucleon densities as
— A — — —
poN(r):zl/ji(r)l//i(r)
i=1
A
Pon(F)=D W (F)W,(F)
i=1
A
P (T)=D W (F)ry(F) (2.1.19)
i=1
SR N £ A
P (F)=D W (F) S V()
i=1
N SN L A
in(F) =20, BF)2 v (F),
i=l

13



and the hyperon densities as

po‘Y(F):WY(?)I/IY(F)
Py (T )=y (F )Wy (T)
pZ)—Y(F)Zﬁ(WY&l//Y)

p3y(;;):w;(’7)73‘//y(;) (2.1.20)
P (F )=V (F) 2 ()

jAY(’_;):l/7+7/O‘// + _6172—7})’//2—'

The first and the second equation (2.1.8) is the Dirac equation for nucleons and hyperon,
respectively. Next three equations (2.1.9) to (2.1.11) are inhomogeneous Klein-Gordon
equations for individual meson fields with sources given by corresponding baryon densities
on the right-hand side. Equation (2.1.12) is for the photons where the sources are given by
densities of all considered fields for charged particles. From the above system of coupled
equations of motion, it can be clearly seen the essence of the RMF theory of nuclear
interaction. Namely, the baryons interact only via the mean meson fields. As sources in the
Klein-Gordon equations, the baryons generate meson fields and the meson fields on the
contrary influence the relevant baryon densities via potential terms in the Dirac equations.

The solution of the set of equations (2.1.13 — 2.1.18) has to be carried out iteratively.
Starting from the reasonable estimate of the meson fields, we can solve the Dirac equations
(2.1.13) and (2.1.14). We obtain the spinors, i.e. the orbits in which the baryons move in
presence of the meson fields. If we consider that A nucleons occupy the lowest particle levels,
we obtain from equations (2.1.19) the densities by summation over these levels. The hyperon
densities are obtained immediately from eq. (3.2.20). The solution of the Klein-Gordon
equations (2.1.15) — (2.1.18) using these sources gives us new meson fields and new
electromagnetic field, which can be used to calculate the potentials and effective mass in the
Dirac equations. The solution of the Dirac equations with these new fields gives us Dirac
spinors for the next iteration.

From the solution, we can calculate the total energy, which, in the static case, has the

form:
E:jdwfﬁ), (2.1.21)

14



where

TP +e W+

1

_ 1-7
H(?):Zy/;’{—ithB(M+gdva)+nga)0+g 0 3A0}
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yo

S D 0 Sy 7.7a0)
+z//1{ ia V+nga) +'6(MY+gaY0) 2Mya iVa vy
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TP Liaof -
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2.2 Spherical symmetry

If we assume the spherical symmetry for nuclei, the common coordinates are

X=rsinVcos re(0,0)
y=rsinUsin@ ve (0,7) (2.2.1)
Z=rcosV ¢ (0,21 ).

In this case, all densities on the right-hand side of Klein-Gordon equations as well as the
meson fields are considered dependent only on the radial coordinate r.

The equations (2.1.13) and (2.1.18) define the single particle Dirac Hamiltonian that
can be written as

h=—i@-V+BM (r)+V(r), (2.2.2)

where

15



M*(F):Mi + 8,0
V()= g,0° +1,8,,0" +QeA’ (2.2.3)

for
I,=1, fori=N
1,0,—1 fori=X"X%(A), X"

(2.2.4)
0, =%(1—f3) fori=N
I, for i=X(A).
Dirac equations then acquire general form
Lia-V+pm (r)+vir)lpr.6,0)=cw(r6,0). (2.2.5)

The standard way of solution of a Dirac equation with the spherically symmetric

potential is based on the separation of the angular and radial part. The commutation relations
for operators j, I:, S determine the angular part of the wave function. (Operators j, I:, S are

well known operators of the total angular momentum, angular momentum and spin
respectively). Since the process of the solution of the angular part can be found in many
publications (for example [13,22]), we will adopt the result from ref. [13] and will go through
the radial part only.

The solution of the angular part is given by spin spherical harmonics

1 |
=2 by S m, | 1= jm W (&0, (2.2.6)
. 1 K k>0
J_|K1_5’ l_{—(l('+1),l(<0

where Y, is a spherical harmonics and %, is a two-component Pauli spinor and

< Im, %ms [ % jm > are Clebsch-Gordon coefficients. The quantum number « is the

eigenvalue of operator K,
K=p057-112). (2.2.7)

16



The equations

Li(l,+1)=x+j(j+1)+1/4 53

Ly(ly+1)=—x+j(j+1)+1/4 (2.28)
relate ¥ with eigenvalues of the angular momentum /4 (Ig) for the upper (lower) components
of the Dirac bispinor. For given k and j, the numbers /4 and [ differ by one and /4 and /z must
be jt%.

