1. Review	Polytomous items	3. GRM	4. (G)PCM/RSM	5. NRM	Further topics
000	00000	00	0000	0000	00000

Lesson 8: Item response theory models (part 3)

Patrícia Martinková

Department of Statistical Modelling Institute of Computer Science, Czech Academy of Sciences

Institute for Research and Development of Education Faculty of Education, Charles University, Prague

NMST570, November 27, 2018

 Review 000 	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 0000	 Further topics 00000
Outline					

1. Review

2 2. Polytomous items

3. GRM

4. (G)PCM/RSM

5. NRM

1. Review	Polytomous items	3. GRM	4. (G)PCM/RSM	5. NRM	Further topics
•00	00000	00	0000	0000	00000
Review:	Dichotomous	IRT mo	odels		

- Dichotomous IRT models
 - Rasch model
 - 1PL IRT model
 - 2PL IRT model
 - 3PL IRT model
 - 4PL IRT model
- Item Characteristic Curve (ICC)
 - Item Response Function (IRF)
- Item Information Function (IIF)
- Test Information Function (TIF)
- Likelihood function
- Parameter estimation: JML, CML, MML, Bayesian methods
- Model fit, item fit, person fit (see also Ames and Penfield (2015))

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, a, b_j) = \frac{\exp[a(\theta_i - b_j)]}{1 + \exp[a(\theta_i - b_j)]}$$

 θ_i ability of person *i* for i = 1, ..., I b_j difficulty of item *j* (location of inflection point) for j = 1, ..., J*a* discrimination common for all items (slope at inflection point)

$$\pi_{ij} = P(Y_{ij} = 1 | \theta_i, \mathbf{a}_j, b_j) = \frac{\exp[\mathbf{a}_j(\theta_i - b_j)]}{1 + \exp[\mathbf{a}_j(\theta_i - b_j)]}$$

 θ_i ability of person *i* for i = 1, ..., I b_j difficulty of item *j* (location of inflection point) a_j discrimination of item *j* (slope at inflection point) for j = 1, ..., J

1. Review 000	 Polytomous items ●○○○○ 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 0000	 Further topics 00000
Polytom	ous Items				

Example 1: Quality of Life Questionnaire

- "I am satisfied with my life."
 - 1 Strongly disagree
 - 2 Disagree
 - 3 Neither agree nor disagree
 - 4 Agree
 - 5 Strongly agree
 - Ordered item (Likert-type question)

 Review 000 	 Polytomous items ○●○○○ 	3. GRM 00	4 . (G)PCM/RSM 0000	5. NRM 0000	 Further topics 00000
Polytom	ous Items				

Example 2: Reasoning Ability Instrument

"In what way are orange and a banana alike?"

2pts Provides pertinent general categorization (e.g. "Both are fruit.")

1pts Provides one or more common properties (e.g. "Both are food.")

Opts Provides specific properties of each member of pair, or wrong answer (e.g. "Both are round.")

 Review 000 	 Polytomous items 00●00 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 0000	 Further topics 00000
Polytom	ous Items				

Example 3: Math Misconceptions

-6 - (-10) = ?

c 4

For this item:

- Alternatives (distractors) can provide useful information for the diagnosis of mathematical misconceptions.
- Dichotomizing would lead to discarding this information.

 Review 000 	 Polytomous items 000●0 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 0000	 Further topics 00000
Nominal	and Ordinal	Models	- Categorizat	ion	

Difference models

Setting mathematical form to cumulative probabilities

Examples:

- Graded Response Model (GRM; Samejima, 1970)
- Modified Graded Response Model (MGRM; Muraki, 1990)

Divide-by-total models

• Response category probabilities are defined as the ratio between category-related functions and their sum

Examples:

- Partial Credit Model (PCM; Masters, 1982)
- Generalized Partial Credit Model (GPCM; Muraki, 1992)
- Rating Scale Model (RSM; Andrich, 1978)
- Nominal Response Model (NRM; Bock, 1972)

 Review 000 	 Polytomous items 0000● 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 0000	 Further topics 00000
Nominal	and Ordinal	Models ·	- Categorizat	ion	

Cumulative logit models

- Assumes linear form of cumulative logits
 - Graded Response Model (GRM; Samejima, 1970)
 - Modified Graded Response Model (MGRM; Muraki, 1990)

