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Preface

Seminar on Numerical Analysis 2019 (SNA 2019) is the 14th meeting in a series of SNA events.
The previous meetings were held in Ostrava 2003, 2005, Monínec 2006, Ostrava 2007, Liberec
2008, Ostrava 2009, Nové Hrady 2010, Roºnov 2011, Liberec 2012, Roºnov 2013, Nymburk 2014,
Ostrava 2015 and 2017.

The �rst SNA was organized in honour of seventieth birthday of Prof. Ivo Marek. At SNA
2013 we celebrated his eighty but unfortunately this SNA is the �rst event without him as Ivo
Marek passed away in 2017. A memory of his rich and inspiring life can be found in the special
issue of the journal Applications of Mathematics devoted to SNA 2017, see Vol. 62(2017), No. 6.
Certainly, a continuation of SNA would be a wish of Ivo.

We hope that SNA meetings will successfully continue as one of mostly national events and
meetings of the Czech community working in the �eld of numerical mathematics and computer
simulations.

The programme of SNA 2019 includes the traditional Winter School with tutorial lectures focused
on selected important topics within the scope of numerical methods and modelling. This year,
the Winter School provides a series of lectures on the following topics:

• High-performance variants of Krylov subspace methods (E.Carson)

• An introduction to extended �nite element methods (J. Haslinger)

• On the way from matrix to tensor computations (M.Ple²inger)

• Guaranteed eigenvalue bounds for elliptic partial di�erential operators (T.Vejchodský)

Beside the Winter School, SNA 2019 includes more than 40 contributions in the form of oral
presentations and posters.

SNA 2019 has started with building of a new Programme Committee. On this opportunity, we
would like to express many thanks to former members of the Programme Committee, to Prof.
Zden¥k Dostál and Prof. Zden¥k Strako² who contributed a lot to success of previous SNA
events. Especially, Zden¥k Strako² was a promoter of the Winter School becoming a part of SNA
since 2005.

SNA 2019 is held again in Ostrava, at the Faculty of Electrical Engineering and Computer Science
of the Technical University of Ostrava and at the Institute of Geonics of the Czech Academy of
Sciences. We believe that the participants will enjoy the Winter School, the seminar programme
consisting of contributed presentations and posters as well as accompanying social events.

On behalf of the Programme and Organizing Committee of SNA 2019,

Radim Blaheta and Ji°í Starý
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Guaranteed goal-oriented a posteriori error

estimates for elliptic problems

O.Barto², V.Dolej²í

Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

Finite element methods for solving partial di�erential equations give us approximate solutions
which on their own need not resemble closely the actual exact solution. This leads us to seek
an estimate of how close the approximation is. If the whole computation is carried out knowing
that we look for a value of some functional, e.g. an integral over a part of the boundary of the
domain or a value at some point, we can estimate the error of this functional. One way we can
do this is by solving an adjoint problem and using a dual weighted residual method. If the error
estimate is too high, it can then be used locally as an indicator to re�ne parts of a computational
domain and �nd a more accurate approximate solution.

2 Model problem

Let us consider a Laplace equation −∆u = f in Ω, u = 0 on ∂Ω, where Ω ⊂ R2 is a polygonal
domain and f ∈ L2(Ω) is given. Suppose that we are looking for a value of J(u) rather than for
an entire solution u, where J is a given linear functional, e.g. J(u) =

∫
Ω ju dx for j ∈ L2(Ω).

The weak solution u ∈ H1
0 (Ω) and its continuous piecewise polynomial discretization uh ∈ V p

h ⊂
H1

0 (Ω) are de�ned by

(∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω), (1)

(∇uh,∇ϕh) = (f, ϕh) ∀ϕh ∈ V p
h .

Similarly, we can formulate an adjoint (dual) problem for a functional J . The weak dual solution
z ∈ H1

0 (Ω) and its approximation zh ∈ V p
h are de�ned by

(∇ψ,∇z) = (j, ψ) ∀ψ ∈ H1
0 (Ω), (2)

(∇ψh,∇zh) = (j, ψh) ∀ψh ∈ V p
h .

The sought approximation to J(u) is naturally J(uh). Furthermore, we can use the Galerkin
orthogonality of the approximate solutions to derive

J(u− uh) = (∇u−∇uh,∇z) = (∇u−∇uh,∇z −∇zh)

= (f, z − zh)− (∇uh,∇z −∇zh) =: rh(uh)(z − zh)

= J(u− uh)− (∇u−∇uh,∇zh) =: r∗h(zh)(u− uh).

Estimate |J(u)−J(uh)| ≤ |u−uh|H1
0 (Ω)|z−zh|H1

0 (Ω) gives us about double the order of convergence
as compared to |J(u)−J(uh)| ≤ ‖J‖|u−uh|H1

0 (Ω), which could be derived without employing any
goal-oriented strategy. It still remains to �nd some way to estimate |J(u−uh)| without using the
unknown weak solutions u and z. The residual forms rh(uh)(z− zh) and r∗h(zh)(u−uh) only use
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one unknown function each. By replacing u and z in the forms r∗h and rh with with some more
accurate approximations than uh and zh we can �nd good a posteriori error estimates for our
target functional J . This can be done with functions ũh and z̃h from a richer space V p+1

h ⊃ V p
h .

The error of the target functional becomes

J(u− uh) = rh(uh)(z̃h −Πz̃h) + rh(uh)(z − z̃h) = rh(uh)(z̃h −Πz̃h) + (∇(u− ũh),∇(z − z̃h))

= r∗h(zh)(ũh −Πũh) + r∗h(zh)(u− ũh) = r∗h(zh)(ũh −Πũh) + (∇(u− ũh),∇(z − z̃h)),

where Π is an interpolation onto V p
h .The error estimator

ηI =
1

2
(rh(uh)(z̃h −Πz̃h)) + r∗h(zh)(ũh −Πũh)

can be further divided to elementwise error contributions

ηII =
1

2

∑
K∈Th

RK,V ‖z̃h −Πz̃h‖K +RK,B‖z̃h −Πz̃h‖∂K

+R∗K,V ‖ũh −Πũh‖K +R∗K,B‖ũh −Πũh‖∂K
)
.

These can be used for mesh re�nement, as was done for a convection-di�usion-reaction equation in
[4], and, considering that functions of a type ‖z̃h−Πz̃h‖K are dependent on a shape of K, we can
use this estimate to generate anisotropic mesh, see [3]. We know that ηI is a good error estimate
on a su�cently re�ned mesh Th. The true error could, however, be dominated by the higher order
term (∇(u− ũh),∇(z − z̃h)) on a coarse mesh. We thus need some upper, not necessarily sharp
error estimate for this term to guarantee that we do not stop computing before the true error
reaches some given small tolerance. In [1], there is an estimate of a form C log(h)3/2ηNV V ‖f‖,
where the constant C is unknown, f is measured in some higher order Sobolev norm, but ηNV V
is computable and uses functions similar to those in the de�nition of R∗K,V and R∗K,B. In [2],

there is a fully computable error estimate of a form
(∑

K∈Th (‖σK‖K + oscK)2
)1/2

, where σK is

computed using �ux reconstruction and oscK measures oscillations in the right-hand side (such as
f −Πf). These computations also rely heavily on an assumpion that the considered di�erential
operator is symmetric in the weak form, i.e. (∇·,∇·) in our case. With all these tools, it is
possible to safely continue computations until we arrive at a su�ciently close approximation
J(uh) to J(u).

Acknowledgement: This work has been supported by Charles University, project GAUK
850218.
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Simulation of the incompressible turbulent �ow

using isogeometric analysis

B.Bastl, M.Brandner, J. Egermaier, H.Horníková, K.Michálková, E. Turnerová

Faculty of Applied Sciences, University of West Bohemia in Pilsen

1 Introduction

The Navier-Stokes equations are the basis for computational modeling of the �ow of an incom-
pressible Newtonian �uid. The �uid �ow behaviour is very complex and depends on the Reynolds
number Re, which depends on viscosity ν, geometry and �uid velocity. The Navier-Stokes equa-
tions can be used to directly simulate turbulent �ows. But the number of grid points in spatial
discretization must be proportional to Re9/4 and the time step has to be su�ciently small to re-
solve the movement of the fastest �uctuations, otherwise the simulation becomes unstable. Then
the direct numerical simulation based on solving Navier-Stokes equations becomes impossible as
the Reynolds number increases and some kind of turbulence modelling is necessary.

In this contribution, we focus on incompressible �uid �ow simulation based on RANS equations
with LRN (Low Reynolds Number) version of Wilcox (2006) and SST (Shear Stress Transport)
k-omega two�equation models. The numerical model is based on Isogeometric Analysis (IgA)
which is a recently developed approach based B-spline/NURBS objects and sharing a lot of
features and approaches with the well-known Finite Element Method.

Our solver is implemented in an open-source C++ library G+Smo and its functionality will be
demonstrated on several examples.

2 Incompressible turbulent �ow

The Reynolds�Averaged Navier�Stokes equations (RANS) is the most common approach to sim-
ulate turbulent �ows. The idea is the modelling of all turbulent scales and only the e�ect of
turbulence on the mean �ow behavior is considered, which implies lower memory requirements.
The Boussinesq hypothesis is applied in our implementation, which arrives at the Reynolds�
Averaged Navier�Stokes equations in the form (see more e.g. in [3])

∂ū

∂t
−∇ · [(ν + νT )∇ū] + ū · ∇ū +∇p̄−∇ · (νT (∇ū)T ) = −2

3
∇k, in Ω× (0, T ),

(1)

∇ · ū = 0, in Ω× (0, T ),

where Ω ⊂ Rd is a bounded domain, d being the number of spatial dimensions, with boundary
∂Ω consisting of two disjoint parts, Dirichlet ∂ΩD and Neumann ∂ΩN and T > 0 is an upper
bound of the time interval of interest [0, T ] and ν is the kinematic viscosity. Next, the unknown
variables are the mean �ow velocity ū, the mean kinematic pressure p̄, the eddy viscosity νT and
the turbulent kinetic energy k.

13



Figure 1: Computational mesh with 7085 DOFs for blade pro�le.

The initial�boundary value RANS problem is given as a system of (d + 1) equations (1) together
with initial and mixed boundary conditions

ū(x, 0) = ū0(x), in Ω,

ū = g, on ∂ΩD × [0, T ], (2)

(ν + νT )
∂ū

∂n
+ νT (∇ū)T · n− np̄− 2

3
nk = 0, on ∂ΩN × [0, T ].

A wide range of the turbulent models can be involved to approximate the eddy viscosity and
turbulent kinetic energy. The turbulent models vary from relatively simple algebraic models to
more complex models, e.g. Spalart�Allmaras model as the one�equation turbulence model and
k�ε or k�ω models as two�equation turbulence models.

The two�equation models became standard models in engineering practice and research, thus a
large number of two�equation models has been derived and are still developing. The variety of
the models give us an opportunity to choose the most appropriate model for a wide range of the
�ows. However, the �uid �ow behaviour is necessary to predict properly and it is necessary to
understand the formulation of the two�equation models and their assumptions. For example, if
the separation region can appear in the �ow or if the �ow near the walls is important to simulate
in details then di�erent turbulent models should be used, because some turbulent models are
valid near the boundary - Low Reynolds Number (LRN) models - and others are valid far from
the boundary - High Reynolds Number (HRN) models.

The equations are solved through the whole domain up to the solid walls using LRN and hence
a very �ne grid is necessary near the boundary to resolve the �ow variables properly.

On the other hand, the HRN models can be considered instead, also known as wall functions
approach. The idea is to bridge the near wall region, i.e., to place the �rst node not so close
to the boundary and solve the RANS problem in the rest of the domain. For more details and
discussion about the near wall treatment, the reader is referred to [3].

Considering the implementation di�culties associated with the HRN method in case of isogeo-
metric analysis, low Reynolds number version of Wilcox (2006) k − ω two�equation model [4]
and SST k − ω two�equation model [2] are considered in this contribution.

14



Now, we present one of the numerical results for the turbulent �ow around the 2D blade pro�le
using LRN Wilcox turbulence model. The computational geometry and the mesh is showed in
the Figure 1. The simulation was carried out for a �uid with viscosity ν = 10−5 with time step
∆t = 0.001 for backward Euler time discretization. At the in�ow boundary we consider constant
velocity pro�le. The middle parts of the upper and lower boundaries are solid walls with zero
velocity and the periodic conditions are considered at the rest of the upper and lower boundaries.

We used a steady Navier�Stokes solution with viscosity ν = 0.01 as the initial condition. Figures
2 and 3 show the mean velocity and pressure distributions at times T = 0.05s and T = 0.152s,
respectively. The numerical solution at the later time represents result for which the stopping
criteria is satis�ed.

Figure 2: Mean velocity (left) and pressure (right) solution at T = 0.05s.

Figure 3: Mean velocity (left) and pressure (right) solution at T = 0.152s.

Acknowledgement: This work has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 678727.
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Preconditioners for the incompressible Navier�Stokes

equations discretized by isogeometric analysis

B.Bastl,M.Brandner, J. Egermaier, H.Horníková,K.Michálková, E.Turnerová, C.Vuik ∗

NTIS, Faculty of Applied Sciences, University of West Bohemia in Pilsen
∗Delft University of Technology, Delft, The Netherlands

1 Introduction

We deal with �ow simulation modeled by the incompressible Navier�Stokes equations. The
discretization of the problem is based on isogeometric analysis (IgA) approach resulting in large
sparse linear systems of saddle-point type. The most expensive part of the simulation process is
the solution of these systems. Direct solvers are inapplicable for large problems because of their
very high time and memory requirements, therefore an e�cient iterative method is necessary.
Among iterative methods, Krylov subspace methods are the most commonly used in applications
and can be very e�cient if combined with a good preconditioning technique. Since our matrices
are nonsymmetric, we have to use a Krylov subspace method for nonsymmetric matrices. The
most popular ones are GMRES and BiCGSTAB.

In this work, we focus on a class of block preconditioners for saddle-point type systems developed
and studied in recent years, mostly in connection with �nite element discretizations. We study
their e�ciency for systems arising from the IgA discretization, where the matrix is usually less
sparse compared to those from �nite elements. Our main aim is �ow simulation in water turbines,
which brings several complications like periodic boundary conditions at nonparallel boundaries
and computation in a rotating frame of reference. This makes the system matrix even less sparse
with more complicated sparsity pattern.

2 Problem formulation

Let Ω ⊂ Rd be a bounded domain, where d is the number of spatial dimensions. The initial
boundary value incompressible Navier�Stokes problem is given as a system of d+ 1 equations

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = 0 in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),
(1)

together with initial condition and boundary conditions, where u is the �ow velocity, p is the
kinematic pressure and ν is the kinematic viscosity.

The problem is discretized in time using backward �nite di�erence, linearized by Picard method
and discretized in space using isogeometric analysis approach. IgA is a relatively new discretiza-
tion approach [1] based on Galerkin method, where the basis of the discrete solution space is taken
from the B-spline/NURBS representation of the computational domain Ω. The discretization
leads to a sparse linear system of saddle-point type[

A BT

B 0

] [
u
p

]
=

[
f
g

]
, (2)
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usually very large in real world applications.

Here, the matrix A is block diagonal, since there is no coupling between the velocity components.
But in the case of �ow in the water turbine, the periodic boundary conditions at nonparallel
sides (the computational domain is part of a radially symmetric domain) and rotating frame of
reference introduce coupling between the velocity components, thus, some o�-diagonal blocks of
A become nonzero.

3 Block preconditioners

Block preconditioners are based on splitting the system into velocity and pressure part. Their
construction is based on the block LDU decomposition of the system matrix in (2)[

A BT

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1BT

0 I

]
, (3)

where S = −BA−1BT is the Schur complement matrix. This suggests the following choice of
the preconditioner matrix

P =

[
A BT

0 S

]
, (4)

for which the (right) preconditioned matrix would have all eigenvalues equal to one. The com-
putation of P−1r is performed by solving the linear system[

A BT

0 S

] [
zu
zp

]
=

[
ru
rp

]
(5)

in the following steps

Szp = rp, (6)

Azu = ru −BT zp. (7)

The explicit construction of the Schur complement S would be impractical, because it would
require construction of A−1 and it is a dense matrix. Therefore we have to �nd some inexpensive
approximation Ŝ ≈ S �rst. The choice of the approximation yields di�erent preconditioners. We
study several choices which can be found in the literature, namely LSC (least-squares commu-
tator), AL (augmented Lagrangian) and SIMPLE-type preconditioners. An overview of these
preconditioners can be found e.g. in [3].

The subsystems with matrices A and Ŝ are usually solved approximately in practice, e.g. by one
or more V-cycles of a multigrid solver. However, we use direct solvers for these subsystems in
this contribution.

