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ABSTRACT 

 

Název práce: Studium exotických hyperjader 

Autor: Petr Posolda 

Katedra (ústav): Ústav teoretické fyziky  

Vedoucí diplomové práce: RNDr. Jiří Mareš, CSc., Ústav jaderný fyziky, AVČR, Řež 

e-mail vedoucího: mares@ujf.cas.cz  

 

Abstrakt: Diplomová práce se zabývá studiem vlastností exotických hyperjaderných systémů,  

konkrétně isotopů berylia, uhlíku, kyslíku a neonu za přítomnosti Λ a Σ hyperonu. 

Výpočty byly provedeny v rámci relativistické teorie středního pole (RMF), kde je 

(hyper)jádro popisována jako systém Diracových spinorů (nukleonů, hyperonů) 

interagujících prostřednictvím (středních) mezonových polí. Exotická hyperjádra 

byla popisována jako axiálně symetrická. Výpočty hyperjader byly dosud prováděny 

převážně za předpokladu sférické symetrie. Tato práce tedy rozšiřuje dosud známé 

předpovědi na oblast exotických, obecně deformovaných systémů. Pro uvedená 

hyperjádra byly provedeny numerické výpočty vazbových energií, středního 

kvadratického poloměru a studován vliv tenzorové interakce mezi ω mezonem a Λ 

hyperonem na spin orbitální rozštěpení Λ hyperonového energetického spektra. 

Potvrdilo se, že přítomnost Λ hyperonu zvyšuje hodnotu vazbové energie systému a 

naopak zmenšuje jeho střední kvadratický poloměr. Pro Σ hyperony byl výzkum 

zaměřen na možnost existence vázaných stavů Σ hyperonu v atomovém jádře. 

Ukázalo se, že pro zmíněné isotopy Σ+ hyperjádro neexistuje, ale pro Σ - hyperon 

vázané stavy v některých isotopech možné jsou.  

 

Klíčová slova: Exotická hyperjádra, Λ(Σ) hyperon, RMF teorie, Diracova rovnice,  

Klein-Gordonova rovnice. 
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Title: Study of exotic hypernuclei  

Author: Petr Posolda  

Department:  Department of Theoretical Physics   

Supervisor: RNDr. Jiří Mareš, CSc., Nuclear Physics Institute, ASCR, Řež 

Supervisor's e-mail address: mares@ujf.cas.cz   

 

Abstract: The thesis focuses on the study of  properties of exotic hypernuclei, particularly  

of beryllium, carbon, oxygen and neon isotopes with Λ and Σ hyperons. Calculations 

were performed in the framework of the relativistic mean field theory (RMF) where 

a (hyper)nucleus is treated as a system of Dirac spinors (nucleons, hyperons) 

interacting via (mean) meson fields.  The exotic hypernuclei were considered as 

axial symmetric. Up to now, hypernuclear calculations have been performed under 

assumption of spherical symmetry. This work thus extends hypernuclear calculations 

to the region of exotic, generally deformed systems. For the above nuclei, the 

numerical calculations of the binding energies and root mean square radii were 

performed. Moreover, we studied influence of the tensor interaction between ω 

meson and Λ hyperon on the Λ spin-orbit splitting. The results confirmed that the 

presence of the Λ hyperon increases values of the binding energy of a system and on 

the contrary, it decreases its root mean square radius. We studied the possibility of 

the existence of the Σ hyperon bound states in a nucleus. For the above isotopes, no 

bound states were found for the Σ+ hyperons. On the other hand, weekly bound 

states of the Σ – hyperon are predicted for several isotopes.     

 

Keywords: Exotic hypernuclei, Λ(Σ) hyperon, RMF theory, Dirac equation, Klein-Gordon  

       equation.    
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1. Introduction  

 

A hypernucleus is a nuclear system containing at least one hyperon, i.e. a baryon with 

nonzero strangeness. Since the hyperon is distinguishable from common nucleons, it 

represents in the nuclear medium an ideal and unique probe of the deep nuclear interior and 

makes possible to study mechanisms of various reactions by selecting particular channels 

marked by strangeness. The added hyperon gives a new dimension to the traditional nuclear 

world constituting a many-body baryon system (the hypernucleus becomes a first step to 

flavor nuclei). Hypernuclei also allow one to test directly nuclear models and models for 

baryon-baryon interaction in the strange sector. Week decays of hyperons give a tool for 

investigating week interactions and propagation of pions in the medium. Due to the special 

role of strangeness, hypernuclei may be well suited for investigation of (possible) subhadronic 

degrees of freedom. Strange particles (hyperons and possibly kaons) occur at a moderate 

density of about 2-3 times normal nuclear density in neutron stars matter [1]. These new 

particles influence the properties of the equation of state of the matter and consequently the 

global properties of neutron stars [2].  

Exotic hypernuclei are hypernuclear isotopes with surplus or deficit of neutrons. The 

physics of nuclei in the vicinity of the neutron drip line has been studied in last decades and 

number of effects have been observed, e.g. a new type of clusters (neutron halo) and the   N-Z 

dependence of NN interaction (shell occupancy). The Λ hyperon is known to make the 

nuclear core more stable, so Λ-hypernuclei have an interesting possibility of extending the 

neutron drip line from that obtained by ordinary nuclei [3, 4]. The experimental research of 

exotic Λ hypernuclei is nowadays under way in leading world laboratories. To mention a few, 

in KEK, the production of neutron-rich Λ-hypernucleus was observed [5]. The hypernuclei 

Λ
10Li  were detected as a product of the in-flight (π-, K+) double charge-exchange reaction on 

a 10B target. In Frascati (Italy), there was observed H6
Λ  and H7

Λ  in the (K-
stop, π

+) reaction [6]. 

The vast majority of known experimental data is on Λ hypernuclei. Σ hypernuclei have 

been studied theoretically and have been searched for in CERN [7] and KEK [8, 9] 

experiments since eighties. Unfortunately, no Σ hypernuclear bound state has been confirmed 

in BNL experiments [10] with improved statistics, except He4
Σ . Moreover, the analysis of Σ 

atom data [11, 12] revealed that the central Σ-nucleus optical potential is repulsive inside the 

nucleus and only slightly attractive at the nuclear surface. On the other hand, the Σ hyperon, 

due to the Coulomb or isovector interaction, could be bound in an exotic nucleus. 
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Calculations of exotic Σ hypernuclei and investigations of their possible existence have not 

been performed yet.  

