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Abstrakt:

Predkladana diplomova préce se zabyva studiem produkce A-hyperjader v reakcich
zpusobenych kaonem K~ zachycenym na atomové orbité. Vypocty jsou provedeny v
ramci distorted wave impulse aproximace. Elementarni proces kaon-nukleon popisu-
jeme pomoci mikroskopického modelu zalozeného na chiralni poruchové teorii. Pouziti
mikroskopického modelu je jednim z prinosu této prace. Dalsi novinkou v této praci je
zapocteni efektu pionové distorze pri vypoctu efektivni nukleonové hustoty dostupné
pro reakci. V samotnych vypoctech uvazujeme ¢tyti kaon-jaderné potencialy a ti pion-
jaderné potencialy. Studujeme vliv ruznych jevu na vyslednou pravdépodobnost reakce.
Nase zavéry porovname s experimentalnimi daty a predchozimi teoretickymi pracemi
na toto téma. Ackoli jsou nase vysledky blizsi experimentdlnim datum nez vysledky

predchozich autoru, shoda s experimentem stale neni plné uspokojiva.
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Abstract:

The thesis focuses on A-hypernuclear production induced by K~ meson stopped on
an atomic orbit. Calculations are performed in the framework of distorted wave impulse
approximation. We use the microscopic model based on chiral perturbation theory for
the description of the elementary kaon-nucleon process. The use of microscopic model
is one of the gains of the presented work. Another novelty is the consideration of the
effect of the pion distortion in the effective nucleon density available for the reaction.
We take into account four kaon-nucleus potentials and three pion-nucleus potentials.
We study various effects on the capture rate of the reaction. We compare our results
with the experimental data and with the previous calculations. Although our results
are closer to the experimental data then the results of previous authors, the agreement

with experiment is still unsatisfactory.
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Chapter 1

Introduction

A hypernucleus is a bound system of nucleons (protons, neutrons) and at least one
hyperon (A, X, =, ... ). The first hypernucleus was observed in a cosmic rays interaction
with emulsion in 1952 [1] and totally 37 A-hypernuclei [2] and 4 double A-hypernuclei
[3] have been observed since then.

A hyperon is distinguishable from a nucleon, therefore it is not affected by the
Pauli exclusion principle. This makes the hyperon an ideal and unique probe of the
deep nuclear interior. The added hyperon introduces a new dimension to the traditional
nuclear physics dealing with nuclei composed only of protons and neutrons. It represents
the first step to a more general world of flavoured nuclei. Hypernuclei enable us to study
various nuclear models as well as models of baryon-baryon or meson-baryon interaction
in the strange sector. Strange particles (hyperons and possibly kaons) are also expected
to play an important role in neutron stars [4] and the study of hypernuclei can provide
valuable information about the properties of matter under such extreme conditions.
Weak decays of hyperons bound in hypernuclei also provide a tool for investigation
of the propagation of pions in the nuclear medium in addition to the study of weak
interaction.

Hypernuclei can be produced in various reactions. For example, the elementary



process can be the conversion of a nucleon N into a hyperon Y in the reaction
a+N—b+Y , N(ab)Y.

Systematical experimental studies of hypernuclei began in the early 70s. Experiments
using kaon beams in CERN (Switzerland) and later in BNL (USA) and FINUDA (Italy)
enabled physicists to explore hypernuclei produced in (K ~, 77) reactions [5, 6, 7, 8]. The
study of (71, K*) reactions started in the mid 80s in BNL [9] and proceeded intensively
in KEK (Japan) [10, 11]. The first successful measurement of (e, e’ Kt) reaction took
place at JLab (USA) in 2003 [12].

The study of strangeness exchange reactions induced by kaon (stopped or in flight)
can provide additional information about the kaon-nucleus interaction. For example, one
can study the effect of the depth of the kaon-nucleus potential on the characteristics
of hypernuclear production process. The depth of the kaon-nucleus potential is still an
open question. On one hand, fits to K ~-atomic data based on phenomenological density
dependent optical potentials [13, 14] or on the relativistic mean field theory [15, 16]
lead to kaon-nucleus potential of depth 150 —200 MeV. On the other hand, calculations
using chiral models fitted to scattering and K~ -atomic data result in potentials of
depth 50 — 100 MeV [17, 18]. A possible existence of deeply bound K-nuclear states
or the question of kaon condensation are closely related to the depth of the kaon-
nucleus potential. The analysis of hypernuclear production might provide the additional
information about the K~ -nucleus interaction and thus it may help to answer the
question about its depth.

The reaction we focus on in this work is the A-hypernuclear production induced by

the stopped kaon, (K_

stopped: 7). In this type of reaction, the kaon is slowed down and

then captured on an atomic orbit. Then it cascades down to a lower orbit and finally
absorbed by the nucleus. One of the nucleons changes to the A-hyperon and the created
pion flies away. The first observation of this reaction took place in CERN in 1973 [5] and
most recent experimental data come form KEK [19], FINUDA (Italy) [8] and BNL [20].
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The spectroscopy of outgoing negatively charged pions was used in KEK in the 80s and
also in FINUDA nowadays. Only the production preserving nuclear charge (e.g. 2C
— 12C) is accessible in this kind of measurement. In BNL, the decay of the outgoing
neutral pion into two photons was used to receive its spectrum. This method makes it
possible to study processes with change of the nuclear charge (e.g. ?C — }2B). Several
theoretical attempts to describe the (K;Opped, 7) hypernuclear productions have been
made [18, 21, 22|, but none of them led to fully satisfactory predictions. The calculated
capture rates were at least three times smaller then the experimental values.

In this work, we focus on target nuclei *C and '°0O and take into account all possible
produced A-hypernuclei: 32C, 2B, 10, 1°N. The terminology used in hypernuclear
physics is following: The hypernucleus {2C' consists of 12 baryons and one of them is
the A hyperon. Its atomic number is 6, as denoted by the label C' (in general, the atomic
number is equal to the charge of the system, not necessarily to the number of protons).
The hypernucleus }>C' thus contains six protons, five neutrons and one A hyperon.

We use the distorted wave impulse approximation (DWIA) as a theoretical frame-
work for the description of the hypernuclear production. This approach describes target
nucleus as a collection of individual particles and assumes that the reaction with the
kaon proceeds on one of those particles. The other particles are regarded as spectators
and contribute only to the environment, in which the interaction takes place. Together
with the interacting baryon, they generate the optical potential, by which the incident
and outgoing particles are distorted. The nuclear medium also affects the elementary
kaon-nucleon process. To summarize, the primary many-body problem (kaon-nucleus)
is replaced by the two-body problem (kaon-nucleon) and the distortions of incident and
outgoing wave functions caused by an optical potential.

We consider several optical potentials (deep as well as shallow) for the distortion of
the kaon in the initial state and also for the distortion of the pion in the final state. We

study and discuss effects caused related to the different choice of optical potentials.



We describe the elementary kaon-nucleon process within the framework of the mi-
croscopic model based on the chiral Lagrangian, whereas previous authors [18, 21, 22]
used elementary branching ratios ambiguously derived from experiments. We consider
both these experimental values and the microscopically calculated branching ratios, and
we compare the results obtained by both ways.

Our microscopic model of the elementary process is based on a chiral perturbation
theory of meson-baryon interactions [17, 18, 23, 24, 25, 26]. It is an effective theory
[27, 28] that implements the symmetries of quantum chromodynamics (QCD) in the
low energy region, where the direct use of QCD is problematic due to its nonperturbative
character. The hypernuclear physics is one of the areas, where the predictions of the
chiral perturbation theory can be tested.