4 Numerical experiments

In the numerical experiments, we compare convergence of the Krylov subspace methods with the
particular preconditioners, study its dependence on the mesh re�nement, viscosity etc. and test
their e�ciency for the case with periodic conditions on nonparallel boundaries. Further, since
isogeometric analysis allows the degree of continuity of the solution across the element interfaces
to be higher than C0, we also test the in�uence of the degree of continuity on the convergence
of the iterative solvers.
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In Figure 1 we can see a comparison of several preconditioners for a simple ilustrative example
of �ow over a 2D backward facing step with viscosity ν = 0.01, time step ∆t = 0.01 and a
uniform mesh with 42005 degrees of freedom. It shows the evolution of relative residual norm,

LSC

SIMPLE

SIMPLER

MSIMPLER

MAL, γ = 1.8

0 20 40 60 80 100
iter

10-15

10-11

10-7

10-3

Residual

LSC

SIMPLE

SIMPLER

MSIMPLER

MAL, γ = 1.8

0 20 40 60 80 100
iter

10-11

10-8

10-5

0.01

10

Error

LUtime

LSC

SIMPLE

SIMPLER

MSIMPLER

MAL, γ = 1.8

20 40 60 80 100
iter

20

40

60

80

100

Time

Figure 1: Preconditioners comparison.

relative error norm and computational time in seconds during 100 GMRES iterations for one
linear system obtained from the discretization of this problem. For the evaluation of the error,
the solution computed with direct solver is considered as exact solution.
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On comparison of solution methods for 3D contact

shape optimization problems with friction

P.Beremlijski

V�B -Technical University of Ostrava

The shape optimization of 3D elastic body in contact with rigid obstacle with Coulomb friction
can be modelled as a minimization of a composite function generated by the objective and the
control-state mapping (see [2, 1, 3]). It has been shown that for small coe�cients of Coulomb
friction the discretized contact problem with Coulomb friction has a unique solution and this
solution is Lipschitzian as a function of a control variable describing the shape of the elastic body.
It means that the control-state mapping is single-valued and the 3D contact shape optimization
problem with Coulomb friction leads to a minimization of nondi�erentiable (nonsmooth) single-
valued function.

There are several possibilities how to solve the problem. The easiest one is to neglect the friction
and �nd the optimal shape of the optimized body as the solution of the shape optimization
problem of 3D elastic body in contact without friction. The advantage is that we solve the
optimization problem with di�erentiable function. Unfortunately, we �nd the optimized shape
which does not solve the original problem exactly.

Another possibility is to solve the original problem with Coulomb friction. This leads to the
optimization of a nonsmooth function. We have to use some method which are working with
calculus of Clarke (for details, see [4]) for this case. The most reliable of the nonsmooth methods
for this kind of problem are bundle methods. We use bundle trust method proposed by Schramm
and Zowe (for details, see [6]). In each step of the iteration process, we must be able to �nd
the solution of the state problem (contact problem with Coulomb friction) and to compute one
arbitrary Clarke subgradient. To get subgradient information needed in the used numerical
method we use the di�erential calculus of Mordukhovich (for details, see [5]).

The goal of the contribution is to compute the optimized shape of 3D elastic body in contact
with rigid obstacle with Coulomb friction by both previous mentioned solution methods and
their comparison.
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An e�cient reduced basis construction for stochastic Galerkin

matrix equations using de�ated conjugate gradients
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1 Introduction

The motivation for this work is a laboratory experiment on a rock sample. We assume to know
the inner structure (separated subdomains with di�erent types of material) of the sample (e.g.
from a Computed Tomography scan) and we want to estimate permeabilities of each distinct
subdomain in the sample. This is done by a series of tests, where a �uid is pressed to some part
of the sample and let out from another part of the sample, the output volume is then measured.
We also admit uncertainties of these measurements, this forms a complex inverse problem. This
is usually solved using the Bayesian inversion, which relies on many forward problem (Darcy
�ow) solutions. In this matter, the stochastic Galerkin (SG) method can be used as a surrogate
model substituting the forward solutions.

The work presented in this contribution is an extension of the results presented in [2]. Here
we focus on alternative approaches to the rational Krylov approximation and expansion vector
proposal, see Sec. 3. Main contribution of this work is the use of the DCG method, which is
new in this area of application, see Sec.5. This contribution is based of our paper [1].

1.1 Problem setting

We assume a Darcy �ow problem on 2D square 〈0, 1〉2 domain with no forcing term:
−∇x · ( k (x;Z)∇xu (x;Z)) = 0 ∀x ∈ Ω, Z ∈ RM ,
u (x;Z) = g (x) ∀x ∈ ΓD,Z ∈ RM ,
n (x) · k (x;Z)∇xu (x;Z) = 0 ∀x ∈ ΓN ,Z ∈ RM .

(1)

Here the random material �eld takes the form

k (x;Z) =

M∑
i=1

χΩi (x) exp (σiZi + µi) , (2)

where χΩi (x) is a characteristic function of the subdomain Ωi and exp (σiZi + µi) describes the
distribution of the permeability on subdomain Ωi. µi, σi are the mean value and the standard
deviation of the underlying normal distribution. Then the components of Z are independent
standard normal random variables.

2 Stochastic Galerkin method

The SGM assumes a discretization of both the physical space 〈ϕ1 (x) , . . . , ϕNd+NDd (x)〉 ⊂ H1 (Ω)
(linear elements) and the stochastic/parametric space 〈ψ1 (Z) , . . . , ψNs (Z)〉 ⊂ L2

dFZ

(
RM

)
(Her-

mite polynomials).
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Due to the separable nature of the material �eld, the values of bilinear form on the elements of
tensor product basis can be written as

a (ϕiψj , ϕkψl) =
M∑
m=1

∫
RM

ψjψl exp (amZm + bm) dFZ
∫

Ωm

∇ϕi∇ϕkdx. (3)

This leads to a large system (Ns ×Nd) of linear equations in the form of

A · uh = b, A =
M∑
m=1

Gm ⊗Km, b =
M∑
m=1

gm ⊗ fm, (4)

where Gm/gm are matrices/vectors of the parameter space and Km/fm are matrices/vectors of
the physical space.

3 Reduced basis method

We can view the system (4) as matrix equations

M∑
m=0

KmxG
T
m =

M∑
m=1

fmg
T
m. (5)

We assume that there exist a low-rank approximation xk = Wkyk of the solution x, where
Wk = [w1, . . . , wk] ∈ RNd×k is given reduced basis (RB) and yk is a reduced solution matrix.
The matrix yk can be obtained from (5) using the Galerkin condition on the residual of xk

W T
k Rk = 0⇒

M∑
m=0

W T
k KmWkykG

T
m =

M∑
m=1

W T
k fmg

T
m. (6)

The RB approach can be viewed as a standard iterative method. In each iteration we expand
the RB and control the relative residual error.

3.1 Rational Krylov subspace methods

We aim to build the RB using an approach from [2] called the rational Krylov subspace approx-
imation. Brie�y, the rational Krylov subspace approximation can be performed for a series of
symmetric positive de�nite (SPD) matrices {Km}m=1,...,M and a nonzero vector v. We use only
simplest rational functions 1

Km
. In the �rst iteration, it generates the basis

〈
K−1

1 v, . . . ,K−1
M v

〉
, in

the second the basis
〈
K−1

1 K−1
1 v,K−1

1 K−1
2 v, . . . , K−1

M K−1
M−1v,K

−1
M K−1

M v
〉
and so on, for details

see [2]. The reduced basis will be the union of v and all these bases.

In our case the matrices {Km}m=1,...,M are not SPD and we need to transform the system.
This leads to the use of these matrices

{
K−1

0 (Km − αK0)
}
m=1,...,M

and these starting vectors{
K−1

0 fm
}
m=1,...,M

.
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3.2 Adaptive selection of space expansion

The process of building the rational Krylov subspace is impractical because in each subsequent
iteration we need to construct larger bases. The remedy to this is to iteratively select a vector v
from the current basis and expand the basis by

〈
K−1

1 v, . . . ,K−1
M v

〉
.

We propose an approach, which calculates weights for the vectors during the orthogonalisation
step (with insigni�cant additional costs). And choose v for the next step accordingly.

4 De�ated conjugate gradients

The de�ated conjugate gradients (DCG) method is an extension of the standard conjugate gradi-
ent (CG or PCG if using a preconditioner) method, see [3]. The DCG method takes an additional
parameter in the form of the de�ation basisW . The de�ation basisW should be able to describe
the sought solution reasonably well.

We choose the RB available in each iteration (it gradually grows) as the de�ation basis for the
DCG.

5 Numerical testing

Here, we present an outline of the obtained results. We tested both the convergence of the RB
solver (i.e. convergence of the whole SG solution) and the convergence of the DCG with varying
size of the de�ation basis (i.e. in di�erent iterations of the RB solver).

Our model problem consists ofM = 7 subdomains, with stochastic properties µi ∈ (9,5,9,1,5,1,5)
and σi = 0.5. The used discretizations consist of complete polynomials on 7 variables up to a
given degree and an uniform �nite element grid on unit square, where grid lvl l equals to the
discretization 10l on each side.

Reduced basis convergence: we compare di�erent settings with 3 di�erent parameters of
the RB construction:

• the approach from [2] using the Cholesky factor with the proposed approach without it

• the choice of the expansion candidate vectors from [2] using the SVD based approach with
our approach incorporated to the orthogonalisation step

• initial vectors for the RB creation: single vector as a sum of fm and zero iteration of the
RB W0 = 〈fm〉Mm=1

The performance of all of these approaches are comparable with slight advantage to the version
without Cholesky factor + adaptive selection during the orthogonalisation step + initial vector
as a sum of fm.

De�ated CG convergence: we compare the impact of the RB used as a de�ation basis
together with some preconditioners (Schwarz, diagonal, ichol). The summary of collected results
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is in Tab. 1. The RB solver running up to the precision 10−9 (higher targeted precision would
lead to higher e�ciency) saves more than 70% of the time spent on the PCG if the DCG is used.

Additive Schwarz p. diagonal p. ichol (no�ll) p.

sum of saved iterations 18335 75191 26558
savings in percents 72.32% 73.47% 73.33%

Table 1: Computational savings using DCG with the RB as a de�ation basis.

6 Conclusions

We examined new approach without the use of the Cholesky factor, which performs similarly (or
slightly better) in comparison to the original one from [2]. Additionally we proposed a cheaper
alternative to the RB expansion vector choice using SVD from [2], which performed slightly
better than the SVD approach.

The main contribution is the use of the DCG method with the current build of the RB as a
de�ation basis. With the use of the DCG method, we saved more than 70% of the computational
e�ort during the construction of the RB (independent of the choice of the preconditioner). The
solution of the reduced problem using the PCG with the Kronecker preconditioner was also
e�ective, due to variable accuracy (10 times higher than the last relative residual of the RB
solver) and almost precise initial guess based on the solution from the previous RB iteration.

We also aimed at the algorithm, where every step is not bound by memory (like Cholesky
decomposition) and can be e�ectively parallelized. This was fully achieved e.g. with the use
of additive Schwarz preconditioner, we can scale up to large supercomputer clusters. Such
implementation is the aim of our future work.
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multilevel Monte Carlo method
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Introduction

Classical Monte Carlo method estimates a mean of a random variable X by the average

〈X〉N =
1

N

N∑
i=1

X(ωi).

usingN samples ofX. This is attractive for applications whereX is result of complex calculations
as it does not require changes into the simulation software. On the other hand the convergence
rate its slow convergence rate:

Var〈X〉N =
VarX√
N

with respect to number of samples N prevents usage of this approach for realistic simulations.

The idea of multilevel Monte Carlo estimators (MLMC, see [3]) is to diminish the error by
reduction of the variance by a sequence of approximations Xn that are cheaper to sample. In
particular we write L-level MLMC estimator as

〈XL〉N =
L∑
l=1

〈X l −X l−1〉Nl =
L∑
l=1

〈∆lX〉Nl (1)

where N = (n1, . . . , nL) is the sampling vector of the number of samples on individual levels and
by ∆lX(ω) = X l(ω)−X l−1(ω) we denote level di�erences. This estimator have variance:

Var〈XL〉N =
L∑
l=1

Vl
Nl
, Vl = Var〈∆lX〉Nl . (2)

where the level variances Vl can be estimated using the standard unbiased estimator:

Vl ≈ V̂l =
1

Nl − 1

Nl∑
i=1

(
∆lXi − 〈∆lX〉Nl

)2
For many applications the level variances decay rapidly. In particular, when X is based on
numerical PDE solution, we can approximate X by solutions based on coarser grids. For an
elliptic PDE, numerical scheme of order s and assuming linear computational complexity (e.g.
multigrid solver) the optimal choice of the sample vector is:

Nl ∝ h2s+d
l

where hl is the mesh step at level l and d is the dimension of the domain. So we need a work
corresponding to the calculation of just few �ne resolution samples of X to obtain mean estimate
at quality that would require millions of samples using the classical MC method. In practice,
however, the speedup is limited by the fact that PDE solvers are usually not optimized for
performance on coarse grids.
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Maximal entropy method

For the approximation of the density function of the random variable X based on the MLMC
we use generalized moments:

µm = Eρ[φm(X)], (3)

where φm : R → R are smooth functions. To deal with normalization we assume φ1(x) = 1. It
can be shown that the minimum entropy approximation with moments µ have density function:

ρλ(x) = eλ·φ

where the parameter vector λ is the unique solution to the convex minimization problem:

minimize(λ) : F (λ) =

∫
Ω
ρλ − λ · µ. (4)

Where Ω ⊂ suppρ is assumed to be bounded.

In contradiction to previous works, namely [1], we relax the normalization condition
∫

Ω ρλ = 1,
which leads to natural convex problem (4) for λ. This approach also extends the stability
result [1, Theorem 3] while keeping the proof very simple. In particular, we can estimate the
approximation error in the sense of Kullback-Leibler divergence DKL(f‖g) = Ef [log(f/g)] as
follows:

Theorem 1. Let ρλ be the approximation of the exact density ρ based on exact moments µ =
Eρφ. The MLMC estimator (1) provides estimated moments µ̂, we denote ρ̂ = ρλ̂ corresponding
density approximation with parameters λ̂ given as solution to (4). Assuming the error of the
estimator V = Eρ|µ− µ̂|2, then for any given (small) probability π we have

Pρ

(
DKL(ρλ‖ρ̂) ≤ η

)
≥ 1− π, with η =

V

α0π
,

where α0 is the smallest eigenvalue of the Hessian matrix H(λ̂) = ∂2F (λ̂).

Numerical issues

For usual choices of the moments φ as Legendre polynomials and Fourier basis the corresponding
Hessian matrixH(λ) is poorly conditioned when ρ is small on substantial part of Ω. In this case
the moment functions are close to be dependent with respect to the scalar product:

(f, g)ρ = Eρ[fg] (5)

In order to improve the conditioning we can observe that Hessian for the exact λ can be expressed
as expectation and therefore can be estimated by the MLMC estimator. Using the eigenvalue
decomposition of the estimate we can �nd the set of moment functions that is orthonormal with
respect to the scalar product (5). Then the Hessian matrices are close to the identity matrix
which provides fast and stable solution to the minimization problem (4).

Numerical results

Ideas mentioned above have been applied to a test Darcy problem, where X was total �ux
through a unit square with correlated random conductivity �eld and pressure gradient boundary
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Figure 1: PDF and CDF approximation for the �ux through a square domain with a random
conductivity. Using 11 polynomial moments and varying number of levels in the MLMC estima-
tor.

condition. Realizations have been calculated using Flow123d simulator [2]. Results of PDF
approximation using 11 polynomial moments and various number of levels in MLMC is depicted
at Figure. 1.

Conclusion

Combination of the maximal entropy method with multilevel Monte Carlo method provides an
e�ective way for approximation of the PDF. Improved probabilistic characterization of the ap-
proximation error in probabilistic sense has been provided. A MLMC estimate of the covariance
matrix has been used to construct natural moment functions for approximated density.
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1 Introduction

Vectorization in MATLAB replaces ine�cient loops over long arrays by operations with matrices,
mainly with sparse matrices. Vectorized codes are then reasonably scalable and fast for large
size problems. In this contribution, we deal with a vectorized MATLAB implementation in 2D
and 3D proposed in [1] for solution of elastoplastic problems. The related codes are available for
download in [2].

Our implementation arises from a current elastoplastic solution scheme including time discretiza-
tion by the implicit Euler method, construction of a constitutive operator and its generalized
derivatives by the return-mapping algorithm, space discretization by the �nite element method,
and solution of nonlinear systems of equations by the semismooth Newton method. In [1], there
is described in detail the implementation for models including von Mises and Drucker-Prager
yield criteria. Similar implementation has been used for other yield criteria within numerical
examples introduced in recent papers [3, 4, 5].

Further, one can optionally choose P1, P2, Q1 and Q2 �nite elements with convenient quadrature
rule for numerical integration. To be the codes universal, crucial functions are written uniformly
regardless on the choice of elastoplastic models, �nite elements or geometries.

The rest of this abstract describes main features of elastoplastic systems of nonlinear equations,
assembling of the elastic and tangent sti�ness matrices, and illustrative numerical results.

2 Elastoplastic system of nonlinear equations and its solution

Broadly speaking, in each time step of elastoplastic problems we solve a system of nonlinear
equations of the following type:

�nd u ∈ Rn : F (u) = f , (1)

where u denotes the unknown displacement vector, f ∈ Rn is the vector of external forces, and
F : Rn → Rn is a nonlinear function representing internal forces which is usually Lipschitz con-
tinuous and semismooth but nonsmooth in Rn. Therefore, it is necessary to use the semismooth
variant of the Newton method, see, e.g., [5]. In each Newton iteration ` = 1, 2, . . ., we solve a
linear system of equations

�nd δu` ∈ Rn : Ktangentδu
` = f − F (u`), (2)
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where δu` ∈ Rn is an unknown incremental vector, u` ∈ Rn is a previous iteration of u, and
Ktangent ∈ Rn×n is a tangential sti�ness matrix representing a generalized derivative of F at
u` ∈ Rn.

The systems of nonlinear equations (1) have other speci�c features. First, if the load f is
su�ciently small then solutions of elastic and elastoplastic problems usually coincide, i.e., F (u) =
Kelastu, where Kelast ∈ Rn×n is the corresponding elastic sti�ness matrix. Further, for larger
loads these solutions signi�cantly di�er and in addition, the solution u need not exist for some
elastoplastic models due to the presence of limit loads [3, 4, 5]. In vicinity of the limit load, one
can also observe locking phenomena and higher order �nite elements are recommended. Then,
assemblies of F and Ktangent require suitable quadrature rules of higher order. Finally, the
de�nition of F is based on solution of the elastoplastic constitutive problems at each integration
point of the investigated body. Such solutions (constitutive operators) are given in an implicit
form and depend on history of loading. Therefore, constructions of F andKtangent are technically
complicated and not straightforward [4, 5].

