Daisuke Shimotsuma, Tomomi Yokota, Kentarou Yoshii, Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, e-mail: j1112610ed.tus.ac.jp@gmail.com, yokota@rs.kagu.tus.ac.jp, yoshii@ma.kagu.tus.ac.jp
Abstract: This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation
\dfrac{\partial u}{\partial t} -(\lambda+ i \alpha)\Delta u +(\kappa+ i \beta)|u|^{q-1}u-\gamma u=0
in $\mathbb{R}^N\times(0,\infty)$ with $L^p$-initial data $u_0$ in the subcritical case ($1\leq q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha$, $\beta$, $\gamma$, $\kappa\in\mathbb{R}$, $\lambda>0$, $p>1$, $ i =\sqrt{-1}$ and $N\in\mathbb{N}$. The proof is based on the $L^p$-$L^q$ estimates of the linear semigroup $\{\exp(t(\lambda+ i \alpha)\Delta)\}$ and usual fixed-point argument.
Keywords: local existence; complex Ginzburg-Landau equation
Classification (MSC 2010): 35Q56, 35A01
Full text available as PDF.
Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.