Researching Reliability Estimates in the Context of Czech Admission Tests

Patricia Martinkova

Fulbright-Masaryk Fellow at CSSS UW patmar@uw.edu http://faculty.washington.edu/patmar/

BEAR seminar, Feb 11, 2014

Introduction

- study at Dept. of Prob. & Statistics, Charles University in Prague
- research at Czech Academy of Sciences

joint work with Karel Zvara, Marie Turcicova and Katarina Vlckova

Introduction

Motivation for this study

Admission tests to Czech universities

Educational Measurement in Czech Republic

- very little standardized testing in schools
- a lot of classroom testing
- colledges often run their own admission tests (different tests for different schools of medicine, etc.)
- no (graduate) program in Educational Measurement
- research scattered, conducted under different programs

Introduction

Current increased interest for testing

- standardized high school graduation examination
- studies on validity of admission tests
- new books on test construction methodology
- effort for more sophisticated item banks, item analysis
- debates on quality of tests: require to report Cronbach's alpha?

Aims of the study

- 1. to research Cronbach's alpha and its assumptions
- 2. to research properties of newly proposed estimate logistic alpha

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- Discussion and conclusion

Classical test theory

In behavioral research we are typically interested in the **true score** T but have available only the **observed score** X which is contaminated by some (uncorrelated) **measurement error** e: X = T + e

Examples:

- Admission tests: we are interested in student's knowledge T, but have available only the test score X
- Grading of essays: We are interested in essay's quality T but we have available only the grader's evaluation X

The observed score might vary if we chose different items or different graders.

Natural questions:

- How much information about the true score is indeed contained in the measurement?
- What is the strength of the relationship between true and observed score?

Reliability theory

- ► Reliability defined as squared correlation of the true and observed score ρ_x = corr²(T, X) = ρ²_{T,X}
- $\rho_X \in \langle \mathbf{0}, \mathbf{1} \rangle$
- equivalently can be reexpressed as the ratio of the true score variance to total observed variance $\rho_X = \frac{\operatorname{var}(T)}{\operatorname{var}(X)} = \frac{\sigma_T^2}{\sigma_z^2}$
- T not observed, thus we can't estimate reliability from its definition

Implications of low reliability

- less accurate estimates of the true score
- wider (less precise) confidence intervals
- need of higher number of subjects to demonstrate differences between groups (keeping the same test power)
- attenuation of correlations, bound of criterion validity

$$\rho_{\mathbf{X},\mathbf{Y}} = \rho_{\mathbf{T}_{\mathbf{X}},\mathbf{T}_{\mathbf{Y}}} \sqrt{\rho_{\mathbf{X}}\rho_{\mathbf{Y}}} \le \rho_{\mathbf{X}}$$

Graphical interpretation

Low reliability thus low validity

High reliability but low validity

High reliability and high validity

- center of the target represents the value we want to measure
- shots represent independent measurements on one object
- reliability represented by variability of the shots
- validity represented by overall shots' closeness to the center

Observations:

- high reliability does not ensure high validity
- validity is bound by reliability

Patricia Martinkova (CSSS UW)

Reliability and Czech Admission Tests

Importance of proper estimation of reliability

- In case of low reliability we should think of instrument revision
 - adding items
 - deleting items
 - in case of graders: training, precise instructions
- Conventional requirement $\rho_X \ge .8$
- Underestimation may imply (costly) revision of instrument
- Misunderstanding of reliability can imply deletion of important items and lowering validity
- Overestimation may imply adopting unreliable instrument

Procedures for estimating reliability?

The true score *T* is not observed, thus we can't estimate reliability from its definition (ρ²_{T,X} nor σ²_T/σ²_X)

Parallel measurements

equally precise measurements of the same true score:

►
$$X_1 = T + e_1$$
, $X_2 = T + e_2$, $var(e_1) = var(e_2) = \sigma_e^2$

- the reliability of both measurements is the same ρ
- if the errors are uncorrelated, then correlation between the measurements is equal to their (common) reliability

$$\rho_{X_1, X_2} = \frac{\operatorname{cov}(T + e_1, T + e_2)}{\sqrt{\operatorname{var}(T + e_1)\operatorname{var}(T + e_2)}} = \frac{\sigma_T^2}{\sigma_X^2} = \rho$$

Procedures for estimating reliability (1)

- Test-retest method (coefficient of stability)
- Alternate test forms (coefficient of equivalence)

Both methods require two measurement administrations.

Composite measurements

- goal is to provide multiple converging pieces of information
- e.g. educational tests, scales, questionnaires, ...

Is there any relationship between reliability of composite measurement $X = \sum_{i=1}^{m} X_i$ and reliability of its components?