3 Assembly of sti�ness matrices Kelast and Ktangent

Sti�ness matrices based on the �nite element method are usually assembled elementwisely by
using local sti�ness matrices. For example, one can write

Kelast =

ne∑
e=1

R>eKe,elastRe, (3)

where ne denotes a number of �nite elements, Re is a matrix restricting the displacement vector
into its components belonging to a �nite element and Ke,elast is the local sti�ness matrix of the
form

Ke,elast =

nq∑
q=1

ωe,qB
>
e,qCe,qBe,q. (4)

Here, nq is a number of quadrature points at any element, ωe,q denotes quadrature weights, Be,q

is the strain-displacement matrix, and Ce,q is the elastic constitutive matrix following from the
Hooke's law (Ce,q ∈ R3×3 in 2D and Ce,q ∈ R6×6 in 3D). For homogeneous materials, Ce,q is
�xed for any element and any quadrature point.

The assembly of Kelast introduced in [1] arises from the following split:

Kelast = B>DelastB, (5)

where

B =



B1,1R1

B1,2R1
...

B1,nqR1

B2,1R2
...
...

Bne,nqRne


, Delast =



C̃1,1

C̃1,2

. . .
C̃1,nq

C̃2,1

. . .
. . .

C̃ne,nq


,
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Figure 1: 3D problem with the von Mises yield criterion and kinematic hardening. Hardening
�eld (left), assembly times of tangential sti�ness matrix versus number of plastic integration
points (right).

with C̃e,q = ωe,qCe,q, e = 1, 2, . . . , ne, q = 1, 2, . . . , nq. The matrices B and Delast are large and
sparse. Moreover, we see that Delast is block diagonal. The multiplications in (5) are possible
and convenient in MATLAB if these matrices are de�ned as sparse.

Similarly, one can assemble the tangent sti�ness matrix for an elastoplastic problem:

Ktangent = B>DtangentB. (6)

Here, the matrix Dtangent has the same size and structure as Delast. Each block of Dtangent

represents a generalized derivative of the elastoplastic constitutive operator at any integration
point. Moreover, one can write [1]:

Ktangent = Kelast +B>(Dtangent −Delast)B, (7)

Although (6) and (7) are algebraically identical, the form (7) is more convenient for MATLAB
implementation since the sparse matrixDtangent−Delast is typically sparser thanDtangent. This
occurs when most of integration points remains in the elastic phase. Therefore, for problems
with smaller plastic regions, the assembly of the tangential sti�ness matrix can be faster than
for problems with larger plastic regions, see Figure 1 (left).

Finally, it is important to note that the matrices Kelast,B,Delast can be precomputed and
only the matrix Dtangent depends on a particular plasticity model and needs to be partially
reassembled in each Newton iteration. Additionally, B can be also used for the assembly of the
function F .

4 Illustrative numerical results

The �rst illustrative result is depicted in Figure 1. It is considered a 3D problem with L-
shaped geometry and cycling loading. The body obeys the associative plastic �ow rule and the
linear kinematic hardening law. The von Mises yield criterion is used. The left �gure visualizes
zones with inelastic material response. The right �gure compares assembly times of Ktangent at
particular time steps and Newton iterations. We see that the assembly times linearly depend on
numbers of elements with plastic response and are less than the assembly time of Kelast.

The second illustrative result is depicted in Figure 2. It is considered a strip-footing problem
under the plane strain assumption. The aim is to analyze bearing capacity of a soil foundation
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Figure 2: Strip-footing 2D problem solved by perfect plasticity with the Drucker-Prager yield
criterion. Failure mechanism is visualized by the deform shape (left) and jumps in displacement
�elds (right).

and visualize the plastic collapse of the body. Monotone displacement loading is prescribed on the
left part of the top. The body is perfectly plastic with the Drucker-Prager yield criterion. Failure
mechanism is visualized by displacement �elds and deformed shape. We observe signi�cant jumps
in displacement �elds. The interface between the blue and red regions de�nes the expected failure
zone.
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A posteriori error estimates in greedy reduced basis algorithms

M.�ertíková, L.Gaynutdinova, I. Pultarová
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1 Introduction

The goal of reduced basis (RB) algorithms is to provide a relatively small set of functions which
can serve as a basis for su�ciently accurate numerical solutions of some parametrized problem
for any choice of parameters. An important part of greedy RB (GRB) algorithms is to estimate
the di�erence between the exact solution of a discretized problem and its projection onto the
space spanned by a reduced basis. We introduce a new kind of the estimate, which is based on
a multilevel splitting of a discretized solution space, as an alternative to a widely used estimate
based on bounds to coercivity and continuity constants. In our conference presentation, we
introduce both algorithms, compare the guaranteed two-sided bounds obtained for both types of
the error estimates and discuss the numerical complexity, accuracy and localization of errors.

2 The problem

We solve the problem to �nd u : D × Γ→ R such that∫
D
a(x, ξ)∇u(x, ξ)∇v(x) dx =

∫
D
f(x)v(x) dx for all v ∈ V, ξ ∈ Γ, (1)

where D ⊂ R2 is a bounded polygonal domain, V = W 1,2
0 (D), u(x, ξ) = 0 on δD×Γ, f ∈ L2(D)

and a(·, ξ) ∈ L∞(D) for ξ ∈ Γ. The gradient ∇ is considered with respect to the physical
variable x. The set Γ ⊂ RK is usually a set of outcomes of K independent and identically
distributed random variables which induce a metric in Γ. The coe�cient a(x, ξ) is considered in
the a�ne form

a(x, ξ) = a0(x) +
K∑
k=1

ξkak(x), (2)

where ak(x) ∈ L∞(D), ξ = (ξ1, . . . , ξK), ξk ∈ Γk, Γ =
∏K
k=1 Γk. We assume that there exist

constants 0 < α1 ≤ α2 <∞, such that

α1 ≤ a(x, ξ) ≤ α2 for all x ∈ D, ξ ∈ Γ.

For the discretization of problem (1) with respect to the physical variable x ∈ D, we employ
the �nite element (FE) method with continuous piece-wise bilinear basis functions ψn(x), n =
1, . . . , N , using a grid of N inner nodes in D. Let us denote the N -dimensional span of these
functions by VN . The discretized problem reads to �nd u ∈ VN such that∫

D
a(x, ξ)∇u(x, ξ)∇v(x) dx =

∫
D
f(x)v(x) dx for all v ∈ VN , ξ ∈ Γ. (3)

Due to (2), the discretized problem (3) can be expressed in the matrix-vector form

A(ξ)u(ξ) :=

(
A0 +

K∑
k=1

ξkAk

)
u(ξ) = b, (4)
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where (Ak)ns =
∫
D ak(x)∇ψn(x)∇ψs(x) dx, bn =

∫
D f(x)ψn(x) dx, k = 0, 1, . . . ,K, n, s =

1, . . . , N . The solution u(ξ) ∈ RN of (4) is the coe�cient vector of the solution u(x, ξ) ∈ VN
of (3), which means that they are connected via u(x, ξ) =

∑N
n=1 un(ξ)ψn(x).

During the o�ine phase, the GRB algorithm �nds a relatively small set (the reduced basis)
of solutions of (3), u1, . . . , uM ∈ VN , M < N , such that the Galerkin solutions of (3) found
in the span of them are su�ciently accurate for all ξ ∈ Γ. In the matrix-vector form, the
reduced basis can be represented by the matrix UM ∈ RN×M with columns u1, . . . ,uM formed
by the coe�cient vectors with respect to the FE basis functions ψ1(x), . . . , ψN (x) of the basis
UM = {u1(x), . . . uM (x)}. The name reduced basis will be used for UM as wll as for the coe�cient
vectors UM . In the online phase of the GBR algorithm, for each ξ ∈ Γ, the high-�delity solution
u(ξ) of (4) can be approximated by UMuRB

M (ξ) where uRB
M (ξ) is the RB solution of the RB

problem

ARB(ξ)uRB(ξ) :=

(
ARB

0 +

K∑
k=1

ξkA
RB
k

)
uRB(ξ) = bRB, (5)

where ARB
k ∈ RM×M , uRB(ξ), bRB ∈ RM , ARB

k = UT
MAkUM , k = 0, 1, . . . ,K, and bRB = UT

Mb.

3 A posteriori error estimates

Let us emphasize that the name a posteriori error estimate here and also, for example, in [3, 4, 5,
6], means the estimate of a di�erence (measured in some norm) between the Galerkin solutions
uM (x, ξ) ∈ VM ⊂ VN and uN (x, ξ) ∈ VN . These solutions are the (·, ·)ξ-orthogonal projections of
the exact solution u(x, ξ) ∈ V of problem (1) onto VM and VN , respectively. However, a widely
used meaning of the a posteriori error estimate is connected to an estimate of a distance of
some approximate solution uM (x, ξ) ∈ VM from the exact solution u(x, ξ) ∈ V of (1). Such an
estimate, however, cannot be obtained using only the discretized form of the problem. Some
sophisticated construction is needed unless some other properties of the solutions are employed,
such as in [1].

Let us denote by EM (ξ) the squared energy norm of the error eM (ξ) of the approximate solution
of the problem (4) found in the M -dimensional RB space for some parameter ξ. Thus for the
residual vector rM (ξ) = b−A(ξ)uM (ξ), we have the guaranteed error bounds

EM (ξ) = eM (ξ)TA(ξ)eM (ξ) = rM (ξ)TA(ξ)−1rM (ξ).

3.1 Mean based a posteriori error estimate

A widely used guaranteed estimate of the energy norm EM (ξ) of the error is called themean-based
estimate (MB)

1

α2(ξ)
rM (ξ)TA−1

0 rM (ξ) ≤ EM (ξ) ≤ 1

α1(ξ)
rM (ξ)TA−1

0 rM (ξ) (6)

see, e.g. [5], where we can set

α2(ξ) = ess infx∈D
a(x, ξ)

a0(x)
, α2(ξ) = ess supx∈D

a(x, ξ)

a0(x)
.

In the GRB algorithms, instead of computing the constants α1(ξ) and α2(ξ) for every ξ ∈ Γ
separately, their uniform lower and upper bounds can be used in (6). However, if the variation
of a(x, ξ) grows with respect to x and ξ, these uniform bounds may become useless.
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3.2 Multi-level a posteriori error estimate

The estimate of EM (ξ) suggested in this section is based on a hierarchy designed in the FE
solution space. Let us consider a hierarchical two-level splitting of the solution space VN into
two subspaces, the coarse and the �ne one. Let us denote the coe�cient vectors of a function
u ∈ VN with respect to the original FE space by u ∈ RN and with respect to the hierarchical
two-level basis by

uML =

(
uML,C

uML,F

)
∈ RN , PuML = u,

respectively, where P ∈ RN×N is a transformation matrix. Any system of linear equations
Au = b with respect to the original FE basis can be transformed into the system

AMLuML =

(
AML,C AML,CF

AML,CFT AML,F

)(
uML,C

uML,CF

)
=

(
bML,C

bML,CF

)
= bML

where we have
AMLuML = P TAPuML = P Tb = bML.

The multi-level (ML) guaranteed error bounds are de�ned as

EML,1
M (ξ) ≤ EM (ξ) ≤ EML,2

M (ξ),

where

EML,1
M (ξ) =

1

(1 + γ)

(
rML,C
M (ξ)TAML,C(ξ)

−1
rML,C
M (ξ) +

1

β2
rML,F
M (ξ)TDML,F(ξ)−1rML,F

M (ξ)

)
EML,2
M (ξ) =

1

(1− γ)

(
rML,C
M (ξ)TAML,C(ξ)

−1
rML,C
M (ξ) +

1

β1
rML,F
M (ξ)TDML,F(ξ)−1rML,F

M (ξ)

)
,

where DML,F(ξ) is a diagonal matrix spectrally equivalent with AML,F(ξ), i.e. there exist con-
stants 0 < β1 ≤ 1 ≤ β2 <∞ such that

β1 v
TDML,F(ξ)v ≤ vTAML,F(ξ)v ≤ β2 v

TDML,F(ξ)v for all v ∈ RN .

The constants γ, β1 and β2 can be easily quanti�ed or estimated under many practical and
theoretical settings.

4 Discussion

In our contribution we introduce a new a posteriori error estimate for the GRB algorithm based on
the multilevel splitting of the solution FE space which can serve as an alternative to the popular
mean based estimate. Many numerical examples will complement this during the conference
presentation. The two algorithms will be compared from the point of view of accuracy, complexity
and memory e�ciency. In this abstract, let us only introduce two graphs of di�erences between
some exact error function eM and its MB (eMB

M ) and ML (eML
M ) estimates, respectively. See eM ,

eM − eMB
M , and eM − eML

M in Figure 1.

Acknowledgement: This work was supported by the Czech Science Foundation under the
contract No. 17-04150J and by the Center of Advanced Applied Sciences, the European Regional
Development Fund, project No. CZ.02.1.01/0.0/0.0/16_019/0000778.
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Figure 1: An example of an exact error function eM (left), the di�erence between the exact error
function and the MB estimate eM − eMB

M (middle), and the di�erence between the exact error
function and the ML estimate eM − eML

M (right).
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The e�ect of uncertain input data on drying creep

and drying shrinkage of concrete

L.Dohnalová, J. Chleboun

Faculty of Civil Engineering, Czech Technical University in Prague

1 Introduction

Although the short-term evolution of principal mechanical properties of concrete is the subject
of numerous measurements and, consequently, can be considered su�ciently understood (at least
in common situations), much less is known about the long-term behavior of concrete structures.
Since their lifespan is expected to reach at least several decades or, better, a century, reliable
predictive models are highly desirable.

Owing to the complexity of phenomena and parameters contributing to the ageing of concrete,
phenomenological features of long-term models as well as model calibration are closely intercon-
nected. The latter is quite di�cult and burdened with uncertainty due to the lack of relevant and
high-quality measurements. Indeed, long-term tests of concrete samples stored under controlled
conditions (di�erent humidity levels, for instance) are expensive and exceeding the duration of
common research projects. Moreover, both the variability of factors that have a signi�cant im-
pact on the material parameters of concrete and di�erent designs of experiments have resulted
in output data sets that are only partially compatible.

As a consequence, the amount of data suitable for modeling the long-term behavior of concrete
is limited. For example, the database [4] contains more than 60 thousand records coming from
362 experimental surveys but for the speci�c purposes of [2, 3] only a few surveys and a few
dozen records were relevant and su�ciently compatible.

Two fundamental phenomena are in the focus of civil engineers, namely concrete creep and
shrinkage. The former appears in loaded structural elements and two forms are generally distin-
guished: basic creep in a high humidity environment (no drying) and drying creep, a contribution
added to the basic creep and caused by the drying of concrete. The shrinkage phenomenon is not
related to loading and is demonstrated through volumetric changes of structural elements and
the formation of mechanical stress resulting in cracks. Again, di�erent shrinkage sources can be
identi�ed. We will limit our attention to drying creep and drying shrinkage only.

In modeling drying creep and drying shrinkage, two respective functions are used: Jd(t, t′, t0)
(drying creep compliance function) and εsh(t, t0) (drying shrinkage function), where t is the
current time (i.e., the age of the concrete specimen), t′ and t0 are the respective times of the
origin of loading and drying. All times are in days.

Among several models and codes widely used in long-term creep and shrinkage predictions, Model
B3 [1] has gained wide recognition. In this model,

Jd(t, t′, t0) = q
√
e−8H(t) − e−8H(t′0),

where q is an aggregate parameter comprising a number of other parameters, t′0 = max{t′, t0},
and H(t) = 1 − (1 − h)S(t), where h stands for the relative humidity of the environment, and

S(t) = tanh
√

t−t0
τsh

. In the last expression, τsh = 8.5 × 104t−0.08
0 f c

−1/4
(ksD)2, where f c

−1/4
is
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the 28 day mean cylinder compression strength of concrete and the product ksD represents some
geometric features of the structural element.

In Model B3, the shrinkage function is de�ned as follows:

εsh(t, t0) = −ε∞shkhS(t),

where ε∞
sh

is the ultimate shrinkage parameter and kh is a humidity dependent parameter.

2 Uncertainty quanti�cation

The application of the functions Jd and εsh in a long-term creep and shrinkage analysis is accom-
panied by uncertainty. For instance, the parameters that constitute the aggregate factors q, τsh,
and ε∞

sh
are not known exactly or exhibit natural variability. Although the model is presented in

a deterministic way in [1], the reader is warned that the input parameters should be considered as
normally distributed mutually independent probabilistic variables; their variability is estimated
to give the analyst some guidance for a robust design of concrete structural elements.

The amount of uncertainty is even higher if predictions are to be made for a structure with
incomplete records about the technological history of concrete it is made of. This and concerns
about underestimated results if independent probabilistic parameters were used in predictions
have led us to the application of a fuzzy set approach.

The constituents of Jd and εsh are modeled by fuzzy numbers and the fuzzy functions representing
the drying creep and drying shrinkage are inferred through standard technique of �nding the
worst- and best-case scenarios on a series of α-level subsets of a fuzzy set of admissible input
parameters. An interplay between the creep and shrinkage functions is also determined.
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1 Introduction

We deal with the numerical solution of nonlinear parabolic equations where the di�usion as
well as time derivative term can degenerate. Such type of equations describe, e.g., water �ow
in unsaturated/saturated porous media, water and soil pollution, CO2 storage, enhanced oil
recovery and nuclear waste management. The degeneracies can cause troubles in the proposals
of suitable numerical schemes and in the convergence of solvers for the arising algebraic systems.
In this contribution, we focus on the presentation of arising troubles and their possible solution.