The single particle wave function is therefore written as

Rl,,,((r)(pm(ﬁ)] 229)

Vsl %) :(Ran(r)w_m(ﬁ)

| =

where n denotes the principal quantum number and 7 =

=i

Now we focus on the radial part. The expression (2.2.9) can be rewritten into [22]

Rc(T)Pun(71) ] (2.2.10)

V(%) :[Rznk(r)(ﬁ-a)wm(ﬁ)

Then for a Dirac equation of the form (1 —&)w =0 we obtain

M +V-—¢ G- p R, .,
Lo . o =0, (2.2.11)
o-p -M +V-€)\R, (Cn)op,

where p is the momentum operator. A straightforward calculation leads to

(M +V—E)R, .+ B)G )R, |00 =0

Ink

(G- )R, + (=M +V—-E)G-7)R,, J@, =0

Ink

(2.2.12)

Multiplying the second equation from the left side by (G -7) and using general relations

17



(G-p)G-7)f :—i1(2+r3+5.i)f
r or (2.2.13)

P

(6-i)G)f =i (r2—6.L)f
ro or

which can be easily proved with using the relation (& Zz)(&-b)z a-b+i 6‘(& xb ), we obtain

[(M* +V—E)Rm—il(2+rai+5"E)RZM}(me =0
r r

s (2.2.14)
sy it 5 Dm, o0

ror

The term &- L affects only the ¢, , so
(6-Llp, =(02-12-8%)p, =—(1+x)p, . (2.2.15)
Inserting this result into the (2.2.14) we get
. 1 . d
(M +V-E)R,, . —i—(1-x* 72 )Ry =0
4 r (2.2.16)

M +v—E)Jrem—il(lﬂr+ +rai)le -0
r r

Comparing equations (2.2.16) with the analogous equations (3.7) in ref. [23], one can notice

We are convinced that

2nk *

that they differ by the sign in front of the term i(1— &~ + rai )R
r

there is an error in ref. [23].

The equations (2.2.16) have to be solved for all the occupied nucleon levels in the

nucleus. The solutions y; (i=1,..,A) determine the densities (2.1.19)

18



2

pe(r)=3 (R( 1 ~IRs(7)
pulr)= X (R +[Ro (1]
pi(r)=3 (Ru(r) IR f
pu(r)=L (R +|Rr)

2

)
)
) (2.2.17)
)

The densities (2.2.17) are the sources in the Klein-Gordon equations (2.1.15) to
(2.1.18) for the corresponding fields o(r), mo(r), po(r) and AO(r). The Klein-Gordon equation

in spherical coordinates (2.2.1) is
2
———75+m¢j¢(r)=s¢]v (r)+s,(r). (2.2.18)

Here, m, are the meson masses for ¢ =0, w, p and zero for the photon. The sources then

correspond to

—g.p.(r)-g,0°(r)—g,0°(r) for the o—field

r for the w—field

su(r)=] 5 o7 . (2.2.19)
g,P5(r) for the p—field
ep,(r) for the A—field

The hyperon source part is similar. Since we consider only one hyperon in its ground state

1sY2, the sources for respective fields are obviously very simple

Poy(T)= Rli(r)|z_|R2i(r)|z
S¢Y(}’)= Poy(1)= Rli(r)|2 +|R2i(r)|2

Pyy(r)= Rli(r)| +|R2i(r)|

P (r)=\Ry(r )] +Ry(r )

(2.2.20)

The equations (2.2.16) and (2.2.18) are coupled nonlinear differential equations that
may be solved by an iterative procedure. For a given set of meson fields, the Dirac equation

(2.2.16) is solved iteratively by Runge-Kutta method outward from the origin and inward

19



from large r, matching the solution at an intermediate radius to determine the eigenvalues &;.
Analytic solutions in the region of large and small r allow the proper boundary conditions to
be imposed.

Once the baryon wave functions are determined, the source terms (2.2.19) and (2.2.20)
may be calculated and the meson fields recomputed by integrating over the corresponding
static Green’s function. Inserting the determined meson fields into the Dirac equations, we
solve the Dirac equations and obtain new set of wave functions. We compute the new

densities and repeat the whole procedure until the self-consistency is achieved.

2.3. Axial symmetry

The assumption of spherical symmetry is not appropriate for every nucleus. Nuclei
with open energy shells are often (sometimes appreciably) deformed. Such nuclei are usually

described by axially symmetric shapes [23], using cylindrical coordinates

X=r cosQ
y=r sin@ 2.3.1)

=2

Let us consider that the densities are invariant with respect to rotation around the z axis. The

spinor v is in this case characterized by the quantum numbers £ =m, +m_ the eigenvalue of

the symmetry operator J,, parity w and isospin t.

In the following subsection, we will derive Dirac equations and Klein-Gordon
equations for the axially symmetric case. This time we will solve the equations of motion by
expansion in the basis of an axially symmetric harmonic oscillator. The problem then reduces

to finding the coefficients of this expansion.
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2.3.1 Numerical solution of Dirac equation

For simplicity, we will first consider the case without the tensor interaction. The Dirac

equation can be again written as

‘OgﬁloM*lov— 2.3.1.1
—150 +0_1 +01 V=&Ey (2.3.1.1)

where the mass M and the potential V has the same form (2.2.3) and (2.2.4) as in the

spherical case with the exception that the meson fields now depend on the coordinates r, ,z.

