Researching Reliability Estimates in the Context of Czech Admission Tests

Patricia Martinkova

Fulbright-Masaryk Fellow at CSSS UW patmar@uw.edu http://faculty.washington.edu/patmar/

BEAR seminar, Feb 11, 2014

Introduction

- \triangleright study at Dept. of Prob. & Statistics, Charles University in Prague
- research at Czech Academy of Sciences

 \triangleright joint work with Karel Zvara, Marie Turcicova and Katarina Vlckova

Introduction

Motivation for this study

Admission tests to Czech universities

Educational Measurement in Czech Republic

- \triangleright very little standardized testing in schools
- \blacktriangleright a lot of classroom testing
- \triangleright colledges often run their own admission tests (different tests for different schools of medicine, etc.)
- \triangleright no (graduate) program in Educational Measurement
- \triangleright research scattered, conducted under different programs

Introduction

Current increased interest for testing

- \triangleright standardized high school graduation examination
- \triangleright studies on validity of admission tests
- new books on test construction methodology
- \triangleright effort for more sophisticated item banks, item analysis
- \triangleright debates on quality of tests: require to report Cronbach's alpha?

Aims of the study

- 1. to research Cronbach's alpha and its assumpions
- 2. to research properties of newly proposed estimate *logistic alpha*

Outline

- 1. Introduction
- 2. **Reliability**
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. Discussion and conclusion

Classical test theory

In behavioral research we are typically interested in the **true score** *T* but have available only the **observed score** *X* which is contaminated by some (uncorrelated) **measurement error** e : $X = T + e$

Examples:

- \blacktriangleright Admission tests: we are interested in **student's knowledge** T , but have available only the test score *X*
- \triangleright Grading of essays: We are interested in **essay's quality** T but we have available only the grader's evaluation *X*

The observed score might vary if we chose different items or different graders.

Natural questions:

- \blacktriangleright How much information about the true score is indeed contained in the measurement?
- \triangleright What is the strength of the relationship between true and observed score?

Reliability theory

- \blacktriangleright Reliability defined as squared correlation of the true and observed $\mathsf{score}\ \rho_\chi = \mathsf{corr}^{\mathsf{2}}(\mathsf{T},\mathsf{X}) = \rho_{\mathsf{T},\mathsf{X}}^{\mathsf{2}}$
- \rightharpoonup $\rho_X \in \langle 0, 1 \rangle$
- \triangleright equivalently can be reexpressed as the ratio of the true score variance to total observed variance $\rho_X = \frac{\text{var}(T)}{\text{var}(X)} = \frac{\sigma_T^2}{\sigma_X^2}$
- \triangleright *T* not observed, thus we can't estimate reliability from its definition

Implications of low reliability

- \blacktriangleright less accurate estimates of the true score
- wider (less precise) confidence intervals
- need of higher number of subjects to demonstrate differences between groups (keeping the same test power)
- \triangleright attenuation of correlations, bound of criterion validity

$$
\rho_{X,Y} = \rho_{T_X, T_Y} \sqrt{\rho_X \rho_Y} \le \rho_X
$$

Graphical interpretation

Low reliability thus low validity **High reliability but low validity** High reliability and high validity **High reliability** and high validity

- \triangleright center of the target represents the value we want to measure
- shots represent independent measurements on one object
- reliability represented by variability of the shots
- validity represented by overall shots' closeness to the center

Observations:

- \triangleright high reliability does not ensure high validity
- validity is bound by reliability

Importance of proper estimation of reliability

- In case of low reliability we should think of instrument revision
	- \blacktriangleright adding items
	- \blacktriangleright deleting items
	- \triangleright in case of graders: training, precise instructions
- **Conventional requirement** $\rho_X \geq .8$
- \triangleright Underestimation may imply (costly) revision of instrument
- \triangleright Misunderstanding of reliability can imply deletion of important items and lowering validity
- \triangleright Overestimation may imply adopting unreliable instrument

Procedures for estimating reliability?

