Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion

Lesson 4: Traditional Item Analysis

Patrícia Martinková

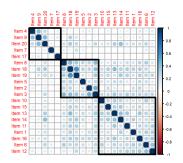
Department of Statistical Modelling Institute of Computer Science, Czech Academy of Sciences

Institute for Research and Development of Education Faculty of Education, Charles University, Prague

NMST570, October 23, 2018

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
Table of con	tents			

- 1. Review Validity
- 2. Item Difficulty
- 3. Item Discrimination
- 4. Distractor Analysis
- 5. Conclusion


Review - Validity ●000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
Review – Re	liability and	validity		

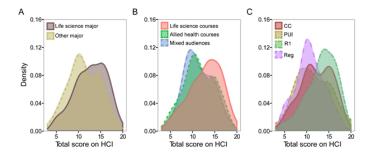
- Reliability
 - Test-retest reliability
 - Alternate forms
 - Internal consistency
- Validity
 - Content-related
 - Construct validity
 - Content validty
 - Face validity
 - Criterion-related
 - Concurrent validity
 - Predictive validity
 - Incremental validity
- Correction for range restriction
- Correction for unreliability

Review - Validity 0●00	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
Review – Val	idation stud	dies		

Homeostasis concept inventory (HCI)

- HCI developed based on Homeostasis conceptual framework (HCF)
- Items test knowledge of individual elements in HCF

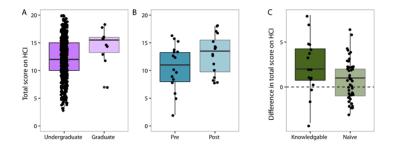
McFarland, Price, Wenderoth, Martinková, et al. Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, 16(2), ar35, 2017.


Patrícia Martinková

NMST570, L4: Traditional Item Analysis

Oct 23, 2018

Review - Validity 00●0	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
Review – Va	lidation stu	dies		


Homeostasis concept inventory (HCI)

McFarland, Price, Wenderoth, Martinková, et al. Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, 16(2), ar35, 2017.

Homeostasis concept inventory (HCI)

McFarland, Price, Wenderoth, Martinková, et al. Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, 16(2), ar35, 2017.

Patrícia Martinková

NMST570, L4: Traditional Item Analysis

Oct 23, 2018

Review - Validity 0000	Item Difficulty ●00000	Item Discrimination	Distractor Analysis	Conclusion 00000
Item analysis				

Analysis of individual items should be part of test validation process

Conventional/traditional methods use ratios and correlations to describe following item properties:

- Difficulty
 - How hard was the item, how many students answered correctly?
- Discrimination
 - How well does the item discriminate between low ability and high ability students?
- Functioning of distractors
 - How attractive are distractors offered in multiple-choice items?
 - What are the most common misconceptions?
- Unanswered items
 - How often was the item not reached?

Review - Validity 0000	Item Difficulty 0●0000	Item Discrimination	Distractor Analysis	Conclusion 00000
Item difficulty	/			

For binary items

$$Y_{ij} \in \{0,1\}$$

 $i = 1, \dots, n$ students $j = 1, \dots, m$ items

Difficulty of item *j*:

 $p_j \dots$ ratio of those who answered item j correctly $\bar{Y}_j \dots$ average number of points in item j

$$p_j = \bar{Y}_j = \frac{\sum_{i=1}^n Y_{ij}}{n}$$

Depends on ability of tested students

- An item can appear difficult in group of low ability students
- An item can appear easy in group of high ability students

Review - Validity 0000	Item Difficulty 00●000	Item Discrimination	Distractor Analysis	Conclusion 00000
Item difficulty	/			

For ordinal items

$$Y_{ij} \in 0, 1, \ldots, k_j$$

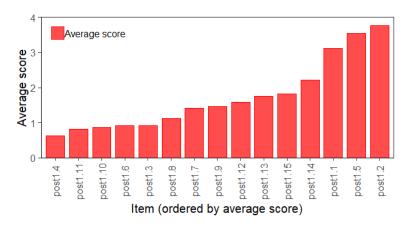
• Binarizing the data:

 $p_j \dots$ ratio of those who received maximal score k_j in item j

$$\bar{Y}_j = \frac{\sum_{i=1}^n I(Y_{ij} = k_j)}{n}$$

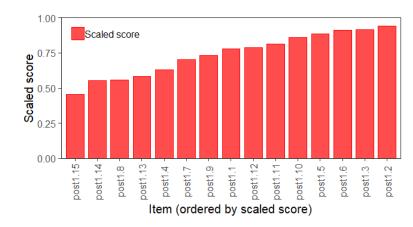
Using all information:

