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Introduction

I study at Dept. of Prob. & Statistics, Charles University in Prague
I research at Czech Academy of Sciences

I joint work with Karel Zvara, Marie Turcicova and Katarina Vlckova
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Introduction

Motivation for this study
Admission tests to Czech universities

Educational Measurement in Czech Republic

I very little standardized testing in schools
I a lot of classroom testing
I colledges often run their own admission tests

(different tests for different schools of medicine, etc.)
I no (graduate) program in Educational Measurement
I research scattered, conducted under different programs
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Introduction

Current increased interest for testing

I standardized high school graduation examination
I studies on validity of admission tests
I new books on test construction methodology
I effort for more sophisticated item banks, item analysis
I debates on quality of tests: require to report Cronbach’s alpha?

Aims of the study

1. to research Cronbach’s alpha and its assumpions
2. to research properties of newly proposed estimate logistic alpha
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Classical test theory

In behavioral research we are typically interested in the true score T
but have available only the observed score X which is contaminated
by some (uncorrelated) measurement error e : X = T + e

Examples:

I Admission tests: we are interested in student’s knowledge T ,
but have available only the test score X

I Grading of essays: We are interested in essay’s quality T but we
have available only the grader’s evaluation X

The observed score might vary if we chose different items or different
graders.
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Natural questions:

I How much information about the true score is indeed contained
in the measurement?

I What is the strength of the relationship between true and
observed score?

Reliability theory

I Reliability defined as squared correlation of the true and observed
score ρX = corr 2(T ,X ) = ρ2

T ,X
I ρX ∈ 〈0,1〉
I equivalently can be reexpressed as the ratio of the

true score variance to total observed variance ρX = var (T )
var (X) =

σ2
T
σ2

X

I T not observed, thus we can’t estimate reliability from its definition
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Implications of low reliability

I less accurate estimates of the true score
I wider (less precise) confidence intervals
I need of higher number of subjects to demonstrate differences

between groups (keeping the same test power)
I attenuation of correlations, bound of criterion validity

ρX ,Y = ρTX ,TY

√
ρX ρY ≤ ρX
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Graphical interpretation

Low reliability thus low validity High reliability but low validity High reliability and high validity

I center of the target represents the value we want to measure
I shots represent independent measurements on one object
I reliability represented by variability of the shots
I validity represented by overall shots’ closeness to the center

Observations:
I high reliability does not ensure high validity
I validity is bound by reliability
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Importance of proper estimation of reliability

I In case of low reliability we should think of instrument revision
I adding items
I deleting items
I in case of graders: training, precise instructions

I Conventional requirement ρX ≥ .8
I Underestimation may imply (costly) revision of instrument
I Misunderstanding of reliability can imply deletion of important

items and lowering validity
I Overestimation may imply adopting unreliable instrument

Procedures for estimating reliability?

I The true score T is not observed, thus we can’t estimate reliability
from its definition (ρ2

T ,X
nor σ2

T/σ
2
X )
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Parallel measurements
I equally precise measurements of the same true score:
I X1 = T + e1, X2 = T + e2, var (e1) = var (e2) = σ2

e

I the reliability of both measurements is the same ρ
I if the errors are uncorrelated, then correlation between the

measurements is equal to their (common) reliability
ρX1,X2

= cov (T+e1,T+e2)√
var (T+e1)var (T+e2)

=
σ2

T
σ2

X
= ρ

Procedures for estimating reliability (1)

I Test-retest method (coefficient of stability)
I Alternate test forms (coefficient of equivalence)

Both methods require two measurement administrations.
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Composite measurements

I goal is to provide multiple converging pieces of information
I e.g. educational tests, scales, questionnaires, . . .

Is there any relationship between reliability of composite measurement
X =

∑m
j=1 Xj and reliability of its components?