 \triangleright The true score T is not observed, thus we can't estimate reliability from its definition ($\rho_{\tau, \chi}^2$ nor $\sigma_{\mathcal{T}}^2/\sigma_{\mathcal{X}}^2)$

Parallel measurements

 \triangleright equally precise measurements of the same true score:

$$
\blacktriangleright X_1 = T + e_1, \quad X_2 = T + e_2, \quad \text{var}(e_1) = \text{var}(e_2) = \sigma_e^2
$$

- **If the reliability of both measurements is the same** ρ
- **F** if the errors are uncorrelated, then **correlation between the measurements is equal to** their (common) **reliability**

$$
\rho_{X_1,X_2} = \frac{\text{cov}(T+\mathbf{e}_1, T+\mathbf{e}_2)}{\sqrt{\text{var}(T+\mathbf{e}_1)\text{var}(T+\mathbf{e}_2)}} = \frac{\sigma_T^2}{\sigma_X^2} = \rho
$$

Procedures for estimating reliability (1)

- \triangleright Test-retest method (coefficient of stability)
- \triangleright Alternate test forms (coefficient of equivalence)

Both methods require two measurement administrations.

Composite measurements

- \triangleright goal is to provide multiple converging pieces of information
- \blacktriangleright e.g. educational tests, scales, questionnaires, ...

Is there any relationship between reliability of composite measurement $X = \sum_{j=1}^m X_j$ and reliability of its components?

Spearman-Brown prophecy formula (1910)

Assume X_1, \ldots, X_m parallel measurements (with uncorrelated errors and uncorrelated with true scores). Then reliability of each X_i is the same ρ and the composite reliability is

$$
\rho_X = \frac{m \cdot \rho}{1 + (m-1)\rho}
$$

Remark: Adding proper items increases reliability.

Procedures to estimate reliability(2)

Split-half coefficient

- \triangleright correlation between two subscores corrected for test length
- is split into two parts, two subscores Y_1 , Y_2 are computed $\rho_{SH} = \frac{2\rho_{Y_1, Y_2}}{1 + \rho_{Y_1, Y_2}}$
- assumes that the two subtests are parallel
- depends on how the split was carried out (even/odd, random,...)
- we may also compute the mean of all possible split-half coefficients

Outline

- 1. Introduction
- 2. Reliability
- 3. **Cronbach's alpha**
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. Discussion and conclusion

Cronbach's alpha

 \triangleright based on idea of splitting the test into individual items

$$
\alpha = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} \text{cov}(X_j, X_k)}{\text{var}(X)} = \frac{m}{m-1} \left(1 - \frac{\sigma_{X_1}^2 + \dots + \sigma_{X_m}^2}{\sigma_X^2}\right)
$$

- \triangleright popular estimator, provides simple and unique estimation
- **Exercise 1** equals to composite reliability σ_T^2/σ_X^2 in case of parallel (or at least *T*-equivalent) items and uncorrelated errors
- \triangleright in general case and uncorrelated errors, alpha is lower bound to reliability $\alpha \leq \rho_X$ (Novick & Lewis, 1967) and can be viewed as **index of internal consistency**
- \triangleright in case of correlated errors, alpha can be lower or greater than reliability

Cronbach's alpha: 2-way mixed ANOVA approach

 \triangleright X_{ii} responses of *n* students on *m* items

$$
\blacktriangleright X_{ij} = T_i + b_j + e_{ij}
$$

- **►** *T_i* ∼ N(0, σ²_{*T*}) random, student ability
- \blacktriangleright *b_i* fixed, $\sum b_i = 0$, describe item difficulty
- \blacktriangleright e_{ij} \sim N(0, σ_e^2) random error
- \blacktriangleright total scores $X_i = mT_i + \sum_j b_j + \sum_j e_{ij}$

$$
\text{reliability: } \rho_X = \frac{\text{var}(mT_i)}{\text{var}(X_i)} = \frac{m^2 \sigma_T^2}{m^2 \sigma_T^2 + m \sigma_e^2} = \frac{\sigma_T^2}{\sigma_T^2 + \frac{1}{m} \sigma_e^2}
$$

▶ Cronbach's alpha:

$$
\alpha = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} \text{cov}\left(X_{ij}, X_{ik}\right)}{\text{var}\left(X_{i}\right)} = \frac{m}{m-1} \frac{m(m-1)\sigma_{T}^{2}}{m^{2}\sigma_{T}^{2} + m\sigma_{e}^{2}} = \frac{\sigma_{T}^{2}}{\sigma_{T}^{2} + \frac{1}{m}\sigma_{e}^{2}}
$$