2 Model problem

A typical example of a degenerate parabolic equation is the Richards equation [12] describing
water �ow in a unsaturated/saturated porous medium. It can be written in the form

∂ϑ(ψ)

∂t
−∇ · (K(ψ)∇Ψ) = 0, (1)

where Ψ is the hydraulic head [L], ψ is the pressure head, the relation between the pressure head
and the hydraulic head states as Ψ = ψ + z, where z is the geodetic head [L] (distance from
the reference level), K(ψ) is the unsaturated hydraulic conductivity tensor of the second order
[L.T−1] and the derivative of ϑ satis�es

ϑ′(ψ) :=
dϑ(ψ)

dψ
=

dθ(ψ)

dψ
+
θ(ψ)

θS
Ss, (2)

where θ(ψ) is the water content function [-], Ss is the speci�c aquifer storage [L−1], θS is the satu-
rated water content [-]. A constitutive relation for the function θ(ψ) is given by van Genuchten's
law [13], and for the function K(ψ) = KsKr(θ(ψ)) by Mualem's law [10] (Ks is the saturated
hydraulic conductivity and Kr(θ(ψ)) is the relative hydraulic conductivity). Figure 1 shows an
example of functions ϑ′(ψ) and K(ψ) for three di�erent materials for ψ ∈ [−30, 10]. The con-
stitutive relations for the function ϑ and K satisfy the following assumptions which can lead to
several degeneracies of (1):

(A1) the function ϑ : R→ R, ϑ(ψ) = ϑ(Ψ−z) is a Hölder continuous and non-decreasing with a
non-negative derivative ϑ′(ψ) ≥ 0; if Ss = 0 then ϑ′(ψ) = 0 in a fully saturated �ow regime
(ψ ≥ 0) and consequently equation (1) degenerates to an elliptic one (the fast-di�usion
type of degeneracy),

(A2) for a particular choice of the material parameters in the constitutive relations, one can
have ϑ′(ψ) → ∞ as ψ → 0 (the slow-di�usion type of degeneracy); however, for the most
real materials, ϑ′(ψ) can be large but bounded,

(A3) the function K : R → R2×2 is a positive, Lipschitz continuous and nondecreasing, it can
vanish, typically K(ψ)→ 0 for ψ → −∞ (the slow-di�usion degeneracy),
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Figure 1: Examples of ϑ′(ψ) (left) and K(ψ) (right) for three di�erent materials.

3 Discretization

The properties mentioned above make the solution of (1) a challenging task. Nowadays, there is
a variety of numerical methods which have been proposed, analyzed and tested in the last decays
for the solution of degenerate parabolic problems. Let us mention the conforming �nite element
methods developed in [6], the mixed �nite element methods treated in [1, 11] and the �nite
volume based technique developed by [8]. Finally, papers [2, 7] deals with the numerical solution
of two-phase �ow in porous media by the discontinuous Galerkin method [4]. Due to the sti�ness
character of the governing equations, the (semi-)implicit time discretization is advantageous.
Usually, the lowest order backward Euler method is employed. In [2], the diagonally implicit
Runge-Kutta schemes of order two and three are used.

For the discretization of (1) we employ the space-time discontinuous Galerkin method which o�er
a high-order approximation with respect to the time and space. Let (1) be considered on the
computational domain Ω and time interval (0, T ), T > 0. Let 0 = t0 < t1 < . . . < tr = T be
a partition of (0, T ) generating time intervals Im = (tm−1, tm], m = 1, . . . , r. For every time
interval Im, m = 1, . . . , r we consider generally di�erent space partition Th,m of Ω consisting of
a �nite number of closed triangles K.

The approximate solution is sought in the space of discontinuous piecewise-polynomial functions

Sτ,qh,p := {ϕ : Ω× (0, T )→ R; ϕ|K×Im ∈ P pK (K)× P q(Im), K ∈ Th,m, m = 1, . . . , r} ,

where P pK (K)×P q(Im) is the space of polynomials on K × Im of the degree ≤ pK with respect
to x ∈ K and the degree ≤ q with respect to t ∈ Im for K ∈ Th,m and m = 1, . . . , r.

The function Ψhτ ∈ Sτ,qh,p is an approximate solution of (1) if

Ah,m(Ψhτ , ϕ) = 0 ∀ϕ ∈ Sτ,qh,p, m = 1, . . . , r, (3)

where

Ah,m(Ψ, ϕ) =

∫
Im

((∂tϑ(Ψ− z), ϕ) + ah,m(Ψ, ϕ)) dt +
(
{ϑ(Ψ− z)}m−1, ϕ|

+
m−1

)
, (4)

ah,m(·, ·) represents the usual discretization of the term −∇·(K(Ψ−z)∇Ψ) by the discontinuous
Galerkin method ([4, Chapters 2 and 6]), (·, ·) denotes the L2-scalar product over Ω and {·}m
denotes the jump of the argument with respect to the time at t = tm.
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4 Solution of the resultig algebraic systems

The relation (4) exhibits a system of strongly nonlinear algebraic equations whose numerical
solution is a di�cult task. The popular method Newton method often fails for parabolic de-
generate problems since the Jacobian might become singular, see, e.g., [9]. In [3], the modi�ed
Picard method was developed, it is more robust but still requires the derivatives of ϑ and it might
also fail to converge, see [9]. This drawback can be overcome using the L-scheme developed in
[11], which exploits the monotonicity of ϑ. In comparison to the modi�ed Picard method the
derivative ϑ′(ψ) is replaced by the constant L ≥ maxψ |ϑ′(ψ)|. These techniques together with
their combinations were analyses and numerically compared in [9].

Due to the properties of Ah,m, m = 1, . . . , given by (4), its is possible to construct forms
AL
h,m(·, ·, ·) : Sτ,qh,p × S

τ,q
h,p × S

τ,q
h,p → R , m = 1, . . . , which are linear with respect to their second

and third arguments and are consistent with Ah,m by

Ah,m(Ψ, ϕ) ≈ AL
h,m(Ψ,Ψ, ϕ)−Dh,m(Ψ, ϕ) ∀Ψ, ϕ ∈ Sτ,qh,p, m = 1, . . . , r, (5)

where Dh,m(Ψ, ϕ) is a form vanishing for most ϕ ∈ Shp.

The linearization (5) is a base of two iterative techniques derived in [5]. The �rst one is the
damped Newton-like method where the Jacobian is replaced by the �ux matrix de�ned by AL

h,m.
The second approach is the adoption of the Anderson acceleration for Picard method [14] which
(for linear problems) is equivalent to the GMRES method.

5 Regularization

The approach brie�y described above is no able to avoid the troubles arising in the degeneracy
mentioned at the end of �2. In order to improve the robustness of the method some regularizations
of the problem are required.

Case (A1) (fast di�usion) For a vanishing speci�c aquifer storage SS = 0 and a fully saturated
medium ψ ≥ 0 (⇒ θ(ψ) = const), one has ϑ′(ψ) = 0 and then (1) degenerates to (time-
independent) elliptic equation. This type of degeneracy is often solved using the replacing θ(ψ)
by θ(ψ) + εψ, where ε > 0 is a small regularization parameter. The adding of factor εψ can be
interpreted as an arti�cial speci�c storage.

Case (A2) (slow di�usion) For some (realistic) values of material parameters in van Genuchten
constitutive relation [13], ϑ′(ψ) has steep gradient for ψ → 0. In order to avoid this troubles, we
slightly modify the relations for θ(ψ) in order to improve the convergence properties but keep
the accuracy as much as possible. For a small ψR > 0, we replace θ(ψ) on the interval (−ψR, 0)
by a cubic polynomial function which is uniquely de�ned by four values: θ(0), θ(−ψR), θ′(0),
θ′(−ψR). Obviously, we put θ′(0) = 0 and the θ′(−ψR) is approximated numerically by a central
di�erence using an explicit knowledge of θ(ψ).

Case (A3) (slow di�usion) Figure 1 shows that K(ψ)→ 0 for φ→ −∞. However, this type of
degeneracy causes mainly the troubles in numerical analysis when the absence of lower bound
has to be overcome, e.g., by a suitable regularization. In practical computations we did not meet
any trouble concerning this type of slow di�usion degeneracy.

Numerical experiments demonstrate that the regularizations do not seriously a�ect the results
but signi�cantly accelerate the computational process. A similar type of regularization can be
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employed for the seepage face boundary condition which can be formulated as the Signorini type
boundary condition or as the nonlinear Robin boundary condition.
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Science Foundation.
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1 Introduction to the Bayesian inversion

In mathematical modeling, we encounter two di�erent kinds of problems - direct and inverse. Let
us consider a simulation of processes described by the following elliptic boundary value problem
in the domain Ω with boundary ∂Ω,

−div (k∇v) = f in Ω,

v ful�ls boundary conditions on ∂Ω.

In this case, a direct problem means a solution of the boundary value problems with given data,
i.e. the coe�cient k, the right hand side f and the coe�cients inside boundary conditions.
Under natural assumptions, the direct problem is well posed and can be numerically solved after
a suitable discretization (e.g. using the �nite element method). We assume that all input data
with the exception of the coe�cient k are �xed and k = k (u) depends on a vector of parameters
u ∈ Rn (e.g. values of k in de�ned subdomains Ωi ⊂ Ω). In addition, we consider the mapping
G (u) = y, where y ∈ Rm are outputs derived from the �nite element solution. The mapping
G will be called a forward model. If the output values y or their approximations ym ≈ y are
given (e.g. obtained by measurements), then an inverse problem can be formulated as �Find
u ∈ Rn such that G(u) = ym,� or more generally as �Seek for u ∈ Rn such that ‖G(u)− ym‖ is
minimal.�

However, the inverse problems are generally not well posed and straightforward optimization
may fail (especially when the measurements are corrupted by noise). This is a motivation for the
Bayesian approach, which naturally includes statistical characterization of the measurements.
This stochastic approach doesn't aim at determining u ∈ Rn as a point value but at a statistical
characterization of u. The vector u is treated as a random vector and uncertainties in the
observed data are included in the form of a probability distribution of the measurement error.
Furthermore, a prior knowledge of the parameters available from experience (independent of the
measurements) can also be included.

Brie�y, the aim of the Bayesian approach is to describe the joint probability distribution of the
random vector u ∈ Rn called posterior distribution. The posterior probability density function
(pdf) π (u|ym) is given by the Bayes' theorem as

π (u|ym) ∝ fη (ym −G (u))π0 (u) ,

where fη is the pdf of the noise, π0 is the prior pdf and ∝ denotes a proportionality. Notice that
this model considers additive noise η ∈ Rm such that ym = G (u) + η, typically from N (0,Σ).
An alternative would be e.g. multiplicative noise η ∈ Rm such that y = G (u) · η, typically
from N (1,Σ). Here, Σ denotes a covariance matrix of a multivariate Gaussian distribution. The
computational complexity of the Bayesian inversion is given by the process of generating samples
from the posterior distribution using Markov chain Monte Carlo methods.
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In comparison to standard deterministic approaches using optimization methods, the Bayesian
approach provides more information about the unknown parameters, it is more robust, but also
more expensive. For more details see e.g. [1]. This contribution is devoted to the numerical real-
ization of the Bayesian inversion and especially to the use of surrogate models for the acceleration
of the computations.

2 Posterior sampling using surrogate models

To provide samples from the posterior distribution, we use the delayed acceptance Metropolis-
Hastings (DAMH) algorithm, see [2]. In comparison to the standard Metropolis-Hastings algo-
rithm (see [3]), the target pdf (here π (u|ym)) is not evaluated in each step. DAMH works both
with π (x|ym) and with its approximation π̃ (x|ym), see Alg. 1. We construct this approximation

(up to a multiplicative constant) as fη
(
ym − G̃ (u)

)
π0 (u), where G̃ : Rn → Rm is a surrogate

model of G. As proposal distribution, the symmetric Gaussian random walk distribution is
chosen; see Sec. 3 for the choice of its standard deviation (std).

• Choose an initial sample u(1).

• For t = 1, 2, . . . , T

� generate x from proposal pdf q
(
x|u(t)

)
,

� pre-accept x with probability α̃
(
u(t),x

)
= min

{
1, π̃(x|ym)

π̃(u(t)|ym)

}
,

∗ set u(t+1) = x (i.e. accept x) with probability

α
(
u(t),x

)
= min

{
1, π(x|ym)

π(u(t)|ym)
π̃(u(t)|ym)
π̃(x|ym)

}
,

∗ otherwise set u(t+1) = u(t),

� otherwise set u(t+1) = u(t).

Algorithm 1: DAMH algorithm with symmetric proposal distribution

For the construction of surrogate models, we use either the stochastic collocation method (SCM)
or the radial basis functions interpolation (RBF). Intrusive approaches (such as the stochastic
Galerkin method) can be also used, see [1]. However, here we focus on non-intrusive approaches;
this allows us to update the surrogate model during the sampling process.

Let us brie�y describe the use of SCM. Consider L2
dFZ (Rn) space with inner product (g, f)L2

dFZ
=∫

Rn g (Z) f (Z) dFZ and its subspace S with a basis of polynomials p1, . . . , pN (not necessarily or-
thogonal). G ∈ L2

dFZ (Rn) can be approximated with its orthogonal projection G̃l =
∑N

i=1 αipi ∈
S, such as

(
Gl − G̃l, pj

)
L2
dFZ

= 0 ∀j ∈ {1, . . . , N}. The coe�cients αi are then determined by

(Gl, pj)L2
dFZ

=
N∑
i=1

αi (pi, pj)L2
dFZ

∀j ∈ {1, . . . , N} .

The elements of the matrix and the right-hand-side are estimated using the Monte Carlo estimator
(g, f)L2

dFZ
≈ 1

K

∑K
i=1 g (ui) f (ui), assuming that ui are generated from the distribution of Z.

For the description of the surrogate model construction using RBF see [4].
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3 Applications and numerical experiments

In considered inverse problems, the forward model describes the Darcy �ow in porous (possibly
fractured) materials. The random vector u represents unknown parameters such as hydraulic
conductivity, fracture aperture, etc. As measurements, we consider total �ow through chosen
boundary parts (as in the following example) or pressure in chosen boreholes inside of the domain.

In this example, u = (u1, u2) represents parameters of the aperture of two fractures in a two-
dimensional domain, see Fig. 1a. Aperture of each fracture is assumed to be constant: exp (u1)
and exp (u2). Measurements are total �ows through 3 chosen boundary parts: one in�ow window
(left side) and two out�ow windows (two halves of the right side). There is no �ow on the rest
of the boundary. The measurements ym were calculated arti�cially as G (ureal) and corrupted
by additive Gaussian noise. Prior distribution of u is also Gaussian, see Fig. 1b. Posterior pdf
of u conditioned by ym was estimated using DAMH sampling, see Fig. 1c.

(a) Pressure and �ow in a domain with two
fractures

(b) Prior pdf of u and arti�cial
real parameters ureal (red dot)

(c) Posterior pdf estimated using
DAMH sampling

Figure 1: Visualization of the model inverse problem

Our previous results show that the sampling e�ciency highly depends on the choice of the
proposal std, see [1] and [5]. In this simulation, the choice of the proposal std was based on short
preliminary runs of the DAMH algorithm. For each run, the autocorrelation time was estimated
and the cost per one almost uncorrelated sample (CpUS) was calculated, see 2. The calculation
of CpUS includes the computation time of the surrogate model G̃; a unit is one evaluation of G.
Note that in the case of the standard MH algorithm with one G evaluation in each step, the
value of CpUS is equal to the autocorrelation time.

The sampling e�ciency is also in�uenced by the quality of the surrogate model. According to
Alg. 1, lower accuracy of the surrogate model leads to high amount of useless evaluations of G
(the case of proposed samples that were pre-accepted and that rejected). Table 1 shows the
dependence of the percentage of rejected samples on the size N of polynomial basis used for the
construction of the SCM surrogate model.

max. pol. degree (number of polynomials) 1 (3) 2 (6) 3 (10) 4 (15) 5 (21) 6 (28)

rejected samples (%) 1.79 0.66 0.11 0.07 0.01 0.01

Table 1: Percentage of rejected samples (SCM surrogate model)
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Figure 2: Dependence of autocorrelation time (left) and sampling cost (right) on proposal std

4 Conclusions

The DAMH algorithm with the use of surrogate models was applied to the Bayesian inverse ap-
proach to the estimation of the fracture aperture. In comparison to the standard MH algorithm,
this sampling procedure signi�cantly reduces the number of evaluations of the forward model G.
Therefore, it allows us to solve inverse problems governed by computationally expensive forward
models in the Bayesian way.

The discussed sampling procedure can be applied to a wide range of problems, since both of the
aforementioned surrogate models (SCM and RBF) are non-intrusive. Therefore, to solve an in-
verse problem using this framework, it is su�cient to have a black-box solver of the forward
model available and to specify the distribution of the noise and the prior distribution.
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cellence in science - LQ1602�. The work was also partially supported by Grant of SGS No.
SP2018/68 and by Grant of SGS No. SP2018/161, VSB-TU Ostrava, Czech Republic.

References

[1] R. Blaheta, M. Bére², S. Domesová, P. Pan: A comparison of deterministic and Bayesian
inverse with application in micromechanics. Applications of Mathematics, 2018.

[2] J.A. Christen, C. Fox: Markov chain Monte Carlo using an approximation. Journal of Com-
putational and Graphical statistics, 2005.

[3] C. Robert: The Bayesian choice: from decision-theoretic foundations to computational im-
plementation. Springer Science & Business Media, 2007.

[4] S. Domesová: The use of radial basis function surrogate models for sampling process acceler-
ation in Bayesian inversion. AETA, 2018.

