Introduction Es	stimation Procedures 🛛 🛽 🛽	More on Cronbach's alpha	More on IRR	Conclusion
	000000 0			

Lesson 2: Reliability and measurement error

Patrícia Martinková

Department of Statistical Modelling Institute of Computer Science, Czech Academy of Sciences

Institute for Research and Development of Education Faculty of Education, Charles University, Prague

NMST570, October 9, 2018

- 1. Introduction
- 2. Estimation Procedures
- 3. More on Cronbach's alpha
- 4. More on IRR
- 5. Conclusion

Introduction •0000	Estimation Procedures	More on Cronbach's alpha ೦೦೦೦೦೦೦೦೦೦	More on IRR 00000000000000	Conclusion
Classical	test theory			

In behavioral research we are typically interested in the **true score** T but have available only the **observed score** X which is contaminated by some (uncorrelated) **measurement error** e, such that X = T + e.

Examples:

- Admission tests: we are interested in **applicant's knowledge or ability** *T*, but have available only the test score *X*
- Grading of essays: We are interested in essay's quality T but we have available only the grader's evaluation X
- Questionnaires on satisfaction: main interest is **respondent satisfaction**, but available are only his/her responses on the questionnaire.

The observed score might vary if we chose different items or different graders.

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR 00000000000000	Conclusion
Classical	test theory			

Natural questions:

- How much information about the true score is indeed contained in the measurement?
- What is the strength of the relationship between true and observed score?

Reliability

- Reliability is defined as squared correlation of the true and observed score ${\rm Rel}\,(X)=\rho_{X}={\rm cor}^{\,2}(T,X)=\rho_{T,X}^{2}$
- $\rho_X \in \langle 0, 1 \rangle$
- equivalently, reliability can be reexpressed as the ratio of the true score variance to total observed variance $\rho_X = \frac{\operatorname{var}(T)}{\operatorname{var}(X)} = \frac{\sigma_T^2}{\sigma_T^2}$

Introduction 00●00	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR	Conclusion
Implicatio				

- Less accurate estimates of the true score
- Wider (less precise) confidence intervals
- Need of higher number of subjects to demonstrate differences between groups (keeping the same test power)
- Attenuation of correlations, bound of criterion validity
 - Assume two traits T_1 , T_2 measured as X_1 , X_2 with uncorrelated errors e_1 , e_2 and reliabilities $\text{Rel}(X_1)$, $\text{Rel}(X_2)$
 - Observed correlation is attenuated

$$\operatorname{cor}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sqrt{\operatorname{var}(X_1)}\sqrt{\operatorname{var}(X_2)}} = \frac{\operatorname{cov}(T_1, T_2) + 0 + 0 + 0}{\sqrt{\operatorname{var}(T_1)\frac{\operatorname{var}(X_1)}{\operatorname{var}(T_1)}}\sqrt{\operatorname{var}(T_2)\frac{\operatorname{var}(X_2)}{\operatorname{var}(T_2)}}$$
$$= \operatorname{cor}(T_1, T_2)\sqrt{\operatorname{Rel}(X_1)\operatorname{Rel}(X_2)}$$

Introduction 000●0	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR	Conclusion		
Graphical interpretation						
				<u>}</u>		

Low reliability thus low validity

High reliability but low validity

High reliability and high validity

- center of the target represents the value we want to measure
- shots represent independent measurements on one object
- reliability represented by variability of the shots
- validity represented by overall shots' closeness to the center

Observations

- high reliability does not ensure high validity
- validity is bounded by reliability

Patrícia Martinková

NMST570, L2: Reliability

Oct 9, 2018

Introduction 0000●	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion
Reliability	guidelines			

- Conventional requirement $\rho_{X} \geq .8$, but see Lee (2012)
 - $\bullet~\geq .9$ for intelligence tests
 - $\bullet \geq .7$ for personality tests
 - $\sim .6$ for essay marking
- In case of low reliability we should think of instrument revision
 - adding items
 - deleting items
 - in case of graders: training, precise instructions