 \triangleright estimate of Cronbach's alpha:

$$
\hat{\alpha} = \frac{m}{m-1} \frac{\sum \sum_{j \neq k} s_{jk}}{\sum \sum_{j,k} s_{jk}}, \quad \text{where } \mathbf{s}_{jk} = \frac{1}{n-1} \sum_{t=1}^n (X_{tj} - \bar{X}_{\bullet j})(X_{tj} - \bar{X}_{\bullet k})
$$

Cronbach's alpha: 2-way mixed ANOVA approach (2) Sums of squares

$$
SS_A = \sum \sum (\bar{X}_{i\bullet} - \bar{X}_{\bullet\bullet})^2 \sim (m\sigma_T^2 + \sigma_e^2)\chi^2(n-1)
$$

$$
SS_e = \sum \sum (X_{ij} - \bar{X}_{\bullet j} - \bar{X}_{i\bullet} + \bar{X}_{\bullet\bullet})^2 \sim \sigma_e^2\chi^2((n-1)(m-1))
$$

Expectations of Mean sums of squares

$$
\blacktriangleright
$$
 E MS_A = E $SS_A/(n-1)$ = $m\sigma_T^2 + \sigma_e^2$

$$
\blacktriangleright \text{ EMS}_e = \text{ESS}_e/((n-1)(m-1)) = \sigma_e^2
$$

Cronbach's alpha $\alpha = \frac{\sigma_\text{\scriptsize T}^2}{\sigma_\text{\scriptsize T}^2 + \frac{1}{m} \sigma_e^2} = \frac{\text{\scriptsize E}\,\text{\textit{MS}}_A - \text{\scriptsize E}\,\text{\textit{MS}}_e}{\text{\scriptsize E}\,\text{\textit{MS}}_A}$ E *MS^A*

Cronbach's alpha estimate $\hat{\alpha} = \frac{m}{m-1}$ <u>ΣΣj≠k</u>
ΣΣiκ *sjk* $\frac{d^{j}\neq k}{d^{j}k^{j}}$ $=$ $\frac{MS_{A}-MS_{B}}{MS_{A}}$ $\frac{M_{A}-MS_{e}}{MS_{A}}=1-\frac{1}{F}$ *F*

Cronbach's alpha: 2-way mixed ANOVA approach (3)

Estimate of Cronbach's alpha can be reexpressed as

$$
\hat{\alpha} = \frac{MS_A - MS_E}{MS_A} = 1 - \frac{1}{F}
$$

- \triangleright F statistic used to test the submodel with no subject effect $(H_0: \sigma_T^2 = 0)$
- Interpretation: alpha close to 1 for *F* high, i.e. when we reject H_0 . i.e. when admission test well discriminates between students
- \blacktriangleright gives confidence intervals
- \triangleright estimate is not generally appropriate for more complicated designs

Procedures to estimate reliability(3)

Cronbach's alpha is a good estimator of reliability for

- \triangleright parallel (or at least T-equivalent) items and and
- \blacktriangleright uncorrelated errors

Corrections needed for:

- \blacktriangleright Correlated errors
	- Example: Reading test, group of items associated with one text.
	- \triangleright corrections for correlated errors (Rae, 2006)
- \blacktriangleright Multidimensional measurement
	- \triangleright Example: Math test, items measuring arithmetic skills but also reading skills etc.
	- \triangleright factor-analysis based estimation of reliability (Raykov & Maurcoulides, 2011)
- \triangleright More sources of error (multilevel models, G-index)
- \triangleright Other than normal distribution of item responses (what happens in case of binary items?)

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha

4. **Reliability in case of binary items**

- 5. Simulation study
- 6. Discussion and conclusion

Logistic alpha

F statistic in

$$
\hat{\alpha}=1-\frac{1}{F}
$$

assumes normality of items

- \blacktriangleright How does the estimate of reliability behave for binary items?
- \triangleright Would a new estimate

$$
\hat{\alpha}_{log}=1-\frac{n-1}{X^2}
$$

based on statistic used in similar situation in logistic regression (difference of deviances $X^2 = D(B) - D(A + B)$) give better results for case of binary data?