The DWIA formalism and the microscopic model for elementary reactions are out-
lined in chapter 2. In chapter 3, we present input wave functions we use. The results
of numerical calculations are presented and discussed in chapter 4. In chapter 5, we

summarize our work and present the outlook for the future.
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Chapter 2

Formalism

In this chapter, we present the basic ideas of the distorted wave impulse approximation
(DWIA) and use this approach to the hypernuclear production induced by stopped
kaon. The replacement of the many-body problem by the two-body problem, which is
the basic idea standing behind the DWIA, requires the description of the elementary
two-body process. The model of the elementary process is given in the first section. The
DWIA is applied to the hypernuclear production in the second section.

The hypernuclear production in K~ stopped reaction can be written as a reaction
K +A—-nm+H. (2.1)

The initial state is a K~ atomic bound state with a nucleus A and the final state is an

outgoing pion with a hypernucleus H. The reaction is illustrated in the figure 1.

The reaction of a kaon with a nucleus is a complicated many-body problem, which
cannot be describe in all its complexity, therefore we have to look for an approximation.
One may consider the nucleus as a collection of individual particles and assume that
the reaction occurs on one of them, while the other nucleons are regarded as spectators
and contribute to the environment, in which the process takes place.

The many-body problem of the reaction of a kaon with an entire nucleus is thus

11



7)H reaction.

Figure 1: A schematic draft of the A(K

stopped’

replaced by the two-body reaction of the kaon with one nucleon. We call it an elementary
or one-baryon process. Since the kaon in the initial state and the pion in the final state
are affected by the interaction with the nucleus, we cannot use the wave functions of
free particles. The effect of the nucleus on the kaon and pion wave functions is described
by the optical potential. We say that the wave functions are distorted. An important
factor is the overlay of wave functions of kaon and pion and the nuclear to hypernuclear
transition density.

This approach is called the distorted wave impulse approximation (DWIA). For

technical details, we refer the reader to special monographs, eg. [29, 30].
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2.1 Elementary process

Our approach, which is based on the DWIA, requires the knowledge of an elementary

process, the reaction of a kaon with a nucleon
K +N-—->7m+Y. (2.2)

Though one can get the necessary information somehow from the experiment, we de-
cided to use a microscopic model.

The starting point of our model is the chiral perturbation theory and its Lagrangian
density. We do not intend to develop the formalism of renormalized quantum field theory
and sum contributions of all loop Feynman diagrams, therefore we use the approach
of effective potentials, which is more useful for our purposes. They can be used in a
Lippmann-Schwinger equation (known from the quantum scattering theory) to obtain
t-matrix elements, which already contain the essential information about the pertinent
process. Since the elementary process takes place in the nuclear medium, the situation
is different from that in the vacuum. We consider the effect of Pauli blocking in the
intermediate states as a first step to a more complete description of the in-medium

reaction.

2.1.1 Chiral Lagrangian density

The reaction of a kaon with a nucleon belongs to a more general set of meson-baryon
reactions. Following references [23, 24], we describe meson-baryon interactions in the
formalism of the quantum field theory by the chiral Lagrangian density. The leading

order term is given by

LY = Tv(Tp (1, D" — My)) + F Tr (¥ py,7s [A*, Up))

+ DTr (Upy,s {A*, Up}) . (2.3)
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The covariant derivative is defined as
D'V =0"Ug + [TH Vg, (2.4)

where
1

:8_f02

Here fj is the pseudoscalar meson decay constant, M is the baryon mass in the chiral

" [6,0"¢] + O(¢"). (2.5)

limit, and D and F' are vector and axial vector coupling constants. The matrix Upg

stands for the octet of baryon Dirac fields

A3
Vi P
ke =0 _2
= = \/gA
and ¢ for the octet of pseudoscalar meson fields
s + +
:7/—86 + 75 ™ K
b= . Z % KO . (2.7)
K- ﬁ —\/167]8

2.1.2 Potential model

We intend to establish the formalism of effective potentials and not to to work in
a framework of quantum field theory. The connection between the two formalisms is
arranged by the requirement of equal s-wave scattering lengths calculated up to order ¢2.

We consider the potentials in the separable form [23]

Ci; [M;M; a? o
Vii(ki ki) = —= ittt ‘ J 2.8
i (Kis ) 42 fe\| swiw; o? + k2 a?+k‘? (2.8)

The separable form of the potential gives us the advantage, that many calculations

can be performed analytically. Coefficients Cj; are determined directly by the chiral

Lagrangian structure (see [23]), w; (I = 4,7) is the reduced energy in the i(th channel,
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M; is the mass of the baryon, k; is the c.m. momentum in channel [ and ¢ is the inverse
range parameter for channel [, s is the total c.m. energy.
The Lippmann-Schwinger equation for coupled channels reads as
N

zn kul n (l k)
tij(kis kj) = Vig (i, k;) +Z /d3z —lzize : (2.9)

where N is the number of considered channels.

Coupled channels considered in one specific calculation are determined by laws of
conservation of charge, strangeness and baryon number [24]. For example, if we look
for an amplitude of an elementary reaction of the meson K~ with the proton (@ = 0,
S =1, B = 1), the channels we can consider in the LS equation are: 7°A, 7°%° 7=+,
7%, K—p, K%, nA, n¥°, K°Z°, K*=. The amplitude for the reaction of the kaon
with the neutron, which is also needed, can be obtained either by a different choice of

coupled channels or by using the assumption of isospin symmetry.

2.1.3 Pauli blocking

The elementary process takes place in the nuclear medium. The medium effect, which
can be easily taken into account, is the Pauli exclusion principle in the intermediate
states [17].

If we denote the momentum of a target nucleon in a the laboratory frame p, the
relative K~ N momentum in the intermediate state (the integration variable in LS
equation) 1 and in the initial state k;. The momentum of the nucleon in the intermediate
state in the laboratory frame is p’ = p + k; — 1. The Pauli principle requires that the
momentum p’ must be greater than the Fermi momentum. This restriction changes the

domain of integration in the Lippmann-Schwinger equation (2.9) to €2,
Qn(pr) ={1; [P+ k= 1] = pr}.

The Pauli exclusion principle relates only to systems of identical fermions, therefore the

15



change of integration domain is applied only to the channels with protons or neutrons,
while the integration domain in other channels is not altered.

The separable form of potentials allows us to write them as
Vii = viigi(ki)g; (kj),

where v;; is practically independent of momenta and g;(k;) is the Yamaguchi form factor

2

«
k)= —*Lt—.
olk) = i
The t-matrix has the same form
tij(kiy ki) = 5;9:(ki) g5 (k;). (2.10)

If we put these expressions in the Lippmann-Schwinger equation (2.9), we obtain the

result for 7. in a purely algebraic form,

J

tsz = Uij —|— Z Vin In tin7 (211)
where the relevant integral is
w 1 a?
I,=-" 3 — 2.12
21 Jo,pry K2 — 12 +ieal + 1 (2.12)

This integral can be solved analytically (x = |k; + p|)

2 2112 2
« k2 — « — K + K
I(K, kn,pp) = wn( L ) [ L L (arccoth +arcc0th )

a2 + k2 20y, s an

1, 5 ovy Q2+ (pp+K)?
(R k2 k)

r7el (e ey e

1 2 |pF+k:n+/{|
—— ((k, 2 e

4/@'(( +#) pF)n|pF—k:n—/£|

1 ‘pF_kn—{"%’

i ((k:n — /{)2 — pQF) In . (2.13)

‘pF‘i_kn_K’

The evaluation of this integral is given in the appendix A. It is obvious, that the integral

for the intermediate channel without the proton or the neutron is obtained by setting

16



pr = 0. The limit pp = 0 and p = 0 corresponds to the free space t-matrix. The
solution of equation (2.11) together with the ansatz (2.10) gives us required t-matrix

elements.