Importance of proper estimation of reliability

- Overestimation may imply adopting unreliable instrument
- Underestimation may imply (costly) revision of instrument
- Misunderstanding of reliability can imply deletion of important items and lowering validity

Introduction 00000	Estimation Procedures	More on Cronbach's alpha ೦೦೦೦೦೦೦೦೦೦	More on IRR	Conclusion 0000
Estimatio	on procedures			

The true score T is not observed, thus we can't estimate reliability from its definition ($\rho_{_{T,X}}^2$ nor σ_T^2/σ_X^2)

Parallel measurements

• equally precise measurements of the same true score:

•
$$X_1 = T + e_1$$
, $X_2 = T + e_2$, $\operatorname{var}(e_1) = \operatorname{var}(e_2) = \sigma_e^2$

- $\bullet\,$ the reliability of both measurements is the same $\rho\,$
- if the errors are uncorrelated, then correlation between the measurements is equal to their (common) reliability $\operatorname{cor}(X_1, X_2) = \rho_{X_1, X_2} = \frac{\operatorname{cov}(T+e_1, T+e_2)}{\sqrt{\operatorname{var}(T+e_1)\operatorname{var}(T+e_2)}} = \frac{\sigma_T^2}{\sigma_X^2} = \rho$

The methods differ in how they make use of multiple measurements.

Introduction 00000	Estimation Procedures 0●000000	More on Cronbach's alpha 0000000000	More on IRR	Conclusion
Estimatio	on procedures			

Use of multiple administrations

Methods employ correlation coefficient btw. observed total scores

- Test-retest method (coefficient of stability)
- Alternate test forms (coefficient of equivalence)

Use of composite measurements

Methods employ correlation coefficient btw. observed partial total scores

- Split-half coefficient
- Average split-half
- Cronbach's aplha (coefficient of internal consistency)

Introduction 00000	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion
Test-Rete	est			

- Assumes independent test administrations
 - No memory
 - No improvement between administrations

• Some interval between administrations, say 6-12 weeks

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR 0000000000000	Conclusion
Parallel F	orms			

- Assumes trully paralel forms
 - Equally difficult
 - Parallel items and content
- Assumes the same conditions

Introduction 00000	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion
Composit	e measurement	S		

- Goal is to provide multiple converging pieces of information
- E.g. educational tests, scales, questionnaires, ...

What is the relationship between reliability of composite measurement $X = \sum_{j=1}^{m} X_j$ and reliability of its components?

Spearman-Brown prophecy formula (1910)

Assume *m* parallel measurements X_1, \ldots, X_m (independent, equally precise, with uncorrelated errors and uncorrelated with true scores). Then reliability of each X_i is the same ρ and the reliability of composite measurement *X* is

$$\rho_{\scriptscriptstyle X} = \frac{m \cdot \rho}{1 + (m-1)\rho}$$

Remark: Adding parallel items increases reliability of total score.

Introduction 00000	Estimation Procedures 000000000	More on Cronbach's alpha ೦೦೦೦೦೦೦೦೦೦	More on IRR	Conclusion	
Generalized prophecy formula					

Spearman-Brown prophecy formula (generalized)

Assume test composed of m_1 parallel measurements $X = \sum_{j=1}^{m_1} X_j$ and its prolonged or shortened version composed of m_2 parallel measurements $X = \sum_{j=1}^{m_2} X_j$. Then the relationship between their reliabilities is

$$\rho_{m_2} = \frac{\frac{m_2}{m_1} \cdot \rho_{m_1}}{1 + (\frac{m_2}{m_1} - 1)\rho_{m_1}}$$

Proof (hint): Notice that

$$\rho_1 = \frac{\frac{1}{m_1} \cdot \rho_{m_1}}{1 + (\frac{1}{m_1} - 1)\rho_{m_1}} = \frac{\frac{1}{m_2} \cdot \rho_{m_2}}{1 + (\frac{1}{m_2} - 1)\rho_{m_2}}$$