 $\bar{Y}_j \ldots$ average number of points in item j

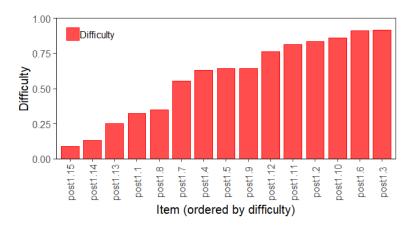

$$\bar{Y}_j = \frac{\sum_{i=1}^n Y_{ij}}{n}$$

 $p_j \dots$ average number of points in item j scaled to interval [0,1]

$$p_j = \frac{\bar{Y}_j}{k_j}$$


Review - Validity 0000	Item Difficulty 000●00	Item Discrimination	Distractor Analysis	Conclusion 00000
Item difficult	/			

Average number of points


Review - Validity 0000	Item Difficulty 0000●0	Item Discrimination	Distractor Analysis	Conclusion 00000
Item difficult	V			

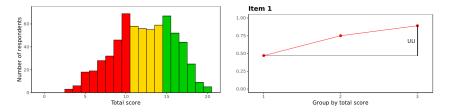
Average number of points scaled to [0, 1]

Review - Validity 0000	Item Difficulty 00000●	Item Discrimination	Distractor Analysis	Conclusion 00000
Item difficulty	/			

Binary approach: ratio of those who received full points

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
Item Discrim	ination			

How well does the item discriminate between low ability and high ability students?


Conventional approaches to item discrimination:

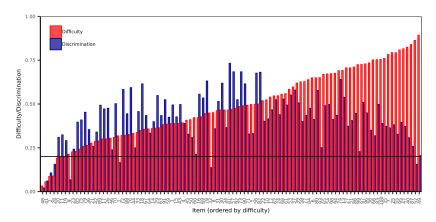
- Upper-lower index (ULI)
- Generalized ULI
- Correlation Item Test (RIT)
- Correlation Item Rest (RIR)
- Cronbach's alpha without item

- Respondents are divided into 3 groups by total score
- Item difficulty (percent correct) is calculated for upper third p_{jU} and lower third p_{jL}

•
$$ULI = p_{jU} - p_{jL}$$

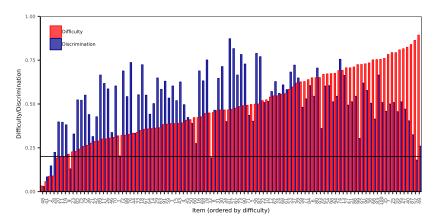
 Rule of thumb: ULI should be >0.2 (except for very easy and very hard items)

Patrícia Martinková

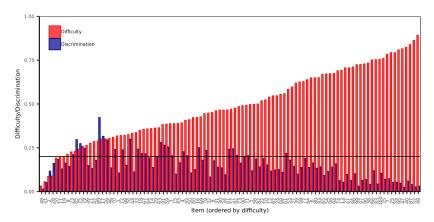

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
Generalized	ULI			

- Allows also other number of groups ($2,3,4,5,\dots$)
- Compares any two of these groups
 - E.g., item discrimination between 4^{th} and 5^{th} fifths may be of interest if only one fifth of students is admitted

Martinková P, Štěpánek L, Drabinová A, Houdek J, Vejražka M, Štuka Č. Semi-real-time analyses of item characteristics for medical school admission tests. Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 189–194, 2017. doi 10.15439/2017F380



Discrimination: Difference between first and last third (ULI)



Discrimination: Difference between first and last fifth (generalized ULI)

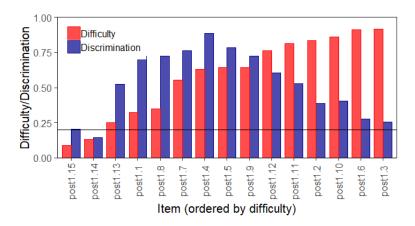
Discrimination: Difference between fourth and last fifth (generalized ULI)

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 00000
RIT, RIR				

• Correlation Item - Test

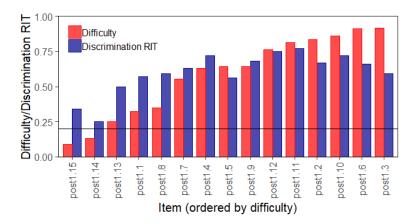
$$RIT = \operatorname{cor}\left(Y_j, \sum_{k=1}^m Y_k\right)$$

• Correlation Item - Rest of items

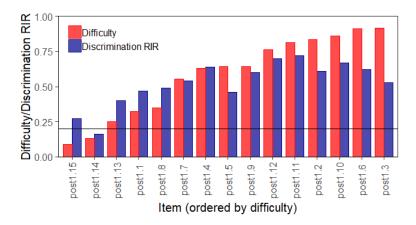

$$RIR = \operatorname{cor}\left(Y_j, \sum_{k \neq j} Y_k\right)$$

Low correlation (< 0.2) signals item unconsistent with rest of the test.