2.2 Hypernuclear production

We follow ref. [21] and assume the T-matrix for the reaction of a kaon with a nucleus

in the form

Tis(ae) = tirar) [ @1, (6) pie) Uona(e) 214
Here, t;7(q¢) denotes the t-matrix element for the elementary process, Uy (r) is the
wave function of the kaon distorted by a kaon-nucleus optical potential, x; (r) is the

wave function of the outgoing pion distorted by a pion-nucleus optical potential, q¢ is

the momentum of the outgoing pion. The nucleus to hypernucleus transition density

where «, § run over all single particle states of nucleons in the nucleus («) and hyperons

matrix,

ey ewl (r)af (Ban(@)
af

in the hypernucleus (/3), respectively.

The capture rate for reaction (2.1) is given by

d3q
Ny = 2n [ 8B+ By = e = B (Tya)l’) G
1
- G [ <[Tyalk > a0, 2.15)

where we use spherical coordinates and the delta-function to integrate over the size of
qr. The angle brackets < --- > are used to denote that the square of the T-matrix is
averaged over initial states and summed over all final states. The reduced energy in the

final state is denoted by w; and reads
B .
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Before we proceed, we focus on the kinematics of the elementary process. The sit-
uation is complicated by the fact, that the elementary process occurs in the nuclear
medium. The capture rate for the elementary process (K~ N — 7Y) is connected

with the t-matrix element, which enters eq. (2.14) by the relation
e qswy _
TEN = Y) = == [t(7p) (2.16)

where the bar indicates that the quantities are considered in the nuclear medium. Be-
cause we don’t know the particular nucleon, on which the reaction occurs, the quantities
are averaged due to the Fermi motion of nucleons within the nuclear medium. Applying

relations (2.14) and (2.16) in the formula for the capture rate (2.15) yields

2\ dQ,
— (21
> o 21

An important quantity is the capture rate per one stopped kaon R;; which is simply

qrwr _ _ C\k

Ly = 22 558 = nd) [ (] €037 0 o) Bt
qywy

a ratio between the capture rate of one process I';; and the sum of rates to all possible

final states I' = 3, I';y (= total capture rate):

I';
Rif = Ff. (2.18)

The summation over all hypernuclear states can be obtained by applying the relation

of closure
1

2J;+1

YO i) pig(r) = pao(r' — ), (2.19)
M, f

where py is the density of nucleons of the type N normalized to their number. Conse-
quently,
L =K N = all) [ & pu(r) pc () polo) (2.20)

where
1 2 _ QdQ‘If
77 2 s o) = [ (P

Authors Gal and Klieb [21] used the approximation that neglected the influence of

pr-(r) =

the distortion of outgoing pion and replaced its wave function in formula (2.20) by a

18



simple plane wave (p, = 1). If we introduce the effective nucleon density available to

the capture process py, the approximation can be written as

v = [ S oo ))& [ & pnr) e () (2.21)

As we will demonstrate in the section 4, this simplification is not fully justified. The
quantity py provides the normalization of the overlay of the pertinent wave functions
(2.14).

The final formula for the capture rate per one stopped kaon can be written as a
product of three terms

Rig = ZEL . RK™N = 7Y) - Ryg Y. (2.22)

gy
The first term in (2.22) is the kinematical factor. This factor appears due to the fact
that the process takes place in the nuclear medium and the momentum of nucleon is
not equal to the momentum of the whole nucleus.
The second term in (2.22) is the branching ratio for the elementary process

F(K-N = 7¥)pn

R(K™N Y) = — —. 2.23
(KN = mY) = S mp— a7, + A(K-n = a7, (223)
The last term, which we call the capture rate per hyperon, is
Ly 2\ a9,
F{|F @ nG @) ogte) wxaaito]| ) %52
Ry /Y = : (2.24)

PN
We focus on the capture rate per hyperon (2.24) and the elementary branching ratio

(2.23) in the following two subsections.

2.2.1 Capture rate per hyperon

Now, we try to simplify the capture rate per hyperon (2.24) analytically. It is useful
to work in spherical coordinates and use the partial wave expansion. The kaon wave

function is

Unem(r) = Ryp(r) Yo (€2). (2.25)
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The outgoing pion wave function can be written in the partial wave expansion
X =i @+ 1)5(r) Pi@t). (2.26)
The nucleon (and hyperon) wave function can be written as

n(®) = 0 (38 0] (227

The effective nuclear density standing in the denominator of (2.24) become
= [ dr ow(n) B0} Y (204 DGO (2.28)
l
The integral in the numerator of (2.24), let’s denote it I, is more complicated. Its
complete evaluation is presented in the appendix B. Here, we present only the most
important partial results and further assumptions and approximations. The integral

can be directly transferred to the form

1
I = lOkOLO

E : § : JN+IN+1/2)
’YY’YN

nyjyly nNjnIN

: ‘ JN Jy k
V 2y + D(2jx + 1)(2ly + D(Iy0k0|1y0) { 7Y 7T
ly Iy 1/2
2
< HH( nyly]y ® aanN.]N) ||A > ’ (229)
where I,lyyw is the integral over radius r
o= /0 Arut, oo (F) gt (7) () Ruvs (7). (2.30)

We assume that the capture occurs from one particular shell nyly of a nucleon to one
particular shell nyly of a hyperon. Now, we can sum over all possible final states. After

further manipulations (see appendix B), we obtain

2
. JN Jy
Lixiyomyty = O (2k+1)(2ly +1)(2jy +1)

NG N(j), (231)
k.jy,jn ly Iy 1/2

VYIN
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where

N = (LOKO[I0)*|L, ., |,

VY IN
l

and N (jy) is the number of nucleons in the shell jy.

We assume that the integral IQYW depends only weakly on the jy or jy quantum
numbers. We can then neglect this dependence and perform the last summation over
Jy considering the capture in the particular shell jy.

The final result for the capture rate per one hyperon then becomes

R Jy = NUn) 2,2k + 1)(Iy0kO|ly 0) Ny,
nyly—nyly - = .
Jdr pn(r) [Bye(r)? 22020+ 1[5 (r)?
l

(2.32)

The letter k is not only the summation index but also represents the mutlipolarity of
the process. Its value equals to the value of the transferred orbital momentum. The

value of £ is usually used for a classification of nuclear processes.

2.2.2 Elementary branching ratio

Here, we focus on the elementary branching ratio (2.23), which is the second term in
the formula the capture rate per one stopped kaon (2.22). The branching ratios (2.23)
for the elementary processes n(K~, 7 )A and p(K~,7%)A were obtained using chirally
motivated effective separable potentials (presented in the section 2.1).

The low energy constants (parameters) of the model are taken from the Cieply and
Smejkal [26] (to be specific from the parameter set corresponding to o,y = 40 MeV).
They were fitted to a wide range of experimental data on K~ p reactions.

When the required branching ratios R(K~N — 7wA) are calculated in the nuclear
medium the model leads to a decreasing function of the nucleon density, as demonstrated
in Fig. 2.

We assume that the reaction takes place at a proton (or neutron) density p = po/2

(po = 0.17fm™ 3). Although the central density in different nuclei varies (from 0.14 up
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Figure 2: The dependance of branching ratios on the nucleon density.

to 0.22fm™?), the branching ratios do not change much in this region. Therefore we can
neglect this dependence. For future purposes, we denote the branching ratios obtained
at the nucleon density p = pp/2 by roman number I and the branching ratios obtained
when the effect of nuclear medium is neglected by roman number /1.