In this thesis, the relativistic mean field (RMF) theory is used as a framework. The 

RMF theory as an approximation of quantum hadrodynamics (QHD) was proposed by 

Walecka in reference [13]. The model describes a nucleus as a system of Dirac nucleons 

interacting in a relativistic covariant manner via meson fields. The meson fields are treated as 

mean fields, i.e. as non-quantal c-number fields. Wide variety of nuclear applications has been 

successfully calculated within the RMF concept, which proved its applicability (for references 

see [14]). Since the first derivation of the RMF theory, several developments have been 

suggested to improve the original model. The introducing of the σ(ω)-meson nonlinear terms 

provided the correction of the nuclear compressibility and improved the description of the 

nuclear structure. The spin-orbit (s-o) interaction for the Λ hyperon is very small contrary to 

the s-o interaction for nucleons. The tensor interaction between the ω meson and the hyperon 

was included into the Lagrangian and the negligible Λ spin-orbit splitting was explained quite 

naturally using quark model [15, 16]. 

The RMF calculations of hypernuclei are mostly performed in assumption of spherical 

symmetry of the nuclear system. It is obvious that for exotic hypernuclei, i.e. strings of 

hypernuclear isotopes, it is desirable to consider deformation of these isotopes and therefore 

perform calculations assuming axial symmetry.  

In the next section, we will present the RMF model, introduce the corresponding 

Lagrangian and derive equations of motion for the case of spherical and axial symmetry. In 

section 3, we will present parameterizations used in this work. The results of the calculations 

of Λ and Σ exotic hypernuclei are discussed in section 4. Finally, the conclusions are drawn in 

section 5. 
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2. Relativistic mean field theory for (hyper)nuclei 

 

In the relativistic approach, the interaction between particles (baryons in our case) is 

not described by instantaneous force but it is mediated by fields, which are independent 

degrees of freedom. In the particular case, quantum hadrodynamics (QHD) [13], it is usual to 

consider meson fields with the lowest internal angular momentum J and isospin T. This 

presumption is in agreement with the spectrum of existing mesons and is justified also by the 

OBE potentials [17]. The fields taken into account are therefore scalar mesons (J=0) or vector 

mesons (J=1) and accordingly isoscalar (T=0) or isovector (T=1) mesons. Furthermore, as we 

are working with nuclear states having natural parity π=(-1)J the currents with unnatural parity 

will have zero expectation value in the RMF approximation [18]. Thus, π- and η-fields are not 

considered in this work. Consequently, the meson fields used in our approach are 

  

σ isoscalar - scalar field σ(xµ) 

ω isoscalar – vector field ωµ(x
µ) 

ρ isovector - vector field µρ
r

(xµ) 

γ massless vector field Aµ(x
µ) , the photon 

 

The σ-field produces strong attraction between nucleons at medium range, the ω –field 

mediates short-range repulsion, the ρ-field adjusts the isovector properties of finite nuclei and 

the photon does the electromagnetic interaction.  

Widely used approximation of QHD is the relativistic mean field theory (RMF) 

proposed by Walecka and Serot in ref. [13]. It is based on two main approximations. In order 

to illustrate these approximations, we present a very simple example with the Lagrangian 

density where nucleons ψ are coupled by just a scalar field 

  

 ( ) ( ) ψσψσσσψγψ σσµ
µ

µ
µ gmMi −−∂∂+−∂= 22

2

1
L , (2.1) 

 

In the mean-field approximation, the nucleons are treated as if they do not interact with each 

other directly, but they rather move mutually independently within the nuclei and their 

interaction is mediated by mean meson fields. Thus, even though this model is based on the 
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quantum field theory, the fields ψ and σ in (2.1) are not treated fully as quantum fields in the 

RMF model. The meson field operators are taken as their expectation value  

 

 σσσ :ˆ =→  (2.2) 

 

and therefore all meson fields are treated as classical c-number fields. Next, since the 

nucleons are moving mutually independently, the nucleon field operator ψ̂  can be expanded 

in all times in terms of single particle states α as  

 

 ( )∑=
α

α
µ

αψψ ax ˆ . (2.3) 

 

Here αâ is the annihilation operator for a nucleon in the state α and ψα(x
µ) is the single particle 

wave function. The corresponding scalar density can be written as 

 

 ∑
=

+=
A

polvac
1α

ααψψρψψ ..:: , (2.4) 

 

where the first term isolates the vacuum polarization and the second one corresponds to the 

contribution of the A nucleons in a nucleus. To omit the first term means to neglect the 

quantum field effects and include only the summation over occupied particle states. This is 

the second, so-called no-sea approximation. Step by step derivation and reasoning of this 

approximation is given in refs. [13,18]. 

Finally, it is necessary to stress that all the introduced meson fields are only inspired 

by physical particles. Although their masses only slightly differ from them, in fact, they are 

phenomenological components of the RMF nuclear model. Their masses and coupling 

constants are fitted to the ground state properties of selected magic nuclei and nuclear matter 

characteristics. Several successful parameterizations have been developed so far and some of 

the most frequently used ones are applied in this work (see [19] for references). 
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2.1. Lagrangian density and equations of motion 

 

Now, we will include into the Lagrangian density (2.1) the rest of the relevant meson 

fields and, of course, the hyperon part as well. This paper is concerned with Λ and Σ 

hyperons. Their main characteristics relevant for our calculations are listed in Table 1.  

 

 Table 1: Selected properties of hyperons considered in this work. 

 

Particle Mass [MeV] Strangeness Charge Spin  Isospin 

Λ 1115.6 -1 0 ½ 0 

Σ- 1189.4 -1 -1 ½ 1 

Σ0 1192.5 -1 0 ½ 1 

Σ+ 1197.5 -1 1 ½ 1 

  

 

 

Since all the above hyperons have spin ½, they will be described analogous to nucleons by a 

Dirac field. The Lagrangian density is a sum of the nucleon and hyperon part 

  

 YN LLL += , (2.1.1) 

where Y=Σ Λ. 