[5] S. Domesová, M. Bére²: A Bayesian approach to the identi�cation problem with given material
interfaces in the Darcy �ow. HPCSE, 2017.

46



Towards numerical simulation of the macroalgae movement

and photosynthetic growth within IMTA-RAS systems

R.Filip 1, K. Petera 1, �. Papá£ek 2

1 Czech Technical University in Prague, Faculty of Mechanical Engineering,
Technická 4, 160 00 Prague 6, Czech Republic

2 Institute of Complex Systems, University of South Bohemia in �eské Bud¥jovice,
FFPW USB, CENAKVA, Zámek 136, 373 33 Nové Hrady, Czech Republic

1 Introduction

This work aims to contribute to the research and development of Integrated MultiTrophic Aqua-
culture (IMTA) production systems. Such systems, where the synergic e�ect of an aquaculture
(usually in form of a Recirculated Aquaculture System � RAS) and a macroalgae (seaweed) cul-
ture system is exploited, could reduce the pressure on both, the open sea �shing and the use of
terrestrial and inland water resources. IMTA-RAS systems represent an emerging research topic
due to their biotechnological potential with an impact on human health and wellbeing [1].

2 Problem motivation

IMTA-RAS is currently one of the most promising lines of action to increase sustainability of �sh
farms [2]. However, there are some limiting factors or drawbacks in case of seaweed, e.g., Ulva
sp. cultivation, integrated within recirculating aquaculture systems: (i) the large area required,
(ii) the energy cost, (iii) lack of reliable mathematical models.

Concerning the second point, the major energy sinks in land-based seaweed culture systems is
the system designed to make move (to tumble) seaweeds either by the bottom aeration or by the
jet array, see Fig. 1.

The energy issue was studied experimentally in the work [3]. Here, we shall treat the third point,
i.e., we aim to make one step towards modeling and in silico simulation of both multiphase
�ow in tanks for macroalgae cultivation and macroalgae photosynthetic growth. The �rst point
in our scope is the analysis of �ow pattern of liquid medium and seaweeds motion within the
vessel. Once having determined the complex seaweed motion (depending on the intensity and
type of tumbling-mixing), the assessment of photosynthetic growth is possible and eventually
an optimization problem could be formulated and resolved. Here, we only point out, that the
optimization factors are mainly (i) the tank operating conditions (e.g., aeration rate), and (ii)
the culture conditions (e.g., stocking density of macroalgae fragments).

3 Expected results

The graphical results from a mathematical (numerical) model have to describe the relation
between (i) the tank design parameters and operational conditions, and (ii) hydrodynamics or
�ow pattern (or time period in case of cyclic-rotational macroalgae motion), as can be seen on
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Figure 1: Three laboratory experimental systems: vertical cylindrical (CV) tank, semi-spherical
tank bottom aerated (SH2), and semi-spherical tank with water jet system (SH1) [3].

Fig. 1. In this study, we are looking for a similar result as in Fig. 2, where the trajectory of
an individual microalgae cell was calculated and subsequently used for the �irradiance history"
identi�cation by a simple concatenation of cell trajectory and the irradiance �eld I = f(R, t)
within the device [4]. We underline that while the Eulerian (immobile control volume) approach
was preferred for microalgae growth description [4, 5], the Lagrangian approach describing the
situation of an individual moving object (in our case a determined seaweed growth) is the right
method here.

In this moment, we have got promising results using the computational �uid dynamics code
STAR-CCM+, which o�ers an e�cient and accurate set of �uid dynamics models and solvers
with excellent parallel performance and scalability [6]. The circular tank (with diameter of 20
cm) with bottom air injection, i.e., the type Tank CV on Fig. 1, and a height of water equal
to one radius is used for our analysis. This set up ensures the formation of two rotating �ow
cells placed, in the vertical section of the tank, at both sides of the aeration inlet, see Fig. 4.
Both 2D axi-symmetric and full 3D simulation of seaweds-like particles clumps movement are
being performed. Based on the selected clumps trajectories, the probabilistic description of
the random variable Tcycle (describing one period of rotational movement, detected by passing
through a horizontal plane) was assessed, see Fig. 3. Obviously, an experiment with a real
macroalgae strain, e.g. Ulva sp., shall be prepared in order to validate our numerical results.1

Once having described the macroalgae motion, the problem of light absorption by a growth
model, e.g., the model of �photosynthetic factory" [7, 8] mounted on the macroalgae frond can
be solved. Of course, the PSF model parameters have to be identi�ed previously, e.g., using the
method published in [9]. As well as in the case of parameter identi�cation problem, our hope
resides in the possibility to apply our previously developed algorithms for microalgae culture
systems, namely closed photobioreactors [5].

Finally, we confess that one particular research topic attracts our interest: The inquiry if does
it exist for seaweeds something similar to �ashing light enhancement, see e.g., [10] and
references within there, as in case of microalgae.

Acknowledgement: This work was supported by the Ministry of Education, Youth and Sport
of the Czech Republic � projects CENAKVA (No. CZ.1.05/2.1.00/01.0024) and CENAKVA II
(No. LO1205 under the NPU I program).

1There is an appealing alternative to the real macroalgae strain if it is not available � using synthetic sheets
with similar thickness, size and density instead.

48



Figure 2: Time course (in seconds) of
one single microalgae cell radial posi-
tion R (in meters) within a Couette-
Taylor bioreactor [4], simulated by the
CFD code ANSYS Fluent.

Figure 3: Time course [s] of one par-
ticle clump (representing one macroal-
gae) radial position R [m] in a cylindri-
cal vessel (Tank CV - Fig. 1), simulated
by the CFD code STAR-CCM+.

Figure 4: Particle clumps and 2D �ow description within the Tank CV, simulated by the CFD
code STAR-CCM+. Two nearly symmetrical rotating �ow cells are clearly visible.
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1 Introduction

In the paper [1], the authors study the operator generated by using the inverse of the Laplacian
as preconditioner for second order elliptic PDEs −∇ · (k(x)∇u) = f . They prove that the
range of k(x) is contained in the spectrum of the preconditioned operator, provided that k(x)
is continuous. Their rigorous analysis only addresses mappings de�ned on in�nite dimensional
spaces, but the numerical experiments in the paper suggest that a similar property holds in the
discrete case.

In this contribution we present the results obtained in the submitted paper [2], where we ana-
lyze the eigenvalues of the matrix L−1A, where L and A are the sti�ness matrices associated
with the Laplace operator and second order elliptic operators with a scalar coe�cient function,
respectively. Using only technical assumptions on k(x), we prove the existence of a one-to-one
pairing between the eigenvalues of L−1A and the intervals determined by the images under k(x)
of the supports of the FE nodal basis functions. As a consequence, we can show that the nodal
values of k(x) yield accurate approximations of the eigenvalues of L−1A. In this contribution,
the obtained theoretical results will be illustrated by several numerical experiments.

2 Setting of problem and notation

We consider a self-adjoint second order elliptic PDE in the form

−∇ · (k(x)∇u) = f for x ∈ Ω, (1)

u = 0 for x ∈ ∂Ω,

and the corresponding generalized eigenvalue problem

∇ · (k(x)∇u) = λ∆u in Ω,

u = 0 on ∂Ω,
(2)

with the domain Ω ⊂ Rd, d ∈ {1, 2, 3} and the given function f ∈ L2(Ω). We assume that the
real valued scalar function k(x) : Rd → R is bounded and piecewise continuous and that it is
uniformly positive, i.e.,

k(x) ≥ α > 0, x ∈ Ω.

Let V ≡ H1
0 (Ω) denote the Sobolev space of functions de�ned on Ω with zero trace at ∂Ω and

with the standard inner product. The weak formulations of the problems (1) and (2) are to seek
u ∈ V , respectively u ∈ V and λ ∈ R, such that

Au = f, respectively Au = λLu (3)
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where A, L : V → V #, f ∈ V # are de�ned as

A : H1
0 (Ω) 7→ H−1(Ω), 〈Au, v〉 =

∫
Ω
k∇u · ∇v, u, v ∈ H1

0 (Ω), (4)

L : H1
0 (Ω) 7→ H−1(Ω), 〈Lu, v〉 =

∫
Ω
∇u · ∇v, u, v ∈ H1

0 (Ω), (5)

and the function f ∈ L2(Ω) is identi�ed with the associated linear functional f ∈ V # de�ned by

〈f, v〉 ≡
∫

Ω
fv . (6)

Discretization via a conforming �nite element method, using, for simplicity of exposition, La-
grange elements, leads to the discrete operators

Ah, Lh : Vh → V #
h

where the �nite dimensional subspace Vh is spanned by the piecewise polynomial basis functions
φ1, . . . , φN with the local supports

Ti = supp(φi), i = 1, . . . , N.

The matrix representations A and L are de�ned as

[A]ij = 〈Ahφj , φi〉 =

∫
Ω
∇φi · k∇φj , (7)

[L]ij = 〈Lhφj , φi〉 =

∫
Ω
∇φi · ∇φj , i, j = 1, . . . , N. (8)

3 Theoretical results

Our theoretical results show that there exists a one-to-one correspondence, i.e., a pairing, between
the individual eigenvalues of L−1A and quantities given by the function values of k(x) in relation
to the supports of the FE basis functions. The proof does not require that k(x) is continuous. If,
moreover, k(x) is constant on a part of the domain Ω that contains fully the supports of one or
more basis functions, then the function value of k(x) determines the associated eigenvalue exactly
and the number of the involved supports bounds from below the multiplicity of the associated
eigenvalue. If k(x) is slowly changing over the support of some basis function, then we get a very
accurate localization of the associated eigenvalue.

Our approach is based upon the intervals

k(Tj) ≡ [ inf
x∈Tj

k(x), sup
x∈Tj

k(x)], j = 1, . . . , N, (9)

where Tj = supp(φj).2 Here we formulate the theoretical results. Theorem 1 localizes the
positions of all the individual eigenvalues of the matrix L−1A by pairing them with the intervals
k(Tj) given in (9). Using the given pairing, Theorem 2 describes the closeness of the eigenvalues
to the nodal function values of the scalar function k(x). The proof of Theorem 1 combines
perturbation theory for matrices with a classical result from the theory of bipartite graphs.

2If k(x) is continuous on Tj , then k(Tj) coincides with the closure of the range of k(x) over Tj .
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Theorem 1 (Pairing the eigenvalues and the intervals k(Tj), j = 1, . . . , N .).
Using the previous notation and assumptions, let 0 < λ1 ≤ λ2 ≤ . . . ≤ λN be the eigenvalues of
L−1A. Then there exists a (possibly non-unique) permutation π such that the eigenvalues of the
matrix L−1A satisfy

λπ(j) ∈ k(Tj), j = 1, . . . , N, (10)

where the intervals k(Tj) are de�ned in (9).

Theorem 2 (Pairing the eigenvales and the nodal values).
Using the notation and assumption of Theorem 1, consider any point x̂j such that x̂j ∈ Tj. Then
the associated eigenvalue λπ(j) of the matrix L−1A satis�es

|λπ(j) − k(x̂j)| ≤ sup
x∈Tj
|k(x)− k(x̂j)|, j = 1, . . . , N. (11)

If, in addition, k(x) ∈ C2(Tj), then

|λπ(j) − k(x̂j)| ≤ sup
x∈Tj
|k(x)− k(x̂j)|

≤ ĥ‖∇k(x̂j)‖+ 1
2 ĥ

2 sup
x∈Tj
‖D2k(x)‖, j = 1, . . . , N, (12)

where ĥ = diam(Tj) and D2k(x) is the second order derivative of the function k(x). In particular,
(11) and (12) hold for any discretization mesh node x̂j such that x̂j ∈ Tj.
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Measurements of mechanical waves travelling through a medium can be used to reveal the sub-
surface and interior structure of unknown objects. This has plentiful applications ranging from
medical imaging at millimetre scale to seismic tomography at the planetary scale. However,
solving these problems is challenging from both a mathematical and computational perspective,
and scalable simulation tools are key to enable scienti�c progress.

We present an inverse solver for image reconstruction in Ultrasound Computed Tomography
(USCT) for early breast cancer detection. USCT is a non-invasive, radiation-free, pressure-free
and low-cost technique that uses both transmitted and re�ected signals to create images of the
soft tissue's acoustic properties. These images are particularly useful for characterizing interior
breast tissue and di�erentiating between benign and malign lesions.

A short time-to-solution, from taking measurements to obtaining the image, is crucial for any
medical imaging technique. It must be in the order of minutes to be applicable in practice. In
addition, the computational resources in a hospital are limited and should not exceed a dedicated
workstation. To meet these requirements, we employ a simpli�ed physical model using ray-tracing
and apply time-of-�ight tomography to reconstruct the acoustic properties of the breast tissue.
This approach leads to a linear least-square problem with a large sparse rectangular matrix. The
problem is in general ill-posed, which can be handled by various regularization strategies.

To assemble, regularize and solve this problem, we use MATLAB and Portable, Extensible Toolkit
for Scienti�c Computation (PETSc). PETSc provides all needed ingredients (distributed vectors
and sparse matrices, fast parallel assembly and linear algebra routines, and implementations of
least-squares methods), is highly portable, and has a permissive open source license (FreeBSD).
Therefore, we strive to move all the needed algorithms from MATLAB to PETSc.
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1 Introduction

Option pricing is an essential issue of modern theory of �nancial engineering and goes back to
the ideas of Black and Scholes (BS) �rstly published in [2]. Nowadays, it is widely accepted that
the BS model is not su�ciently accurate in capturing the real world features of security markets
(e.g., volatility smile, leverage e�ect, clustering, heavy tails, leptokurtic feature, etc.), because
its idealized assumptions do rarely hold in practice.

Such imperfections lead many researchers to analyze various extensions of the BS model. Among
them, we can �nd a large class of models, which were motivated by empirical observations of
large and sudden changes in the underlying asset price resembling jumps, see the pioneering
paper [11]. One way, how to mimic such discontinuous paths with jumps, is to utilize Lévy
processes, a family covering Brownian motion, pure jumps processes and their combinations; for
survey see [4]. The expected number (�nite or in�nite) of jumps of a certain magnitude per unit
time is described by the Lévy measure.

One category of option pricing models under Lévy processes contains models with �nite activity.
These models were introduced into the mathematical �nance in late 1970s, c.f. Merton model [11],
as well as studied relatively recently within the Kou model [10]. These models often require
knowledge of advanced computational techniques, see, e.g.[1, 9], in order to obtain option price,
especially when the payo� function is not the simplest one.

2 Exponential Lévy process and PIDE model

We brie�y recall the pricing model from [4]. To price European options written on underlying
asset St we use a model for the movement of asset prices that permits jumps. Therefore, we
consider a process that has discontinuous paths � an exponential Lévy process of the form

St = S0 exp(Lt), Lt = bt+ σWt + Yt, 0 ≤ t ≤ T, (1)

where t is the actual time, T the maturity and S0 the initial price. The Lévy process Lt is
a nontrivial combination of a standard Brownian motion Wt and a pure jump process Yt (e.g.
Poisson or compound Poisson process). The parameter σ > 0 denotes the volatility of underlying
asset returns and the value of b ∈ R can be expressed using martingale theory as

b = r − q − σ2

2
−
∫
R

(
ex − 1− x1|x|≤1

)
ν(dx), (2)

where r, q are the interest and continuous dividend rates, respectively, 1 denotes the indicator
function of a set and ν(dx) stands for a general Lévy measure. If

∫
R ν(dx) = λ < ∞, this case
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exactly means that Lévy process (1) is of a �nite activity, in other words, it generates a �nite
number of jumps within any �nite time interval. On the other hand, if the Lévy measure is
in�nite, we speak of Lévy processes with in�nite activity.

The category of �nite activity processes is represented by a wide class of jump-di�usion processes,
which were introduced into the mathematical �nance by Merton [11]. The author considered
jumps that are normally distributed with Lévy density

ν(dx) = λg(x) dx = λ
1√
2πγ

exp

(
−(x− µ)2

2γ2

)
dx, (3)

where λ, γ and µ are parameters of the model. From relatively new models, let us mention the
Kou model, proposed in [10], as a double exponential jump model with Lévy density

ν(dx) = λg(x) dx = λ
[
pα1e

−α1x1x≥0 + (1− p)α2e
α2x1x<0

]
dx, (4)

where λ > 0 is an intensity of the Poisson process and the rest of parameters takes values α1 > 0,
α2 > 0 and 0 < p < 1.

Next, denote by V = V (S, t) the price of European option that has payo�

max(S −K, 0) (call), max(K − S, 0) (put), (5)

where K denotes the speci�ed price at which an option contract can be exercised, usually called
the strike price. Similarly to the BS framework, V is priced using an arbitrage-free principle, Itô
calculus, elimination of stochastic �uctuations and a construction of a sophisticated portfolio.
Following these steps, the fundamental result for advanced option pricing techniques under the
Lévy processes characterizes V (S, t) as a solution of a deterministic partial integro-di�erential
equation (PIDE)

∂V

∂t
(S, t) +

1

2
σ2S2∂

2V

∂S2
(S, t) + rS

∂V

∂S
(S, t)− rV (S, t)

+

∫
R

[
V (Sey, t)− V (S, t)− S(ey − 1)

∂V

∂S
(S, t)

]
ν(dy) = 0 (6)

for (S, t) ∈ (0,∞)× (0, T ) with the terminal condition as the payo� function (5).

