## Selected topics in psychometrics

#### Patrícia Martinková

#### Department of Statistical Modelling Institute of Computer Science, Czech Academy of Sciences

Institute for Research and Development of Education Faculty of Education, Charles University, Prague

NMST570, October 2, 2018

- 1. Psychometrics
- 2. About this course
- 3. Topics
- 4. Software

| Psychometrics | About this course | Topics | Software |
|---------------|-------------------|--------|----------|
| •000          |                   |        |          |
| Psychometrics |                   |        |          |

Psychometrics is a field of study concerned with the theory and technique of psychological/educational/behavioral measurement.

Field is concerned with objective testing/measurement/assessment of

- skills, knowledge, abilities, educational achievement
- attitudes, personality traits

Psychometricians focus on

- construction and validation of assessment instruments
  - e.g. questionnaires, tests, raters' judgments, and personality tests
- research relating to measurement theory
  - e.g. item response models, intraclass correlation, etc.

| Psychometrics  | About this course | <b>Торісs</b> | Software |
|----------------|-------------------|---------------|----------|
| 0●00           | 0000              | 0000000000    | 00000    |
| Selected books |                   |               |          |

- Rao & Sinharay (Eds.): Handbook of statistics, vol. 26. Psychometrics. Elsevier, 2006.
- AERA, APA, NCME: Standards for educational and psychological testing. 2014.
- Downing & Haladyna (Eds.): Handbook of test development. LEA, 2006.
- Brennan (Ed.): Educational Measurement. ACE/Preaeger, 2006.
- Urbánek, Širůček, Denglerová: Psychometrika. Měření v psychologii. Portál, 2011.
- Štuka, Martinková et al.: Testování při výuce medicíny. Konstrukce a analýza znalostních testů. Karolinum, 2013.

| Psychometrics     | About this course | <b>Торісs</b> | Software |
|-------------------|-------------------|---------------|----------|
| 00●0              | 0000              | 0000000000    | 00000    |
| Selected journals |                   |               |          |

- Psychometrika
- British Journal of Mathematical and Statistical Psychology (BJMSP)
- Journal of Educational and Behavioral Statistics (JEBS)
- Journal of Educational Measurement (JEM)
- Applied Psychological Measurement (APM)
- Educational and Psychological Measurement (EPM)
- Practical Assessment, Research and Evaluation (PARE)
- ...
- Testfórum (in Czech)

| Psychometrics | About this course | <b>Topics</b>     | Software |
|---------------|-------------------|-------------------|----------|
| 000●          | 0000              | 0000000000        | 00000    |
| Announcement: | Save the date for | or Psychoco 2019! |          |



International Workshop on Psychometric Computing

## Psychoco 2019

February 21 - 22, 2019 Charles University & Czech Academy of Sciences, Prague

www.psychoco.org/2019

Since 2008, the international Psychoco workshops aim at bringing together researchers working on modern techniques for the analysis of data from psychology and the social sciences (especially in R).

| P sy ch om et rics | About this course | <b>Topics</b> | Software |
|--------------------|-------------------|---------------|----------|
| 0000               | ●000              | 0000000000    | 00000    |
| Course descript    | ion               |               |          |

This course covers main topics in psychometrics, such as

- traditional item analysis
- reliability and validity of measurement
- use of logistic and nonlinear regression models
- item response theory models
- differential item functioning
- computerized adaptive testing, etc.

Methods are demonstrated using data from admission tests and other assessments.

Exercises are prepared in freely available statistical software R, other psychometric software is also introduced.

| Psychometrics | About this course | <b>Topics</b> | Software |
|---------------|-------------------|---------------|----------|
| 0000          | 0●00              | 0000000000    | 00000    |
| Course goals  |                   |               |          |

After taking this course you should be able to:

- Name the main topics studied in psychometrics
- Ind proofs about reliability and validity of assessment instrument
- Apply traditional methods to describe item functioning (difficulty, discrimination, distractor analysis)
- Explain how logistic regression may be used to describe item properties, apply regression models on real data and interpret results
- Formulate IRT models for binary, polytomous and nominal items, apply them on real data and interpret results
- Explain concept of differential item functioning, apply some DIF detection methods
- Explain process of computerized adaptive testing, prepare your own adaptive test
- Oescribe process of assessment development and validation and apply its steps in real situations