After inserting the ansatz [23]

’ [

e}
S

f+(Z,rl)e( 2)
i Q+i)q1
- 1 f_(Z;rJ_)e( :
w7 t)=—= A0 (2.3.1.2)
\j27l' l_g+(z,rl)et(ﬂ 2]("
. 1
lg_(z,rL)e(Q 2}”
into (2.3.1.1), straightforward calculation leads to
(M +V)ft+0.g"+ aq+911/2 g =¢ef*
1
(M +v)f—0.g7+ aQ—Q;l/Z gt=¢cf
o L1 , (2.3.1.3)
. +
(M —V)g++azf++ d, + r/ f=—cg"
1
(M*—V)g_—azf_+ an_Q—l/Zj f=—gg .

Next, we expand the spinors f* and g* in terms of the eigenfunctions of a deformed

axially symmetric oscillator. They can be written explicitly as [23]
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1 .
q)a(Z,rJ_;¢,S,t): ¢n: (Z)¢::’ (r)felmlwlmj (S) 5 (2314)
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where
N :
@, (Z)=ﬁan (e
sz, (2.3.1.5)
o)== =20 P () e
L

and where the H,, (¢) are Hermite polynomials and L‘;" : (r7) are the associated Laguerre

polynomials as defined in [24]. The new variables { and n obey

fzi’ n:L (2.3.1.6)

1 n, !

L

N, =——, N/"= . (2.3.1.7)
: NEXE n! ’ ‘nrl +m, i!

The choice of the oscillator length parameters b, , b, and their role in numerical solutions is

discussed in ref. [23]. The expansion (2.3.1.2) into eigenstates of the harmonic oscillator is

explicitly written as

Pl )
RN ) 3,0, (7, 9)7,(0)
W(?,t)=% f (z,rl)ei(gi) 2(0)=| .~ . (2.3.1.8)
i ig*(z,r )e' 2 g %qu)d(ﬂs) (1)
o (e ™2
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We insert it into equation (2.3.1.3) and we obtain

M"'FV 0 az ari+Q+1/2 ffadba(i’,s);(,(t) ifaq)a(?as)Zr(t)

rJ‘ aﬁ.x aa,
0 mrv o, -2 5 XA Fz0)| | Y e, G )

+ }"J_ ~0‘ —¢ a

Q+1/2 (S . o
o a2y (D WA NG AN D AR

1 a a

Q-1/2 . T Fina
9, —9. 0 MV 1 2 520 | X a2z, ()
(2.3.1.9)

Now we use the ortogonality relations of the eigenstates of the harmonic oscillator (see

appendix A). We multiply each row in (2.3.1.9) by eigenstate <<I>a,| and we obtain the

following equation for the coefficients f, and g,

A . B,
( a,a a,o j(fajzg( f‘l ] (23110)
Ba!&r _C”!&’ 8 —8a

If we determine the matrix elements A, ,.,B, , and C, , the whole problem reduces to the

a0’

solution of the algebraical equation (2.3.1.10) for unknown f; and g . For the matrix

elements A

a,a’

C, . we get

A, I dace™
(Ca,a j =8, 80 N, N, NINM Tage 1 (O)H, (£)

(2.3.1.11)
xgdnn'"'e-"L::f(n)L,:'ff(n)[M*(bzé,biﬁ)iv(bzé,bﬁ)l

The computation of B, , is more complicated due to terms with derivatives. Main steps of the

evaluation are shown in appendix A. The resulting expression for B, , is:
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1
(_ 1)E+ms
Ba,a’ = 5}1,,}1’, my,m; é‘mj,m’s
bz
N‘W’I‘N‘mt‘
+0, , ——— 5 ~—3,
N‘W’I‘N‘mt‘
+§n n' - = §m
2

|:" n_’15n’ n,+1 _\/n_jén’ n—1:|+
2 "z 2 "z

B Tdne B ) - m L ) | 8 () 23.0.12)
0

O Tdn e B )+ m 2 ) | £ ).
0

Here is to be noted that we found errors in the expression for B, , (eq. 4.27) in ref.