The use of a microscopic model for the elementary branching ratios is one of the
novelties of our work. The previous authors used branching ratios derived from exper-
iment [21, 31]. However, the values were not measured directly, but were extrapolated
from the measurements done on carbon and freon. We find this approach quite am-
biguous and prone to systematic errors, due to not so well known factors. Therefore,

we feel that the elementary branching ratios obtained this way do not describe the
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elementary process accurately. We denote them by roman number /7] for comparison

with branching ratios obtained by our microscopic model.

The pertinent elementary branching ratios are shown in Table 1.

Table 1: Elementary branching ratios (in units 1072).

branching I 17 117
ratio p=p/2 p=0/|"12C 0
R(Kn—7A)| 639 965 |87 7.7
R(K-p—7°A) | 320 480 |44 3.9
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Chapter 3

Input wave functions

To perform the numerical calculation of two integrals, I' _ (2.30) and py (2.28), which
are essential to obtain the capture rate of the process, we need the wave functions of a
kaon, a nucleon, a hyperon and an outgoing pion. The wave functions of bound states
(nucleon, hyperon, kaon) were obtained numerically using the Numerov method. The

code for computing wave functions of bound states was written by the author. We use a

standard computer code written for pion scattering [32] to get the pion wave functions.

3.1 Nucleon and hyperon wave function

The wave functions of nucleons and hyperons were computed numerically as bound
states in a Wood-Saxon potential

_ Vo R
l4+exp(r—R)/a’

V(r) = — 1o AY3. (3.1)

The geometry was fixed by setting a = 0.6 fm and ry = 1.25 fm. The potential depth V
was adjusted separately for each baryon state so that the corresponding binding energy
was reproduced. The values of the binding energies are shown in Table 2 [2, 21].

We tested sensitivity of our results to baryon wave function. For this purpose we

calculated the capture rate for the production of }* in both 1S, and 1P,. To test the
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Table 2: Baryon binding energies in MeV.

nucleon orbit p n A

A=12

1s1/9 34.1 37.3 10.8
1p3/2 16.0 18.9 0.3
A =16

1s1/2 32.0 35.3 124
1p3/a 18.3 21.8 3.1
1p1/9 12.1 15.7 1.5

sensitivity to the geometry of the potential, we use the number A = 11 instead of

A = 12 in the expression for the Wood-Saxon potential. The difference appeared to
be less than 10%. To test the sensitivity to the depth of the potential, we calculated
baryon wave functions for binding energy about 10% bigger and smaller. The difference
appeared to be less than 5%. Since the sensitivity to the baryon wave functions is quite

small and its testing is not the purpose of this work, we will not focus on it more.

3.2 Kaon atomic wave function

We use the Klein-Gordon equation with a potential that consists of two parts. The
Coulomb potential with finite size effects and the optical potential describing strong
interaction, which was taken from [33]:

VE(r) = 2% (1 + %) [b+ B (%) } o(r). (3.2)
Here p is the kaon reduced mass, m is the nucleon mass and p(r) is the nuclear density
normalized to the number of nucleons A. We use three different parameter sets for

the kaon-nucleus optical potential, which are in the Table 3. Moreover, we consider
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also a pure Coulomb potential ([coul]) for comparison. We denote the different optical

potentials and corresponding wave functions by abbreviations in square brackets.

Table 3: Parameters of the kaonic optical potential.

set b[fm] Blfm] v
leff] 0.63 + 0.89i 0 0
[DD] —0.15 + 0.621 1.65 — 0.061 0.23
[chir] | 0.69 + 2.02i 0 0

The meson-nuclear optical potential is usually expressed as the scattering length
multiplied by the nuclear density. Thus, the parameter b for potential [chir] is the sum
of the K~ n and K~ p scattering length in the nuclear medium computed using the chiral
model presented in sections 2.1 and 2.2.2. The values for the parameter sets [eff] and
[DD] were fitted to reproduce a large set of kaonic atom data by Friedman et. al. [33].
In order to be consistent, we use the same parametrization of the nuclear density as the
authors of [33]. They described the nuclear density using a modified harmonic oscillator
model [34]:

r? o2
p(r) = po (1 + a@) e .
The parameters o and R for the relevant nuclei are listed in Table 4.

Table 4: Parameters of the nuclear density.

nuclei a R[fm]
e 2.234 1.516
10 3.027 1.629

For B = 0, the potential reduces to the standard ”effective” ([eff]) parametrization of
the optical potential. The solution [DD] exhibits another explicit density dependence,

because of nonzero parameters B and v. If we consider the central nuclear density
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po = 0.17 fm ™3, the depth of the potential (its real part) equals to 83 MeV for potential
[eff], 193 MeV for [DD] and 91 MeV for [chir]
The real and imaginary parts of wave functions for the 2P K ~-atomic states in 2C

are shown in Figs. 3 and 4 to illustrate the difference between various parameter sets.

3.3 Pion wave function

The pionic optical potential is taken to be of the standard form [35], usually used in
the analysis of pionic atoms and pion-nuclear scattering:
24 e <1+m“>b ()+(1+m”>B 2 _v—U) g (33
- = — r — r)—V————— .
4 o M) P on) 0P 1+ %”foz(r)

alr) = <1 + %>_1 cop(r) + (1 + ;n—]\j[B()) - Cop(r).

We perform our calculations with a free pion (plane wave) and with two different
parameter sets for the pion-nuclear optical potential [36, 37]. We denote the different
parameter sets and corresponding wave functions by letters in round brackets. The

parameters are in Table 5.

Table 5: Parameters of the pionic optical potential.

set bo By Co Co §
(b) 0.268 + 01 0 0.036-+0.2061 0—0.2031 1.4
(C) 0.0104+0.4371 0 0.047 + 0.2221 0 0

27



2+ ~
o _
S 1k _
% L .
E 0
o _1__ — [coul] | |
g — [eff] |
2+ - [DD] |
i —— [chir] | |
_ I | I | I | I | I
30 1 2 3 4 5

r (fm)

Figure 3: Real part of the K~ wave function in the 2P state 2P in 2C.
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Figure 4: Imaginary part of K~ wave function in the 2P state in 2C.
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Chapter 4

Results and discussion

In this chapter, we present the results of numerical calculations of the capture rate per
stopped kaon and discuss their sensitivity to different input wave functions (i.e. different
kaon-nucleus, resp. pion-nucleus optical potentials), to different branching ratios for
elementary process (taken from microscopic model or derived from experiments), to
the omission of the pion distortion in the effective nucleon density available to the
process, and to other possible effects.

The capture rate per stopped kaon Ry;, the quantity we are interested in, is given
by the formula (2.22). It consists of three terms, the kinematical factor, the branching
ratio for the elementary process and the capture rate per hyperon.

The detailed description of input branching ratios and wave functions is in the
previous chapters. We take the value 1.4 [21] for the kinematical factor qrwy/q,ws. We
consider three different values of branching ratios for the elementary processes. The first
one is derived within the microscopic model and includes the effect of nuclear medium
(1), the second one is derived from the microscopic model in the vacuum (/1) and the
third one is derived from the experiment (I17).

The capture rate per hyperon (2.24) contains two integrals of wave functions, one

in the numerator (2.30) and one in the denominator (2.28), which have to be computed
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numerically. The K~ wave functions are denoted by shortcuts in squared brackets,
the pionic wave functions are denoted by letters in round brackets. We also compare
the results using the effective nuclear density py with and without the effect of pion
distortion (2.21, 2.28).

We calculated the processes of the hypernuclear production from nuclei 2C and O
and considered only the formation of A-hypernuclei (}*C, 2B, 150, }°N). We took into
account two baryon transitions, 1Py — 1S5, where the hyperon is created in the 1.5
state, and 1Py — 1P, where the hyperon is created in the 1P state. Both processes
take place on the nucleon in 1P state, which is the valence orbit, and we believe that
the reaction takes place just on the valence nucleon. There is only one possible value
of the multipolarity k of the process in the first case, k = 1, and there are two possible
values of k in the second case, k =0 and k£ = 2.

