1. Review	2. Dichotomous IRT Models	3. Information Function	4. Further Topics	5. Conclusion

Lesson 6: Item response theory models

Patrícia Martinková

Department of Statistical Modelling Institute of Computer Science, Czech Academy of Sciences

Institute for Research and Development of Education Faculty of Education, Charles University, Prague

NMST570, November 13, 2018

 Review 0000 	2. Dichotomous IRT Models	3. Information Function	 Further Topics ○ 	5. Conclusion
Outline				

1. Review

- 2 2. Dichotomous IRT Models
- 3. Information Function

4. Further Topics

5 5. Conclusion

 Review ●000 	2. Dichotomous IRT Models	3. Information Function	 Further Topics ○ 	5. Conclusion
Review:	Traditional Item /	Analysis		

Traditional item analysis describes item properties by

- percentages of correct response
- proportions of those who selected given distractor
- differences of percentages for groups by total score
- correlations of item score with total score

1. Review	2. Dichotomous IRT Models	3. Information Function	4. Further Topics	5. Conclusion	
0000					
Review: Logistic Regression					

Item properties described by parameters β_{0j} and β_{1j} of logistic function

$$\pi_{ij} = P(Y_{ij} = 1 | X_i, \beta_{0j}, \beta_{1j}) = \frac{\exp(\beta_{0j} + \beta_{1j}X_i)}{1 + \exp(\beta_{0j} + \beta_{1j}X_i)}$$

Also can be written as:

$$\mathsf{logit}(\pi_{ij}) = \log\left(\frac{\pi_{ij}}{1 - \pi_{ij}}\right) = \beta_{0j} + \beta_{1j}X_i$$

Notes:

- Linear model is related to response variable via a link function (GLM)
- Link functions: logit, probit (inverse of the cumulative distribution function)

Patrícia Martinková

Logistic regression with IRT parametrization

$$\pi_{ij} = P(Y_{ij} = 1 | Z_i, a_j, b_j) = \frac{\exp[a_j(Z_i - b_j)]}{1 + \exp[a_j(Z_i - b_j)]}$$

 b_j difficulty of item j a_j discrimination of item j Z_i standardized total score of person i

Also can be written as:

$$\mathsf{logit}(\pi_{ij}) = \log\left(\frac{\pi_{ij}}{1 - \pi_{ij}}\right) = a_j(Z_i - b_j)$$

1. Review	2. Dichotomous IRT Models	3. Information Function	4. Further Topics	5. Conclusion
Nonlinea	r Regression		-	

$$\pi_{ij} = P(Y_{ij} = 1 | Z_i, a_j, b_j, \mathbf{c_i}) = (1 - \mathbf{c_i}) \frac{\exp[a_j(Z_i - b_j)]}{1 + \exp[a_j(Z_i - b_j)]}$$

 b_j difficulty of item j a_j discrimination of item j c_j probability of guessing of item j Z_i standardized total score of person i

Notes:

Not a GLM

 Review 0000 	 Dichotomous IRT Models 0000000000 	3. Information Function	 Further Topics ○ 	5. Conclusion
Introduc	ction to Item Res	oonse Theory		

Framework for

estimating *latent traits* (ability levels) θ
 by means of *manifest* (observable) variables (item responses)
 and appropriate *psychometric* (statistical) model

Notes:

- Ability θ now treated as random variable
- Items: dichotomous, polytomous, multiple-choice, ...
- IRT model: describes probability of (correct) answer as function of
 - ability level and
 - item parameters

This function is called:

- Item response function (IRF)
- Item characteristic curve (ICC)

Introduction to IRT models	 Review 0000 	2. Dichotomous IRT Models ○●○○○○○○○○	3. Information Function	 Further Topics ○ 	 Conclusion
	Introduct	ion to IRT model	S		

Aim of IRT models:

- To calibrate items (estimate difficulty, discrimination, guessing,...)
- To assess respondents' latent trait (ability, satisfaction, anxiety,...)
- To describe test properties (standard error, test information,...)

Other applications of IRT models:

- Test linking and equating
- Differential item functioning
- Computerized adaptive testing
- etc.

 Review 0000 	 Dichotomous IRT Models 00●0000000 	3. Information Function	 Further Topics O 	5. Conclusion
Commor	Assumptions of	IRT models		

Unidimensionality of latent variable

- all items measure only one construct
- can be tested
- examples when violated?

2 Local independence

- also called conditional independence
- given latent ability, the responses to items are independent
- examples when violated?
- Monotonicity
 - the ICC is monotonically increasing or decreasing with the ability level
- Invariance of parameters
 - Estimates of item parameters are the same over samples of examinees
 - Estimates of ability parameters are the same over samples of items
 - examples when violated?
- Independence of respondents
 - examples when violated?

