Lesson 5: Differential Item Functioning

Patrícia Martinková

Department of Statistical Modelling Institute of Computer Science, Czech Academy of Sciences

NMST 570, December 12, 2017

1. Introduction

- 2. DIF and fairness
- 3. DIF detection methods
- 4. difNLR
- 5. ShinyItemAnalysis
- $6. \ Conclusion$

Complex validation of Homeostasis Concept Inventory (HCI)

McFarland et al. Development and Validation of the Homeostasis Concept Inventory. *CBE Life Sciences Education*, vol. 16 no. 2 ar35, 2017. doi 10.1187/cbe.16-10-0305

Patrícia Martinková

NMST570, L5: Differential Item Functioning

Complex validation of Homeostasis Concept Inventory (HCI)

• Males / English as a first language / White and Asian students performed better

McFarland et al. Development and Validation of the Homeostasis Concept Inventory. *CBE Life Sciences Education*, vol. 16 no. 2 ar35, 2017. doi 10.1187/cbe.16-10-0305

Complex validation of Homeostasis Concept Inventory (HCI)

• Males / English as a first language / White and Asian students performed better

Is the test fair?

McFarland et al. Development and Validation of the Homeostasis Concept Inventory. *CBE Life Sciences Education*, vol. 16 no. 2 ar35, 2017. doi 10.1187/cbe.16-10-0305

Differential Item Functioning (DIF) Analysis

- Analytical method to address item fairness
- Ubiquitous in large-scale assessments development
- Less used in conceptual assessment development

Martinková et al. Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. *CBE Life Sciences Education*, 16(2), rm2. doi 10.1187/cbe.16-10-0307

Differential Item Functioning (DIF) Analysis

- Analytical method to address item fairness
- Ubiquitous in large-scale assessments development
- Less used in conceptual assessment development
- None of the HCI items exhibited DIF
 - with respect to gender, ethnicity or ELL status

Martinková et al. Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. *CBE Life Sciences Education*, 16(2), rm2. doi 10.1187/cbe.16-10-0307

Differential Item Functioning (DIF) Analysis

- Analytical method to address item fairness
- Ubiquitous in large-scale assessments development
- Less used in conceptual assessment development
- None of the HCI items exhibited DIF
 - with respect to gender, ethnicity or ELL status

Methods paper: Importance of DIF Analysis

Martinková et al. Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. *CBE Life Sciences Education*, 16(2), rm2. doi 10.1187/cbe.16-10-0307

	DIF and fairness ●0000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Differen	tial Item Fu	nctioning		

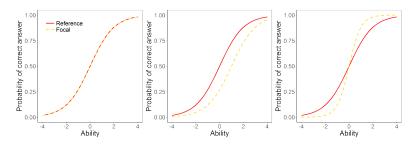
Differential Item Functioning (DIF)

Two subjects with the same underlying ability but from different groups have different probability to answer question correctly

	DIF and fairness ●0000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Differen	tial Item Fu	nctioning		

Differential Item Functioning (DIF)

Two subjects with the same underlying ability but from different groups have different probability to answer question correctly


• Two groups referred to as reference and focal (usually minority)

	DIF and fairness ●0000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Differen	tial Item Fu	nctioning		

Differential Item Functioning (DIF)

Two subjects with the same underlying ability but from different groups have different probability to answer question correctly

- Two groups referred to as reference and focal (usually minority)
- Two types of DIF uniform and non-uniform

		DIF detection methods 0000	ShinyItemAnalysis 000	
Example	e of DIF iter	n		

	DIF and fairness o●oooooo	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Example	of DIF iter	n		

Deficiency of vitamin D in childhood could cause

a. rickets

Introduction 00		DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Example	e of DIF iter	n		

- a. rickets
- b. scurvy

	DIF and fairness o●oooooo	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Example	e of DIF iter	n		

- a. rickets
- b. scurvy
- c. dwarfism

	DIF and fairness o●oooooo	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Example	e of DIF iter	n		

- a. rickets
- b. scurvy
- c. dwarfism
- d. mental retardation

Tipping example (Martiniello et al., 2012)

Of the following, which is the closest approximation of a 15 percent tip on a restaurant check of \$24.99?