We assume two K~ atomic orbits, 2P and 3D, and perform the calculations sepa-
rately for each orbit. Finally, we average over the states due to the estimated population

of the orbits [38]. The relative population of orbits is in Table 6.

Table 6: Relative population of K~ -atomic orbits.

Cia Oss
2P 1 0.23 0.18
3D | 0.77 0.82

Before we proceed to comparison of our results with experiment and previous the-
oretical works, we want to show the sensitivity of the presented model to some effects.
First issue, we want to discuss is the sensitivity to the different choice of branching
ratios for the elementary process. In Figure 5, we present the capture rate for the
production of }*C' in 15, state for the kaon-nucleus potential [eff| and pion-nucleus
potential(c). We recall that the branching ratios I and I/ come from our microscopic

model and I11 are derived from experiment.
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Figure 5: The sensitivity of the capture rate to elementary branching ratios.

We can see that all the calculated values are quite close to each other but signifi-
cantly below the experimental data. The value where we use the branching ratios from
the microscopic model without considering the effect of the nuclear medium (77) is
highest, and the value where we use branching ratio from microscopic model and con-
sidered the effect of nuclear medium (7) is smallest. The value where we used branching
ratio derived from experiment (/1) lies between. We prefer the theoretical approach
(discussed in chapter 2), and we believe that the most accurate description is provided
by the branching ratio I. Because the difference between the results corresponding to
various elementary branching ratios (maximally 50%) is smaller than the difference
between the calculated capture rates and the experimental value (minimally 100%),
we expect that there are other effects (kaon-nucleus potential, pion-nucleus potential,

effective nuclear density), which influence the numerical results more. Consequently, all
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further results correspond to the elementary branching ratios

Next, we want to discuss the sensitivity of the results to the effective nucleon density
(2.21, 2.28), which stands in the denominator of the capture rate per hyperon (2.32).
We consider {C'} or neglect { N} the effect of pion distortion. In Figure 6, we show the
production of }*B in the 1S, state the effect for the [DD] kaon-nucleus potential for

both (b) and (c¢) pion-nucleus potentials.
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g --------------------------------------------- [DD](c){ N}
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g i
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S 4
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Figure 6: The sensitivity of the capture rate to the effective nucleon density.

The considering of the pion distortion in the effective nucleon density leads to the
substantial effect on the capture rate. The results for pion-nucleus potentials (b) and
(c) is about three times and even five times higher, respectively, if we consider the pion
distortion in the relation for the effective nucleon density (2.21). The computed values
for the capture rate get much closer to the experimental value. The authors of previous

papers [21, 18] neglected this effect, but our results indicate that this assumption is
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not justified. Thus, all following results are calculated with the considering of the pion
distortion in the effective nucleon density.

Next, we want to demonstrate the effect of different kaon wave function. In the
figure 7, we show the capture rate for the creation of $?C with the hyperon in 1P, state
(figures for other processes look similar). The pion wave function (b) is used in this

figure.

3
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Figure 7: The sensitivity of the capture rate to K~ wave functions.

We can see that the capture rate is highest, and thus closest to the experimental
value, for the kaon-nucleus potential [coul], where the strong interaction is completely
neglected. The values for potentials [eff] and [chir] are about one half of that for [coul]
and the value for [DD] kaon-nucleus potential is smallest. Since the [DD] optical po-
tential is about twice as deep as potentials [eff] and [chir|, which are of the comparable

depth, and the [coul] potential contains no strong interaction part at all, we can con-
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clude that the capture rate is a decreasing function of the kaon-nucleus potential depth.
The [coul] potential does not describe the kaon-nucleus interaction properly, therefore
the fact that the result for the [coul] potential is so close to the experimental value is of
no importance. We have to focus on other kaon-nucleus potentials, where the agreement
with experiment is not so satisfactory. Our best result is about 50% smaller than the
experimental value.

Figure 8 shows the dependence of the capture rate on a choice of pion-nucleus
potential for the creation of }*O in the 1P, state. The K~ wave function corresponding

to the potential [eff] is considered in this figure.

15
experiment
I [eff] (free)
[eff](b)
. [eff](c)

Capture rate (in units 10'3)
o
a1

0

Figure 8: The sensitivity of the capture rate to pion wave functions.

We see that pion distortion plays an important role. The difference between the
results of calculations with and without pion distortion is significant. On the other hand,

the difference between the results for two different (but non-zero) optical potentials is
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much smaller. The result for potential (c) is a little higher than the result for potential
(b). The experimental value lies between values computed with the free and with the
distorted pion.

The results of all processes we calculated are summarized in Tables 7-10. The ex-
perimental data for the production of *C' [8], }2B [20], and }°0O [19] are shown for
comparison. The measurement of N has not been performed yet, so our results for

this process are pure predictions.
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Table 7: Total capture rates for the production of *C' (in units 1073).

[coul] [coul] [coul] [eff] [eff] [eff] [DD] [DD] [DD] [chir] [chir] [chir] exp
transition (free)  (b) (c) (free) (b) (c) (free) (b)  (c) (free) (b) (c)
1P — 1512 | 143 079 079 142 034 036 152 022 015 092 020 023 [1.01£0.21
1Py — 1P | 3.69 242 302 330 182 1.71 221 073 111 296 119 1.52 |2.59 £0.19
Table 8: Total capture rates for the production of B (in units 1073).
[coul] [coul] [coul] [eff] [eff] [eff] [DD] [DD] [DD] [chir] [chir] [chir] exp
transition (free)  (b) (c) (free) (b) (c) (free) (b) (c) (free) (b) (c)
1P — 1512 | 0.69 038 039 069 0.16 0.18 075 0.10 008 046 010 0.12 | 0.56 £ 0.16
1Py — 1P, | 1.81 1.29 157 165 0.62 090 096 035 0.60 151 067 0.81 |0.70 £0.18
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Table 9: Total capture rates for the production of 0 (in units 1073).

[coul] [coul] [coul] [eff] [eff] [eff] [DD] [DD] [DD] [chir] [chir] [chir] exp
transition (free)  (b) (c) (free) (b) (c) (free) (b)  (c) (free) (b) (c)
1P — 1512 | 035 015 015 037 0.05 0.05 042 003 002 020 0.02 0.03 |0.13+£0.04
1Py — 1P, | 141 071 080 1.26 0.30 037 0.89 0.19 024 0.89 0.23 0.28 | 0.56 £ 0.08
Table 10: Total capture rates for the production of J°N (in units 1072).

[coul] [coul] [coul] [eff] [eff] [eff] [DD] [DD] [DD] |[chir] [chir] [chir]

transition (free)  (b) (c) (free) (b) (c) (free) (b) (c) (free) (b) (c)

1P — 1512 | 0.17  0.07  0.07 0.18 0.03 0.03 021 0.02 001 0.09 001 0.01

1Py — 1P, | 0.65 037 044 061 0.15 0.18 043 0.09 0.12 046 0.13 0.16




Before we make the comparison of our results wit experimental data and previous
theoretical predictions, we determine the best combination of potentials involved. To
obtain the combination of potentials, which is in the best agreement with experimental
data, we calculate the standard weighted least square test (x? test)

gy o o

i

We take into account six processes, for which we have direct experimental data (the
production of }>C in the 1S, and 1P, state, the production of }>B in the 15, and 1P
state, the production of }°0 in the 15, and 1P, state) and four ratios between capture
rates (the ratio between the 1P and 15 production for 2C the ratio between the 1P,
and 15, production for 10, the ratio between production of }>C' and 190 in the 154

state and the ratio between production of }2C and }°0 in the 1P, state). The results

of this procedure are in Table 11.