 

The nucleon part NL  is given by 

 

 

( )

,

L

µ
ψ

τµγψ
µν

µν

µ
ρψτµγψ

ρµ
ρµρ

ρµν
µν

µ
ψωµγψ

ωµ
ωµω

ωµν
µν

σψψ
σ

σ
σ

σ
µ

σµ

ψ
µ

µγψ

AeFF

NgmRR

Ngm

NgUm

MiN

2
31

4

1

2
2

1

4

1

2
2

1

4

1
2

1

2

1

−
−−

−+−

−+ΩΩ−

−− 2−∂∂+





 −∂=

rrrrrr

 (2.1.2) 
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where the arrow denotes the isovector quantities. The potential U(σ) is a function  

 

 ( ) 4
3

3
2 4

1

3

1
σσσ ggU +=  (2.1.3) 

 

including nonlinear self-coupling terms. This form was proposed by Boguta and Bodmer [20] 

to implement density dependence in order to improve the nuclear incompressibility, which 

comes out too large in the original Walecka model. The constants g2 and g3 are, of course, the 

others parameters of this model. The field tensors in (2.1.2) are given by 

 

 ( )
.µννµµν

νµ
ρ

µννµµν

νννµµν

ρρρρ

ωω

AAF

gR

∂−∂=

×−∂−∂=

∂−∂=Ω
rrrrr

 (2.1.4) 

 

Here, M, mσ, mω, mρ are the masses of the nucleon, σ-meson, ω-meson and ρ-meson 

respectively, and gσN, gωN, gρN are the corresponding coupling constants.  

The hyperon part YL is  

 

 ( )[ ] AYYTYYYYYY gMgi LLLL ++++−−∂= ρσ

µ

µω

µ

µ ψσωγγψ , (2.1.5) 

 

where MY is the mass of a hyperon, gσY (gωY) is the coupling constant for σ-, ω- meson-

hyperon interaction.  

The term 

 

 ( ) YY
Y

Y
T M

f
L ψωσψ µν

µνω ∂=
2

 (2.1.6) 

 

represents the tensor interaction between the ω meson and a hyperon and [ ]νµµν γγσ ,
2

i
= . 

The last two terms describe the hyperon interaction with the ρ-meson and photon. Since Λ is a 

neutral, I=0 particle  

 

 0=Λ=Λ ALLρ . (2.1.7) 
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In the case of a Σ-hyperon  

 

 ( ) kijkjkijA A
eg

Σ







Σ+Θ

2
Σ−=+ Σ

ΣΣ
,LL 32

τγγ µ

µ

µ

µ

ρ

ρ , (2.1.8) 

 

where  

 

 














−
=Σ

ΣΣ

ΣΣ

−

+

0

0

2

2

ψψ

ψψ
 and 











−
=Θ

−

+

µµ

µµ
µ

ρρ

ρρ

0

0

2

2
    [21]. (2.1.9) 

 

 

Before deriving equations of motion for the above Lagrangian, we make use of further 

simplifying assumptions, which make calculations considerably easier. Since we are 

interested in stationary states all time derivatives of densities and fields vanish 

 

 0000 ==== µµµ ρωσ A&&r&& ,,,  (2.1.10) 

 

and all the spatial components of 4-vectors are zero as well 

 

 000 === iii A,, ρω
r

, where i=1,2,3     [18]. (2.1.11) 

 

Further, we assume that the single particle states are pure proton or pure neutron states so they 

do not mix isospin. Consequently, we take into account only the third, neutral component of 

the isovector meson ρ. The remaining meson fields are therefore σ, ω0, A0 and 0
0ρ , which we 

will denote simply 0ρ  and they are all time independent. Finally, the single particle wave 

function has a form 

 

 ( ) ( ) ,)(, rititri
r

ψεψ iexp≈  (2.1.12) 

 

where εi is the single particle energy. 
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The next step is to derive the equations of motion from the Lagrangian density (2.1.1) 

by using Hamilton variational principle. With all the above simplifications, we obtain: 

  

 ( ) iiiNNN AegggMi ψεψ
τ

ρτωσβα ρωσ =




 −
+++++∇⋅− 030

3
0

2

1rr
 (2.1.13) 

 
( ) ( )

( ) ( ) YYYYYYYY

Y
Y

Y
YYY

AegAeg

i
M

f
gMgi

ψεψρψδψρψδ

ψωαβσβωα

ρρ

ω
σω

=+−++









∇⋅++++∇⋅−

ΣΣΣΣ −+

0000

00

2

rrrr

 (2.1.14) 

 ( ) YYY
i

iiN ggggm ψψψψσσσ σσσ −−−−=+∆− ∑3
3

2
2

2  (2.1.15) 

 ( ) ( )YY
Y

Y
YYY

i
iiN M

f
iggm ψαψβψψβψψω ω

ωωω

rr
∇++=+∆− ∑

2
02  (2.1.16) 

 ( ) −−++ ΣΣΣΣΣΣ −+=+∆− ∑ ψγψψγψψτγψρ σσωρ
00

3
002 gggm

i
iiN  (2.1.17) 

 .−−++ ΣΣΣΣ
−+

−
=∆− ∑ ψγψψγψψ

τ
βψ 0030

2

1
eeeA

i
ii  (2.1.18) 

  

 

Let us denote the nucleon densities as 

 

 

,)()()(

)()()(

)()()(

)()()(

)()()(

∑

∑

∑

∑

∑

=

3

=

3+

=
3

+

=

+

=

2

−
=

2

−
=

=

=

=

A

i
iiAN

A

i
iipN

A

i
iiN

A

i
iiN

A

i
iiN

rrrj

rrr

rrr

rrr

rrr

1

1

1
3

1

1

1

1

rrr

rrr

rrr

rrr

rrr

ψ
τ

βψ

ψ
τ

ψρ

ψτψρ

ψψρ

ψψρ

ω

σ

 (2.1.19) 
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and the hyperon densities as  

 

 
( )