Introduction 00000	Estimation Procedures 000000€0	More on Cronbach's alpha	More on IRR 0000000000000	Conclusion
Split-half	coefficient			

- Correlation between two subscores corrected for test length
- Test is split into two parts, two subscores Y_1,Y_2 are computed ${}^{2
 ho_{Y_2,Y_2}}$

•
$$\rho_{SH} = \frac{r_{I_1, I_2}}{1 + \rho_{Y_1, Y_2}}$$

- Assumes that the two subtests are parallel
- Depends on how the split was carried out (even/odd, random,...)
 - even-numbered / odd-numbered
 - with intention to create two halves that are as similar as possible
 - in a random fashion
- We may also compute the mean of all possible split-half coefficients
 - average split-half
- We may also compute the worst of all possible split-half coefficients
 - $\bullet~{\rm Revelle's}~\beta$

Introduction	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion
00000	0000000●	0000000000	00000000000000	
Cronbach	's alpha			

• Based on idea of splitting the test into individual items

$$\alpha = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} \operatorname{cov} \left(X_j, X_k\right)}{\operatorname{var} \left(X\right)} = \frac{m}{m-1} \left(1 - \frac{\sigma_{X_1}^2 + \dots + \sigma_{X_m}^2}{\sigma_X^2}\right)$$

- Popular estimator, provides simple and unique estimation
- Equals to composite reliability σ_T^2/σ_X^2 in case of parallel (or at least *T*-equivalent) items and uncorrelated errors
- In general case and uncorrelated errors, alpha is lower bound to reliability $\alpha \leq \rho_x$ (Novick & Lewis, 1967) and can be viewed as index of internal consistency
- In case of correlated errors, alpha can be lower or greater than reliability

Introduction 00000	Estimation Procedures	More on Cronbach's alpha ●000000000	More on IRR	Conclusion 0000
Cronbach	ı's alpha: 2-way	mixed ANOVA ;	annroach	

•
$$X_{ij}$$
 responses of n students on m items
• $X_{ij} = T_i + b_j + e_{ij}$
• $T_i \sim N(0, \sigma_T^2)$ random, student ability
• b_j fixed, $\sum b_j = 0$, describe item difficulty
• $e_{ij} \sim N(0, \sigma_e^2)$ random error
• total scores $X_i = mT_i + \sum_j b_j + \sum_j e_{ij}$
• reliability: $\rho_X = \frac{var(mT_i)}{var(X_i)} = \frac{m^2 \sigma_T^2}{m^2 \sigma_T^2 + m \sigma_e^2} = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m} \sigma_e^2}$
• Cronbach's alpha:
 $\alpha = \frac{m}{m-1} \frac{\sum_{j \neq k} \operatorname{cov}(X_{ij}, X_{ik})}{var(X_i)} = \frac{m}{m-1} \frac{m(m-1)\sigma_T}{m^2 \sigma_T^2 + m \sigma_e^2} = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m} \sigma_e^2}$
• estimate of Cronbach's alpha: $\hat{\alpha} = \frac{m}{m-1} \frac{\sum_{j \neq k} s_{jk}}{\sum \sum_{j,k} s_{jk}}$, where $s_{jk} = \frac{1}{n-1} \sum_{t=1}^n (X_{tj} - \bar{X}_{\bullet j})(X_{tj} - \bar{X}_{\bullet k})$

Martinková P, & Vlčková K. Hodnocení reliability znalostních a psychologických testů. (Estimation of Reliability of Educational and Psychological Measurements. In Czech.) *Informační bulletin České statistické společnosti*, 4, pp. 1-15, 2014.