[23]. Now we add the tensor interaction to the equation of motion. We neglect the tensor term

for nucleons as the coupling constant f,,y is = 0 and we consider only the tensor term for a

f

hyperon. Its contribution leads to the additional term iJ, ﬁ por- ﬁa)o in the Dirac equation

—ia-V+pM (F)+V(F)-id,

Y

fY Ry
2 ba-Va =&y,
ZMyﬁ o}w v

(2.3.1.13)

where 8, =1for i=Y =A,X . The tensor term in the axial model is then given by matrix

0 0
0 0 (au
fa)Y
2M, 0 _(ar +Q+1/2]w0
L rJ_
(an —Q_l/zja)o 0.0’
- rJ‘

0.0’

Q-12

r

0

o

Q+1/2

r

(an +

0
-0.0

o

(2.3.1.14)

which has to be added into equation (2.3.1.9). The Dirac equation (2.3.1.10) after including

the tensor interaction acquires the form

Aa,a’ B&,a’ + Ta?,a’
Ba,a - Td,a’ - C&,&
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where T, . is given by

— wa ~+m —
Ta,g,»—zM 8y O (=1)2 Jdg“eé“H (OH, ()

><Idm7""" 10 ) ()o@ (6.8 b ) |+

s \fage ¥, (O, ©)

mm+lmm
2M e

1
[@
XIdnn"”" 1 ) ()| 3, _r_z @ (b.¢ b, 1) (2.3.1.16)
1
5mj m'y —15m, m'y+1 J.dé/e_é,z an (é/)Hn’ (;)
Q+l
x| [dnn™le i () 8,l+r—2 @ (b.¢,b, )
1

All the functions in this expression are known except w’. Thus, to evaluate T, . weneed to

solve the corresponding Klein-Gordon equation for o’

2.3.2 Numerical solution of Klein-Gordon equations

The Klein-Gordon equations in cylindrical coordinates can be expressed as:

4
[—b—zan —?7782 bz 82 +m¢j¢(z,q)= S (z,r, )+ S¢y(Z:’1)’ (2.3.2.1)
1L

where the notation of the source corresponds to (2.2.19) and the dimensionless coordinates are
the same as in equation (2.3.1.6) introduced in previous section.
The solution of the Klein-Gordon equation expanded in a deformed oscillator basis

now reads
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o5 272
olzn)=- \/_ 2¢ N, H, ($N2L, (1), (2.3.2.2)

where @ are the expansion coefficients. Inserting the ansatz into equation (2.3.2.1) and
2y

using ortogonality relations, we again obtain a set of inhomogeneous linear equations

NB
ZHH’,H’ n.n ¢nn :Sf,n : (2323)
To solve it for unknown ¢, , we first need to evaluate the matrix elements H,, . The
2L ittty

calculations are presented in appendix B. The result is

1 1 1
H”’z"’r”z”r :|:b_J2_ (2an +1)+ b—zz(l’lZ —§j+mé}5nz . 5% o, —
L ,/n (0408, .o, + (408, L, 16, . + (2.3.2.4)

2 r n, +l,n' ‘lr n,. —ln' n. ,n'.
b L rL rL L rL rL 2"z

Since the sources are determined by solution of the Dirac equation, the set of coupled

equations has to be solved iteratively until self-consistency is achieved.
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3. Parameterizations

As was mentioned above, there are several parameter sets for the RMF model. Four of
them, which were used in this work, are listed in Table 2. The first is a linear parameter set
proposed by Horowitz and Serot (HS) [25]. The HS parameterization is suitable tool for
description of the nuclear density and the rms radius. In this simple model, the nonlinear
potential (2.1.13) for o-meson is not taken into account. This affects mainly the nuclear
compressibility, which is too high for the linear HS model. In this work, we focus mostly on
the binding energies of nuclei where the difference between linear and nonlinear
parameterizations also appears, which will become evident later. The advantage of the linear
parameterization is its outstanding numerical stability due to its simplicity (small number of
parameters).

The remaining three parameterizations are nonlinear with the potential (2.1.13) which
is essential for getting more quantitative description of nuclear properties. The NL1
parameterization introduced by P. G. Reinhard et al. [26] was used in our calculation.
However, we encounter problems with numerical stability in some cases, mostly for nuclei
with high nuclear densities. The parameter set NL-SH of Sharma et al. [27] describes
properties of nuclear matter as well as of finite nuclei reasonably well. In our calculation, it
confirmed its good numerical stability. The last parameterization TM2 introduced by Y.
Sugahara and H. Toki [19] contains extra nonlinear self-coupling term o” for o-meson field.
The corresponding coupling constant is denoted by c3. The TM2 model was motivated by the
relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. The results of this
model for binding energies and rms radii are in very good agreement with experimental data
[19].

All these parameterizations were fitted to the nuclear properties of magic nuclei and
the saturation point of nuclear matter. By adding the coupling constants for hyperons, we
complete the parameter sets of the RMF model for hypernuclei. The coupling between -

meson and A-hyperon g, and the constant of the corresponding tensor interaction f,y were

taken from quark model [28]. Thus, the adopted values are: o, =Eor _ 2/3,fon=-1. The
gmN

coupling constant g;x was adjusted to reproduce the ground state binding energy of A in the

hypernucleus O}, where By=13MeV. This gives evidently different values of g, for
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particular parameter sets. The values of a_, =Bor fop corresponding parameterizations under
ch

consideration are presented in Table 3.

Finally, the couplings for a =-hyperon o = Bor _ 0544, Oy = Bor _ 2/3, o,y = Bor _ 2/3

gu)N gmN gmN

were determined from fits to X-atom data, for reference see [12].