.)(

)()()(

)()()(

)(

)()()(

)()()(

−−++ ΣΣΣΣ

3+

3
+

−

+

−=

2

−
=

=

∇=

=

=

ψγψψγψ

ψ
τ

ψρ

ψτψρ

ψαψρ

ψψρ

ψψρ

ω

ω

σ

00

3

1

erj

rrr

rrr

r

rrr

rrr

AY

YYpY

YYY

YY
T

Y

YYY

YYY

r

rrr

rrr

rrr

rrr

rrr

 (2.1.20) 

 

 

The first and the second equation (2.1.8) is the Dirac equation for nucleons and hyperon, 

respectively. Next three equations (2.1.9) to (2.1.11) are inhomogeneous Klein-Gordon 

equations for individual meson fields with sources given by corresponding baryon densities 

on the right-hand side. Equation (2.1.12) is for the photons where the sources are given by 

densities of all considered fields for charged particles. From the above system of coupled 

equations of motion, it can be clearly seen the essence of the RMF theory of nuclear 

interaction. Namely, the baryons interact only via the mean meson fields. As sources in the 

Klein-Gordon equations, the baryons generate meson fields and the meson fields on the 

contrary influence the relevant baryon densities via potential terms in the Dirac equations. 

The solution of the set of equations (2.1.13 – 2.1.18) has to be carried out iteratively. 

Starting from the reasonable estimate of the meson fields, we can solve the Dirac equations 

(2.1.13) and (2.1.14). We obtain the spinors, i.e. the orbits in which the baryons move in 

presence of the meson fields. If we consider that A nucleons occupy the lowest particle levels, 

we obtain from equations (2.1.19) the densities by summation over these levels. The hyperon 

densities are obtained immediately from eq. (3.2.20). The solution of the Klein-Gordon 

equations (2.1.15) – (2.1.18) using these sources gives us new meson fields and new 

electromagnetic field, which can be used to calculate the potentials and effective mass in the 

Dirac equations. The solution of the Dirac equations with these new fields gives us Dirac 

spinors for the next iteration.  

From the solution, we can calculate the total energy, which, in the static case, has the 

form: 

 

 ∫= )H( rrdE
r3 , (2.1.21) 



 15 

where 

 

( )

( ) ( )

( )

( ) ( )

( ) ( )

( )20
2

1
2

120
2

1

0
2

120
2

1
2

12
2

1

0000

0
2

0

0
2

310
3

0

A

m

m

Um

eAgYYY
eAgYYY

Yi
YM
Yf

YgYMYgiY

i
iAegNgNgMiir

∇−

−
202+∇−

22+∇−

−)+22+∇+

+




 −

Σ
+

−Σ
−




 +

Σ
+

+Σ
+














∇⋅−+++∇⋅−+

+∑ 






 −
+++++∇⋅−+=

ρ
ρ

ρ

ω
ω

ω

σσ
σ

σ

ρ
ρ

ψψδρ
ρ

ψψδ

ψωαωσ
σ

βω
ω

αψ

ψ
τ

ρτ
ρ

ω
ω

σ
σ

βαψ

(

)H(

rrrr

rrr

 

 

 

2.2 Spherical symmetry 

 

If we assume the spherical symmetry for nuclei, the common coordinates are 

 

 

.),(cos

),(sinsin

),(cossin

πφυ

πυφυ

φυ

20

0

0

∈=

∈=

∞∈=

rz

ry

rrx

 (2.2.1) 

 

In this case, all densities on the right-hand side of Klein-Gordon equations as well as the 

meson fields are considered dependent only on the radial coordinate r. 

The equations (2.1.13) and (2.1.18) define the single particle Dirac Hamiltonian that 

can be written as 

 

 )()(* rVrMih ++∇⋅−= βα
rr

, (2.2.2) 

 

where 
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 ( ) σσii gMrM +=
r*  

 ( ) 00
3

0 eAQgIgrV iiii ++= ρω ρω

r
 (2.2.3) 

for 

  
( )

( )

( ).

,,,,

ΛΣ=

=−=

ΣΛΣΣ=−

==
−+

iforI

NiforQ

ifor

NiforI

i

i

3

3

0

33

1
2

1

101

τ

τ

 (2.2.4) 

 

Dirac equations then acquire general form 

 

 [ ] ),,),,)()(* ϕθεψϕθψβα rrrVrMi (=(++∇⋅−
rr

. (2.2.5) 

 

The standard way of solution of a Dirac equation with the spherically symmetric 

potential is based on the separation of the angular and radial part. The commutation relations 

for operators S,L,J
rrr

 determine the angular part of the wave function. (Operators S,L,J
rrr

 are 

well known operators of the total angular momentum, angular momentum and spin 

respectively). Since the process of the solution of the angular part can be found in many 

publications (for example [13,22]), we will adopt the result from ref. [13] and will go through 

the radial part only. 

The solution of the angular part is given by spin spherical harmonics  

 

 ( )
sl

sl

mlm
mm

slm Yjmlmlm χφζϕκ ,
,

∑=
2

1

2

1
 (2.2.6) 

 
( )




<

>

1+−

,
=−=

0

0

2

1
κ

κ

κ

κ
κ

,
, lj  

 

where 
llmY  is a spherical harmonics and 

smχ is a two-component Pauli spinor and 

jmlmlm sl 2

1

2

1
  are Clebsch-Gordon coefficients. The quantum number κ is the 

eigenvalue of operator K, 

 

 ( )21JΣ2 −⋅=
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The equations  
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relate κ with eigenvalues of the angular momentum lA (lB) for the upper (lower) components 

of the Dirac bispinor. For given κ and j, the numbers lA and lB differ by one and lA and lB must 

be j±½. 

The single particle wave function is therefore written as 
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where n denotes the principal quantum number and 
x

x
n r

r
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= .   