Patrícia Martinková

NMST570, L1: Introduction

| Psychometrics    | About this course | <b>Topics</b> | Software |
|------------------|-------------------|---------------|----------|
| 0000             | 00●0              | 0000000000    | 00000    |
| Course materials |                   |               |          |

- Lecture notes / ShinyItemAnalysis tutorial
- Rao & Sinharay (2006). Handbook of Statistics.
  Volume 26: Psychometrics. Amsterdam, NL: Elsevier.
- van der Linden (2016). Handbook of item response theory: Models, statistical tools, and applications (Vols.1-3). Boca Raton, FL: Chapman & Hall/CRC.

| Psychometrics  | About this course | <b>Topics</b> | Software |
|----------------|-------------------|---------------|----------|
| 0000           | 000●              | 0000000000    | 00000    |
| Grading policy |                   |               |          |

### Course credit requirements:

- present at the exercise class sessions (two absences are tolerated)
- 10 HW assignments (at least 60% of points)

## Exam/Grade:

- final project (own data or project assigned during the last lecture)
- oral exam (follow up questions on handed homework (50%) and on final project (50%))

You are welcome and encouraged to use your data for the project in lieu of the project assigned to the class. In such a case, you are expected to prepare written project proposal and submit it to the lecturer at least one week before the last lecture.

| Psychometrics  | About this course   | Topics      | Software |
|----------------|---------------------|-------------|----------|
| 0000           | 0000                | ●0000000000 | 00000    |
| Course content | / Tentative outline |             |          |

- Introduction (2.10.2018)
- Reliability and measurement error (9.10.2018)
- Validity (16.10.2018)
- Traditional item analysis (23.10.2018)
- Regression models for item description (30.10.2018)
- IRT models for binary data (13.11.2018)
- IRT models for binary data (20.11.2018)
- IRT models for ordinal and nominal items (27.11.2018)
- Differential item functioning (1-2 lessons) (4.12.2018, 11.12.2018)
- Computerized adaptive testing (18.12.2018)
- Assessment development and validation. Final project (8.1.2019)

| Psychometrics | About this course | Topics      | Software |
|---------------|-------------------|-------------|----------|
| 0000          | 0000              | o●ooooooooo | 00000    |
| Reliability   |                   |             |          |

Describes amount of error in measurement

- Test-retest
- Internal consistency (split-half, Cronbach's alpha)
- Inter-rater reliability



| Psychometrics | About this course | Topics     | Software |
|---------------|-------------------|------------|----------|
| 0000          | 0000              | ००●००००००० | 00000    |
| Validity      |                   |            |          |

- Proofs based on content
- Empirical proofs
  - Criterion, predictive, incremental
  - Discriminant, etc.



| Psychometrics<br>0000 | About this course<br>0000 | Topics<br>०००●०००००० | Software<br>00000 |
|-----------------------|---------------------------|----------------------|-------------------|
| Validity              |                           |                      |                   |
| Correlation structure |                           |                      |                   |



McFarland, Price, Wenderoth, Martinková, et al. Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, 16(2), ar35, 2017.

Patrícia Martinková

NMST570, L1: Introduction

Oct 2, 2018

8

13/23

| Psychometrics   | About this course | Topics      | Software |
|-----------------|-------------------|-------------|----------|
| 0000            | 0000              | ००००●०००००० | 00000    |
| Traditional ite | em analysis       |             |          |

Uses ratios and correlations to describe item properties

- Difficulty
  - Ratio of correct answers p
- Discrimination, ULI, RIR, RIT, ...
  - Upper-Lower Index (ULI)
  - biserial correlation Item-Rest total (RIR), Item-Test total (RIT)



| Psychometrics | About this course | Topics      | Software |
|---------------|-------------------|-------------|----------|
| 0000          | 0000              | 00000●00000 | 00000    |
| Traditional   | item analysis     |             |          |

Distractor analysis

- Respondents are divided into (3 or more) groups by total score
- Option selection is displayed with respect to group