Definition of reliability in binary items

- \triangleright classical model not applicable (binary outcome can't be expressed as sum of *T* and independent error *e*)
- \blacktriangleright IRT models ussually assumed
- reliability can be defined as (Raykov & Maurcoulides, 2011)

$$
\rho_X = \frac{\text{var}\left(\mathrm{E}\left(X|\mathcal{T}\right)\right)}{\text{var}\left(\mathrm{E}\left(X|\mathcal{T}\right)\right) + \mathrm{E}\left(\text{var}\left(X|\mathcal{T}\right)\right)} = \frac{\text{var}\left(\mathrm{E}\left(X|\mathcal{T}\right)\right)}{\text{var}\left(X\right)}
$$

- \triangleright resulting integrals can be evaluated numerically, not explicitly
- \triangleright Not equal to parallel-forms reliability, but differences negligible (Kim, 2012)
- \triangleright S-B formula holds only approximately (Martinkova, Zvara 2010)

Cronbach's alpha in binary items

- \triangleright Cronbach's alpha is readily applicable also for binary items
- \triangleright Cronbach's alpha represents generalization of so-called Kuder-Richardson formulas (*Psychometrika*, 1937):

$$
\triangleright \hat{\rho}_{\kappa R - 20} = \frac{\rho}{\rho - 1} \left[1 - \frac{\sum \hat{r}_k (1 - \hat{r}_k)}{\hat{\sigma}_X} \right], \text{ where } \hat{r}_k \text{ is easiness of } k\text{-th item}
$$

 \triangleright for test with items of common difficulties $\hat{\rho}_{\mathsf{KR}-21}^{\vphantom{\dagger}}=\frac{p}{p-1}$ $\frac{p}{p-1}$ $\left[1-\frac{\hat{\mu}(p-\hat{\mu}_k)}{p\hat{\sigma}_X}\right]$ *p*σˆ*^X* \rceil , where $\hat{\mu}$ is average total score

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. **Simulation study**
- 6. Discussion and conclusion

Simulation study in IRT models

Pre-defined values:

- **In number of students** $n = 25, 50, 100, 500$
- **If** number of items $m = 10, 20, 50, 100$
- \blacktriangleright IRT parameters (difficulty, discrimination, guessing for each item)
- \triangleright 55 values of σ _T (defines true reliability)
- **P** number of simulates $N = 1000$

For each combination of *n*, *m* and σ_T :

- \blacktriangleright true reliability computed
- ► *N* data sets generated:
	- ► set of *n* student abilities generated $T_i \sim N(0, \sigma_T^2)$
	- \blacktriangleright *Y_{ij}* generated from IRT model
	- \triangleright estimates computed from the data
- \Rightarrow *N* estimates $\hat{\alpha}_{CB}$, KR-21 and $\hat{\alpha}_{I}$
	- bias and MSE of the estimates plotted out

Simulations: Cronbach's alpha (KR-20) and KR-21

Bias and MSE of two estimators of reliability, item difficulties from $(-0.1, 0.1)$. Number of students $n = 25$, number of items $m = 10$, number of simulates $N = 1000$.

Bias and MSE of two estimators of reliability, item difficulties from (−3, 3). Number of students *n* = 25, number of items $m = 10$, number of simulates $N = 1000$.

\rightharpoonup $\hat{\rho}_{\kappa_{R-21}}$ is not appropriate in case of different item difficulties

Simulations: Cronbach's and logistic alpha

Bias and MSE of two estimators of reliability, number of students $n = 25$, number of items $m = 50$, number of simulates $N = 1000$.

Bias and MSE of two estimators of reliability, number of students $n = 25$, number of items $m = 100$, number of simulates $N = 1000$.

$\hat{\alpha}_{\text{loq}}$ has promising properties especially for high number of items

Patricia Martinkova (CSSS UW) [Reliability and Czech Admission Tests](#page-0-0) BEAR seminar, Feb 11, 2014 28 / 32

Outline

- 1. Introduction
- 2. Reliability
- 3. Cronbach's alpha
- 4. Reliability in case of binary items
- 5. Simulation study
- 6. **Discussion and conclusion**

Discussion and Conclusion

- \triangleright Estimation of reliability is important. It needs to be followed by analysis of validity.
- \triangleright Cronbach's alpha is suitable only in special situations (uncorrelated errors, *T*-equivalent items), and shouldn't be recommended as the generally most appropriate estimator of reliability.
- \triangleright New estimate of reliability for case of binary items has promising properties especially for lower true reliabilities and high number of items.
- \blacktriangleright Nevertheless, under assumptions of uncorrelated errors and *T*-equivalent items, Cronbach's alpha has good properties in case of binary items, too, and it is easier to compute.

Discussion and Conclusion

 \triangleright psychometric research in the Czech Republic

Thank you for your attention!