Now we focus on the radial part. The expression (2.2.9) can be rewritten into [22] 
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Then for a Dirac equation of the form ( ) 0=− ψεh we obtain  
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where p
r

 is the momentum operator. A straightforward calculation leads to   

 

 
( ) ( )( )[ ]
( ) ( )( )[ ] 0

0

21

21

=⋅−+−+⋅

=⋅⋅+−+

mnn

mnn

RnEVMRp

RnpREVM

κκκ

κκκ

ϕσσ

ϕσσ
rrrr

rrrr

*

*

 (2.2.12) 

 

Multiplying the second equation from the left side by ( )n
rr

⋅σ  and using general relations  
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which can be easily proved with using the relation ( )( ) ( )baibaba
rrrrrrrrr

×+⋅=⋅⋅ σσσ , we obtain 
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The term L
rr

⋅σ  affects only the mκϕ , so 
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Inserting this result into the (2.2.14) we get 
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 (2.2.16) 

 

Comparing equations (2.2.16) with the analogous equations (3.7) in ref. [23], one can notice 

that they differ by the sign in front of the term κκ nR
r

ri 21 )(
∂

∂
+− ± . We are convinced that 

there is an error in ref. [23]. 

The equations (2.2.16) have to be solved for all the occupied nucleon levels in the 

nucleus. The solutions ψi (i=1,..,A) determine the densities (2.1.19)  
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The densities (2.2.17) are the sources in the Klein-Gordon equations (2.1.15) to 

(2.1.18) for the corresponding fields σ(r), ω0(r), ρ0(r) and A0(r).  The Klein-Gordon equation 

in spherical coordinates (2.2.1) is 
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Here, φm  are the meson masses for φ =σ, ω, ρ and zero for the photon.  The sources then 

correspond to 
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The hyperon source part is similar. Since we consider only one hyperon in its ground state 

1s½, the sources for respective fields are obviously very simple 
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The equations (2.2.16) and (2.2.18) are coupled nonlinear differential equations that 

may be solved by an iterative procedure. For a given set of meson fields, the Dirac equation 

(2.2.16) is solved iteratively by Runge-Kutta method outward from the origin and inward 
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from large r, matching the solution at an intermediate radius to determine the eigenvalues εi. 

Analytic solutions in the region of large and small r allow the proper boundary conditions to 

be imposed.  

Once the baryon wave functions are determined, the source terms (2.2.19) and (2.2.20) 

may be calculated and the meson fields recomputed by integrating over the corresponding 

static Green’s function. Inserting the determined meson fields into the Dirac equations, we 

solve the Dirac equations and obtain new set of wave functions. We compute the new 

densities and repeat the whole procedure until the self-consistency is achieved.  

 

 

 

 

2.3. Axial symmetry 

 

The assumption of spherical symmetry is not appropriate for every nucleus. Nuclei 

with open energy shells are often (sometimes appreciably) deformed. Such nuclei are usually 

described by axially symmetric shapes [23], using cylindrical coordinates 
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 (2.3.1) 

 

Let us consider that the densities are invariant with respect to rotation around the z axis. The 

spinor ψ is in this case characterized by the quantum numbers sl mm +=Ω  the eigenvalue of 

the symmetry operator Jz, parity π and isospin t.  

In the following subsection, we will derive Dirac equations and Klein-Gordon 

equations for the axially symmetric case. This time we will solve the equations of motion by 

expansion in the basis of an axially symmetric harmonic oscillator. The problem then reduces 

to finding the coefficients of this expansion.  
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2.3.1 Numerical solution of Dirac equation 

 

For simplicity, we will first consider the case without the tensor interaction. The Dirac 

equation can be again written as 
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where the mass M* and the potential V has the same form (2.2.3) and (2.2.4) as in the 

spherical case with the exception that the meson fields now depend on the coordinates zr ,⊥ . 

After inserting the ansatz [23]  
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 (2.3.1.2) 

 

into (2.3.1.1), straightforward calculation leads to  
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 (2.3.1.3) 

 

Next, we expand the spinors f ± and g± in terms of the eigenfunctions of a deformed 

axially symmetric oscillator. They can be written explicitly as [23] 
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and where the ( )ξ
znH  are Hermite polynomials and ( )ηl

r

m
nL  are the associated Laguerre 

polynomials as defined in [24]. The new variables ζ and η obey 
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and the normalization constants are given by 
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The choice of the oscillator length parameters bz , ⊥b  and their role in numerical solutions is 

discussed in ref. [23]. The expansion (2.3.1.2) into eigenstates of the harmonic oscillator is 

explicitly written as 
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We insert it into equation (2.3.1.3) and we obtain 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )






























Φ

Φ

Φ

Φ

=































Φ

Φ

Φ

Φ





























−∂−
−Ω

−∂

−
+Ω

+∂∂

∂−
−Ω

−∂+

+Ω
+∂∂+

∑

∑

∑

∑

∑

∑

∑

∑

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

max

max

max

max

max

max

max

max

~

~
~~

~

~
~~

~

~
~~

~

~
~~

*

*

*

*

,

,

,

,

,

,

,

,

0
21

0
21

21
0

21
0

α

α
αα

α

α
αα

α

α
αα

α

α
αα

α

α
αα

α

α
αα

α

α
αα

α

α
αα

χ

χ

χ

χ

ε

χ

χ

χ

χ

tsrf

tsrf

tsrf

tsrf

tsrf

tsrf

tsrf

tsrf

VM
r

VM
r

r
VM

r
VM

t

t

t

t

t

t

t

t

zr

r

zr

rz

r

r

r

r

r

r

r

r

 

  (2.3.1.9) 

 

Now we use the ortogonality relations of the eigenstates of the harmonic oscillator (see 

appendix A). We multiply each row in (2.3.1.9) by eigenstate 'αΦ  and we obtain the 

following equation for the coefficients fα and α~g   
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If we determine the matrix elements αααααα ′′ ,',, , CBA and  the whole problem reduces to the 

solution of the algebraical equation (2.3.1.10) for unknown fα and α~g . For the matrix 

elements αααα ′′ ,, ,CA  we get 
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The computation of ',ααB  is more complicated due to terms with derivatives. Main steps of the 

evaluation are shown in appendix A. The resulting expression for ',ααB  is: 
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Here is to be noted that we found errors in the expression for αα ′,B  (eq. 4.27) in ref. 