Further, it is suitable to change asset values S to the scaled logarithmic ones x = ln(S/K) and
time t to the time to maturity t̂ = T − t. By this change of variables and using a �nite activity
of Lévy process we obtain new pricing function u(x, t̂) = V (Kex, T − t̂)/K satisfying

∂u

∂t̂
− σ2

2

∂2u

∂x2
−
(
r − σ2

2
− λκ

)
∂u

∂x
+ (r + λ)u− λ

∫
R
u(x+ y, t̂)g(y)dy = 0 in R× (0, T ) (7)

where κ =
∫
R(ey − 1)g(y)dy <∞. Simultaneously to (7), it is necessary to prescribe the initial

condition given by the transformed payo� function (5) as

max(ex − 1, 0) (call), max(1− ex, 0) (put). (8)

Since, the Cauchy problem (7) with (8) is de�ned on the unbounded spatial domain R, the
asymptotic values of u are consistent with the theoretical European option prices as S → 0+
and S →∞, see [5], i.e.,

lim
x→−∞

u(x, t̂) = 0, lim
x→∞

u(x, t̂)−
(
ex − e−rt̂

)
= 0, t̂ > 0, (call) (9)

lim
x→−∞

u(x, t̂)−
(
e−rt̂ − ex

)
= 0, lim

x→∞
u(x, t̂) = 0, t̂ > 0. (put) (10)
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3 Numerical approach

The more rigorous approach using PIDE forms the basis of advanced option pricing models. On
the other hand, the question, which arises, is how to solve these complex governing equations
with a combination of di�erential and integral terms. Unsurprisingly, a wide class of these pricing
equations cannot be solved in closed form, i.e. analytical option pricing formulae are available
only for the simple option contracts and/or under very strong limitations on market conditions.
Therefore, the numerical methods take a crucial part in �nancial engineering.

The proposed pricing methodology, based on discontinuous Galerkin (DG) method, is related to
numerical solving of (7), which requires localization to a bounded interval Ω. This numerical
solution is composed by piecewise polynomial functions on �nite element mesh without any
requirements on the continuity of the solution between the particular elements, see [12].

Since the pricing equation is de�ned in the space-time domain, the development of the numerical
scheme consists of two consecutive phases � spatial semi-discretization and temporal discretiza-
tion. Within the �rst phase, for the time interval [0, T ], we construct the solution uh = uh(t̂)
from the space Sph of piecewise polynomial (of order p) generally discontinuous functions, de-
�ned over the partition Th of the domain Ω. Based on capable similar techniques, cf. [7], and
with a careful treatment of integral terms, this semi-discrete solution uh is de�ned using the
variational formulation leading to the system of ODEs

d

dt̂
(uh, vh) +Dh(uh, vh) + Ih(uh, vh) = 0 ∀ vh ∈ Sph, ∀ t̂ ∈ (0, T ), (11)

where uh(0) is given by (8), (·, ·) denotes the inner product in L2(Ω) and forms Dh(·, ·) and
Ih(·, ·) stand for DG semi-discrete variants of an operator acting on the di�erential part and
integral part of the equation (7), respectively.

The second phase aims to discretize (11) on the time interval [0, T ]. The proposed numerical
scheme should be of a high accuracy with respect to time, have no restrictive condition on
the length of the time step and preserve the sparsity of a system of linear algebraic equations
resulting from this fully discrete problem. Unlike our previous research [7, 8], we are faced with
new challenges here that, due to the simultaneous presence of di�erential and integral terms and
the nonlocal character of Ih, increase the complexity of the option pricing problem.

At �rst, it is much more essential how the nonlocal integral term is numerically treated. We will
follow two possible ways: (i) a commonly used direct approximation using the standard quadra-
ture methods, which su�er from high computational demandingness; (ii) a relatively modern
technique which represents the integral terms as solutions of proper PDEs (�rstly formulated
in [3]) and leads to the local pseudo-di�erential formulation, for more details see [9].

In conclusion, we brie�y present the numerical experiment on the standard benchmark of the
Merton model, performed on the reference data from [3]. We consider European call option
with parameter values of practical signi�cance as T = 0.25, K = 100, σ = 0.25, r = 0.05,
q = 0.0, λ = 0.1, µ = −0.90 and γ = 0.35. The numerical scheme is implemented in the
solver Freefem++ (see [6]) with the time step proportional to a quarter of the day (1/1440)
and piecewise linear (p = 1) and quadratic (p = 2) approximations on the uniformly partitioned
(consecutively re�ned) grids Th of the domain Ω = (−3, 2).

From the practical point of view we evaluate the options at several underlying prices for maturity
date and compare these values to the reference and analytical ones, see Table 1. From this point-
wise behaviour, one can conclude that the numerical option prices are of higher accuracy as the
mesh is �ner and are closer to the analytical ones than results in [3].
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Table 1: Comparison of the approximate option values with the reference results at three reference
underlying prices for the di�erent grid spacing and polynomial orders.

p = 1 p = 2
#Th S = 90 S = 100 S = 110 S = 90 S = 100 S = 110

50 1.77746 6.16174 13.5663 1.84924 6.25116 13.6018
100 1.85463 6.25223 13.6205 1.85770 6.27374 13.6150
200 1.86511 6.27405 13.6255 1.85952 6.27936 13.6181
400 1.86314 6.27944 13.6225 1.86003 6.29071 13.6188
800 1.86034 6.28074 13.6196 1.86019 6.28099 13.6190
1600 1.86038 6.28100 13.6192 1.86024 6.28102 13.6190

ref. val. [3] 1.86030 6.28138 13.6190 1.86030 6.28138 13.6190
anal. val. [11] 1.86025 6.28128 13.6190 1.86025 6.28128 13.6190
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1 Introduction

We will consider eigenvalue problems for square matrices with matrix elements from various types
of noncommutative algebras in R4, namely we will study four algebraic systems: quaternions,
coquaternions, nectarines, and conectarines. They will be denoted by A in this paper. In the
following table, their names are listed with the multiplication rules for their elements.

Name of algebra inshort i2 j2 k2 ij jk ki

Quaternions H −1 −1 −1 k i j
Coquaternions Hcoq −1 1 1 k −i j
Nectarines Hnec 1 −1 1 k i −j
Conectarines Hcon 1 1 −1 k −i −j

Eigenvalue problems and other problems like decompositions of matrices in the algebra H, the
�eld of quaternions, are well covered in the literature. The �rst published was a paper by Louise
Wolf, [4, 1936], then, in 1989, a paper on the quaternion QR algorithm, [1], by Bunse-Gerstner,
Byers, and Mehrmann appeared, a summary on matrices over H appeared 1997 by Zhang, [5].

2 Some facts about eigenvalue problem over noncommutative al-

gebras

If all elements of an algebra except the zero element have an inverse, we call the algebra a division
algebra. A typical division algebra is the (skew) �eld of quaternions, abbreviated by H. The
algebra of coquaternions, denoted by Hcoq, is like H an algebra in R4, though, it is not a division
algebra.

De�nition Let A ∈ An×n for some algebra A. If there is an element λ ∈ A and a column vector
x ∈ An×1 such that

Ax = xλ, x contains an invertible component. (1)

then, λ is called an eigenvalue of A with respect to the eigenvector x. The pair (λ,x) is called
an eigenpair of A. The set of all eigenvalues of A is denoted by σ(A).

Lemma Let A be a noncommutative algebra and λ an eigenvalue of A with respect to the
eigenvector x. Then, for all invertible h ∈ A the set Λ := {h−1λh} consists of eigenvalues of A
with respect to xh.
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Proof Multiply equation (1) from the right by h, then

A(xh) = xλh = (xh)(h−1λh), xh 6= 0, for all invertible h ∈ A. �

If an algebra contains elements di�erent from the zero element which have no inverse, we will
call these elements also singular, and elements which have an inverse nonsingular. Consequently,
a square matrix will be called singular if it is not invertible and it will be called nonsingular if it
is invertible.

Remark For commutative algebras the Lemma is also valid, however, Λ := {h−1λh} = {λ}
consists only of one element, in contrast to the noncommutative case in which Λ consists of
in�nitely many elements.

De�nition Let a ∈ A. The set

[a] := {b : b := h−1ah for all invertible h ∈ A}

will be called similarity class of a (also called conjugacy class in the literature on algebra). All
elements in [a] are called similar. If a and b are similar we also denote this by a ∼ b.

We can apply the notion of similarity also to the algebra of square matrices over an algebra.

Lemma Let A,B ∈ An×n be two similar matrices. Then σ(A) = σ(B), [2].

Proof Similarity implies that there is an invertible matrix M ∈ An×n such that A = M−1BM.
If Ax = xλ, x 6= 0, then M−1BMx = xλ ⇒ B(Mx) = (Mx)λ,Mx 6= 0. Thus, λ is also an
eigenvalue of B. The same proof applies to By = yλ and it implies that λ is also an eigenvalue
of A. �

In order to �nd all eigenvalues of a given matrix A ∈ An×n, it is su�cient to �nd one rep-
resentative in each similarity class of eigenvalues. The number of eigenvalues of A will be,
correspondingly, de�ned as the number of distinct similarity classes of σ(A).

Theorem Let A be either a division algebra or a commutative algebra and let A ∈ An×n be an
upper triangular matrix. Then, the diagonal elements of A are the eigenvalues of A. The same
is true for lower triangular matrices.

Theorem Let A ∈ An×n be a given, upper or lower triangular, matrix with matrix entries
ajk, j, k = 1, 2, . . . , n. The matrix A is singular if and only if one of the diagonal elements
ajj , j = 1, 2, . . . , n, is singular.

Let x = (x1, x2, . . . , xN ) ∈ A. We de�ne a column operator col : A → RN×1 by

col(x) :=


x1

x2
...
xN

 , (2)

where x1, x2, . . . , xN are components of x.
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Let A = (ajk) ∈ Am×n, j = 1, 2, . . . ,m, k = 1, 2, . . . , n. Then we de�ne

col(A) :=



col(a11)
col(a21)

...
col(am1)
col(a12)
col(a22)

...

...
col(amn)


∈ RmnN×1. (3)

The eigenvalue problem over an arbitrary algebra can be expressed in the real form

(M− Λ)col(x) = 0, (4)

and there will be a solution x 6= 0 if and only if there is a matrix Λ such that M−Λ is singular.
The matrix M− Λ is a triangular block matrix.

3 Computation of Eigenvalues by Newton's technique

For �nding the eigenvalues and eigenvectors, we suggest the application of Newton's method.
However, since the Jacobi matrix in this case is not square, we end up with an underdetermined
system, which we solve by the least squares method. And it turns out that for eigenvalue
problems of modest size, this technique works quite well. We specialize the results to the eight
algebras in R4, in particular to coquaternions.

For a general square matrix A ∈ An×n we consider the eigenvalue problem (1) for an N dimen-
sional algebra A in the form

G1(x, λ) := xλ−Ax, (5)

G2(x) := ||col(x)||2 − 1 (6)

and solve

G(x, λ) :=

{
G1(x, λ)
G2(x)

}
= 0 (7)

by Newton' method. The quantity || ||2 is the square of the standard euclidean norm in RnN .
The condition G2(x) = 0 is a normalization condition for the eigenvectors. It is independent of
the algebra A under investigation. However, it does not imply uniqueness of x. In all algebras
the eigenvectors x and −x are simultaneous eigenvectors or not. If z ∈ A commutes with an
eigenvalue λ and ||col(z)|| = 1, then x and xz are both eigenvectors for the same λ.

Applying the techniques developed in [3], we obtain the derivative of G in the form

G′(x, λ)(h, h1) =

{
hλ+ xh1 −Ah,
2col(x)Tcol(h), x, h ∈ An×1, h1 ∈ A1×1

}
. (8)

And Newton's technique consists of solving the linear system

G′(xk, λk)(h, h1) = −G(xk, λk), k = 0, 1, . . . , (9)
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for (h, h1) where the start values x0, λ0 are given, in principle, arbitrarily. We observe, that the
number of real unknowns (x, λ) in equation (7) is (n+1)N whereas the number of real equations
is nN + 1. In the linear Newton equation (9) we have, thus, (n+ 1)N real unknowns (h, h1) and
nN + 1 real equations. Thus, the system is underdetermined.

The left hand side of (9) is linear in (h, h1) and, thus, can be expressed by a matrix, the form of
which is given in detail in [3]. The result is

G′(x, λ)(h, h1) = M

(
col(h)
col(h1)

)
,

where M ∈ R(nN+1)×(n+1)N . In order to �nd M let ej be the jth standard unit vector in
RnN+1, j = 1, 2, . . . , (n+ 1)N . Then, the jth column of M, denoted by Mj is

Mj = col(G′(x, λ)(ej)), j = 1, 2, . . . , (n+ 1)N,

where (h, h1) is combined to one real vector of length (n + 1)N . As solution of the linear,
underdetermined system we use the least squares solution, which in programming systems, like
MATLAB is already implemented. If (h, h1) is the least squares solution of (9), we put xk+1 =
xk + h, λk+1 = λk + h1 and continue with the iteration (9).

The numerical experiments show fast convergence for almost all problems of modest size. For
triangular matrices we obtain the expected eigenvalues in the similarity classes of the diagonal
elements, and also others.
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Vibrations of lumped parameter models: Filippov approach

V. Janovský

Faculty of Mathematics and Physics, Charles University in Prague

The aim is to study vibrations of lumped parameter systems, see [7]: the constitutive relations
are de�ned implicitly. In Section 1, we consider a dry friction model. It can be interpreted as
Mass-Spring-Dashpot lumped parameter system, see [6]. We explain principles of the Filippov
convex method. In Section 2, we consider the oscillator with a unilateral constraint, see [5]. Both
models can be e�ciently solved as a Filippov systems applying the event-driven algorithm [4].

1 A dry friction model

We seek for the displacement of the mass x = x(t) which satis�es the balance of linear momentum

x′′(t) =
1

m
(f(t)− Fs(t)− Fd(t)) , (1)

where Fs = Fs(t) = k x(t), k > 0, is the spring force and Fd = Fd(t) are dissipative forces.

Setting v = v(t) = x′(t)  v′(t) =
1

m
(f(t)− Fs(t)− Fd(t))

F ′s(t) = k v(t)
(2)

We have to add constitutive relationship which is de�ned via an implicitly de�ned function
β : R× R 7→ R

β (v(t), Fd(t)) = 0 ∈ R . (3)

Following [7], the system (2) & (3) constitutes a system of semi-implicit di�erential-algebraic
equations (DAEs).

Consider Fd to be a Coulomb-type force (labeled traditionally by Fc). Fd(t) ≡ Fc(t) is implicitly
de�ned as {

Fc(t) = F Sign v(t) for v(t) 6= 0

v(t) = 0 for |Fc(t)| ≤ F

where F is a positive constant (the friction coe�cient).

Following the ideas of [2], we solve the DAEs formulation via the implicit Euler scheme:

Set τ > 0, the time step.
De�ne the sequences {vn}∞n=0 and {Fns }

∞
n=0, by the recurrence:

Given vn and Fns , set F
n+1
t =

m

τ
vn + fn+1 − Fns .

if |Fn+1
t | ≤ F , set Fn+1

c = Fn+1
t , vn+1 = 0

else set  Fn+1
c = F SignFn+1

t

vn+1 =
(m
τ

+ τk
)−1 (

Fn+1
t − Fn+1

c

)
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end

Fn+1
s = τkvn+1

As an alternative, we consider the Filippov method, see [3]. We apply the ready made package
[4]. Instead of the original variables x, v and t we introduce the variables x1, x2 and x3. The
package requires to deal with autonomous vector �elds. Hence we need to "autonomize" the
problem.

We de�ne vector �elds F1 : R3 → R3 and F2 : R3 → R3 as

F1 =


x2

− k
m
x1 +

1

m
f(x3)− 1

m
F

1

 , F2 =


x2

− k
m
x1 +

1

m
f(x3) +

1

m
F

1


on the sets

S1 =
{
x ∈ R3 : H12(x) > 0

}
end S2 =

{
x ∈ R3 : H12(x) < 0

}
,

where H12 : R3 → R is the level-set operator

H12(x) = x2 .

The set
Σ12 =

{
x ∈ R3 : H12(x) = 0

}
is called the discontinuity surface. We de�ne Filippov system x′ = F (x),

x′ =

{
F1(x) for x ∈ S1

F2(x) for x ∈ S2
(4)

This is a short cut for the di�erential inclusion

x′ ∈


F1(x) , x ∈ S1

co(F1, F2) , x ∈ Σ12

F2(x) , x ∈ S2

(5)

where co =
{
z ∈ R3 : z = λF1 + (1− λ)F2, λ ∈ [0, 1]

}
is a convex hull.

The Filippov convex method (the idea): We solve ODEs on S1,S2 and on Σ12, concatenating
smooth trajectories.

The formulation of the constitutive relationship:

Given x ∈ R3, let Fc = −kx1 + f(x3).

if |Fc| ≥ F , set Fc := F SignFc

else, set Fc = −kx1 + f(x3) .

Example 1: m = 1, k = 1, f(t) = sin(ωt), ω = 1/6, F = 0.4. The initial condition: xinit = 4,
vinit = 0, the solution time span: [0, 10 ∗ T ], T = 2π/ω.
The performance of

• The DAEs: Elapsed time = 1995.06 secs, the number of time steps = 376991 (the �xed
time step = 0.001)

• The event-driven algorithm [4]: Elapsed time = 24.38 secs, the number of time steps =
151204 (an adaptive time stepping),
AbsTol: 1.0000 e−006, MaxStep: 0.01, RelTol: 1.0000 e−006.
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Figure 1: Example of a Filippov's solution. Notation: v = x′1 = x2, x = x1, t = x3. The initial
condition: (1, 2, 0)T. The black part of trajectory corresponds to sliding.

Figure 2: A plot of Fc versus time t (a zoom). On the left: via the DAEs. On the right: via the
Filippov method. Mind the details in resolution.