Table 11: x? test for all sets of potentials.

potentials 2 potentials  y

[coul](free) 229.0 | [DD](free) 99.6
[coul](b)  21.7 | [DD](b) 154.5
[coul](c)  47.2 [DD](c)  212.3
eff](free)  168.0 | [chir](free) 50.1

[eff](b) 84.6 | [chir](b) 167.6
leff](c) 65.9 | [chir](c) 138.8

2

The best agreement with the experiment is clearly for the combination of the [coul]
potential for the kaon-nuclear interaction and the (b) potential for pion-nuclear inter-
action. If we consider only the combinations with the strong interaction considered,

then the combination of potentials [eff] and (c) is the best one. Below, we will compare

38



the results for this combination of potentials with experiment and previous theoretical
calculations. Table 8 clearly demonstrates that the kaon-nucleus potentials [DD] and
[chir| yield much worse agreement with the experimental data than the kaon-nucleus
potential [eff].

The comparison of our calculations with experimental data [8, 19, 20] and previous
theoretical works is shown in figures 9-13. We present both the production capture rates
and ratios between capture rates. The theoretical predictions of Gal and Klieb [21] are
denoted by GL. The theoretical predictions of Matsuyama and Yazaki [21] are denoted
by MY, and the predictions of Cieply et.al. [18] are denoted by CFGM.
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Figure 12: The ratio between capture rates for the production of }*C' and O

to the 1P, state.

We see that our results are in better agreement with experimental data than results
of previous authors. To be more quantitative we calculate the weighted least square
test (4.1) for the available results. In the test, we include only those processes that are

calculated by the authors of previous papers.

Table 12: The 2 test.

GK MY CFGM
X2 ref. 110.6 204.4 13.8
X2 present | 52.0  55.8 9.6

Although our results are better than the results of other authors, the agreement
with experimental data is still unsatisfactory. Therefore we, have to look for some other
effects that could explain the discrepancy.

First, the wide range of the calculated capture rates for different pion wave functions

indicates huge sensitivity to the pion optical potential. The optical potentials considered
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in this work were developed for interaction of pions with ordinary nuclei. The interaction
of the pion with hypernuclei could be different, but specific models of pion-hypernucleus
and pion-hyperon interaction as well as experimental data for such processes are not
available yet. Including the effects of the pion-hyperon interaction could modify the
wave function of the outgoing pion. In addition, the momentum of outgoing pion in
K oppea Teactions is about 260-280 MeV. In this energy region, the A(1232) resonance
might play an important role. However, its effect has not been considered at all.

Second, the structure of a hypernucleus was not considered at all. The hyperon
wave function in a hypernucleus was computed using the Wood-Saxon potential with
the same parameters as were used for the nucleon wave function in a standard nucleus,
although the structure of a hypernucleus could be different.

Third, using nuclear wave functions (nucleon, hyperon) on one side and atomic wave
functions (kaon) on the other may look illogically. The K~ -nuclear wave function of
deeply bound state could be considered, but we have no information about experimental
evidence of transition from atomic to nuclear states, therefore we do not take K ~-nuclear
states into account.

Finally, the method of considering the effect of the nuclear medium in the elementary
branching ratios is rather simple in our model. The development of more sophisticated
methods (e.g. considering the kaon self-energy) could change the value of elementary
branching ratios.

The possibilities mentioned above are either too complicated to be considered or
not yet well known, therefore they have not been included in our calculations. Their
consideration in the calculations of hypernuclear production is the goal for the future

studies.
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Chapter 5

Conclusions

We performed calculations of the A-hypernuclei production within the framework of
distorted wave impulse approximation. The original formula for the capture rate con-
taining a 3-dimensional integral was simplified using spherical coordinates, the partial
wave expansion and relations for Clebsch-Gordan coefficients and spherical harmonics
to the form containing only one-dimensional integral of four wave functions.

We considered four different kaon-nucleus potentials and three different pion-nucleus
potentials and tested sensitivity of the calculated rates to them. We found that the
calculations are very sensitive to the choice the of potentials. For the considered kaon-
nucleus potentials, the results for the capture rates differ up to 200%. Moreover, we
conclude that they are the decreasing function of the kaon-nucleus optical potential
depth. For different pion-nucleus potentials, the results vary up to 300%. The difference
between results with the free pion and the distorted pion is much bigger than the
difference between the results of calculations with various pion distortion.

We used a microscopic chiral model for the description of the elementary process
unlike other authors who used elementary branching ratios derived ambiguously from
experiment. The results for various elementary branching ratios led to difference in

calculated capture rate of about 50%. Although the agreement with experiment for ele-
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mentary branching ratios derived from microscopic model is worse than for the branch-
ing ratios derived from experiment, we prefer the former ones for theoretical reasons.
Moreover, other effects influence the capture rate more than the choice of elementary
branching ratios.

The most significant effect, which was neglected in previous calculations, is the
consideration of the pion distortion in the effective nucleon density available to the
capture process. This quantity appears due to normalization of the capture rate for one
specific process to the total capture rate, e.g. for all possible processes. We demonstrated
that the change in the capture rates is up to 500%. Therefore we are convicted that
this assumption is not eligible.

Finally, our results are in better agreement with experimental data than the results
of previous calculations. Unfortunately, our theoretical predictions still differ from ex-
perimental data (y? & 70), thus we still cannot be fully satisfied. We assume that there
are other effects, which significantly affect the hypernuclear production capture rate,
that have not been considered in our calculations.

The discrepancy between theoretical predictions and experimental data is a chal-
lenge for future calculations. In addition, the experiments in FINUDA, KEK or JLab
are still running and thus more experimental data are foreseen. The progress in exper-
iment can be expected not only in the hypernuclear production induced by stopped
kaon, but also in the whole hypernuclear physics and in the field of the meson-baryon
and meson-nucleus interaction at low and medium energies. New experimental data
usually represent a challenge for theoreticians, therefore the progress in theory can be

expected too.
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Appendices

Appendix A

Here, we present the analytic calculation of the integral I,, from the section 2.1.

w 1 a2\’
1 k, == d’1 n Al
n(: n, Pr) = - /Qn(pF) k2 — 12+ e (Q%HQ) : (A.1)

where the integration domain is

Qn(pr) ={1; [p+k —1| > pr}.

Let us denote the p + k; = ® and substitute the integration variable to x =1 — .

The integration domain then simplifies to

Qn(pr) = {x; x| > pr}.