Patrícia Martinková

NMST570, L2: Reliability

Oct 9, 2018

15/39

Sums of squares

•
$$SS_T = \sum \sum (\bar{X}_{i\bullet} - \bar{X}_{\bullet\bullet})^2 \sim (m\sigma_T^2 + \sigma_e^2)\chi^2(n-1)$$

• $SS_e = \sum \sum (X_{ij} - \bar{X}_{\bullet j} - \bar{X}_{i\bullet} + \bar{X}_{\bullet\bullet})^2 \sim \sigma_e^2\chi^2((n-1)(m-1))$

Expectations of Mean sums of squares

•
$$\operatorname{E} MS_T = \operatorname{E} SS_T / (n-1) = m\sigma_T^2 + \sigma_e^2$$

•
$$\operatorname{E} MS_e = \operatorname{E} SS_e / ((n-1)(m-1)) = \sigma_e^2$$

Cronbach's alpha

$$\alpha = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m}\sigma_e^2} = \frac{\mathrm{E}\,MS_T - \mathrm{E}\,MS_e}{\mathrm{E}\,MS_T}$$

Cronbach's alpha estimate

$$\hat{\alpha} = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} s_{jk}}{\sum \sum_{j,k} s_{jk}} = \frac{MS_T - MS_e}{MS_T} = 1 - \frac{1}{F}$$

Patrícia Martinková

Oct 9, 2018

16/39

Estimate of Cronbach's alpha can be reexpressed as

$$\hat{\alpha} = \frac{MS_T - MS_E}{MS_T} = 1 - \frac{1}{F}$$

- F statistic used to test the submodel with no subject effect $(H_0:\sigma_T^2=0)$
- Interpretation: alpha close to 1 for F high, i.e. when we reject H_0 , i.e. when admission test well discriminates between students
- Gives confidence intervals
- Estimate is not generally appropriate for more complicated designs

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 000●000000	More on IRR	Conclusion
Cronback	n's alpha - limit	ations		

Cronbach's alpha is a good estimator of reliability for

- parallel (or at least T-equivalent) items and and
- uncorrelated errors

Corrections needed for:

- Correlated errors
 - Example: Reading test, group of items associated with one text.
 - Corrections for correlated errors (Rae, 2006)
- Multidimensional measurement
 - Example: Math test, items measuring arithmetic skills but also reading skills etc.
 - Factor-analysis based estimation of reliability (Raykov & Maurcoulides, 2011)
- More sources of error (multilevel models, G-index)
- Other than normal distribution of item responses (what happens in case of binary items?)

Patrícia Martinková

Introduction	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion
00000		0000●00000	00000000000000	0000
Logistic a	alpha			

F statistic in

$$\hat{\alpha} = 1 - \frac{1}{F}$$

assumes normality of items

- How does the estimate of reliability behave for binary items?
- Would a new estimate

$$\hat{\alpha}_{log} = 1 - \frac{n-1}{X^2}$$

based on statistic used in similar situation in logistic regression (difference of deviances $X^2 = D(B) - D(A+B)$) give better results for case of binary data?

Martinková P, & Zvára K. Reliability in the Rasch Model. Kybernetika, 43(3), pp. 315-26, 2007. http://www.kybernetika.cz/content/2007/3/315/paper.pdf

Patrícia Martinková

NMST570, L2: Reliability

Oct 9, 2018

19/39

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR	Conclusion 0000
Definition	of reliability in	binary items		

- Classical model not applicable (binary outcome can't be expressed as sum of T and independent error e)
- IRT models ussually assumed
- Reliability can be defined as (Martinková & Zvára, 2007)

$$\rho_{\scriptscriptstyle X} = \frac{\operatorname{var}\left(\operatorname{E}\left(X|T\right)\right)}{\operatorname{var}\left(\operatorname{E}\left(X|T\right)\right) + \operatorname{E}\left(\operatorname{var}\left(X|T\right)\right)} = \frac{\operatorname{var}\left(\operatorname{E}\left(X|T\right)\right)}{\operatorname{var}\left(X\right)}$$

- Resulting integrals can be evaluated numerically, not explicitly
- Not equal to parallel-forms reliability, but differences negligible (Kim, 2012)
- S-B formula holds only approximately (Martinková, Zvara 2010)