- a. \$2.50
- **b**. \$3.00
- **c.** \$3.75
- **d**. \$4.50

	DIF and fairness 000●0000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Example	e of DIF iter	ns		

- Example: Spelling test (orally administered)
 - spell word girder

		DIF detection methods 0000	ShinyItemAnalysis 000	
Example	e of DIF iter	ns		

- Example: Spelling test (orally administered)
 - spell word girder
- Example (SAT): Runner is to marathon as
 - a. envoy is to embassy
 - b. martyr is to massacre
 - c. oarsman is to regatta
 - d. referee is to tournament
 - e. horse is to stable

		DIF detection methods 0000	ShinyItemAnalysis 000	
Example	e of DIF iter	ns		

- Example: Spelling test (orally administered)
 - spell word girder
- Example (SAT): Runner is to marathon as
 - a. envoy is to embassy
 - b. martyr is to massacre
 - c. oarsman is to regatta
 - d. referee is to tournament
 - e. horse is to stable

		DIF detection methods 0000	ShinyItemAnalysis 000	
Example	of DIF iter	ns		

- Example: Spelling test (orally administered)
 - spell word girder
- Example (SAT): Runner is to marathon as
 - a. envoy is to embassy
 - b. martyr is to massacre
 - c. oarsman is to regatta
 - d. referee is to tournament
 - e. horse is to stable

Who might have been dissadvantaged?

Terminology: Reference group (R), Focal group (F)

	DIF and fairness 0000●000	DIF detection methods 0000		ShinyItemAnalysis 000	Conclusion 000
DIF as r	nultidimens	ionality probler	n		

DIF as multidimensionality problem:

• Existence of another dimension tested on the particular item besides the primary latent variable

		DIF detection methods 0000		ShinyItemAnalysis 000	Conclusion 000
DIF as r	multidimens	ionality probler	n		

DIF as multidimensionality problem:

• Existence of another dimension tested on the particular item besides the primary latent variable

What is the primary and the secondary latent variable tested in mentioned examples?

		DIF detection methods 0000	ShinyItemAnalysis 000	
DIF and	item fairne	SS		

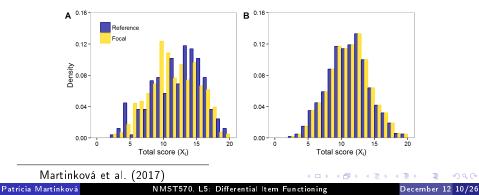
• Content experts must decide on item fairness

		DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
DIF and	item fairne	SS		

- Content experts must decide on item fairness
- Secondary latent trait causing DIF

	DIF and fairness 00000●00	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
DIF and	item fairne	SS		

- Content experts must decide on item fairness
- Secondary latent trait causing DIF
 - Unrelated to content being tested
 - DIF item is considered unfair
 - Item should be reworded or removed
 - Example: Tipping


	DIF and fairness 00000●00	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
DIF and	item fairne	SS		

- Content experts must decide on item fairness
- Secondary latent trait causing DIF
 - Unrelated to content being tested
 - DIF item is considered unfair
 - Item should be reworded or removed
 - Example: Tipping
 - Related to content being tested
 - DIF item is not considered unfair
 - Item can inform teaching
 - Example: Item on childhood illnesses as part of Czech Medical School Admission Test in Biology

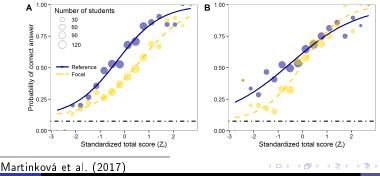
Comparing total scores only can lead to incorrect conclusions about item/test fairness:

- Case study 1: Homeostasis Concept Inventory
 - Significant difference between males and females in total score (Fig A)
- Case study 2: Simulated dataset based on GMAT
 - Identical distributions of total score (Fig B)

Comparing total scores only can lead to incorrect conclusions about item/test fairness:

• Case study 1: No HCl item detected as DIF

Martinková et al. (2017)


Patrícia Martinková

NMST570, L5: Differential Item Functioning

Comparing total scores only can lead to incorrect conclusions about item/test fairness:

- Case study 1: No HCl item detected as DIF
- Case study 2: DIF detected in two items of simulated dataset
 - Item 1 exhibits uniform DIF (Fig A)
 - Item 2 exhibits non-uniform DIF (Fig B)

Patrícia Martinková

NMST570, L5: Differential Item Functioning

	DIF and fairness 00000000	DIF detection methods ●000	ShinyItemAnalysis 000	Conclusion 000
DIF dete	ection meth	ods		

Patrícia Martinková

NMST570, L5: Differential Item Functioning

December 12 12/26

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々⊙

	DIF and fairness 00000000	DIF detection methods ●000	ShinyItemAnalysis 000	Conclusion 000
DIF dete	ection meth	ods		

• Based on total score

・ロト ・ 日 ・ ・ ヨ ト ・

	DIF and fairness 00000000	DIF detection methods ●000	ShinyItemAnalysis 000	Conclusion 000
DIF dete	ection meth	ods		

• Based on total score

• Based on latent ability

I ntroduction	DIF and fairness	DIF detection methods	ShinyItemAnalysis	Conclusion
00	00000000	●000	000	000
DIF dete	ection meth	ods		

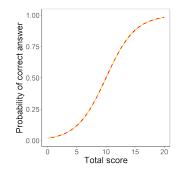
- Based on total score
 - Mantel-Haenszel test
 - + simple, easily implemented
 - cannot detect non-uniform DIF
 - doesn't account for possibility of guessing/inattention

• Based on latent ability

	DIF and fairness	DIF detection methods	difNLR	ShinyItemAnalysis	Conclusion
	00000000	●000	0000000	000	000
DIF dete	ection meth	ods			

- Based on total score
 - Mantel-Haenszel test
 - + simple, easily implemented
 - cannot detect non-uniform DIF
 - doesn't account for possibility of guessing/inattention
 - Logistic regression
 - + simple, easily implemented, detects both forms of DIF
 - doesn't account for possibility of guessing/inattention
- Based on latent ability

	DIF and fairness 00000000	DIF detection methods ●000		Conclusion 000
DIF dete	ection meth	ods		

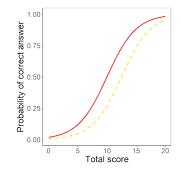

- Based on total score
 - Mantel-Haenszel test
 - + simple, easily implemented
 - cannot detect non-uniform DIF
 - doesn't account for possibility of guessing/inattention
 - Logistic regression
 - + simple, easily implemented, detects both forms of DIF
 - doesn't account for possibility of guessing/inattention
- Based on latent ability
 - Item Response Theory models (non-linear mixed effect models)
 - + detects both forms of DIF, accounts for possibility of guessing/inattention
 - more complex, computationally demanding

	DIF and fairness 00000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Mantel-I	Haenszel tes	st		

- Test of independence of two binary variables: item score and group membership.
- X^2 test, but incorporating also ability score
- Looking at contingency tabels for each level of total score, adding up

$$P(Y_{ij} = 1 | X_i, G_i) = \frac{e^{\beta_{0j} + \beta_{1j}X_i}}{1 + e^{\beta_{0j} + \beta_{1j}X_i}}$$

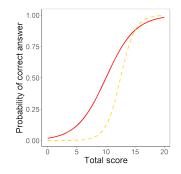
= probability of correct answer of student *i* to item *j*
 X_i total score, G_i group