Adjacent-categories logits models

- Assumes linear form of adjacent logits
 - Generalized Partial Credit Model (GPCM; Muraki, 1992)
 - Partial Credit Model (PCM; Masters, 1982)
 - Rating Scale Model (RSM; Andrich, 1978)

Baseline-category logit models

- Assumes linear form of baseline-category logits
 - Nominal Response Model (NRM; Bock, 1972)

GRM models cumulative probabilities (Samejima, 1970):

$$\pi_{ijk}^* = P(Y_{ij} \ge k | \theta_i, a_j, b_{jk}) = \frac{\exp[a_j(\theta_i - b_{jk})]}{1 + \exp[a_j(\theta_i - b_{jk})]}$$

 b_{jk} locations of item j (location of inflection points of cumulative functions)

Category probabilities:

$$\pi_{ijk} = P(Y_{ij} = k | \theta_i, a_j, b_{jk}) = \pi^*_{ijk} - \pi^*_{ij(k+1)}$$

 $a = 2, b_1 = -2, b_2 = 0, b_3 = 1, b_4 = 2$

1. Review	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM ●000	5. NRM 0000	 Further topics 00000
Partial C	Credit Model ((PCM)			

PCM (Masters, 1982) models adjacent-categories with 1PL model:

$$\log\left(\frac{P(Y_j = 1|\theta)}{P(Y_j = 0|\theta)}\right) = \log\left(\frac{\pi_{j1}}{\pi_{j0}}\right) = \theta - \delta_{j1}$$
$$\log\left(\frac{\pi_{j2}}{\pi_{j1}}\right) = \theta - \delta_{j2}$$
$$\log\left(\frac{\pi_{j3}}{\pi_{j2}}\right) = \theta - \delta_{j3}$$

 δ_{jt} are threshold parameters

- correspond to ability levels for which the response categories intersect
- constrained to sum to zero (or denominator od π_{ijk} is constrained)

 Review 000 	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM ○●○○	5. NRM 0000	 Further topics 00000
Partial C	redit Model (PCM)			

Category probabilities:

GPCM (Muraki, 1992) models adjacent-categories with 2PL model:

$$\log\left(\frac{\pi_{jk}}{\pi_{j(k-1)}}\right) = \alpha_j(\theta - \delta_{jk}), k = 1, ..., K_j$$

Category probabilities:

$$\pi_{ijk} = P(Y_{ij} = k | \theta_i, \alpha_j, \delta_{jk}) = \frac{\exp\sum_{t=0}^k \alpha_i(\theta_i - \delta_{jt})}{\sum_{r=0}^{K_j} \exp\sum_{t=0}^r \alpha_i(\theta_i - \delta_{jt})}$$

 Review 000 	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM 000●	5. NRM 0000	 Further topics 00000
Rating S	Scale Model (RSM)			

- RSM (Andrich, 1978) is restricted GPCM
- all items share the same rating scale structure
- \bullet all test items have exactly K categories
- the threshold parameters can be split into item-specific location and response threshold: $\delta_{it} = \delta_i + \lambda_t$
- Category probabilities:

$$\pi_{ijk} = P(Y_{ij} = k | \theta_i, \delta_j, \lambda_t) = \frac{\exp\sum_{t=0}^k (\theta_i - [\delta_i + \lambda_t])}{\sum_{r=0}^{K_j} \exp\sum_{t=0}^r (\theta_i - [\delta_i + \lambda_t])}$$

1. Review 2. Polytomous items 3. GRM 4. (G)PCM/RSM 5. NRM 6. Further topics 000 0000 0000 0000 0000 0000 Nominal Response Model (NRM)

NRM (Bock, 1972) models baseline-categories logits:

$$\log\left(\frac{\pi_{jk}}{\pi_{j0}}\right) = \alpha_{jk}\theta + c_{jk}$$

- baseline chosen arbitrary, e.g. first alternative or correct answer
- item/category-specific intercepts and slopes
- traditional (slope/intercept) parametrization
- ullet category boundaries can be retrieved from $\alpha {\rm s}$ and $c {\rm s}$
- $\bullet\,$ setting differences of $\alpha {\rm s}$ equal to 1 leads to Generalized Partial Credit Model

1. Review	Polytomous items	3. GRM	4. (G)PCM/RSM	5. NRM	Further topics
				0000	
Nominal	Response Mo	odel (NF	RM)		

Category probabilities:

$$\pi_{ijk} = P(Y_{ij} = k | \theta_i, \alpha_{j0}, \dots, \alpha_{jK_j}, c_{j0}, \dots, c_{jK_k}) = \frac{\exp(\alpha_{jk}\theta_i + c_{jk})}{\sum_{r=0}^{K_j} \exp(\alpha_{jr}\theta_i + c_{jr})}$$