Martinková P, & Zvára K. Reliability in the Rasch Model. Kybernetika, 43(3), pp. 315-26, 2007. http://www.kybernetika.cz/content/2007/3/315/paper.pdf

Patrícia Martinková

Introduction 00000	Estimation Procedures	More on Cronbach's alpha ooooooo●ooo	More on IRR	Conclusion
Cronbach	's alpha in bina	ary items		

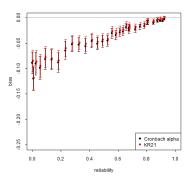
- Cronbach's alpha is readily applicable also for binary items
- Cronbach's alpha represents generalization of so-called Kuder-Richardson formulae (*Psychometrika*, 1937):

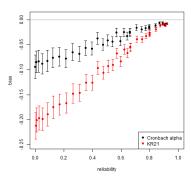
•
$$\hat{\rho}_{KR-20} = \frac{p}{p-1} \left[1 - \frac{\sum \hat{r}_k (1-\hat{r}_k)}{\hat{\sigma}_X} \right]$$
, where \hat{r}_k is easiness of k-th item

• For test with items of common difficulties $\hat{\rho}_{KR-21} = \frac{p}{p-1} \left[1 - \frac{\hat{\mu}(p-\hat{\mu}_k)}{p\hat{\sigma}_X} \right]$, where $\hat{\mu}$ is average total score

21/39

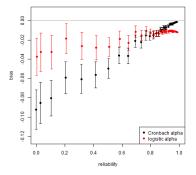
Introduction 00000	Estimation Procedures	More on Cronbach's alpha ooooooo●oo	More on IRR	Conclusion
Logistic a	alpha: Simulatic	on study		

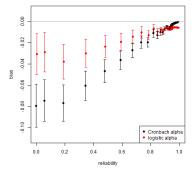

Pre-defined values:


- number of students $n = 25, \, 50, \, 100, \, 500$
- number of items m = 10, 20, 50, 100
- IRT parameters (difficulty, discrimination, guessing for each item)
- 55 values of σ_T (defines true reliability)
- number of simulates N = 1000

For each combination of n, m and σ_T :

- true reliability computed
- N data sets generated:
 - set of n student abilities generated $T_i \sim \mathrm{N}(0, \sigma_T^2)$
 - Y_{ij} generated from IRT model
 - estimates computed from the data
- $\Rightarrow N \text{ estimates } \hat{\alpha}_{CR}, \text{ KR-21 and } \hat{\alpha}_{log}$
 - ${\scriptstyle \bullet}$ bias and MSE of the estimates plotted out


Bias and MSE of two estimators of reliability, item difficulties from (-0.1, 0.1). Number of students n = 25, number of items m = 10, number of simulates N = 1000.

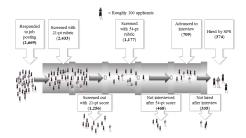

Bias and MSE of two estimators of reliability, item difficulties from (-3, 3). Number of students n = 25, number of items m = 10, number of simulates N = 1000.

• $\hat{}_{KR-21}$ is not appropriate in case of different item difficulties

NMST570, L2: Reliability

Bias and MSE of two estimators of reliability, number of students n=25, number of items m=50, number of simulates N=1000.

Bias and MSE of two estimators of reliability, number of students n=25, number of items m=100, number of simulates N=1000.


• $\hat{\alpha}_{log}$ has promising properties especially for high number of items

Patrícia Martinková

NMST570, L2: Reliability

Introduction 00000	Estimation Procedures	More on Cronbach's alpha	More on IRR •0000000000000	Conclusion
More on	inter-rater relia	hility		

Motivation: Teacher Selection Process

Applicants to classroom job openings in Spokane Public Schools during years (2008/09 - 2012/13)

Martinková P, Goldhaber D, & Erosheva E. (2018). Disparities in ratings of internal and external applicants: A case for model-based inter-rater reliability. *PLOS ONE*, 13(10): e0203002. https://doi.org/10.1371/journal.pone.0203002