NMST570, L5: Differential Item Functioning

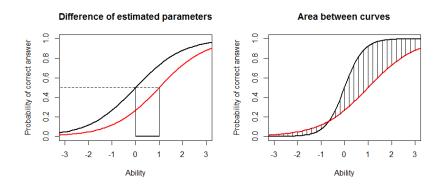
December 12 14/26

$$\begin{split} \mathsf{P}(Y_{ij} = 1 | X_i, G_i) &= \frac{e^{\beta_{0j} + \beta_{1j} X_i + \beta_{2j} G_i}}{1 + e^{\beta_{0j} + \beta_{1j} X_i + \beta_{2j} G_i}} \\ &= \mathsf{probability} \text{ of correct answer of student } i \text{ to item } j \\ X_i \text{ total score, } G_i \text{ group} \end{split}$$

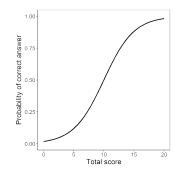


NMST570, L5: Differential Item Functioning

December 12 14/26


 $\mathsf{P}(Y_{ij} = 1 | X_i, G_i) = \frac{e^{\beta_{0j} + \beta_{1j}X_i + \beta_{2j}G_i + \beta_{3j}X_iG_i}}{1 + e^{\beta_{0j} + \beta_{1j}X_i + \beta_{2j}G_i + \beta_{3j}X_iG_i}}$ = probability of correct answer of student *i* to item *j* X_i total score, G_i group

NMST570, L5: Differential Item Functioning


- Lord's Wald statistic: Difference between parameters
- Raju: Area between the curves (difference or absolute difference)
- Likelihood ratio test

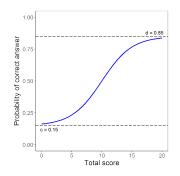
$$\begin{split} \mathsf{P}(Y_{ij} = 1 | X_i, G_i) &= \frac{e^{\beta_{0j} + \beta_{1j}X_i}}{1 + e^{\beta_{0j} + \beta_{1j}X_i}} \\ = \text{probability of correct answer by } i\text{th subject on } j\text{th item} \end{split}$$

 X_i total score, G_i group membership

Drabinová & Martinková (2017)

Patrícia Martinková

NMST570, L5: Differential Item Functioning

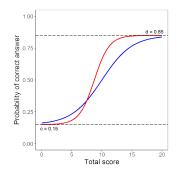

December 12 16/26

n

December 12 16/26

$$P(Y_{ij} = 1 | X_i, G_i) = c_j + (d_j - c_j) \frac{e^{\beta_{0j} + \beta_{1j}X_i}}{1 + e^{\beta_{0j} + \beta_{1j}X_i}}$$

= probability of correct answer by *i*th subject on *j*th item
 X_i total score, G_i group membership


Drabinová & Martinková (2017)

Patrícia Martinková

NMST570, L5: Differential Item Functioning

$$\begin{split} \mathsf{P}(Y_{ij} = 1 | X_i, G_i) &= c_j + (d_j - c_j) \; \frac{e^{\beta_{0j} + \beta_{1j}X_i + \beta_{2j}G_i + \beta_{3j}X_iG_i}}{1 + e^{\beta_{0j} + \beta_{1j}X_i + \beta_{2j}G_i + \beta_{3j}X_iG_i}} \\ &= \text{probability of correct answer by } i\text{th subject on } j\text{th item} \\ X_i \text{ total score, } G_i \text{ group membership} \end{split}$$

Drabinová & Martinková (2017)

Patrícia Martinková

NMST570, L5: Differential Item Functioning

December 12 16/26

	DIF and fairness	DIF detection methods	difNLR	ShinyItemAnalysis	Conclusion
	00000000	0000	o●ooooo	000	000
Technica	l details				

We use:

- Z-scores instead of total score
- IRT parameterization
- Non-linear least squares for parameter estimation
- DIF testing based on F or LR test
- Multiple comparison corrections

Drabinová, Martinková & Zvára (2017): difNLR: Detection of Dichotomous DIF by Non-linear Regression. R package Version 1.1.1 https://CRAN.R-project.org/package=difNLR