 $a_1 = 2, d_1 = -1, a_2 = 1, d_2 = 1, a_3 = 1.5, d_3 = 0.5$

1. Review	Polytomous items	3. GRM	4. (G)PCM/RSM	5. NRM	Further topics
				0000	
Compar	ring PCM and	NRM			

PCM with $\delta_1 = -1.5, \delta_2 = -0.5$ and $\delta_3 = 1.2$ NRM with $\alpha_1 = 1, \delta_1 = 1.5, \alpha_2 = 2, \delta_2 = 2$, and $\alpha_3 = 3, \delta_3 = 0.8$

Choice	PCM	NRM
	$\sum_{t=0}^k (heta - \delta_t)$	$\alpha_k \theta + c_k$
k = 0	$\theta - \delta_0 = 0$	$\alpha_0\theta + c_0 = 0$
k = 1	$\theta - \delta_0 + \theta - \delta_1 = \theta + 1.5$	$\alpha_1\theta + c_1 = 1\theta + 1.5$
k = 2	$\theta - \delta_0 + \theta - \delta_1 + \theta - \delta_2 = 2\theta + 2$	$\alpha_2\theta + c_2 = 2\theta + 2$
k = 3	$\theta - \delta_0 + \theta - \delta_1 + \theta - \delta_2 + \theta - \delta_3 = 3\theta + 0.8$	$\alpha_3\theta + c_3 = 3\theta + 0.8$

 Review 000 	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 000●	 Further topics 00000
Expected	item score				

Category response function:

Expected item score:

1. Review	Polytomous items	3. GRM	4. (G)PCM/RSM	5. NRM	Further topics
000	00000	00	0000	0000	00000
Ordinal	/Nominal Mod	lels - Ot	her Topics		

Analogously as for dichotomous models, also for ordinal/nominal models:

- Parameter estimation
- Abilities estimation
- Item information function
- Test information function
- Reliability

Applications:

- IRT Linking and Equating
- Differential Item Functioning
- Computerized Adaptive testing

 Review 000 	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM	5. NRM 0000	 6. Further topics ○●○○○
Other N	lodels				

- Multidimensional models
- Testlet models
- Models for response times
- Nonparametric models
- Models for nonmonotone items
- Hierarchical response models
- Generalized modelling approaches

 Review 000 	 Polytomous items 00000 	3. GRM 00	4 . (G)PCM/RSM 0000	5. NRM 0000	 6. Further topics 00●00
Vocabul	ary				

- Item Characteristic Curve (ICC)
- Item Response Fuction (IRF)
- Item Information Function (IIF)
- Test Information Function (TIF)
- Likelihood function
- Parameter estimation: JML, CML, MML, Bayesian approaches
- Model fit, item fit, person fit
- 1PL, 2PL, 3PL, 4PL IRT models
- Graded Response Model (GRM)
- Partial Credit Model (PCM)
- Generalized Partial Credit Model (GPCM)
- Rating Scale Model (RSM)
- Nominal Response Model (NRM)

Thank you for your attention! www.cs.cas.cz/martinkova

 Review 000 	 Polytomous items 00000 	3. GRM 00	4. (G)PCM/RSM 0000	5. NRM 0000	6. Further topics 0000●
Referenc	es				

- A. J. Ames and R. D. Penfield. An ncme instructional module on item-fit statistics for item response theory models. *Educational Measurement: Issues and Practice*, 34(3):39–48, 2015.
- D. Andrich. A rating formulation for ordered response categories. *Psychometrika*, 43(4):561–573, 1978.
- R. D. Bock. Estimating item parameters and latent ability when responses are scored in two or more nominal categories. *Psychometrika*, 37(1):29–51, 1972.
- G. N. Masters. A rasch model for partial credit scoring. *Psychometrika*, 47(2): 149–174, 1982.
- E. Muraki. Fitting a polytomous item response model to likert-type data. *Applied Psychological Measurement*, 14(1):59–71, 1990.
- E. Muraki. A generalized partial credit model: Application of an em algorithm. *ETS Research Report Series*, 1992(1), 1992.
- F. Samejima. Estimation of latent ability using a response pattern of graded scores. *Psychometrika*, 35(1):139–139, 1970.