We introduce spherical coordinates (r, 0, ¢), where the z-axis (f = 0) lies in the direction
of ®. The term [?, which represents the only 1 dependence in the integral (A.1) is
expressed as

I? = 1%+ k* + 2rk cos 6.
The integration over ¢ yields factor 27. Denoting cosf = y, we can rewrite

7“2

o 1
In:wnai/dr/dy 5 —.
. (r2 + a2 + k2 4 2rky)” (k2 — r2 — K2 — 2rKy + ie)
PF -

n_

(A.2)
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The integration over y is straightforward using the method of the partial fraction

decomposition:
00 1
1 1
]n:wnai/dr/dy ( 2) 21 o2 1 2
(a2 +k2)° ) r*+ai + K? + 2rky
PF -1

1 1
((a% + k;%)z) k2 —r? — k% — 2rky

1 1
(ai + k2) (r2 + a2 + K2 + 2rry)”
(A.3)

The remaining integral over radius r can be expressed as a sum of three terms

9 2 % 9 2
I, = wn< o 2) /drim O + (7 ) (A1)
an+kn 2K an—l—(?ﬂ_li)
pr
a? 27 k2 — (r—kK)* +ie
+wn L dr—In |2 A5
N <a,%+k%> / "o k2 — (r + k) + ie (A.5)
Pr
al i 272
“ <a%+k§>/ T(T2+a%+ﬁ2)2—4r2/§2 (A4.6)
PF

The expression on line (A.6) is calculated using the partial fraction decomposition:

2
Qy

o? T r r
Ab) = w, —”/dr( — >
(A.6) (ag+kg) 2K (r—,«;)2+a% (7’—1—!{)2—1—04%

PF

K r—K r+ K
[— <arctan ( ) + arctan < >)
7% 7% 7%

The expressions on lines (A.5) and (A.4) are calculated using the properties of
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logarithm, the integration per partes and the partial fraction decomposition:

a? ? Oodr
(AB) = w, E(rln\r—kn—/ﬂ—rln|r+kn—/€|

a2 + k2

PF

—rln|r—kn—i—/<;|—rln\r+kn+m|>

2
0472Z r—K r+ K
= wy r — o, arctan — oy, arctan
2 2
o + k2 Qn, oy,

1,5 5 o, a2+ (r+k)? -
il K p et TR
+4K(T + o, H)na%Jr(r—m)? ,
PF
o? ? 1 |7+ kn + K|
Ad) = n = (k4 R)? — ) In T TR
(44) wn(a%Jrk:%) r+4m((n—ﬂi) T)n|7“—k:n—/-£|
1 2 ov. |7 — kn+ K| >
~ (k=) =) In T
+4n(( %) 7n>n|7“—|rkn—/<;|
PF

The sum of the three partial results leads to the formula for I,,:

2 2 2 2 2 2
«Q ke — « r—k ki—« r+ K
I, = wn( L ) ["  arctan + = % arctan

a2 + k2 20y, s 20y, o

1 2 2
+—(r2—52—k2)lna”+(r+ﬁ)

4K a2 + (r—k)?
1 9 ong ITH+k.+rl 1 9 ong T —kn+E]| -
— ((k —r ) ln—— + — ((k, — —r)ln ———— )
+4m((n+ﬁ) T)n|r—kn—f€|+4/£((n ) T>n|7“+kn—/-f|
PF

The limit at the upper bound of the integral (the infinity) of the function arctan
is /2. Since arccot(z) = m/2 — arctan(x) we can rewrite the (upper bound — lower

bound) first two terms using the function arccot(x).
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The limit at the infinity of the remaining terms with logarithms equals zero. The
introduction of the upper (the infinity) and lower (pr) bounds then leads to the final

result:

2 2 k2 — o2 i
]n(fi,kmpF) = wn( T 2) [n “n (arccoth /{+arcc0th+/{>

2
o + k2 200, o, ap,

oz + (pr + K)?

o 2 2 —]C2 1
3 O R Iy
1 2 2 ‘pF‘i_kn"i_H’
—— ((ky, — In —mM8MM—
4/<(( + £) pF)n\pF—k:n—ff]
1 5 oy PP —kn+ K|
= ((ky — R)? = p2)In PE T En TR
4Kk (( ) pF) " lpr + kn — K|
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Appendix B

In this appendix, we present the evaluation of the integral in the numerator of the

capture rate per hyperon (2.24). The integral is

-/ <\ [ @) pisle) Wvnarto

It is useful to establish spherical coordinates and partial wave expansion. The wave

2 %. (B.1)
47

functions of a kaon, a pion and a nucleon (hyperon) can be expressed (to repeat the

notation from the chapter 2):
Unram(r) = Ryo(r) Yoa(€2).

G =) i@+ D) P(ac).
l

Vuan®) = 2 [y6) @ 213, = 90 S SN 20m) Vi

A o

It is useful to introduce for nucleon:
Ajm = (_1)j—m Eij—m ) 1/1; = (_l)j—i_m&j—m .

The notation < --- > in (B.1) denotes sum over final states and average over initial

states. After substitution, we get

1 1
I = /quf2L+1Z2Ji+1%%

M

|/d3rxg)*(r)\I!NLM Z Z Z(_l)(ker)

nylyjy nninjin km

- k ~ .
[wnylyjy ® wanNjN]_m < f|(a:z_ylyjy ® a”NleN)I:n|Z > |- <B2)
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The matrix element can be reduced in J using Wigner-Eckhart theorem:

SN TI< @05y @ Gnyinin )hli > 2=

M; My

>3 jywrken I, - o> 12 =

M, M, \/2Jf—|—1

J;M; T — Melkm)(J;M; Jp — M¢|k'm/ A )
ZZ( / f| )( / f f’ ) ’<fHO(k)H@>‘2:
T Vv (2k+ 1)(2k" + 1)
§kk’5mm’ A . 2
Do 1100 i > I

In the following, we will omit this element for simplicity.

Now, we modify the expression for hyperon/nucleon wave functions

k

[&nylyjy & l/anleN} “m = Z Z(ijY .ijN|k - m)lﬁnylyjymytl/}anNijN

The spin part of wave functions gives 0,

We use relations for Clebsch-Gordan coefficients and sum over my, my and oy:

my mpy

UL UN e .
- Z Z Z };2 (_1)(]Y+ Y)YEY/\YYEN)\NXT/2UYX1/20N

mymy Ay oy ANON

(Jymy jnmylk —m)(ly Ay 1/20v|jy — my)(InAn 1/20N8]jnmn).

OYON*

1

> (=D Gymy jnmylk —m)(y Ay 1/20yv |jy — my ) (IvAx 1/208 |jinma) =

MmymNON

i 2k + 1)(2jy + 1)(2jn + 1 v iy k
(_1)(2aym+k+lNAyAN+3/2)\/( +1)(2jy + 1) (25 + )(kmlN)\NUy)\y) IN Jy

2lY_|—1 ly lN 1/2

1

afd

V2e—+1

S (68|t (bfeclds) el ds) = (~1) oo YOS DOTELP { oy }
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The pion wave function can be written in a partial wave expansion

o=@+ D) P@c).
l

The integral over €},, can be done separately, because the pion wave function is the

only one, which depends on gy

[ 9, 3 )R 1) 3+ D PG ) =

47

—PA.A/(S,:
or 1 - 7)0u

DD @ @+ D))
l U

D)) 3 Vi) Vi)

l Iz

Now, we return to the equation (B.2) and put all previous expressions together
RO = DD

(2L +1)(2J; +1) 4= —

[ Z Z Z (—1)(@y —In+HN Ay =An+3/2)

ny jyly nNjinIN Ay AN

\/(2jY —;if) (jle + 1) /d?“ U;ijly (T‘) Unyjnin (T) jl(r) RNL(T)

N gy k . . :
(EminAx|ly Ay) v t/dQYAMiﬂi%MNOOEMW)HmAN}[~-]
ly Iy 1/2

Here, [..."] stands for the bracket with same relations, but with lined sum indexes and

integration variables.

l . .
Let I’ . . denote the integral over radius r

By = [ 470 1, ) i () ) B 1)
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After using the formula? for integration of four spherical harmonics, we get

N (2L+1 2J 1) Z%:Z
[ Z Z Z Y )2y —inHN =y =An+3/2)
YN

ny jyly nNjNIN Ay AN

27 1)(27 1 ' ' k
\/( Jy +1)(2jn + )(kmlN)\N]ly)\y) IN Iy
2y + 1 ly Ix 1/2

(2ly +1) QZN +1)(204+1)(2L + 1)
Z 4m)2(2L, + 1)2

Lo Mo

(Iy 0 10| Lo 0) (Iy Ay Lt La Mo ) (10 LO| LoO) (In Ay LM|LaMa)] [ . } .
Now we modify the expression with Clebsch-Gordan coefficients:

> (DY Emily Anlly Ay ) (IvAx 1 Lo M) (In Ay LM| Lo M,) =

Ay AN Mq

(_1)(La+l+ly—m) (2La + 1)2(21Y ‘l— 1) (k:mlu|LM) lN LO{ L
(2L + 1) Lk

After substituting into previous formula and performing straightforward rearrange-

2

(20 +1)(2ls + 1)
/dQ l1m1}/lzm2Yl3m3}/l4m4 = ELM \/ 47T(2L+1 (llOZQO‘LO)(llml l2m2|LM)

23 +1)(2l4 +1
\/( 347[-(2)[(/—;11 )(130 l40‘L0)(l3m3 l4m4|LM)

o4



ments, we get:

I = GET) 2J+ ZZZ DW(21 4 1) (km Lu|LM)?

lp  km

2JY —jin+IN+3/2)
E : § : ww

ny jyly nnjnin

JN Jy k

V (2jy +1)(2jn + 1)(2ly + 1)
by Iy 1/2

Iy Lo L
3 (—1)Et ) /20y + 1) (Iy 010 La0) (In0 LO|La0) { ] [ . .’}
Lq l k ly

The sum over M, m, u of depending terms gives

> (kmlp|LM)® = 2L +1,

Mmp

and the sum on the last row of can be performed explicitly

2ly +1 )
VI + D20+ 1) ;( DEet) /@Iy + 120+ 1)
= (1) (L0 k0J10) (10 kO[1y 0).

V20+1

We can add any integer into the exponent of (—1), because the signature of the
expression inside the brackets is irrelevant, when they are multiplied by each other. 27y
is surely odd number so we can omit it. Hence, the substitution (—1)®y —InHN+3/2) =
(—1)Un+in+1/2) does not change the final result.

Consequently, we get

1
I = 2{]4+1Zl0k0|L0 ‘ Z Z Ll )Untiv+1/2)
’ kl

ny jyly nnjnln

Jn gy k
by v 1/2

V (25y 4+ 1)(2jn + 1)( 21y + 1)(In0 k0|1y0)

N 2
< Jp; O s . > ‘
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Now, we assume that the reaction takes place from a nucleon shell ny,ly to a

hyperon shell ny,ly and perform the sum over all final states

1 A R
> 577 <O >< fIOw)li >
f (A

We use the relation of closure ) s1f >< f] =1, and the definition of the reduced
matrix element < i[|O(k)|[i >= (2J; + 1) 32, < i, m;|O(k, m)|i, m; > .
The operator O(k, m) can be expressed as a tensor sum of creation and annihilation

operators:
. . % ., / ./ / . + + .
§ E (Jymy jymn|km)* (jymy jymiy|km) < Z|ajgwm’yaj;v,m;vajy,myajw,mzv r>.

/ /
m my,mnN sy My

Since there is no hyperon in the initial state, hyperon operators yield d;, j; dmymy, -
0; i and

The sum over m, my of Clebsch-Gordan coefficients gives 0, ymr 05y i1

/
N
. + . . . . .

< i]aj, 1y Ginmy |t > 15 a number of nucleons in a state jn,my. The sum over my

yields to the number N(jy) of nucleons in the shell jy.

Now, we can express the integral I:

2
. . 2
e N(k) N(]N)>

TYIN

IanN_’nYlY = Z (2k + 1)(211\7 + 1)(2jY + 1)
kjy.in ly Iy 1/2

where

N = (L0k0[10)*|T, ., .

VY IN
l

We assume that the integrals [ f/wN are almost independent of jy, therefore we can

sum over all jy. Using the relation of orthogonality for 6j-symbols 3, we finally obtain

Liyiy—nyty = 3 _(2k + 1IN0 KOy O)NEL N (jy).
k

3 ) a b j a b j
Zj(2j +1)(2k+1) ik P = Opp
c c

56




Bibliography

[1] Danysz M., Pniewski J.: Phil. Mag. 44, 348 (1953).
[2] Hashimoto O., Tamura H..: Progr. Part. Nucl. Phys. 57, 564 (2006).

[3] Hungerford E.V. in Topics in Strangeness Physics, ed. P. Bydzovsky, A. Gal, and
J. Mares, Lect. Notes Phys. 724, Springer, pp. 1-29, 2007.

[4] Glendenning N.K.: Phys. Lett. B 114, 392 (1982).
[5] Faessler M.A. et al.: Phys. Lett. B 46, 468 (1973).
[6] Bruckner W. et al.: Phys. Lett. B 55, 107 (1976).
[7] Bruckner W. et al.: Phys. Lett. B 62, 481 (1976).
[8] M. Agnello et al., Phys. Lett. B 622, 35 (2005).
[9] Milner C. et al.: Phys. Rev. Lett. 54, 1237 (1985).
[10] Hasegawa T. et al.: Phys. Rev. Lett. 74, 224 (1995).
[11] Hotchi H. et al.: Phys. Rev. C 64, 044302 (2001).
[12] Miyoshi T. et al.: Phys. Rev. Lett. 90, 232502 (2003).
[13] Friedman E., Gal A., Batty C.J.: Phys. Lett. B 308, 6 (1993).
[14] Friedman E., Gal A., Mares.J., Cieply A.: Phys. Rev. C 60, 024314 (1999).

57



Mares J., Friedman E., Gal A.: Nucl. Phys. A 770, 84 (2006).

Brown G.E., Rho M.: Nucl. Phys. A 596, 503 (1996).

Waas T., Kaiser N., Weise W.: Phys. Lett. B, 365, 12 (1996).

Cieply A., Friedman E., Gal A., Mares J.: Nucl. Phys. A 696, 173 (2001).

Tamura H., Hayano R.S., Outa H., Yamazaki T.: Prog. Theor. Phys. Suppl. 117,
1 (1994).

Ahmed M.W., Cui X., Empl. A., et al.: Phys. Rev. C, 68, 64004-1 (2003).
Gal A., Klieb L.: Phys. Rev. C ,34, 956 (1986).

Matsuyama A., Yazaki K.: Nucl. Phys. A 477, 6 (1988).

Kaiser N., Siegel P.B., Weise W.: Nucl. Phys. A 594, 325 (1995).

Oset E., RamosA.: Nucl. Phys. A 635, 99 (1998).

Oller J.A., Meissner U.G.: Phys. Lett. B 500, 263 (2001).

Cieply A., Smejkal J.: Eur. Phys. J. A 34, 237 (2007).

Weinberg S.: Physica 96A, 327 (1979).

Weinberg S.: Nucl. Phys. B 363, 3 (1991).

Taylor J.R.: Scattering theory, John Wiley & Sons, Inc., Boulder, 1972.

Rodberg L.S., Thaler R.M.: Introduction to the Quantum Theory of Scattering,
Academic Press, Inc., New York, 1972.

Van der Velde-Wilquet C. et al.: Nuovo Cimento 39A, 537 (1977).

Friedman E.: Private communication with A.C.

58



[33] Friedmann E., Gal A., Batty C.J.: Nucl. Phys. A 696, 173 (1994).

[34] de Jager C.W., de Wries H., de Wries C.: At. Data Nucl. Data Tables, 14, 479
(1974); 36, 495 (1987).

[35] Ericson M., Ericson T.E.O.: Ann. of Phys. 36, 323 (1966)
[36] Thiesse H. A. et al.: LAMPF Report no. LA-7607-PR (1978).
[37] Harvey C. Js. et al.: LAMPF Report no. LA-UR-84-1732 (1984).

[38] Batty C.J.: Private communication with A.C. (1995).

59