Patrícia Martinková

<u>Dece</u>mber 12 17/26

	DIF and fairness	DIF detection methods	difNLR	ShinyItemAnalysis	Conclusion
	00000000	0000	o●ooooo	000	000
Technica	al details				

We use:

- Z-scores instead of total score
- IRT parameterization
- Non-linear least squares for parameter estimation
- DIF testing based on F or LR test
- Multiple comparison corrections

Method is implemented in R library difNLR (Drabinová, Martinková & Zvára, 2017)

Drabinová, Martinková & Zvára (2017): difNLR: Detection of Dichotomous DIF by Non-linear Regression. R package Version 1.1.1 https://CRAN.R-project.org/package=difNLR

• Model allows for differences in guessing between groups

Drabinová & Martinková (2017): Detection of Differential Item Functioning with Non-Linear Regression: Non-IRT Approach Accounting for Guessing. *Journal of Educational Measurement*, 54(4), pp. 498-517, 2017. dx.doi.org/10.1111/jedm.12158

Patrícia Martinková

NMST570, L5: Differential Item Functioning

December 12 18/26

	DIF and fairness 00000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Monte G	Carlo simula	tion study		

Design

- 5 levels of sample size
 (500+500, 500+1,000, 1,000+1,000, 1,000+2,000, 2,000+2,000)
- 20 items
- Answers generated using 3PL model
- DIF caused by difference in difficulty, discrimination and guessing parameters
- 0%, 5%, or 15% DIF proportion
- DIF size based on (weighted) area between characteristic curves

	DIF and fairness 00000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion 000
Monte G	Carlo simula	tion study		

Design

- 5 levels of sample size
 (500+500, 500+1,000, 1,000+1,000, 1,000+2,000, 2,000+2,000)
- 20 items
- Answers generated using 3PL model
- DIF caused by difference in difficulty, discrimination and guessing parameters
- 0%, 5%, or 15% DIF proportion
- DIF size based on (weighted) area between characteristic curves

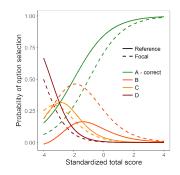
DIF detection

- Mantel-Haenszel, Logistic Regression, Lord (3PL IRT), NLR
- Benjamini-Hochberg multiple comparison correction

		DIF detection methods	ShinyItemAnalysis 000	
Monte C	Carlo simula	tion study		

Results - NLR

- Less convergence issues than for Lord (3PL IRT)
- Good control of rejection rates in almost all scenarios
- Comparable power to other DIF detection methods
- Accounts for guessing
- Allows for testing group difference in guessing


Drabinová & Martinková (2017): Detection of Differential Item Functioning with Non-Linear Regression: Non-IRT Approach Accounting for Guessing. *Journal of Educational Measurement*, 54(4), pp. 498-517, 2017. dx.doi.org/10.1111/jedm.12158

Patrícia Martinková

Differential Distractor Functioning (DDF)

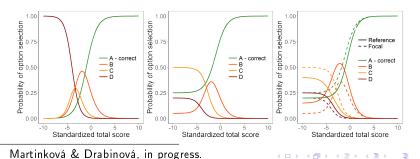
Two subjects with the same underlying ability but from different groups have different probability to choose given distractor in multiple-choice item

Martinková & Drabinová, in progress.

Patrícia Martinková

NMST570, L5: Differential Item Functioning

December 12 21/26

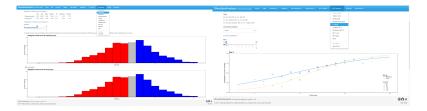


Extending multinomial regression model

• To better describe attractiveness of distractors

Extending DDF model

• To account for differential attractiveness of distractors in multiple-choice items



Patrícia Martinková

NMST570, L5: Differential Item Functioning

• Simulated GMAT data: total scores may have exactly the same distribution, yet there may be DIF present in some items!