Table 2: Parameterizations for RMF model used in this work

HS NL1 NL-SH ™2
M (MeV) | 939 938 939 938
ms; (MeV) | 520 | 492.25 | 526.059 | 526.443
m, MeV) | 783 | 795.359 783 783
m, MeV) | 770 763 763 770
2 10.47 | 10.138 | 10.444 | 11.4694
2o 13.80 | 13.285 | 12.945 | 14.6377
o 8.07 | 9.051 8.766 8.3566
g (fm™) 0 |-12.172 | -6.9099 | 4.444
g3 0 -36.265 | -15.8337 | 4.6076
C3 0 0 0 84.5318

Table 3: Couplings for A hyperon interaction: a., =§i, where i=0, ©.
N

HS | NL1 | NL-SH | TM2
asa | 0.623 1 0.618 | 0.618 | 0.621
Opa | 2/3 2/3 2/3 2/3
fon -1 -1 -1 -1
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4. Results and discussion

Hypernuclear properties were studied for isotopes of Be, C, O and Ne with even
number of neutrons. The range of calculated isotopes for a particular chemical element
approximately corresponds to the known measured isotopes of the considered chemical
elements. Before we proceed to hypernuclear calculations, we will test our nuclear model on
exotic nuclei without hyperons. First, we will compare the spherical and axial approaches.
Second, we will compare the applied RMF parameter sets. The binding energies per particle
E/A for Be, C, O and Ne calculated in the spherical and axial code are compared with

experimental values [29], [30] in figures la, 1b, 1c, 1d respectively.

| =--m CXP
75 Be e—o spherical

e—e 3xjal

E/A (MeV)
o
(@) ()]

[ [

o
n
I

45F i

| . | . | .
4 6 8 10 12 14 16
A

Fig.1a: Binding energy E/A in Be isotopes as function of A. Results for spherical and axial
calculations within the nonlinear RMF model NL-SH are compared with experimental values.
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Fig. 1b: Binding energy E/A in C isotopes as function of A. Results for spherical and axial
calculations within the nonlinear RMF model NL-SH are compared with experimental values.
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Fig 1c: Binding energy E/A in O isotopes as function of A. Results for spherical and axial
calculations within the nonlinear RMF model NL-SH are compared with experimental values.
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Fig.1d: Binding energy E/A in Ne isotopes as function of A. Results for spherical and axial
calculations within the nonlinear RMF model NL-SH are compared with experimental values.

The results for the isotopes of carbon (with exception for '*C), oxygen and neon are in
good agreement with experimental values, particularly for oxygen. On the contrary, the results
for beryllium are significantly different from experiment. Moreover, for Be® and Be'?, we
obtained that the last proton is not coupled to the nucleus any more. The failure might indicate
that Be isotopes are too light systems to be described by a mean field approximation.
Presented figures clearly show that the results for the axial case are always in better
agreement with the experimental values than the spherical ones. Therefore, we will use the
axial model in the following.

Next, we focus on comparison and applicability of used parameterizations. The
comparison of the considered parameterizations for oxygen isotopes is in figure 2. From our
calculations it follows that the linear model HS gives much lower binding energies E/A (by
about 2.5 MeV) than the nonlinear models. The results for the nonlinear parameterizations
NL1, TM2 and NL-SH are almost identical with only marginal differences. In comparison
with experiment, the nonlinear models give considerably better results for nuclear binding

energies than the linear HS model. On the other hand, during calculations problems with

31



convergence of the iterative procedure occurred for some isotopes in the case of nonlinear
parameterizations NL1 and TM2 (the problem of the stability of the nonlinear models is
discussed in ref.[18]). The most stable parameterization from this point of view is the linear
HS model. The NL-SH parameterization appears to be more stable than NL1 and TM2 so we

will present mainly results for the NL-SH model in the following figures.
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A
Fig. 2: Binding energy E/A as function of A for oxygen isotopes calculated in axial code for

different RMF parameterizations. The missing value of C'* for NL1 parameterization is due to
its convergence problems.
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4.1. Exotic A hypernuclei

In this section, we will present results of the study of the A-hyperon in the following
order: the influence of the A hyperon on the nuclear binding energy per particle, the shrinkage
of a nucleus in the presence of the A hyperon, contribution of the tensor interaction to the spin

orbit splitting.

@)
[

E/A (MeV)
W
T T

1 | 1 I 1 | 1 | 1 | 1 | 1 | 1
210 12 14 16 18 20 22 24 26
A

Fig. 3: Binding energy E/A as function of A for O isotopes and O+A systems. Calculations
were done for linear model and nonlinear model NL-SH.

Figure 3 demonstrates the influence of the A-hyperon on the nuclear core in oxygen
isotopes. Since the binding energy per particle is shifted upward, it is obvious that the
presence of A in nucleus leads to more coupled system. This effect is caused by the
strangeness of the A-particle. Due to the nonzero strangeness, the A-particle is distinguishable
from the rest of the nucleons and therefore it is allowed to occupy the 1s state. Moreover,

since the A-nuclear interaction is attractive, A hyperon acts as a “glue” in the nuclear system.