Patrícia Martinková

NMST570, L2: Reliability

Oct 9, 2018

2018

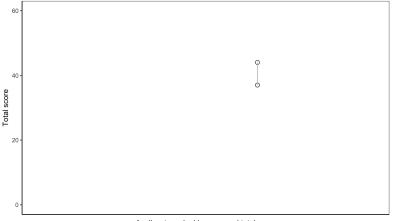
Introduction Estimation Procedures More on Cronbach's alpha More

More on IRR

Conclusion

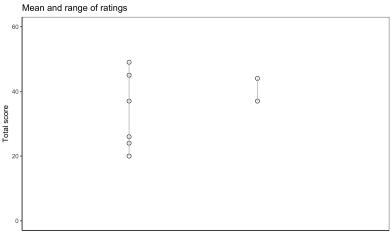
Motivation: Ratings as Source of Error

54-Pt Screening Rubric:

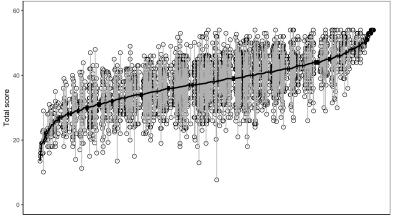

DATE:		SCREENER:
Job d / Position Title:		
APPLICANT NAME:		
	RATING	(1-6)
		(199) videous to support this as an error of strength
SCREENING CRITERIA	3 - 4 Satisfie	tory endence to support this as an area of strength
		lence to support this cau an area of strangh
CERTIFICATE AN	D	Nav complexion of concess of multi-complexie hold (concent or pending); solecarion
EDUCATION		
Washington State Certificate	Yes/No	
Required Enderstment		
Rating (1 - 6)	4	
TRAINING		Eard for quarky, abyth and level of candidator additional leating rollaring to the position.
Rating (1 - 6)	4	Nav 2014 21 Web resonant beauty for and tax of spaces . As for the pather of same of horses
EXPERIENCE		yandata codi la ratei legende negore ne processe quante con la parte de canter quant. A regiment
Rating (1 - 6)	4	
CLASSROOM MANAGE	MENT	LOD (in Specific Approach in Security Articipate, This Ray for Heat specified distribution and provident in Specificity handles large small or elastically environments and characterizing program develops resulting and provident in increase characterizes, and the state of a specific approximately.
Rating (1 - 6)		pervas torang accludes our promises, and reports apropriate
		"His number subsection, access, coulding another, shakes, hereing or direct, or community apport. Writing is
FLEXIBILITY		loars and concepts and precodures, successfully teaches a workly of antigements, effectively sees survival analysis of the
Rating (1 - 6)	4	
INSTRUCTIONAL SK	ILLS	COM (in specific approach in apport of dott in the one – plane, implements, evaluates, status is manipulation, and adjusts, and induced propagation in appropriate in age, independent and increded transmit of charloss.
Rating (1 - 6)	4	
INTERPERSONAL SE		
INTERPERSONAL SE	ILLS	Grunisps and monitors effective versing relationships with discrete singly analysis, proved (parentaes, and anneuroly
Rating (1 - 6)	4	
CULTURAL COMPET	ENCY	Look for specific references to successful strategies for building and maintaining a milatametry will auto analm and
A competency based on the premine of		chain family. This may not be separatly ownerhoused, for the fullboding strategies offer some evaluate of calibra' componency: specific memorianal memories providing and adulter access to a regional meriodam.
individual and celtural differences (mor, a		autochologieczfel language about studiots and families, a belief that all children can achieve at high lovels, monton of conflict resolution/resources practices, specific instructional insteagos for integrating culturally response
and recolar implementation of a trant-	comoting.	
inclusion.		rening, once wolk,andorshool oter head.
Rating (1 - 6)		
PREFERRED QUALIFICAT INDICATED ON POST		
Rating (1 - 6)	ING	
Rating (1 - 6)	4	
LETTERS OF RECOMMEN	DATION	Lost for cocore letter of incommutation from most the most mean supervisor(s). Thus seem should reflect the quadry and meaning of the recommunitation as well as the dasher of the letter. (Stample: Are the letter from parce or service to meaning methods).
Rating (1 - 6)		