Martinková et al. Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. *CBE Life Sciences Education*, 16(2), rm2. doi 10.1187/cbe.16-10-0307

Patrícia Martinková

NMST570, L5: Differential Item Functioning

 Method demonstrated on MSAT-B dataset from Drabinová & Martinková (2017)

Drabinová & Martinková (2017): Detection of Differential Item Functioning with Non-Linear Regression: Non-IRT Approach Accounting for Guessing. *Journal of Educational Measurement*, 54(4), pp. 498-517, 2017. dx.doi.org/10.1111/jedm.12158

Patrícia Martinková

NMST570, L5: Differential Item Functioning

December 12 24/26

	DIF and fairness 00000000	DIF detection methods 0000		ShinyItemAnalysis ○○●	Conclusion 000
Shinylto	mAnalycic	DDE with m	Itinomial	rograccion	

ShinyltemAnalysis: DDF with multinomial regression

Patrícia Martinková

NMST570, L5: Differential Item Functioning

イロト イヨト イヨト イヨト

	DIF and fairness 00000000	DIF detection methods 0000	ShinyItemAnalysis 000	Conclusion ●00
Conclusi	on			

DIF/DDF analysis should be used routinely in test development

- to check for fairness with respect to groups
- to inform teaching

	DIF and fairness 00000000	DIF detection methods	ShinyItemAnalysis 000	Conclusion ●00
Conclus	ion			

DIF/DDF analysis should be used routinely in test development

- to check for fairness with respect to groups
- to inform teaching

DIF detection methods

- Mantel-Haenszel test
- Logistic regression
- IRT/based methods: Lord (Wald test), Raju

	DIF and fairness 00000000	DIF detection methods	ShinyItemAnalysis 000	
Conclus	ion			

DIF/DDF analysis should be used routinely in test development

- to check for fairness with respect to groups
- to inform teaching

DIF detection methods

- Mantel-Haenszel test
- Logistic regression
- IRT/based methods: Lord (Wald test), Raju

New method for DIF detection was introduced

- allows for group differences in guessing and inattention
- current research focuses on differences in option selection (DDF)
- may provide better understanding to misconceptions held by groups

Thank you for your attention! www.cs.cas.cz/martinkova

< □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

References

- McFarland, Price, Wenderoth, Martinková, Cliff, Michael, Modell and Wright (2017). Development and Validation of the Homeostasis Concept Inventory. CBE Life Sciences Education, vol. 16 no. 2 ar35. doi 10.1187/cbe.16-10-0305
- Martinková, Drabinová, Liaw, Sanders, McFarland & Price (2017). Checking Equity: Why DIF Analysis should be a Routine Part of Developing Conceptual Assessments. CBE-Life Sciences Education, 16(2), rm2. doi 10.1187/cbe.16-10-0307
- Drabinová & Martinková (2017). Detection of Differential Item Functioning with Non-Linear Regression: Non-IRT Approach Accounting for Guessing. *Journal of Educational Measurement*, 54(4), pp. 498-517, 2017. dx.doi.org/10.1111/jedm.12158
- Martinková, Štěpánek, Drabinová et al. (2017). Semi-real-time analyses of item characteristics for medical school admission tests. *FedCSIS 2017 Proceedings*, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 189–194, 2017. doi 10.15439/2017F380
- Martinková, Drabinová & Houdek (2017): ShinyltemAnalysis: Analýza přijímacích a jiných znalostních či psychologických testů. TESTFÓRUM, č.9, str. 16-35. doi 10.5817/TF2017-9-129
- Martinková, Drabinová, Leder & Houdek (2017). ShinyItemAnalysis: Test and Item Analysis with Shiny. R package Version 1.2.3 https://shiny.cs.cas.cz/ShinyItemAnalysis/ https://CRAN.R-project.org/package=ShinyItemAnalysis
- Drabinová, Martinková & Zvára (2017): difNLR: Detection of Dichotomous DIF by Non-linear Regression. R package Version 1.1.1 https://CRAN.R-project.org/package=difNLR