Spearman-Brown prophecy formula (1910)

Assume X_1, \ldots, X_m parallel measurements (with uncorrelated errors and uncorrelated with true scores). Then reliability of each X_i is the same ρ and the composite reliability is

$$\rho_X = \frac{m \cdot \rho}{1 + (m-1)\rho}$$

Remark: Adding proper items increases reliability.

Procedures to estimate reliability(2)

Split-half coefficient

- correlation between two subscores corrected for test length
- test is split into two parts, two subscores Y₁, Y₂ are computed
 ρ_{SH} = ^{2ρ}<sub>Y₁,Y₂</sup>/<sub>1+ρ_{Y₂,Y₂}
 </sub></sub>
- assumes that the two subtests are parallel
- depends on how the split was carried out (even/odd, random,...)
- we may also compute the mean of all possible split-half coefficients

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. Discussion and conclusion

Cronbach's alpha

(

based on idea of splitting the test into individual items

$$\alpha = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} \operatorname{cov}(X_j, X_k)}{\operatorname{var}(X)} = \frac{m}{m-1} \left(1 - \frac{\sigma_{X_1}^2 + \dots + \sigma_{X_m}^2}{\sigma_X^2} \right)$$

- popular estimator, provides simple and unique estimation
- equals to composite reliability \(\sigma_T^2/\sigma_X^2\) in case of parallel (or at least T-equivalent) items and uncorrelated errors
- In general case and uncorrelated errors, alpha is lower bound to reliability α ≤ ρ_X (Novick & Lewis, 1967) and can be viewed as index of internal consistency
- in case of correlated errors, alpha can be lower or greater than reliability

Cronbach's alpha: 2-way mixed ANOVA approach

X_{ij} responses of n students on m items

$$\blacktriangleright X_{ij} = T_i + b_j + e_{ij}$$

- $T_i \sim N(0, \sigma_T^2)$ random, student ability
- b_j fixed, $\sum b_j = 0$, describe item difficulty
- $e_{ij} \sim N(0, \sigma_e^2)$ random error
- total scores $X_i = mT_i + \sum_j b_j + \sum_j e_{ij}$
- reliability: $\rho_X = \frac{var(mT_i)}{var(X_i)} = \frac{m^2 \sigma_T^2}{m^2 \sigma_T^2 + m \sigma_e^2} = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m} \sigma_e^2}$
- Cronbach's alpha: $\alpha = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} \operatorname{cov} (X_{ij}, X_{ik})}{\operatorname{var} (X_i)} = \frac{m}{m-1} \frac{m(m-1)\sigma_T^2}{m^2 \sigma_T^2 + m \sigma_e^2} = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m} \sigma_e^2}$

estimate of Cronbach's alpha:

$$\hat{\alpha} = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} s_{jk}}{\sum \sum_{j,k} s_{jk}}, \quad \text{where } \mathbf{s}_{jk} = \frac{1}{n-1} \sum_{t=1}^{n} (X_{tj} - \bar{X}_{\bullet j}) (X_{tj} - \bar{X}_{\bullet k})$$

Cronbach's alpha: 2-way mixed ANOVA approach (2) Sums of squares

$$SS_A = \sum \sum (\bar{X}_{i\bullet} - \bar{X}_{\bullet\bullet})^2 \sim (m\sigma_T^2 + \sigma_e^2)\chi^2(n-1)$$

$$SS_e = \sum \sum (X_{ij} - \bar{X}_{\bullet j} - \bar{X}_{i\bullet} + \bar{X}_{\bullet\bullet})^2 \sim \sigma_e^2\chi^2((n-1)(m-1))$$

Expectations of Mean sums of squares

•
$$EMS_A = ESS_A/(n-1) = m\sigma_T^2 + \sigma_e^2$$

$$\blacktriangleright E MS_e = E SS_e / ((n-1)(m-1)) = \sigma_e^2$$

Cronbach's alpha

$$\alpha = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m}\sigma_e^2} = \frac{E MS_A - E MS_e}{E MS_A}$$

Cronbach's alpha estimate $\hat{\alpha} = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} s_{jk}}{\sum \sum_{j,k} s_{jk}} = \frac{MS_A - MS_e}{MS_A} = 1 - \frac{1}{F}$

Cronbach's alpha: 2-way mixed ANOVA approach (3)

Estimate of Cronbach's alpha can be reexpressed as

$$\hat{\alpha} = \frac{MS_A - MS_E}{MS_A} = 1 - \frac{1}{F}$$

- F statistic used to test the submodel with no subject effect $(H_0 : \sigma_T^2 = 0)$
- Interpretation: alpha close to 1 for F high, i.e. when we reject H₀, i.e. when admission test well discriminates between students
- gives confidence intervals
- estimate is not generally appropriate for more complicated designs

Procedures to estimate reliability(3)

Cronbach's alpha is a good estimator of reliability for

- parallel (or at least T-equivalent) items and and
- uncorrelated errors

Corrections needed for:

- Correlated errors
 - Example: Reading test, group of items associated with one text.
 - corrections for correlated errors (Rae, 2006)
- Multidimensional measurement
 - Example: Math test, items measuring arithmetic skills but also reading skills etc.
 - factor-analysis based estimation of reliability (Raykov & Maurcoulides, 2011)
- More sources of error (multilevel models, G-index)
- Other than normal distribution of item responses (what happens in case of binary items?)