[23]. Now we add the tensor interaction to the equation of motion. We neglect the tensor term 

for nucleons as the coupling constant fωN is ≈ 0 and we consider only the tensor term for a 

hyperon. Its contribution leads to the additional term 02
ωαβδ ω ∇⋅

rr

Y

Y
iY M

f
i  in the Dirac equation 
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where ΣΛ=== ,YiiY for1δ . The tensor term in the axial model is then given by matrix 
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which has to be added into equation (2.3.1.9). The Dirac equation (2.3.1.10) after including 

the tensor interaction acquires the form  
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where ',ααT  is given by 
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All the functions in this expression are known except ω0.  Thus, to evaluate ',ααT  we need to 

solve the corresponding Klein-Gordon equation for ω0.  

 

 

 

2.3.2 Numerical solution of Klein-Gordon equations 

 

The Klein-Gordon equations in cylindrical coordinates can be expressed as:  
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where the notation of the source corresponds to (2.2.19) and the dimensionless coordinates are 

the same as in equation (2.3.1.6) introduced in previous section.  

The solution of the Klein-Gordon equation expanded in a deformed oscillator basis 

now reads 
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where 
⊥rz nn ,

φ  are the expansion coefficients. Inserting the ansatz into equation (2.3.2.1) and 

using ortogonality relations, we again obtain a set of inhomogeneous linear equations 
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To solve it for unknown 
⊥rz nn ,φ , we first need to evaluate the matrix elements 

rzrz nnnnH '' .  The 

calculations are presented in appendix B. The result is  
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Since the sources are determined by solution of the Dirac equation, the set of coupled 

equations has to be solved iteratively until self-consistency is achieved.   
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3. Parameterizations  

 

As was mentioned above, there are several parameter sets for the RMF model. Four of 

them, which were used in this work, are listed in Table 2. The first is a linear parameter set 

proposed by Horowitz and Serot (HS) [25]. The HS parameterization is suitable tool for 

description of the nuclear density and the rms radius. In this simple model, the nonlinear 

potential (2.1.13) for σ-meson is not taken into account. This affects mainly the nuclear 

compressibility, which is too high for the linear HS model. In this work, we focus mostly on 

the binding energies of nuclei where the difference between linear and nonlinear 

parameterizations also appears, which will become evident later. The advantage of the linear 

parameterization is its outstanding numerical stability due to its simplicity (small number of 

parameters). 

The remaining three parameterizations are nonlinear with the potential (2.1.13) which 

is essential for getting more quantitative description of nuclear properties. The NL1 

parameterization introduced by P. G. Reinhard et al. [26] was used in our calculation. 

However, we encounter problems with numerical stability in some cases, mostly for nuclei 

with high nuclear densities. The parameter set NL-SH of Sharma et al. [27] describes 

properties of nuclear matter as well as of finite nuclei reasonably well. In our calculation, it 

confirmed its good numerical stability. The last parameterization TM2 introduced by Y. 

Sugahara and H. Toki [19] contains extra nonlinear self-coupling term ω4 for ω-meson field. 

The corresponding coupling constant is denoted by c3. The TM2 model was motivated by the 

relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. The results of this 

model for binding energies and rms radii are in very good agreement with experimental data 

[19]. 

All these parameterizations were fitted to the nuclear properties of magic nuclei and 

the saturation point of nuclear matter. By adding the coupling constants for hyperons, we 

complete the parameter sets of the RMF model for hypernuclei. The coupling between ω-

meson and Λ-hyperon gωΛ and the constant of the corresponding tensor interaction fωY were 

taken from quark model [28]. Thus, the adopted values are: 32
g

g
α

ωΝ

ωΛ
ω ==Λ , fωΛ = -1. The 

coupling constant gσΛ was adjusted to reproduce the ground state binding energy of Λ in the 

hypernucleus 17
ΛO , where BΛ≈13MeV. This gives evidently different values of gσΛ for 
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particular parameter sets. The values of 
σΝ

σΛ
σ g

g
α =Λ  for corresponding parameterizations under 

consideration are presented in Table 3.  

Finally, the couplings for a Σ-hyperon 5440
g

g
α

ωΝ

ω .== Σ
Σσ , 32

g

g
α

ωΝ

ω
ω == Σ

Σ , 32
g

g
α

ωΝ

ω
ω == Σ

Σ  

were determined from fits to Σ-atom data, for reference see [12]. 

 

 

 

Table 2: Parameterizations for RMF model used in this work 
 

 HS NL1 NL-SH TM2 

M (MeV) 939 938 939 938 

mσ (MeV) 520 492.25 526.059 526.443 

mω (MeV) 783 795.359 783 783 

mρ (MeV) 770 763 763 770 

gσ  10.47 10.138 10.444 11.4694 

gω 13.80 13.285 12.945 14.6377 

gρ 8.07 9.051 8.766 8.3566 

g2 (fm
-1) 0 -12.172 -6.9099 4.444 

g3 0 -36.265 -15.8337 4.6076 

c3 0 0 0 84.5318 

 

 

 

Table 3: Couplings for Λ hyperon interaction: 
iN

iΛ
iΛ g

g
α = , where i=σ, ω. 

 HS NL1 NL-SH TM2 

ασΛ 0.623 0.618 0.618 0.621 

αωΛ 2/3 2/3 2/3 2/3 

fωΛ -1 -1 -1 -1 
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4. Results and discussion 

 

Hypernuclear properties were studied for isotopes of Be, C, O and Ne with even 

number of neutrons. The range of calculated isotopes for a particular chemical element 

approximately corresponds to the known measured isotopes of the considered chemical 

elements. Before we proceed to hypernuclear calculations, we will test our nuclear model on 

exotic nuclei without hyperons. First, we will compare the spherical and axial approaches. 

Second, we will compare the applied RMF parameter sets. The binding energies per particle 

E/A for Be, C, O and Ne calculated in the spherical and axial code are compared with 

experimental values [29], [30] in figures 1a, 1b, 1c, 1d respectively.  

 

 

 

 

 

 Fig.1a: Binding energy E/A in Be isotopes as function of A. Results for spherical and axial 
calculations within the nonlinear RMF model NL-SH are compared with experimental values. 
 
  



 30 

 

 Fig. 1b: Binding energy E/A in C isotopes as function of A. Results for spherical and axial 
calculations within the nonlinear RMF model NL-SH are compared with experimental values. 
 