2 Oscillator with a unilateral constraint

The following oscillator was investigated in [5]:

x′′ + Fs(x) = f(t) (6)

where

Fs(x) =

{
Lx if x > 0 . . . response of the wall

x if x < 0 . . . restoring force
(7)

It is obvious how to convert the above problem to Filippov system x′ = F (x) for an autonomous
dynamical system. For a motivation, see (4). We apply the solver [4].

As case study we investigate Example 2: f(t) = cos(ωt), ω = 2.7, L = 107.
Initial condition: x(0) = −1, x′(0) = −2, time span: 0 ≤ t ≤ 300.

Selected results are reported in Figure 3 and Figure 4.
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1 Introduction

Nowadays, additive technologies (3D or 4D printing) for manufacturing of mechanical parts of
complex systems are modern and developing technology for demanding applications in mechanical
and civil engineering, biomechanics or aircraft and space technologies. In additive manufactur-
ing, body shape can be designed of general complex shapes and structures based on topology
optimization or smart design knowledge.

There is a prediction for future of additive technologies for improvement of this technology so
that a body of complex shape could be manufactured with di�erent material for each region and
materials will be mixed in an arbitrary ratio. By this technology, mechanical or electromagnetic
properties can be controlled by material distribution and graded and layered materials can be
manufactured [1].

Based on this motivation, we are focusing on elastic wave propagation in general heterogeneous
media where mechanical properties (density and elastic tensor) are distributed non-uniformly and
changed in space. In this work, we numerically study elastic wave propagation in a heterogeneous
bar discretized by the �nite element method. It is known that the standard �nite element method
with explicit time integration produces spurious oscillations [3]. In this contribution, we present
an explicit scheme based on local time stepping respecting local wave speed and local stability
limit for each �nite element. The work aim is to suppress the spurious oscillations in wave
propagation tasks in heterogeneous bars.

2 Wave equation for a layered bar

We assume a prismatic layered bar of length L with a cross-section A with a spatially piecewise-
constant distributed Young's modulus E(x) and mass density ρ(x) along the bar and each ma-
terial quantity is a function of space as the position of material point x. The elastic behavior
is given by the Hook's law σ(x) = E(x)ε(x) = E(x)∂u(x)/∂x, where ε marks the in�nitesimal
strain and the normal stress σ(x). In one-dimensional linear theory of elastodynamics, the wave
speed at the position x is given by formula c(x) =

√
E(x)/ρ(x) and σ(x) can be evaluated as

σ(x) = ρ(x)c(x)v(x), where v = ∂u
∂t marks the velocity of a material point at the position x. For

more details for elastodynamic theory see [2].

Let us assume a disjunctive partition of domain of interest Ω = [0, L] ⊂ R with Ωi = [xi−1, xi), i =
1, 2, . . . , n, x0 = 0, xn = L, so that

⋃n
i=1 Ωi = Ω and Ωi

⋂
Ωi+1 = ∅. Length of each domain Ωi

is given Li = xi − xi−1.
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The classical equation governing elastic wave propagation in one-dimensional domain Ωi without
the volume body force takes the form, see [2],

Ei
∂2u(x, t)

∂x2
= ρi

∂2u(x, t)

∂t2
on Ωi × [0, T ], (1)

where x ∈ Ωi is the position, t ∈ R+ is the time, T it the total time of interest of the wave event,
u(x, t) is the displacement �eld. The displacement u(x, t) on the domain Ωi is assumed to be
di�erentiable up to the second partial derivatives with respect to independent variables x and t.
The governing equation (1) is complemented by the initial and boundary conditions. We assume
the bar in the rest at the initial time, i.e. with zero initial displacement and velocity �eld,
u(x, 0) = 0 and u̇(x, 0) = 0, resp. at the time t = 0. At the interfaces of layers�domains,
the compatibility interface conditions are assumed for displacements ui(xi, t) = ui+1(xi, t) and
stresses σi(xi, t) = σi+1(xi, t), i = 1, 2, . . . , n− 1.

3 A local time stepping scheme for an one-dimensional case

Based on pullback interpolation scheme presented in [4], we modify the mentioned scheme in-
cluding a local time stepping process using local stability limit for each �nite element with a
di�erent length and wave speed. The presented time stepping process is consisted of following
two computational steps as follows:

STEP 1. Pull-back integration with local stepping:

1a) Integration by the central di�erence scheme with the local (elemental) critical time step size
∆tce for each �nite element at the time tn+c = tn + ∆tce

(un+c
fs )e = une + ∆tceu̇

n
e +

1

2
(∆tce)

2üne

+ application of local Dirichlet boundary conditions
(2)

(ün+c
fs )e = M-1

e

[
fn+c
e −Ke(u

n+c
fs )e

]
(3)

The elemental critical time step size for the e-the element ∆tce is set as ∆tce = he/ce or ∆tce =
2/ωemax, where ω

e
max is the maximum eigen-angular velocity for the e-th separate �nite element

respecting to local Dirichlet boundary conditions. Me and Ke are local mass and sti�ness
matrices, fe is the local vector of external forces.

1b) Pull-back interpolation of local nodal displacement vectors at the time tn+1 = tn + ∆t with
α = ∆t/∆tce, β1(α) = 1

6α
(
1 + 3α− α2

)
, β2(α) = 1

6α
(
α2 − 1

)
(un+1

fs )e = une + ∆tu̇ne + (∆tce)
2β1ü

n
e + (∆tce)

2β2(ün+c
fs )e

+ application of local Dirichlet boundary conditions
(4)

1c) Assembling of local contributions of displacement vector from Step 1b.

un+1
fs = (LTL)-1LT(Un+1

fs ) (5)
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where L is the assembly Boolean matrix.

STEP 2. Push-forward integration with averaging:

2a) Push-forward predictor of displacement vector at the time tn+1 = tn + ∆t by the central
di�erence scheme with the time step size ∆t.

un+1
cd = un + ∆tu̇n +

1

2
∆t2ün (6)

2b) Averaging of the total displacement vectors at the time tn+1 = tn + ∆t form Steps 1c and
2a for given θ = [0, 1].

un+1 = θun+1
fs + (1− θ)un+1

cd

+ application of local Dirichlet boundary conditions
(7)

2c) Evaluation of acceleration and velocity nodal vectors at the time tn+1 = tn + ∆t.

ün+1 = M-1
[
f(tn+1)−Kun+1

]
(8)

u̇n+1 = u̇n +
1

2
(ün + ün+1)

+ application of local Dirichlet boundary conditions
(9)

M and K are the global mass and sti�ness matrices, f is the global vector of external forces.

We have manufactured and tested several benchmarks on elastic wave propagation in heteroge-
neous bars and results were without cardinal spurious oscillations.

4 Conclusion

Based on the tests, we could say that the local time stepping scheme in �nite element modelling is
able to suppress spurious oscillations in discontinuous wave propagation in general heterogeneous
media [5]. Further, we plan to extend the work on multidimensional problems.
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Selected geotechnical problems solved by the FETI method
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1 Introduction

Analysis of the earth pressure is still in the center of attention. Experimental research of the
earth pressure should use original medium size experimental device (stand) and numerical anal-
ysis requires advanced original software equipped with special material models and tools. The
experimental research was done in the Institute of Theoretical and Applied Mechanics of Czech
Academy of Sciences [1], [2] and [3]. A special experimental equipment, stand (see �gure 1), was
constructed and it enables to simulate various movements of retaining structures and soil body.
There are possible horizontal translation of the wall and rotations of the wall along the top or
bottom edge. The deformation and failure processes of the soil as well as both components of
the contact stress, i.e. the normal pressure and vertical friction at the rear face of the retaining
structure, were monitored and analyzed. Also the displacement of the front retaining wall was
monitored automatically and continuously.

The main aim of the numerical analysis is description of the slip surface evolution. In the �rst
approach, the �nite element method (FEM) and the Mohr-Coulomb plasticity model (see [4])
were used for description of the response of soil in the experimental device for small angles of
the front wall. The results showed that the plasticity model can be easily and su�ciently used.
The numerical model determines the slip surface corresponding to the experimentally obtained
surfaces. In the case of larger angles, the wedge of soil close to the front wall moves similarly
to a rigid body and no additional plastic zones are developed. Only strains localized in the slip
surface grow and clear discontinuity is developing.

Description of discontinuity along the slip surface requires special attention. Displacement �eld
is not continuous and the classical formulation of the FEM is not applicable. Various types
of contact elements located in the discontinuity are very popular but di�cult determination of
their material parameters is the main disadvantage. Additional problems are connected with
the motion of the wedge which is similar to the rigid body motion. In such a case, the sti�ness
matrix is split into two parts where one of them is nearly singular. It may lead to collapse of a
method of solution of equation systems. Application of a suitable domain decomposition method
can lead to e�cient description of the discontinuous displacement. The most suitable method
is the FETI method which uses the rigid body modes. A special interface condition on the slip
surface can be easily prescribed.

2 FETI method for the interface problems

Modi�cation of the FETI method for problems dealing with perfect or imperfect bonds was
introduced in reference [5]. The continuity condition between subdomains is replaced by an
interface condition which can be expressed in the form

Bd = c (1)
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Figure 1: The view on the stand and on the deformed specimen with the evolved slip surface.

where c denotes the vector of di�erences between two adjacent unknowns de�ned in the same
point on the interface, d is the vector of nodal unknowns and B is the Boolean matrix. In the
case of perfect bond, the vector c is the zero vector. The coarse problem of the FETI method
with the interface condition has the form(

BK+BT −BR
−RTBT 0

)(
λ
α

)
=

(
BK+f − c
−RTf

)
(2)

where the classical FETI notation is used.

In the case of linear relationship between interface stresses (λ represents interface nodal forces
which can be transformed into stresses) and the slip (c), the following relation can be used

c = Hλ (3)

where H denotes the compliance matrix. Generally, the matrix H can depend on attained
Lagrange multipliers λ. Substitution of (3) to the system (2) results in(

BK+BT +H −BR
−RTBT 0

)(
λ
α

)
=

(
BK+f

−RTf

)
(4)

If the perfect bond is taken into account, the compliance matrix H is zero matrix and the
classical FETI method is obtained. Otherwise, a nonzero compliance matrix H is added to the
coarse problem. In many cases, the matrix H is a diagonal matrix and therefore it causes no
di�culty. The modi�ed conjugate gradient method usually used in the FETI approach can solve
the coarse problem (4).

3 Numerical simulation

The specimen was created from the dry sand and this material can be modelled by plasticity
material models. The general approach to the plasticity models can be found in many references,
for example in books [4] and [6]. For the �rst approach, the rate independent plasticity model
with Mohr-Coulomb yield criterion was used.

The specimen had dimensions 1.2×1.0×3.0 m and it was composed of 11 horizontal layers. The
model is depicted in Figure 2. The �nite element mesh was generated using the 3D hexahedron
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elements with linear approximation functions. The friction angle φ = 35o and the cohesion
c = 1.8 kPa were used in the Mohr-Coulomb criterion and they were obtained by the performed
shear tests. The top surface of each layer was loaded according to the total compacting energy
and after the last compacting load was applied, the front wall movement (rotation about the top
edge) was simulated by the increase in the prescribed displacement.

Figure 2: FE mesh of the specimen

Figure 3: The distribution of consistency parameter for u = 100 mm.

Figure 3 represent distribution of the consistency parameter γ, which indicates plastic zones, for
displacements u = 100 mm of the front wall bottom.

The analysis based on the Mohr-Coulomb plasticity model determined the slip surface. The
�nite element mesh depicted in Figure 2 was decomposed into submeshes with respect to the slip
surface. It means, the slip surface de�ned subdomain interfaces and the subdomains were split

74



into two groups. First group of subdomains describes the wedge of soil close to the rotated wall
which behaves similarly to a rigid body. Second group contains subdomains which described the
remaining part of the soil body. Therefore, the system of equations (4) was used for description
of the slip.

4 Conclusion

Modi�ed FETI method was used for numerical analysis of earth pressures. The numerical simu-
lation was compared with experimentally obtained data from a stand and very good agreement
was achieved. The modi�ed FETI method can be used in various geotechnical problems where
failure or slip surfaces occur.
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1 Introduction

Many problems in engineering, �nance, etc. eventually lead to a systems of linear equations of
the form

Ax = b, (1)

where A is n-dimensional symmetric positive de�nite (SPD) matrix.

The conjugate gradient (CG) algorithm is often the method of choice for the solution of such
systems. In order to accelerate the convergence of CG we often need a good preconditioner.

However, there also exists a complementary approach to the preconditioning known as de�ation.
The de�ation utilizes a de�ation space that should represent slowly converging components of
the solution.

In this work, we discuss the choice of the de�ation space and also demonstrate the behaviour of
several de�ation spaces on various benchmarks.

2 De�ated Conjugate Gradient Method

The de�ated conjugate gradient method [1], introduced in [2, 3, 4], works by splitting the solution
of Equation (1) into two parts. The �rst part represents the solution on the de�ation space and
is directly obtained. The second one is computed by CG iterations that operate only on the
A-conjugate complement of the de�ation space.

Let us de�ne a full rank de�ation matrix

W = (w1,w2, . . . ,wm) ∈ Rn×m,m < n

and let W be a subspace spanned by columns of W . Then we can denote a projector

P = I −W
(
W TAW

)−1
W TA = I −QA

onto an A-conjugate complement of W.

Given an arbitrary initial guess x−1 and de�ning the residual r−1 = b −Ax−1 we can choose
x0 to be

x0 = x−1 +W
(
W TAW

)−1
W Tr−1 = x−1 +Qr−1. (2)

It is easy to show that x0 is the exact solution of (1) in W and therefore r0 is orthogonal to
W. If we use x0 as the initial guess for CG, we obtain the InitCG method [5] illustrated in
Algorithm 2.
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Algorithm 2: InitCG
Input: A, x−1, b, W

1 r−1 = b−Ax−1

2 x0 = x−1 +Qr−1

3 r0 = b−Ax0

4 p0 = r0

5 for k = 0, · · · :
6 s = Apk
7 αk =

(
rTk rk

)
/
(
sTpk

)
8 xk+1 = xk + αkpk
9 rk+1 = rk − αks

10 βk+1 =
(
rTk+1rk+1

)
/
(
rTk rk

)
11 pk+1 = rk+1 + βk+1pk

Output: xk

Algorithm 3: DCG
Input: A, x−1, b, W

1 r−1 = b−Ax−1

2 x0 = x−1 +Qr−1

3 r0 = b−Ax0

4 p0 = Pr0

5 for k = 0, · · · :
6 s = Apk
7 αk =

(
rTk rk

)
/
(
sTpk

)
8 xk+1 = xk + αkpk
9 rk+1 = rk − αks

10 βk+1 =
(
rTk+1rk+1

)
/
(
rTk rk

)
11 pk+1 = Prk+1 + βk+1pk

Output: xk

If the columns ofW are exact eigenvectors then, in exact arithmetic, the minimization directions
pk areA-orthogonal toW and we achieved the required splitting. However, in the case of general
W , we need to keep pk explicitly A-orthogonal to W by projecting components of the de�ation
space out of the residuals in the construction of pk. This modi�cation leads to the DCG algorithm
illustrated in Algorithm 3.

It can be shown [6] that DCG act as CG "preconditioned" by the projector P as the convergence
is governed by the spectrum of PA operator.

3 Choice of the De�ation Space

A good choice of de�ation space is crucial for making DCG converge quickly. In practice, there
were two main de�ation spaces.

The �rst one uses eigenvectors of A as the de�ation space. The associated eigenvalues of the
eigenvectors belonging to the de�ation space are shifted to zero in the spectrum of the DCG
operator PA. Particularly, eigenvectors belonging to the smallest eigenvalues are used as they
slow down the convergence of CG the most. In our experiments, this approach works very well.
The problem is how to obtain the eigenvectors.

The second approach is subdomains aggregation. Given a decomposition of the computational
domain, each subdomain contributes a single vector into the de�ation space. This vector contains
ones on the indices of unknowns belonging to the subdomain and zeros otherwise. Such space
often approximates a similar space as in the eigenvector approach. We can use, e.g., METIS
to obtain the domain decomposition. However, assuming a single computational core owns the
whole subdomain then, to utilize the cores appropriately, the subdomains have to be fairly large
making the de�ation space too coarse to be e�ective.

A new approach based on wavelet compression was suggested in [7]. The basic idea is that given
the wavelet scaling coe�cients h1, . . . , hk we create a projection onto the scaling subspace

H1,n =


h1 h2 h3 . . . 0 · · · 0 0
0 0 h1 h2 · · · · · · 0 0
...

...
...

...
...

. . .
...

...
hk−1 hk 0 0 0 · · · hk−3 hk−2

 ∈ R
n
2
×n.
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Then H1,nAH
T
1,n contains trends of A. Moreover, we can repeat this compression process to

use up to m levels of the compression

H1,n/2m−1 . . .H1,n/2H1,nAH
T
1,nH

T
1,n/2 . . .H

T
1,n/2m−1 = Hm,nAH

T
m,n

Since Hm,n cuts o� the high frequencies, we can set W = HT
m,n.

The suggested wavelet compression is also used in the algebraic multigrid [8]. Therefore, using
the prolongation matrices from multigrid in place of the de�ation matrix might work as well.
Moreover, the prolongation operators can be chained, as in the wavelet-based de�ation, without
the use of any smoothers between multigrid levels.

4 Numerical Experiments

In order to evaluate the aforementioned de�ation spaces, an e�cient, parallel implementation of
DCG was created. It is written as a solver for linear systems in PETSc [9] (KSP). Currently, it
is part of the PETSc-based, open-source PERMON library [10].