NMST570, L1: Introduction

Models describing mean item score or probability of seclection of given answer with respect to total (standardized total) score

- Logistic regression
- Nonlinear regression
- Multiomial regression





IRT models can be conceptualized as mixed effect models

- Abilities are considered latent (unobserved) and are estimated
  - Modelled as random effects (often with normal distribution)



Allow to put items and repondents on one scale (Item-Person map)



| Psychometrics    | About this course | Topics      | Software |
|------------------|-------------------|-------------|----------|
| 0000             | 0000              | 00000000000 |          |
| Item Response Th | eorv (IRT) models |             |          |

#### IRT models have many advantages

- Provide more precise estimation of ability than total score
  - Account for item difficulty and discrimination
- Provide detailed description of item and test functioning
  - Item characteristic curve
  - Item information curve
  - Test information curve





**DIF**: Students from two groups and *with the same underlying latent ability* have different probability of answering an item correctly.

- Potentially unfair items
- Uniform vs. nonuniform DIF



• DIF can be unrelated to total score differences, you may get:

- No DIF item, but significant total score difference btw groups
- DIF items present but total score distributions are the same for groups

Martinková, Drabinová, Liaw, Sanders, McFarland & Price (2017). Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. CBE-Life Sciences Education, 16(2), rm2. doi 10.1187/cbe.16-10-0307

Patrícia Martinková

NMST570, L1: Introduction

Oct 2, 2018

| Psychometrics | About this course | Topics    | Software |
|---------------|-------------------|-----------|----------|
| 0000          | 0000              | ○○○○○○○○○ | 00000    |
| Computerized  | adaptive testing  | (CAT)     |          |

Tailored testing

• The next administered item(s) depend on previous responses



| Psychometrics    | About this course  | <b>Topics</b> | Software |
|------------------|--------------------|---------------|----------|
| 0000             | 0000               | 0000000000    | ●0000    |
| Software for psy | /chometric analyse | es            |          |

#### General statistical software

- R https://cran.r-project.org/
  - Psychometric libraries see https://CRAN.R-project.org/view=Psychometrics
- SPSS
- Stata
- SAS, etc.
- IRT software
  - IRTPRO
  - flexMIRT
  - Winsteps
  - ConQuest, etc.

| Psychometrics<br>0000 | About this course<br>0000 | <b>Topics</b><br>0000000000 | Software<br>0●000 |
|-----------------------|---------------------------|-----------------------------|-------------------|
| ShinyltemAn           | alysis                    |                             |                   |
|                       |                           |                             |                   |



ShinyItemAnalysis is an R package and an online application for

- teaching/learning psychometric methods (CTT, IRT, DIF,...)
- routine analysis of educational (e.g. admission) tests

With the aim of widespreading the metodology into distant fields and geographic regions.

## www.ShinyItemAnalysis.org

Patrícia Martinková

# Thank you for your attention! www.cs.cas.cz/martinkova martinkova@cs.cas.cz



## References

- Martinková, Drabinová & Houdek (2017): ShinyltemAnalysis: Analysis of admission and other educational and psychological tests. Testfórum, 9, str.16-35. http://dx.doi.org/10.5817/TF2017-9-129
- Martinková, Drabinová, Leder & Houdek (2018): ShinyItemAnalysis: Test and Item Analysis with Shiny. Version 1.2.8. www.ShinyItemAnalysis.org https://shiny.cs.cas.cz/ShinyItemAnalysis https://CRAN.R-project.org/package=ShinyItemAnalysis
- McFarland, Price, Wenderoth, Martinková, et al. Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, 16(2), ar35, 2017.
- Martinková, Drabinová, Liaw, Sanders, McFarland & Price (2017). Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. CBE-Life Sciences Education, 16(2), rm2. doi 10.1187/cbe.16-10-0307

| P sy ch om et rics | About this course | <b>Topics</b> | Software |
|--------------------|-------------------|---------------|----------|
| 0000               | 0000              | 0000000000    | 0000●    |
| Vocabulary         |                   |               |          |

- Latent variable
- Reliability, measurement error
- Validity
- Traditional item analysis
- Item response theory models (IRT)
- Differential item functioning (DIF)
- Computerized adaptive testing (CAT)