 

 

Fig 1c: Binding energy E/A in O isotopes as function of A. Results for spherical and axial 
calculations within the nonlinear RMF model NL-SH are compared with experimental values. 
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Fig.1d: Binding energy E/A in Ne isotopes as function of A. Results for spherical and axial 
calculations within the nonlinear RMF model NL-SH are compared with experimental values. 
 

 

 

The results for the isotopes of carbon (with exception for 14C), oxygen and neon are in 

good agreement with experimental values, particularly for oxygen. On the contrary, the results 

for beryllium are significantly different from experiment. Moreover, for Be8
 and Be12, we 

obtained that the last proton is not coupled to the nucleus any more. The failure might indicate 

that Be isotopes are too light systems to be described by a mean field approximation. 

Presented figures clearly show that the results for the axial case are always in better 

agreement with the experimental values than the spherical ones. Therefore, we will use the 

axial model in the following.  

Next, we focus on comparison and applicability of used parameterizations. The 

comparison of the considered parameterizations for oxygen isotopes is in figure 2. From our 

calculations it follows that the linear model HS gives much lower binding energies E/A (by 

about 2.5 MeV) than the nonlinear models. The results for the nonlinear parameterizations 

NL1, TM2 and NL-SH are almost identical with only marginal differences. In comparison 

with experiment, the nonlinear models give considerably better results for nuclear binding 

energies than the linear HS model. On the other hand, during calculations problems with 
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convergence of the iterative procedure occurred for some isotopes in the case of nonlinear 

parameterizations NL1 and TM2 (the problem of the stability of the nonlinear models is 

discussed in ref.[18]). The most stable parameterization from this point of view is the linear 

HS model. The NL-SH parameterization appears to be more stable than NL1 and TM2 so we 

will present mainly results for the NL-SH model in the following figures. 

 

 

 

 

Fig. 2: Binding energy E/A as function of A for oxygen isotopes calculated in axial code for 
different RMF parameterizations. The missing value of C14 for NL1 parameterization is due to 

its convergence problems. 
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4.1. Exotic Λ hypernuclei  

 

In this section, we will present results of the study of the Λ-hyperon in the following 

order: the influence of the Λ hyperon on the nuclear binding energy per particle, the shrinkage 

of a nucleus in the presence of the Λ hyperon, contribution of the tensor interaction to the spin 

orbit splitting. 

 

 

 

Fig. 3: Binding energy E/A as function of A for O isotopes and O+Λ systems. Calculations 
were done for linear model and nonlinear model NL-SH. 

 

 

Figure 3 demonstrates the influence of the Λ-hyperon on the nuclear core in oxygen 

isotopes. Since the binding energy per particle is shifted upward, it is obvious that the 

presence of Λ in nucleus leads to more coupled system. This effect is caused by the 

strangeness of the Λ-particle. Due to the nonzero strangeness, the Λ-particle is distinguishable 

from the rest of the nucleons and therefore it is allowed to occupy the 1s state. Moreover, 

since the Λ-nuclear interaction is attractive, Λ hyperon acts as a “glue” in the nuclear system. 
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It is interesting that the changes of the binding energy per particle E/A in consequence of the 

presence of Λ are almost constant for the considered isotopes. Moreover, the linear and 

nonlinear model predicts a similar value, approximately 0.5 MeV for the shift in E/A due to 

Λ. 

The fact that the presence of the Λ-particle leads to more bound nuclear system 

manifests itself also in the change of the size of the nuclear system. Although there is one 

more particle in the nucleus, the root mean square (rms) radius is smaller due to the stronger 

binding caused by the Λ hyperon. This shrinkage has already been confirmed experimentally 

in KEK, Japan [31]. The comparison of the rms radii for ordinary exotic nuclei and 

corresponding hypernuclei is presented in figure 4. 

 

 

 

Fig. 4: The rms radius of C and O isotopes, and C+Λ, O+Λ system as function of A. 
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Fig. 5: The Λ binding energy BΛ in Be, C, O and Ne isotopes as function for A. 
 

 

In figure 5, we present the results of the calculation of the Λ binding energies. There 

can be seen a growing trend for C, O and Ne hypernuclei in the figure, while the binding 

energy per particle decreases in corresponding neutron rich isotopes (see figures 1a to 1d). 

The behavior is not unexpected. The Λ particle always occupies the lowest s state, while the 

binding energy E/A acquires also contributions from the weekly bound neutrons from the 

outer shells. 

By introducing the tensor coupling into the model, we are able to describe 

simultaneously the large spin-orbit splitting for nucleons and the small spin-orbit splitting for 

the Λ hyperon. It is obvious from figures 6 and 7 that the tensor interaction decreases the 

energy of the s1/2 and p3/2 states and on the contrary, it increases the energy of the p1/2 state. 

As a result this leads to sizeable reduction of the spin orbit splitting. All the presented models 

predict reduction of the spin-orbit splitting du to the tensor coupling to about 1/3 of the 

original value. The new value is ≈ 0.5 MeV, which is in agreement with experiment. It is 

worth mentioning that the introduction of the ω-meson tensor coupling influences little the 

“bulk” properties of hypernuclei, such as the total binding energy, the rms radius or the 

distribution of matter.  
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Fig. 6: Effect of the tensor coupling on the position of the hyperon single particle level in 
O17

Λ .  Results of the parameterizations L-HS, NL1, NL-SH are compared, 0 and 1 denotes 
calculations without and with the tensor coupling term respectively. 

 
 

 

Fig. 7: Effect of the tensor coupling on the position of the hyperon single particle level in 
Ne17

Λ . Results of the parameterizations L-HS, NL1, NL-SH are compared, 0 and 1 denotes 
calculations without and with the tensor coupling term respectively. 
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4.2. Exotic Σ hypernuclei 

 

This section is devoted to the calculation of the binding energies of nuclear systems 

with a Σ hyperon. As was mentioned in introduction, the Σ hypernuclear bound state has not 

been observed, with exception for He4
Σ  [10]. The study of the Σ-nucleus interaction in Σ 

atoms predicts no Σ+ hypernuclear bound states [12]. Although the Σ-nucleus isovector 

potential cancels partly (for charged Σ±) the Coulomb potential, the Coulomb and the isoscalar 

repulsive potentials for Σ+ overcome the attraction due to the isovector potential (ρ-meson). 