33



It is interesting that the changes of the binding energy per particle E/A in consequence of the
presence of A are almost constant for the considered isotopes. Moreover, the linear and
nonlinear model predicts a similar value, approximately 0.5 MeV for the shift in E/A due to
A.

The fact that the presence of the A-particle leads to more bound nuclear system
manifests itself also in the change of the size of the nuclear system. Although there is one
more particle in the nucleus, the root mean square (rms) radius is smaller due to the stronger
binding caused by the A hyperon. This shrinkage has already been confirmed experimentally
in KEK, Japan [31]. The comparison of the rms radii for ordinary exotic nuclei and

corresponding hypernuclei is presented in figure 4.
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Fig. 4: The rms radius of C and O isotopes, and C+A, O+A system as function of A.
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Fig. 5: The A binding energy B, in Be, C, O and Ne isotopes as function for A.

In figure 5, we present the results of the calculation of the A binding energies. There
can be seen a growing trend for C, O and Ne hypernuclei in the figure, while the binding
energy per particle decreases in corresponding neutron rich isotopes (see figures 1a to 1d).
The behavior is not unexpected. The A particle always occupies the lowest s state, while the
binding energy E/A acquires also contributions from the weekly bound neutrons from the
outer shells.

By introducing the tensor coupling into the model, we are able to describe
simultaneously the large spin-orbit splitting for nucleons and the small spin-orbit splitting for
the A hyperon. It is obvious from figures 6 and 7 that the tensor interaction decreases the
energy of the s1/2 and p3/2 states and on the contrary, it increases the energy of the p1/2 state.
As a result this leads to sizeable reduction of the spin orbit splitting. All the presented models
predict reduction of the spin-orbit splitting du to the tensor coupling to about 1/3 of the
original value. The new value is = 0.5 MeV, which is in agreement with experiment. It is
worth mentioning that the introduction of the ®m-meson tensor coupling influences little the
“bulk” properties of hypernuclei, such as the total binding energy, the rms radius or the

distribution of matter.
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Fig. 6: Effect of the tensor coupling on the position of the hyperon single particle level in
XO . Results of the parameterizations L-HS, NL1, NL-SH are compared, O and 1 denotes
calculations without and with the tensor coupling term respectively.
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Fig. 7: Effect of the tensor coupling on the position of the hyperon single particle level in
fNe . Results of the parameterizations L-HS, NL1, NL-SH are compared, 0 and 1 denotes
calculations without and with the tensor coupling term respectively.
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4.2. Exotic Z hypernuclei

This section is devoted to the calculation of the binding energies of nuclear systems

with a ¥ hyperon. As was mentioned in introduction, the ¥ hypernuclear bound state has not
been observed, with exception for 3 He [10]. The study of the Z-nucleus interaction in X

atoms predicts no " hypernuclear bound states [12]. Although the Z-nucleus isovector
potential cancels partly (for charged X*) the Coulomb potential, the Coulomb and the isoscalar
repulsive potentials for ¥ overcome the attraction due to the isovector potential (p-meson).
For ¥, the calculations in [12] predict possible bound states for high Z nuclear cores.

It is to be noted that calculations of exotic £ hypernuclei have not been performed yet.
In this work, we focus on a search for bound states of the £ hyperon in above mentioned
isotopes Be, C, O and Ne. Since the central X potential is repulsive, the Coulomb and
isovector interactions and their interplay are crucial for a X hyperon to be bound in a nucleus.
Consequently, it is obvious that £ bound states need not be considered.

Our calculation confirmed that no £ bound states exist in the studied isotopes. For ¥,
we obtained several bound states in the mentioned isotopes. The calculated values of the
binding energies are presented in Table 4. The binding energies acquire small values in the
range of units of MeV. The attractive Coulomb interaction is responsible for the binding of
the ¥ hyperon in a nucleus (in most cases). It is to be noted that the X states acquire a finite
width of the order of tens Mev due to the conversion X' p—An. Since the RMF approach does
not address directly the imaginary part of the potential due to the absorption, we have not

considered the width of the X states in this work.

Table 4: Binding energy By for  hyperon, sign minus (plus) corresponds to (un)bound states.

SBC 12Be IOC 12C 20C 120 160 220 18Ne 20Ne 30Ne

Bx(MeV) | -1.02 | -0.58 | -2.97 | -1.74 | -0.85 | -3.20 | -2.64 | -1.37 | +1,64 | +1,73 | -1,58
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5. Conclusions

We performed self-consistent calculations of A and X exotic hypernuclei within the
framework of the relativistic mean-field theory. We adopted the axial symmetry approach for
ordinary nuclei from [23] and extended it to the hypernuclear region, including the tensor
interaction between the ®w-meson and a hyperon. To compare the axially symmetric case with
the spherical one we made calculations of Be, C, O and Ne isotopes also in the spherical code
and compared both cases with the experimental data. The results confirmed that the axially
deformed code gives values of the binding energies in better agreement with experiment than
the spherical one. In reference [23], errors were found in equations of motion for the
spherically symmetric case (for more see the section 2.2 and 2.3.1).