1. Review	2. Dichotomous IRT Models	3. Information Function	4. Further Topics	5. Conclusion
0000	000000000	00		
Rasch	Model			

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, b_j) = \frac{\exp(\theta_i - b_j)}{1 + \exp(\theta_i - b_j)}$$

 θ_i ability of person *i* b_j difficulty of item *j* (location of inflection point)

Item Characteristic Curve (ICC) also called Item Response Function (IRF)

Rasch model is sometimes defined as:

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, b_j) = \frac{\exp(D[\theta_i - b_j])}{1 + \exp(D[\theta_i - b_j])}$$

D = 1.702 is scaling parameter introduced in order to match logistic and probit metrics very closely (Lord and Novick, 1968)

 Review 0000 	2. Dichotomous IRT Models 00000€0000	3. Information Function	 Further Topics ○ 	5. Conclusion
Item-Per	son Map (Wright	Map)		

IRT models allow us to put *items* and *persons* on the same scale

 Review 0000 	2. Dichotomous IRT Models	 Information Function 00 	 Further Topics ○ 	5. Conclusion
1PL IRT	Model			

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, b_j) = \frac{\exp[a(\theta_i - b_j)]}{1 + \exp[a(\theta_i - b_j)]}$$

 θ_i ability of person *i* b_j difficulty of item *j* (location of inflection point) *a* discrimination common for all items (slope at inflection point)

 Review 0000 	 Dichotomous IRT Models 0000000●00 	3. Information Function	 Further Topics ○ 	5. Conclusion
2PL IRT	Model			

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, \mathbf{a}_j, b_j) = \frac{\exp[\mathbf{a}_j(\theta_i - b_j)]}{1 + \exp[\mathbf{a}_j(\theta_i - b_j)]}$$

 θ_i ability of person *i* b_j difficulty of item *j* (location of inflection point) a_j discrimination of item *j* (slope at inflection point)

1. Review	2. Dichotomous IRT Models	3. Information Function	4. Further Topics	5. Conclusion
0000	000000000	00		
3PL IRT	Model			

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, a_j, b_j, c_j) = c_j + (1 - c_j) \frac{\exp[a_j(\theta_i - b_j)]}{1 + \exp[a_j(\theta_i - b_j)]}$$

 θ_i ability of person i

 b_j difficulty of item j (location of inflection point)

 a_i discrimination of item j (slope at inflection point)

 c_j pseudo-guessing parameter of item j (lower/left asymptote)

 Review 0000 	2. Dichotomous IRT Models 000000000●	3. Information Function	4. Further Topics ○	5. Conclusion
4PL IRT	Model			

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, a_j, b_j, c_j, \mathbf{d}_j) = c_j + (\mathbf{d}_j - c_j) \frac{\exp[a_j(\theta_i - b_j)]}{1 + \exp[a_j(\theta_i - b_j)]}$$

 θ_i ability of person *i*

 b_j difficulty of item j (location of inflection point)

 a_j discrimination of item j (slope at inflection point)

 $\mathit{c_{j}}$ pseudo-guessing parameter of item j (lower/left asymptote)

 d_j innatention parameter of item j (upper/right asymptote)

 Review 0000 	2. Dichotomous IRT Models	 Information Function ●○ 	 Further Topics ○ 	5. Conclusion
Informat	ion Function			

$$P(\theta, a_j, b_j, c_j, d_j) = c_j + (d_j - c_j) \frac{\exp[a_j(\theta - b_j)]}{1 + \exp[a_j(\theta - b_j)]},$$

$$I_j(\theta, a_j, b_j, c_j, d_j) = \frac{\delta P}{\delta \theta} = a_j(d_j - c_j) \frac{\exp[a_j(\theta - b_j)]}{\{1 + \exp[a_j(\theta - b_j)]\}^2}$$

Item trace lines

Item information trace lines

 Review 0000 	2. Dichotomous IRT Models	3. Information Function ○●	 Further Topics ○ 	5. Conclusion
Test Information and Reliability				

$$\mathbf{I}(\theta) = \sum_{j} \mathbf{I}_{j}(\theta, a_{j}, b_{j}, c_{j}, d_{j})$$

Reliability

$$SEM = \sigma \sqrt{(1 - r_{xx})}$$

 Review 0000 	2. Dichotomous IRT Models	3. Information Function	 Further Topics 	5. Conclusion
Further	Topics			

Further issues

- Estimation of item parameters
- Estimation of student abilities
- Item and Person Fit Assessment, etc.

Further models

- Polytomous IRT models (ordinal/nominal)
- Multidimensional IRT models
- Hierarchical IRT models, etc.
- Accounting for Differential item functioning, etc.

Applications

- Test equating
- Computerized adaptive testing, etc.

1. Review	2. Dichotomous IRT Models	3. Information Function	4. Further Topics	5. Conclusion
				•
Vocabu	lary			

- Item Characteristic Curve (ICC)
- Item Response Fuction (IRF)
- Item Information Function (IIF)
- Test Information Function (TIF)
- Likelihood function
- Rasch model, 1PL, 2PL, 3PL, 4PL IRT models