CERT.BITESCREENINGFORM.XLS

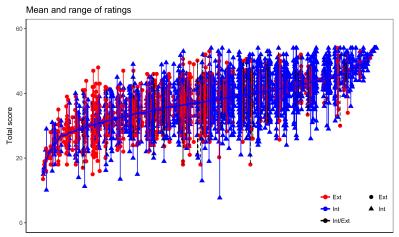
NMST570, L2: Reliability



Applicants ranked by averaged total score


Introduction	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion
00000		0000000000	000●000000000	0000
Ratings of	f two applicants			

Applicants ranked by averaged total score



Applicants ranked by averaged total score

Applicants ranked by averaged total score

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR ००००००●००००००	Conclusion
Inter-Rat	er Reliability			

$$Y_{ij} = \mu + A_i + B_j + e_{ij}$$

- applicant true quality $A_i \sim N(0, \sigma_A^2)$,
- rater leniency $B_j \sim N(0, \sigma_B^2)$,
- error $e_{ij} \sim N(0, \sigma_e^2)$

Inter-Rater Reliability:

$$R = \operatorname{cor}(Y_{ij}, Y_{ij'}) = \operatorname{ICC} = \frac{\sigma_A^2}{\sigma_Y^2} = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_B^2 + \sigma_e^2}$$

- $\bullet\ R\in[0,1],$ low values mean a lot of measurement error
- Aggregates (average of J raters) have higher IRR:

$$R_n = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_B^2/J + \sigma_e^2/J}$$

Patrícia Martinková

Introduction	Estimation Procedures	More on Cronbach's alpha	More on IRR	Conclusion	
00000		0000000000	0000000€00000	0000	
Across- and Within-School IRR (Model 1)					

$$Y_{ijk} = \mu + A_i + B_j + \frac{S_k}{S_k} + \frac{AS_{ik}}{S_{ik}} + e_{ijk}$$

• School leniency
$$S_{k} \sim N(0, \sigma_{S}^{2})$$

- Applicant-school matching effect (interaction) $AS_{ik} \sim N(0, \sigma_{AS}^2)$
- IRR across schools:

$$R_{across} = \operatorname{cor}(Y_{ijk}, Y_{ij'k'}) = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_B^2 + \sigma_S^2 + \sigma_{AS}^2 + \sigma_e^2}$$

Within-school IRR:

$$R_{within} = \operatorname{cor}\left(Y_{ijk}, Y_{ij'k}\right) = \frac{\sigma_A^2 + \sigma_S^2 + \sigma_{AS}^2}{\sigma_A^2 + \sigma_B^2 + \sigma_S^2 + \sigma_S^2 + \sigma_{AS}^2 + \sigma_e^2}$$

- Q: Does IRR differ in ratings of internal vs. external applicants?
- Model 3: Variance components may vary by group
 - e.g. Rater variance may higher when rating external applicants

$$\begin{aligned} Y_{ijk} &= \mu + \omega_i \beta_0 + (1 - \omega_i) A_{0i} + \omega_i A_{1i} \\ &+ (1 - \omega_i) B_{0j} + \omega_i B_{1j} \\ &+ (1 - \omega_i) S_{0k} + \omega_i S_{1k} \\ &+ A S_{ik} + e_{ijk} \end{aligned}$$

- $\omega_i = 1$ for internal and 0 for external applicants
- $A_{0i} \sim N(0, \sigma_{A0}^2)$ and $A_{1i} \sim N(0, \sigma_{A1}^2)$
- $B_{0j} \sim N(0, \sigma_{B0}^2)$ and $B_{1j} \sim N(0, \sigma_{B1}^2)$
- $S_{0k} \sim N(0, \sigma_{S0}^2)$ and $S_{1k} \sim N(0, \sigma_{S1}^2)$