Spearman-Brown prophecy formula (1910)
Assume X1, . . . ,Xm parallel measurements (with uncorrelated errors
and uncorrelated with true scores). Then reliability of each Xi is the
same ρ and the composite reliability is

ρX =
m · ρ

1 + (m − 1)ρ

Remark: Adding proper items increases reliability.
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Procedures to estimate reliability(2)
Split-half coefficient

I correlation between two subscores corrected for test length
I test is split into two parts, two subscores Y1,Y2 are computed

I ρSH =
2ρY1,Y2

1+ρY1,Y2

I assumes that the two subtests are parallel
I depends on how the split was carried out (even/odd, random,. . . )
I we may also compute the mean of all possible split-half

coefficients
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Cronbach’s alpha

I based on idea of splitting the test into individual items

α =
m

m − 1

∑∑
j 6=k cov (Xj ,Xk )

var (X )
=

m
m − 1

(
1−

σ2
X1

+ · · ·+ σ2
Xm

σ2
X

)
I popular estimator, provides simple and unique estimation
I equals to composite reliability σ2

T/σ
2
X in case of parallel (or at least

T -equivalent) items and uncorrelated errors
I in general case and uncorrelated errors, alpha is lower bound to

reliability α ≤ ρX (Novick & Lewis, 1967) and can be viewed as
index of internal consistency

I in case of correlated errors, alpha can be lower or greater than
reliability
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Cronbach’s alpha: 2-way mixed ANOVA approach

I Xij responses of n students on m items
I Xij = Ti + bj + eij

I Ti ∼ N(0, σ2
T ) random, student ability

I bj fixed,
∑

bj = 0, describe item difficulty
I eij ∼ N(0, σ2

e) random error
I total scores Xi = mTi +

∑
j bj +

∑
j eij

I reliability: ρX = var(mTi )
var (Xi )

=
m2σ2

T
m2σ2

T+mσ2
e

=
σ2

T
σ2

T+
1
mσ

2
e

I Cronbach’s alpha:
α = m

m−1

∑∑
j 6=k cov (Xij ,Xik )

var (Xi )
= m

m−1
m(m−1)σ2

T
m2σ2

T+mσ2
e

=
σ2

T
σ2

T+
1
mσ

2
e

I estimate of Cronbach’s alpha:
α̂ = m

m−1

∑∑
j 6=k sjk∑∑
j,k sjk

, where sjk = 1
n−1

∑n
t=1(Xtj − X̄•j)(Xtj − X̄•k )
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Cronbach’s alpha: 2-way mixed ANOVA approach (2)
Sums of squares

I SSA =
∑∑

(X̄i• − X̄••)2 ∼ (mσ2
T + σ2

e)χ2(n − 1)

I SSe =
∑∑

(Xij − X̄•j − X̄i• + X̄••)2 ∼ σ2
eχ

2((n − 1)(m − 1))

Expectations of Mean sums of squares

I EMSA = ESSA/(n − 1) = mσ2
T + σ2

e

I EMSe = ESSe/((n − 1)(m − 1)) = σ2
e

Cronbach’s alpha
α =

σ2
T

σ2
T+

1
mσ

2
e

= E MSA−E MSe
E MSA

Cronbach’s alpha estimate
α̂ = m

m−1

∑∑
j 6=k sjk∑∑
j,k sjk

= MSA−MSe
MSA

= 1− 1
F
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Cronbach’s alpha: 2-way mixed ANOVA approach (3)

Estimate of Cronbach’s alpha can be reexpressed as

α̂ =
MSA −MSE

MSA
= 1− 1

F

I F statistic used to test the submodel with no subject effect
(H0 : σ2

T = 0)

I Interpretation: alpha close to 1 for F high, i.e. when we reject H0,
i.e. when admission test well discriminates between students

I gives confidence intervals
I estimate is not generally appropriate for more complicated designs
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Procedures to estimate reliability(3)
Cronbach’s alpha is a good estimator of reliability for