For Σ-, the calculations in [12] predict possible bound states for high Z nuclear cores.  

It is to be noted that calculations of exotic Σ hypernuclei have not been performed yet. 

In this work, we focus on a search for bound states of the Σ hyperon in above mentioned 

isotopes Be, C, O and Ne. Since the central Σ potential is repulsive, the Coulomb and 

isovector interactions and their interplay are crucial for a Σ hyperon to be bound in a nucleus. 

Consequently, it is obvious that Σ0 bound states need not be considered.  

Our calculation confirmed that no Σ+ bound states exist in the studied isotopes. For Σ-, 

we obtained several bound states in the mentioned isotopes. The calculated values of the 

binding energies are presented in Table 4. The binding energies acquire small values in the 

range of units of MeV. The attractive Coulomb interaction is responsible for the binding of 

the Σ- hyperon in a nucleus (in most cases). It is to be noted that the Σ- states acquire a finite 

width of the order of tens Mev due to the conversion Σ-p→Λn. Since the RMF approach does 

not address directly the imaginary part of the potential due to the absorption, we have not 

considered the width of the Σ states in this work. 

 

 

Table 4: Binding energy BΣ for Σ hyperon, sign minus (plus) corresponds to (un)bound states.   

 

 8Be 12Be 10C 12C 20C 12O 16O 22O 18Ne 20Ne 30Ne 

BΣ(MeV) -1.02 -0.58 -2.97 -1.74 -0.85 -3.20 -2.64 -1.37 +1,64 +1,73 -1,58 
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5. Conclusions  

 

We performed self-consistent calculations of Λ and Σ exotic hypernuclei within the 

framework of the relativistic mean-field theory. We adopted the axial symmetry approach for 

ordinary nuclei from [23] and extended it to the hypernuclear region, including the tensor 

interaction between the ω-meson and a hyperon. To compare the axially symmetric case with 

the spherical one we made calculations of Be, C, O and Ne isotopes  also in the spherical code 

and compared both cases with the experimental data. The results confirmed that the axially 

deformed code gives values of the binding energies in better agreement with experiment than 

the spherical one. In reference [23], errors were found in equations of motion for the 

spherically symmetric case (for more see the section 2.2 and 2.3.1).  

Since the RMF theory as a phenomenological model depends on a set of parameters, 

we applied four most widely used parameterizations. The results for each of them manifest 

that the nonlinear parameterizations are much suitable for calculations of binding energies 

than the linear one. On the other hand, the linear parameterization is the best as regards 

numerical stability. Taking into account both of these points, we conclude that from the 

considered parameterizations the most appropriate is NL-SH model.  

For the above isotopes of Be, C, O and Ne, we studied the influence of Λ hyperon 

mostly on the bulk properties of nuclear systems. We calculated the binding energy of 

hypernuclei in the ground state and confirmed that the presence of the Λ hyperon shifts the 

binding energy of a nucleus and makes the nuclear system more bound. Moreover, we 

observed that the shifts of the binding energy per particle caused by the Λ hyperon are almost 

identical for all isotopes of the particular chemical element. Thus, the Λ hyperon contribution 

to the total nuclear binding is almost independent of the number of neutrons. The binding 

energy of the hyperon itself was studied as function of A for above mentioned isotopes. We 

obtained, in general, increasing function of nucleons, which one can expect considering 

previous results.   

Embedding the Λ hyperon into a nucleus obviously affects also its size, characterized 

by a root mean square radius. The evaluations of the rms radii give smaller values for the 

nuclei with the Λ hyperon than for the ordinary ones, which is in agreement with experiment 

[31]. The reason of this result lies in the higher binding energies for hypernuclei and the glue-

like character of the Λ hyperon in a nuclear system.  
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Σ hypernuclei were the next studied hypernuclear systems. We analyzed the possible 

existence of bound Σ hypernuclear states. This topic was already discussed in [12] in 

connection with the Coulomb and isovector interaction involved in the Lagrangian, which 

could cause the binding of a Σ hyperon. Our particular calculation confirmed previous 

estimates for Σ+ as we found no bound states in Be, C, O and Ne isotopes. However, we 

obtained some weekly bound states for the Σ- hyperon. In this case, the Coulomb interaction is 

the dominating force.  

In the end, it is to be noted that our calculations of Λ and Σ exotic hypernuclei are to 

be considered only estimates at present. For most of the obtained results, there are no 

experimental data available yet. Nevertheless, the experimental study of exotic hypernuclei 

currently takes place in KEK, JLab and FINUDA laboratories and, therefore, the data are 

expected to come soon. 
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Appendix A 

The ortogonality relations of the harmonic oscillator eigenstates are 
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where we use the ortogonality relations for Hermite and Laguerre polynomials [24] 
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The computation of ',ααB . 

First, we introduce some useful relations for the evaluation of the derivatives of the 

eigenfunctions Φ  of an axially symmetric harmonic oscillator (2.3.1.4)  
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The term in ',ααB   with the derivatives z∂ reads 
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Here, the relation  
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for Hermite polynomials was used [24]. 
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where sl mm +=Ω . 
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Appendix B 

 

The matrix elements 
rzrz nnnnH ''  from equation (2.3.2.3). 

 

The Klein-Gordon equation (2.3.2.1) reads  
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First, we evaluate the terms corresponding to derivatives with respect to η . 
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This leads to 
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Using relations for Laguerre polynomials [24] 
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we obtain from relation (B3) 
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We rewrite the last term in (B5) using relation  
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Next, using the relation 

 

 ( ) ( ) ( ) ( ) ( )xnLxLxnxLn nnn 11 121 −+ −−+=+ , (B8) 

 

we finally obtain for the derivative terms with η  
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When evaluating the term with derivative with respect to ξ  in equation (B1) we use 

relations for Hermite polynomials 
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Then 
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Finally, using (B9) and (B11) we obtain the expression for the matrix elements 
rzrz nnnnH ''  
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