Since the RMF theory as a phenomenological model depends on a set of parameters,
we applied four most widely used parameterizations. The results for each of them manifest
that the nonlinear parameterizations are much suitable for calculations of binding energies
than the linear one. On the other hand, the linear parameterization is the best as regards
numerical stability. Taking into account both of these points, we conclude that from the
considered parameterizations the most appropriate is NL-SH model.

For the above isotopes of Be, C, O and Ne, we studied the influence of A hyperon
mostly on the bulk properties of nuclear systems. We calculated the binding energy of
hypernuclei in the ground state and confirmed that the presence of the A hyperon shifts the
binding energy of a nucleus and makes the nuclear system more bound. Moreover, we
observed that the shifts of the binding energy per particle caused by the A hyperon are almost
identical for all isotopes of the particular chemical element. Thus, the A hyperon contribution
to the total nuclear binding is almost independent of the number of neutrons. The binding
energy of the hyperon itself was studied as function of A for above mentioned isotopes. We
obtained, in general, increasing function of nucleons, which one can expect considering
previous results.

Embedding the A hyperon into a nucleus obviously affects also its size, characterized
by a root mean square radius. The evaluations of the rms radii give smaller values for the
nuclei with the A hyperon than for the ordinary ones, which is in agreement with experiment
[31]. The reason of this result lies in the higher binding energies for hypernuclei and the glue-

like character of the A hyperon in a nuclear system.
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> hypernuclei were the next studied hypernuclear systems. We analyzed the possible
existence of bound X hypernuclear states. This topic was already discussed in [12] in
connection with the Coulomb and isovector interaction involved in the Lagrangian, which
could cause the binding of a ¥ hyperon. Our particular calculation confirmed previous
estimates for * as we found no bound states in Be, C, O and Ne isotopes. However, we
obtained some weekly bound states for the X" hyperon. In this case, the Coulomb interaction is
the dominating force.

In the end, it is to be noted that our calculations of A and X exotic hypernuclei are to
be considered only estimates at present. For most of the obtained results, there are no
experimental data available yet. Nevertheless, the experimental study of exotic hypernuclei
currently takes place in KEK, JLab and FINUDA laboratories and, therefore, the data are

expected to come soon.
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Appendix A

The ortogonality relations of the harmonic oscillator eigenstates are
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where we use the ortogonality relations for Hermite and Laguerre polynomials [24]
ojoe_xz H,(x)H,(x)=2"n!N76,,
® L ava « INa+n+1
ferners (o (=00 s *2)

The computation of B, ,

First, we introduce some useful relations for the evaluation of the derivatives of the

eigenfunctions ¢ of an axially symmetric harmonic oscillator (2.3.1.4)

2.0, )=, (e ¥
N (A3)
0,07 () ==3-N2n" "L m)e”
where
H,(&)=¢H, (£)-H, (&)
(A4)

L (m)=(an, +m =)L (7)=2{n, +m, )L ().
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The term in B, , with the derivatives d, reads

(®,]0.@ >=%b bzwi_lg_{ogdndfdgo;b (z)¢’”’(rl)\/;_ﬁe_"’”/"”;(m,j(s’)x

x(0.0, ()" (r)—= F " X (=8, BB, 1460, 2,0, =

N, N, = » P
O B~ [ H, () /zag(H,,z (e )=
= 5n i m, ', m m' i ﬁ)(zn n/z lan’ n+l 2"’1 n, ’5
e b \/ \/\/_211 , / N,
= 5"& ,n’L m, m, m m' bi( 2n. _1]

n’zn+l
1 }n’ /
§”Q”L m;,m' m ' b_( 2 ’Zn+l —1]

Here, the relation

—2”’m’5nm_l)

n,m+l1

Te‘xz/an(x)%(e‘xz/an(x))z—\/_( n!o

—oo

for Hermite polynomials was used [24].

e (—1)~"%1)2

r

The term corresponding to (8, +(=1 j can be written as

mayp QA(=1)"12 2 2

<cpa _ ) .