I parallel (or at least T-equivalent) items and and
I uncorrelated errors

Corrections needed for:
I Correlated errors

I Example: Reading test, group of items associated with one text.
I corrections for correlated errors (Rae, 2006)

I Multidimensional measurement
I Example: Math test, items measuring arithmetic skills but also

reading skills etc.
I factor-analysis based estimation of reliability (Raykov &

Maurcoulides, 2011)
I More sources of error (multilevel models, G-index)
I Other than normal distribution of item responses (what happens in

case of binary items?)
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Logistic alpha

F statistic in
α̂ = 1− 1

F
assumes normality of items

I How does the estimate of reliability behave for binary items?
I Would a new estimate

α̂log = 1− n − 1
X 2

based on statistic used in similar situation in logistic regression
(difference of deviances X 2 = D(B)− D(A + B)) give better
results for case of binary data?
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Definition of reliability in binary items

I classical model not applicable (binary outcome can’t be expressed
as sum of T and independent error e)

I IRT models ussually assumed
I reliability can be defined as (Raykov & Maurcoulides, 2011)

ρX =
var (E (X |T ))

var (E (X |T )) + E (var (X |T ))
=

var (E (X |T ))

var (X )

I resulting integrals can be evaluated numerically, not explicitly
I Not equal to parallel-forms reliability, but differences negligible

(Kim, 2012)
I S-B formula holds only approximately (Martinkova, Zvara 2010)
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Cronbach’s alpha in binary items

I Cronbach’s alpha is readily applicable also for binary items
I Cronbach’s alpha represents generalization of so-called

Kuder-Richardson formulas (Psychometrika, 1937):

I ρ̂KR−20 = p
p−1

[
1−

∑
r̂k (1−r̂k )
σ̂X

]
, where r̂k is easiness of k -th item

I for test with items of common difficulties
ρ̂KR−21 = p

p−1

[
1− µ̂(p−µ̂k )

pσ̂X

]
, where µ̂ is average total score
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Simulation study in IRT models
Pre-defined values:

I number of students n = 25, 50, 100, 500
I number of items m = 10, 20, 50, 100
I IRT parameters (difficulty, discrimination, guessing for each item)
I 55 values of σT (defines true reliability)
I number of simulates N = 1000

For each combination of n, m and σT :
I true reliability computed
I N data sets generated:

I set of n student abilities generated Ti ∼ N(0, σ2
T )

I Yij generated from IRT model
I estimates computed from the data

⇒ N estimates α̂CR, KR-21 and α̂log

I bias and MSE of the estimates plotted out
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Simulations: Cronbach’s alpha (KR-20) and KR-21

Bias and MSE of two estimators of reliability, item difficul-
ties from (−0.1, 0.1). Number of students n = 25, num-
ber of items m = 10, number of simulates N = 1000.

Bias and MSE of two estimators of reliability, item difficul-
ties from (−3, 3). Number of students n = 25, number of
items m = 10, number of simulates N = 1000.

I ρ̂KR−21 is not appropriate in case of different item difficulties
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Simulations: Cronbach’s and logistic alpha

Bias and MSE of two estimators of reliability, number of
students n = 25, number of items m = 50, number of
simulates N = 1000.

Bias and MSE of two estimators of reliability, number of
students n = 25, number of items m = 100, number of
simulates N = 1000.

I α̂log has promising properties especially for high number of items
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Discussion and Conclusion

I Estimation of reliability is important. It needs to be followed by
analysis of validity.

I Cronbach’s alpha is suitable only in special situations
(uncorrelated errors, T -equivalent items), and shouldn’t be
recommended as the generally most appropriate estimator of
reliability.

I New estimate of reliability for case of binary items has promising
properties especially for lower true reliabilities and high number of
items.

I Nevertheless, under assumptions of uncorrelated errors and
T -equivalent items, Cronbach’s alpha has good properties in case
of binary items, too, and it is easier to compute.
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Discussion and Conclusion

I psychometric research in the Czech Republic
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Thank you for your attention!
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