Patricia Martinkova (CSSS UW)

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. Discussion and conclusion

Logistic alpha

F statistic in

$$\hat{\alpha} = 1 - \frac{1}{F}$$

assumes normality of items

- How does the estimate of reliability behave for binary items?
- Would a new estimate

$$\hat{\alpha}_{log} = 1 - \frac{n-1}{X^2}$$

based on statistic used in similar situation in logistic regression (difference of deviances $X^2 = D(B) - D(A + B)$) give better results for case of binary data?

Definition of reliability in binary items

- classical model not applicable (binary outcome can't be expressed as sum of *T* and independent error *e*)
- IRT models ussually assumed
- reliability can be defined as (Raykov & Maurcoulides, 2011)

$$\rho_{X} = \frac{\operatorname{var}(\operatorname{E}(X|T))}{\operatorname{var}(\operatorname{E}(X|T)) + \operatorname{E}(\operatorname{var}(X|T))} = \frac{\operatorname{var}(\operatorname{E}(X|T))}{\operatorname{var}(X)}$$

- resulting integrals can be evaluated numerically, not explicitly
- Not equal to parallel-forms reliability, but differences negligible (Kim, 2012)
- S-B formula holds only approximately (Martinkova, Zvara 2010)

Cronbach's alpha in binary items

- Cronbach's alpha is readily applicable also for binary items
- Cronbach's alpha represents generalization of so-called Kuder-Richardson formulas (*Psychometrika*, 1937):

•
$$\hat{\rho}_{KR-20} = \frac{p}{p-1} \left[1 - \frac{\sum \hat{r}_k (1-\hat{r}_k)}{\hat{\sigma}_X} \right]$$
, where \hat{r}_k is easiness of k-th item

▶ for test with items of common difficulties $\hat{\rho}_{\kappa_{R-21}} = \frac{p}{p-1} \left[1 - \frac{\hat{\mu}(p - \hat{\mu}_k)}{p \hat{\sigma}_{\chi}} \right]$, where $\hat{\mu}$ is average total score

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. Discussion and conclusion

Simulation study in IRT models

Pre-defined values:

- number of students n = 25, 50, 100, 500
- ▶ number of items *m* = 10, 20, 50, 100
- ► IRT parameters (difficulty, discrimination, guessing for each item)
- 55 values of σ_T (defines true reliability)
- number of simulates N = 1000

For each combination of *n*, *m* and σ_T :

- true reliability computed
- N data sets generated:
 - set of *n* student abilities generated *T_i* ~ N(0, σ²_T)
 - Y_{ij} generated from IRT model
 - estimates computed from the data
- \Rightarrow *N* estimates $\hat{\alpha}_{CR}$, KR-21 and $\hat{\alpha}_{log}$
 - bias and MSE of the estimates plotted out

Simulations: Cronbach's alpha (KR-20) and KR-21

Bias and MSE of two estimators of reliability, item difficulties from (-0.1, 0.1). Number of students n = 25, number of items m = 10, number of simulates N = 1000.

Bias and MSE of two estimators of reliability, item difficulties from (-3, 3). Number of students n = 25, number of items m = 10, number of simulates N = 1000.

• $\hat{\rho}_{KR-21}$ is not appropriate in case of different item difficulties

Patricia Martinkova (CSSS UW)

Simulations: Cronbach's and logistic alpha

Bias and MSE of two estimators of reliability, number of students n = 25, number of items m = 50, number of simulates N = 1000.

Bias and MSE of two estimators of reliability, number of students n = 25, number of items m = 100, number of simulates N = 1000.

• $\hat{\alpha}_{log}$ has promising properties especially for high number of items

Patricia Martinkova (CSSS UW)

Patricia Martinkova (CSSS UW)

Reliability and Czech Admission Tests

BEAR seminar, Feb 11, 2014

28/32

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. Discussion and conclusion

Discussion and Conclusion

- Estimation of reliability is important. It needs to be followed by analysis of validity.
- Cronbach's alpha is suitable only in special situations (uncorrelated errors, *T*-equivalent items), and shouldn't be recommended as the generally most appropriate estimator of reliability.
- New estimate of reliability for case of binary items has promising properties especially for lower true reliabilities and high number of items.
- Nevertheless, under assumptions of uncorrelated errors and *T*-equivalent items, Cronbach's alpha has good properties in case of binary items, too, and it is easier to compute.

Discussion and Conclusion

psychometric research in the Czech Republic

Thank you for your attention!