A (Z)(a ()

rl s,s'=1 0

Q+ (_ l)ml“ﬂ/2 /2 m 1 im,
/ ¢n'1] (rJ_ )E e l‘/’me (S) =

ry

_l 2 2 lm, m, m, m.+1/2ﬁ m _

- bJ_é‘IL n' Z .[ Zm (S) m SM¢I¢ (rJ_ a +( ) r ¢n (rJ_Mn_
1

2 z? ZS,S’O L
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n', n,—

)=

(AS5)

(A6)

T 1 —im'
,)500 2 T T [anacapo, (o () p=e ™1, (5)x



/
m m

1 Nn n' oo ) ) ~ 1
= Ebjz_é‘nn’ #ﬁﬁ{ é‘rrLS:m’ﬁ—lé‘ml ;my =1 J.dne_ﬂ/znm’/er’,: (n(m’_l)/zLZl,: __mzﬂm’/err’i Je_ﬂ/z +
171 0 77

= '
mg,m' =1 my; ,m,

T J2gm 1
GOt AT L (77"”1‘”/%:1 +=mny" L je"”z }:
0 L L 77 ry

n'

N N o
= M M - (~m I )
_é;l*”n/z §ms'm's+15ml:m’l—1-[dne n ILn’rIL Lnrl manrlL +
0

b,

c‘m m’ —lc'm m' +1.|.d;;€_ni;ml_1L::n’/l (Lnl HIILIZI ) }
st 11 0 L L L
(1&;)

where Q=m, +m,_.
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Appendix B

The matrix elements H from equation (2.3.2.3).

o
n',n',n,n,

The Klein-Gordon equation (2.3.2.1) reads

4 4 1
(_b_za” _?778727 —?82 +m;j¢(z’ri):SW(Z’ri)+S¢Y(Z’rL)' (BD)
L s b4

First, we evaluate the terms corresponding to derivatives with respect to 77.

1
9, (e_”/anrl (77))= - e'_”/anri + e‘”/zaﬂan

778727 (6—77/2Lnrl (77)): na”(_%e—ﬂ/anrl + 6—77/2877Lnrl ) =

= n(ie_”/ ZL% —%e_”/ Za,,Ln& —%e_”/ zaﬂan +e Za;Ln& j =ne"? (i L, —0,L, + a,zanu j
(B2)
This leads to
(40, +4nd2)le L, ())=e?(-2L, +40,L, +nL, —4md,L, +4ndiL, )= )
=7 [(77 - 2)Lan +(4- 477)877[% + 4778;‘;Lan ]
Using relations for Laguerre polynomials [24]
2 —
A (0)=" 11,0, (N orditerentty 1, (9="" D], ()01, 1, (0]
dx X dx X &
(B4)

we obtain from relation (B3)

43



2 i,y .

e_”/zﬂﬂ—2+@—4n+4wjlﬁ +(—ﬂ+4n—8MjL _1+4le —2}(]35)
n n " n n no"

6—77/2{(77_2)[%L +4(1_77)%(Ln,l _Ln,l—l)+477 n(n—1) (L -2L, ,+L, _2)}:

We rewrite the last term in (B5) using relation
(n + 1)Ln_2 (x) = (2n —1- x)Ln_1 (x) -nL, (x) , (B6)

and we get

2 2
e_n/2|:(77— 2_4n+4iJL”r +(ﬁ+ 4n_8L]Lnu -1 +%((2n_1_77)l’nm—l _nLn,J_ ):| =

n RN/ n
2 2 2 2
:e-n/{(,,_z_zlnﬁi_ﬂ],ﬁ ) }
n n RN/ nn n "
=" (n-2-4n)L, =e” [(17—1— 2n)L, —(1+2n)L, ]
(B7)
Next, using the relation

(n+ I)Lm(x) =2n+1- x)Ln (x)- nL,_, (x), (B8)

we finally obtain for the derivative terms with 7
3,le™L, (m))=e?(-(n+1)L, ,—nL, ,—(1+2n)L, ). (B9)

When evaluating the term with derivative with respect to & in equation (B1) we use

relations for Hermite polynomials

X n

0 H (x)=2nH, (x)and xH (x)= %Hm(x)+ nH,_ (x). (B10)
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Then

152
bgaf

ag{e—f 22 (5)):39%(6—5 2/ 2]}1,1 +29 f(e_f 2/ 2]3 clHy et 2/2
=—e_§2/2Hn + fze_fz/an - 256_52/2 2nH,_ + e_§2/2 4n(n —1)Hn_ =

=e_§2/2 _(—1+ fszn —4n§Hn_1 +4n(n—1)Hn_2}:

8%—>

—E2/0)1 1 1
=% 2 ZHn+2+["+§an+”(”_1)Hn—2_Hn_4"(§H”l+(”_1)Hn—2j+4"("_l)Hn—2}:

no 4" n+2

6—52/2{(_ n —%an +1Hn+2 +n(n _1)Hn—2}

:e_fz/z_(n+%—l—2njH +im +(n(n—1)+4"("—1)—4"("—1))%—2}:
4

(B11)

Finally, using (B9) and (B11) we obtain the expression for the matrix elements H

o
n',n'.n.n,

Hn’ n'.n.n = i2(2nr +1)+i2(nz _l)-'_m; 5}1 n' 5}1 wr,
ettty bJ_ 1 bz 2 2"z rp
11

_?5 [\I nlz (nz + 1j5n2+2,n’z + V nz (n/z+ljanz—2,n'z ]é‘n,l My + (B 12)

2 b
+? nlrJ_ 5n,l+l,n’m_ +nrl5 n,n,
L

n., —l,n’m_
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