Introduction 00000	Estimation Procedures	More on Cronbach's alpha	More on IRR 000000000●000	Conclusion 0000	

IRR for Internal vs. External Applicants (Model 3)

Within-school IRR:

• For internal applicant :

$$R_{1} = \operatorname{cor}\left(Y_{ijk}, Y_{ij'k}\right) = \frac{\sigma_{A1}^{2} + \sigma_{S1}^{2} + \sigma_{AS}^{2}}{\sigma_{A1}^{2} + \sigma_{B1}^{2} + \sigma_{S1}^{2} + \sigma_{AS}^{2} + \sigma_{e}^{2}}$$

• For external applicant:

$$R_0 = \operatorname{cor}(Y_{ijk}, Y_{ij'k}) = \frac{\sigma_{A0}^2 + \sigma_{S0}^2 + \sigma_{AS}^2}{\sigma_{A0}^2 + \sigma_{B0}^2 + \sigma_{S0}^2 + \sigma_{AS}^2 + \sigma_e^2}$$

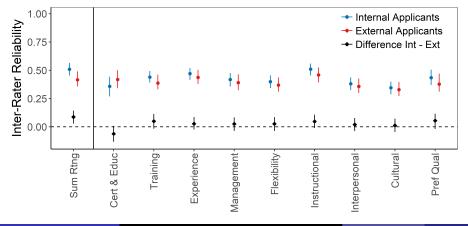
34/39

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR 0000000000000000	Conclusion			

IRR estimation and interence

More flexible estimation using linear random-effect models

- Estimation using restricted maximum likelihood
 - lmer() in lme4 in R
- Model selection using AIC, BIC, likelihood ratio tests
 - Model 3 wins for total score as well as for all subcomponents
- Bootstrapped confidence intervals or MCMC
 - using bootMer() in lme4, or brm() in inbrms


Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR ०००००००००००	Conclusion		
Results: Variance decomposition (Model 3)						

- High applicant-school variability
- Lower applicant variability for external applicants
- Higher rater variability for external applicants
- Lower inter-rater reliability for external applicants

• Significant difference in IRR between Internal and External applicants

NMST570, L2: Reliability

Introduction 00000	Estimation Procedures	More on Cronbach's alpha 0000000000	More on IRR	Conclusion ●000
Conclusio	n			

In this presentation, we have

- explained motivation behind reliability
- presented mostly used approaches for reliability estimation
 - test-retest
 - parallel forms
 - split-half coefficient
 - Cronbach's alpha
- presented research on alternative to Cronbach's alpha
- discussed use of model-based reliability estimates (for IRR)

Thank you for your attention! www.cs.cas.cz/martinkova

References

- Webb NM, Shavelson RJ, & Haertel EH. Reliability coefficients and generalizability theory. In *Handbook of Statiscis, Vol. 26 – Psychometrics.* pp. 81–124, Elsevier, 2007.
- Martinková P, & Vlčková K. Hodnocení reliability znalostních a psychologických testů. (Estimation of Reliability of Educational and Psychological Measurements. In Czech.) *Informační bulletin České statistické společnosti*, 4, pp. 1-15, 2014. http://www.statspol.cz/cs/wp-content/uploads/IB_4_2014.pdf
- Martinková P, & Zvára K. Reliability in the Rasch Model. Kybernetika, 43(3), pp. 315-26, 2007. http://www.kybernetika.cz/content/2007/3/315/paper.pdf
- Martinková P, Goldhaber D, & Erosheva E. (2018). Disparities in ratings of internal and external applicants: A case for model-based inter-rater reliability. *PLOS ONE*, 13(10): e0203002. https://doi.org/10.1371/journal.pone.0203002

Introduction 00000	Estimation Procedures	More on Cronbach's alpha ೦೦೦೦೦೦೦೦೦೦	More on IRR	Conclusion 000●
Vocabula	ſV			

- Latent variable
- Reliability, measurement error
- Test-retest reliability
- Split-half
- Cronbach's alpha
- Kuder-Richardson formula
- Inter-rater reliability