19/29



Item discrimination calculated by ULI



Item discrimination calculated by RIT

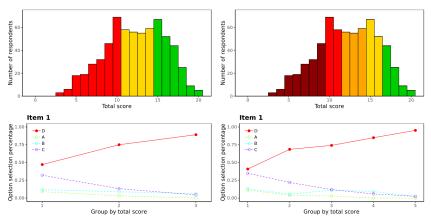
Item discrimination calculated by RIR

Review - Validity	Item Difficulty	Item Discrimination	Distractor Analysis	Conclusion
0000	000000	000000000●		00000
Cronbach's a	lpha without	t item		

Cronbach's alpha:

$$\alpha = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} \operatorname{cov} \left(Y_j, Y_k\right)}{\operatorname{var} \left(\sum_j Y_j\right)} = \frac{m}{m-1} \left(1 - \frac{\sigma_{Y_1}^2 + \dots + \sigma_{Y_m}^2}{\sigma_Y^2}\right)$$

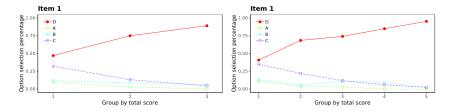
Cronbach's alpha without item *l*:


$$\alpha_l = \frac{m}{m-1} \left(1 - \frac{\sum_{j \neq l} \sigma_{Y_j}^2}{\operatorname{var}\left(\sum_{j \neq l} Y_j\right)} \right)$$

Increase of Cronbach's alpha after item removal signals item unconsistent with rest of the test.

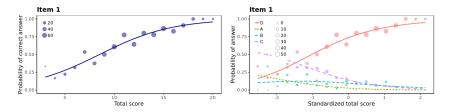
Review - Validity	Item Difficulty	Item Discrimination	Distractor Analysis	Conclusion
0000	000000		●00	00000
Distractor an	alysis			

Distractor analysis


- Respondents are divided into (3 or more) groups by total score
- Option selection is displayed with respect to group

NMST570, L4: Traditional Item Analysis

Review - Validity	Item Difficulty	Item Discrimination	Distractor Analysis	Conclusion
0000	000000		○●○	00000
Distractor ar	alysis			


- Checking for misconceptions
- In-attractive distractors may need to be replaced

Models describing mean item score or probability of seclection of given answer with respect to total (standardized total) score

- Logistic regression
- Nonlinear regression
- Multiomial regression

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion ●0000
Further issue	S			

- Item discrimination with respect to criterion
 - Item criterion validity
 - E.g. with respect to IQ, GPA, grade, etc.
 - See ShinyItemAnalysis
- Analysis of missing answers
 - Percentage of missing answers
- Analysis of unreached items
 - Missed items such that all subsequent items are missed
 - If percentage of unreached is high, consider shortening the test

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 0●000
Conclusion				

In this presentation, we have presented conventional/traditional approaches to description of item properties

- Item difficulty
 - Ratio of correct answers
 - (Scaled) average item score
- Item discrimination
 - Upper-lower index (ULI)
 - Generalized ULI
 - Correlation Item Test (RIT)
 - Correlation Item Rest (RIR)
 - Cronbach's alpha without item
- Functioning of discractors

Thank you for your attention! www.cs.cas.cz/martinkova

References

- McFarland, Price, Wenderoth, Martinková, et al. (2017). Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, 16(2), ar35. doi 10.1187/cbe.16-10-0305
- Martinková P, Štěpánek L, Drabinová A, Houdek J, Vejražka M, Štuka Č. Semi-real-time analyses of item characteristics for medical school admission tests. Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 189–194, 2017. doi 10.15439/2017F380

Review - Validity 0000	Item Difficulty 000000	Item Discrimination	Distractor Analysis	Conclusion 0000●
Vocabulary				

- Item analysis
 - Difficulty
 - Ratio of correct answers
 - Average item score
 - Scaled average item score
 - Discrimination
 - Upper-lower index (ULI)
 - Generalized ULI
 - Correlation Item Test (RIT)
 - Correlation Item Rest (RIR)
 - Cronbach's alpha without item
 - Distractor analysis
 - Analysis of non-reached items