The benchmarks used in the numerical experiments include all 236 SPD matrices from SuiteS-
parse Matrix collection, 2D Laplace on a rectangular domain with a hole and 3D linear elastic-
ity multi-material cantilever beam discretized with MFEM [11], and 2D Laplace discretized by
boundary element method on an L-shaped domain. The results with appropriate discussion can
be found in [6]. A comparison of numerical scalability of CG (none) and DCG with 5 and 40
eigenvectors (eig5, eig40) belonging to the smallest eigenvalues, subdomain aggregations (agg),
multigrid prolongations (mg), and Haar wavelet (db2) de�ation spaces is depicted in Figure 1.

 100
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15,795 111,843 839,619
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none eig5 eig40 agg mg db2

Figure 1: Number of iterations for various de�ation spaces on 3D elasticity benchmark.

5 Conclusion

This work demonstrates the usefulness of de�ation schemes for Krylov subspace methods. A
signi�cant reduction in the number of iterations, as well as time to solution, can be achieved by
using appropriate de�ation spaces. Using novel wavelet-based de�ation or multigrid prolongation
operators yields very good results on wide variety benchmarks solved by de�ated CG.
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On the time growth of the error

of the discontinuous Galerkin method
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1 Introduction

We present an overview of the authors' paper [2] on the time growth of the error of the dis-
continuous Galerkin (DG) method. In the theory of evolutionary problems, Gronwall's lemma
is an often used standard tool which allows one to obtain estimates of some desired quantity.
However, Gronwall's lemma leads to the appearance of a factor which grows exponentially with
respect to time in the resulting inequality, even for problems where such exponential growth is
unnatural. In [2] we analyze the time growth of the error of the DG method applied to a lin-
ear nonstationary advection-reaction problem. To circumvent the use of Gronwall's lemma, we
introduce a space-time exponential scaling of the error. This allows one to obtain an additional
elliptic term from the DG formulation which allows one to avoid the use of Gronwall's lemma.
The result is an error estimate which grows exponentially not in time, but in the time particles
carried by the �ow �eld spend in the spatial domain. If this is uniformly bounded, one obtains
an error estimate of the form C(hp+1/2), where C is independent of time.

2 Problem formulation and analysis

Let Ω ⊂ Rd, d ∈ N be a bounded polygonal (polyhedral) domain with Lipschitz boundary ∂Ω.
Let 0 < T ≤ +∞ and let QT = Ω× (0, T ) be the space-time domain. We consider the following
nonstationary advection-reaction equation: We seek u : QT → R such that

∂u

∂t
+ a· ∇u+ cu = 0 in QT , (1)

along with the initial condition u(x, 0) = u0(x) and boundary condition u = uD on the in�ow
boundary ∂Ω− × (0, T ). Here a : QT → Rd and c : QT → R are the given advective �eld
and reaction coe�cient, respectively. We assume that c ∈ C([0, T );L∞(Ω)) ∩ L∞(QT ) and
a ∈ C([0, T );W 1,∞(Ω)) with a,∇a uniformly bounded a.e. in QT .

Usually when dealing with problem (1) throughout the numerical literature, one assumes ellip-
ticity of the resulting advection and reaction weak forms, which leads to the requirement

c− 1
2diva ≥ γ0 > 0 on QT (2)

for some constant γ0 > 0. The additional ellipticity allows one to obtain estimates of the solution
or the error of the chosen numerical method that are uniform in time. The problem is that from
the point of view of PDE theory, assumption (2) is entirely arti�cial.

In order to avoid the arti�cial condition (2), in [2] we introduced the following space-time expo-
nential scaling. Let µ : QT → R be a given function which will be chosen appropriately in the
analysis. We write the solution of (1) as

u(x, t) = eµ(x,t)ũ(x, t). (3)
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Substituting (3) into (1) gives

∂ũ

∂t
+ a · ∇ũ+

(∂µ
∂t

+ a· ∇µ+ c
)
ũ = 0 (4)

after dividing by the common positive factor eµ. Problem (4) is an equation for the new unknown
ũ. The condition corresponding to (2) now reads: There exists µ : QT → R such that

∂µ

∂t
+ a· ∇µ+ c− 1

2diva ≥ γ0 > 0 a.e. in QT . (5)

We observe that by choosing µ appropriately, one has more room to satisfy (5) even when the
original ellipticity condition (2) is not satis�ed. We note that simpler versions of the general
space-time exponential scaling have been used in the literature, cf. e.g. [1], [3].

2.1 Construction of the scaling function µ

If c − 1
2diva is negative or changes sign frequently, we can use the expression µt + a · ∇µ to

dominate this term everywhere. If we choose µ1 such that

∂µ1

∂t
+ a · ∇µ1 = 1 on QT , (6)

then by multiplying µ1 by a su�ciently large constant, we can satisfy condition (5) for a chosen
γ0 > 0. To solve equation (6), we de�ne pathlines of the �ow, i.e. the family of curves S(t;x0, t0),
each originating at (x0, t0), by

S(t0;x0, t0) = x0 ∈ Ω,
dS(t;x0, t0)

dt
= a(S(t;x0, t0), t).

This means that S(·; t0, x0) is the trajectory of a massless particle in the nonstationary �ow �eld
a passing through point x0 at time t0. Along pathlines equation (6) reads

dµ1(S(t;x0, t0), t)

dt
=
(∂µ1

∂t
+ a · ∇µ1

)
(S(t;x0, t0), t) = 1,

therefore
µ1(S(t;x0, t0), t) = t− t0. (7)

At the origin of the pathline, we have µ1(S(t0;x0, t0), t0) = 0 and the value of µ1 along this
pathline is simply the time elapsed since t0. In the following, we wish to keep µ1 uniformly
bounded. One case when this can occur is when the maximal particle `life-time' T̂ is �nite. By
this we mean that the maximal time any massless particle carried by the �ow �eld a spends in
Ω, before exiting through the out�ow boundary, is bounded by T̂ < +∞.

Under the mentioned assumption in (7) we have |t − t0| < T̂ , hence uniform boundedness of
µ on QT . In the analysis we need Lipschitz continuity of µ. This can be obtained under the
assumption that there are no characteristic boundary points on the inlet boundary. The proof of
the following theorem is rather technical, cf. [2]. Since µ1 is de�ned very simply along pathlines,
which are solutions of ordinary di�erential equations, the proof follows similar ideas as in the
proof of dependence of a solution of an ODE on the initial condition.

Theorem 1 Let a ∈ L∞(QT ) be continuous with respect to time and Lipschitz continuous with
respect to space. Let there exist a constant amin > 0 such that

−a(x, t) · n ≥ amin

for all x ∈ ∂Ω−, t ∈ [0, T ). Let the time any particle carried by the �ow �eld a(·, ·) spends in Ω be
uniformly bounded by T̂ . Then µ1 de�ned by (7) on Ω× [0, T ) is uniformly Lipschitz continuous
with respect to x and t and satis�es 0 ≤ µ1 ≤ T̂ .
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2.2 Error estimates

Now we introduce the DG discretization of (1). Let Th be a triangulation (partition into mutually
disjoint simplices) with hanging nodes allowed. ForK ∈ Th let hK = diam(K), h = maxK∈ThhK .
For K ∈ Th we set ∂K−(t) = {x ∈ ∂K; a(x, t)·n(x) < 0} where n(x) is the unit outer normal
to ∂K. We seek the discrete solution in the space Sh = {vh; vh|K ∈ P p(K), ∀K ∈ Th}, where
P p(K) is the set of polynomials on K of degree at most p. For K ∈ Th and vh ∈ Sh let v−h be
the trace of vh on ∂K from the side of the element adjacent to K, or v−h = 0 if the face lies on
∂Ω. Finally on ∂K we de�ne the jump of vh as [vh] = vh − v−h , where vh is the trace from K.
We seek uh ∈ C1([0, T );Sh) such that uh(0) = u0

h ≈ u0 and(∂uh
∂t

, vh

)
+ bh(uh, vh) + ch(uh, vh) = lh(vh), ∀vh ∈ Sh. (8)

Here bh, ch and lh are the advection, reaction and right-hand side forms, respectively, de�ned for
u, v piecewise continuous on Th in a standard way, cf. [2].

We estimate the DG error eh(t) := u(t)− uh(t) = η(tn) + ξ(t), where η(t) = u(t)− Πhu(t) and
ξ(t) = Πhu(t) − uh(t) ∈ Sh. Here Πh is the L2(Ω)�projection onto Sh. As in (3), we wish to
write ξ = eµξ̃. Furthermore, in the weak setting the analogy to dividing the common factor eµ to
obtain (4) is setting the test function as φ = e−µξ̃ = e−2µξ to obtain estimates for ξ̃. However,
since φ(t) /∈ Sh this is not possible. The solution is to test by Πhφ(t) ∈ Sh and estimate the
di�erence Πhφ(t)− φ(t).

Lemma 1 Let µ be globally bounded and Lipschitz continuous as in Theorem 1. Then there exists
C independent of h, t, ξ, ξ̃ such that

‖Πhφ(t)− φ(t)‖L2(K) ≤ ChK max
x∈K

e−µ(x,t)‖ξ̃(t)‖L2(K),

‖Πhφ(t)− φ(t)‖L2(∂K) ≤ Ch
1/2
K max

x∈K
e−µ(x,t)‖ξ̃(t)‖L2(K).

Now we come to the error analysis. We subtract the equations for u and uh, set vh = Πhφ(t)
and rearrange the terms to get the error equation(∂ξ

∂t
,Πhφ

)
+ bh(ξ, φ) + bh(ξ,Πhφ− φ) + bh(η,Πhφ)

+ ch(ξ, φ) + ch(ξ,Πhφ− φ) + ch(η,Πhφ) +
(∂η
∂t
,Πhφ

)
= 0.

(9)

The terms with φ are those where the factors eµ and e−µ cancel out leading to the new reaction
terms as in (4). Terms containing Πhφ− φ are estimated using Lemma 1 and η is estimated by
standard approximation results. Altogether we have the following, cf. [2].

Lemma 2 Let ξ = eµξ̃, φ = e−µξ̃ and let µ be as in Theorem 1. Then(∂ξ
∂t
,Πhφ

)
+ bh(ξ, φ) + ch(ξ, φ) ≥ 1

2

d

dt
‖ξ̃‖2 + γ0‖ξ̃‖2 +

1

2

∑
K∈Th

∥∥[ξ̃]
∥∥2

a,∂K−

where ‖f‖a,∂K− = ‖
√
|a·n|f‖L2(∂K−).

Lemma 3 Let ξ, φ and µ be as above. Then∣∣∣bh(ξ,Πhφ− φ) + bh(η,Πhφ) + ch(ξ,Πhφ− φ) + ch(η,Πhφ) +
(∂η
∂t
,Πhφ

)∣∣∣
≤ Ch‖ξ̃‖2 + Ch2p+1

(
|u(t)|2Hp+1 + |ut(t)|2Hp+1

)
+

1

4

∑
K∈Th

∥∥[ξ̃]
∥∥2

a,∂K−
.
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Now we come to the main theorem of [2] on the error of the DG scheme (8).

Combining Lemmas 2 and 3 gives an estimate of ξ̃. In order to get an estimate of ξ, hence the
error eh, we can write

‖ξ̃(t)‖2 ≥ min
QT

e−2µ(x,t)‖ξ(t)‖2 = e−2 maxQT µ(x,t)‖ξ(t)‖2 ≥ e−2T̂ ‖ξ(t)‖2

Multiplying the resulting estimate by the factor e−2T̂ and taking the square root gives the
exponential factor eT̂ in the resulting estimate instead of the standard Gronwall factor eT .

Theorem 2 Let the assumptions of Theorem 1 hold. Let the initial condition u0
h satisfy ‖u0 −

u0
h‖ ≤ Chp+1/2|u0|Hp+1. Then there exists a constant C depending on T̂ but independent of h

and T such that for h su�ciently small

max
t∈[0,T ]

‖eh(t)‖+
√
γ0‖eh‖L2(QT ) +

(1

2

∫ T

0

∑
K∈Th

∥∥[eh(ϑ)]
∥∥2

a,∂K−
dϑ
)1/2

≤ Chp+1/2
(
|u0|Hp+1 + |u|L2(Hp+1) + |ut|L2(Hp+1)

)
.

(10)

The interpretation of Theorem 2 is this: If one proceeds in a standard way, the need to use
Gronwall's lemma arises. This leads to exponential growth in T . By using exponential scaling
we e�ectively apply Gronwall's lemma along pathlines, which exist only for a �nite time T̂ ,
resulting in bounds uniform in T . This can be interpreted as application of Gronwall in the
Lagrangian framework, not in the Eulerian. We note that the obtained results would hold if
equation (1) were in divergence form with a nonzero divergence of a. This follows from the
relation div(au) = a· ∇u + udiva, which recasts the divergence form into that of (1) with the
new reaction coe�cient c̃ = c+ diva.

Acknowledgement: The work of V. Ku£era was supported by the J. William Fulbright Com-
mission in the Czech Republic and research project No. 17-01747S of the Czech Science Foun-
dation. The work of C.-W. Shu was supported by DOE grant DE-FG02-08ER25863 and NSF
grants DMS-1418750 and DMS-1719410.

References

[1] B. Ayuso, L.D. Marini: Discontinuous Galerkin methods for advection-di�usion-reaction
problems, SIAM J. Numer. Anal. 47:2, 2009, pp. 1391�1420.

[2] V. Ku£era, C.-W. Shu: On the time growth of the error of the DG method for advective prob-
lems, IMA J. Numer. Anal. (to appear), DOI: 10.1093/imanum/dry013, arXiv:1711.09417.

[3] U. Nävert: A �nite element method for convection-di�usion problems, Ph.D. thesis, Chalmers
University of Technology, 1982.

83



Multiple solutions to steady �ow problems involving
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In the practical problems of (computational) �uid dynamics, it is usually important to restrict
one's consideration into a bounded domain of interest, despite of the fact that the domain
does not cover the entire area of the �ow. Certain parts of the domain boundary are then
arti�cial boundaries: they allow for an in�ow or out�ow of the �uid and are not related to any
natural physical interface, since they only represent a truncation of the �ow extending beyond the
considered domain. The choice of boundary conditions to be imposed on arti�cial boundaries is
a question that cannot be answered only on the basis of mathematical, or physical, considerations
alone. It should be addressed from a combined viewpoint, which includes also the numerical and
modelling considerations.

We focus on one particular aspect of one class of in�ow and out�ow boundary conditions for the
steady Navier�Stokes system

divvvv = 0
div(vvv ⊗ vvv)− divTTT = 000

}
in Ω, where

TTT = −pIII +SSS,
SSS = ν

(
∇vvv + (∇vvv)T

)
,

where vvv, p, TTT , SSS and ν > 0 stand for the velocity, the kinematic pressure, Cauchy stress tensor
and its viscous part, and the kinematic viscosity, respectively. In particular, we deal with the
problems subject to the given constant traction boundary condition on a part of boundary:

−TTTnnn ≡ pnnn−SSSnnn ≡ pnnn− ν (∇vvv + (∇vvv)T )nnn = bbb on Γbbb ⊂ ∂Ω, (1)

where nnn is the unit outer normal vector to the boundary ∂Ω and bbb ≡ bbb(xxx) is a given vector of
traction, a common choice being bbb = Pnnn with some P ∈ R. Alternatively, we deal with the
analogous condition which can be called the full-gradient-traction condition

pnnn− ν (∇vvv)nnn ≡ pnnn− ν ∂v
vv

∂nnn
= b̂bb on Γ

b̂bb
⊂ ∂Ω, (2)

with the given data b̂bb ≡ b̂bb(xxx). This, in the special case b̂bb = P̂nnn, or b̂bb ≡ 000 in particular, represent
the so-called do-nothing boundary condition well established in practical numerical simulations,
see [1].

The conditions (1) and (2) are used frequently in numerical simulations of �ows of incompressible
�uids, despite of the fact that they do not facilitate the well-posedness of the problem. It is
a well known fact that they do not allow for standard energy estimates and, consequently, it has
been impossible so far to establish the existence theory except for small data. While the non-
uniqueness of steady solutions seems to be expected intuitively, no concrete example of multiple
solutions has been given in the literature so far, to the best of our knowledge. Indeed, e.g. as
Galdi comments in [2] after proving that for small data there is a unique small solution

�. . . the question of whether a given solution is unique in the class of all possible
weak solutions corresponding to the same data . . . is, to date, open, in the case of
do-nothing conditions.�
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Despite of this lack of well-posedness theory, the addressed conditions are used in numerical
simulations by many researchers on a regular basis, since in many problem settings and �ow
regimes they are experienced to deliver a unique solution.

The scope of our contribution is to present a set of examples of multiple solutions to the steady
�ow subject to the conditions that include (1) or (2). We aim to demonstrate one particular sim-
ple mechanism behind the non-uniqueness, and to pursue the behaviour of the steady solutions,
of the corresponding unsteady �ows and of their numerical approximation. We observe multiple
solutions for small boundary data, including the case of trivial data where both the trivial and
non-trivial solutions can be found. On the other hand, for some instances of large boundary data,
the considerations in a simpli�ed setting and our numerical simulations indicate the possibility
that no steady solution would exist, this fact being related to the very same mechanism.

We start by studying the isotropic radial planar �ow, where the arti�cial boundaries are consid-
ered at the radii 0 < R1 < R2, with the boundary data given there as bbb = Pinnn (or b̂bb = Pinnn) at
Ri, i = 1, 2. Given the di�erence P1−P2, the steady problem then reduces to the task of �nding
one constant, the �ow rate Q ∈ R, which is observed to be the solution of a quadratic equation.
It appears that there is a critical value Pcrit > 0, such that there are two such steady solutions
for P1 − P2 < Pcrit (which includes the case of trivial boundary data), while for P1 − P2 > Pcrit

there is no (isotropic radial) steady solution.

Taking the advantage of this reduced setting we continue by studying the unsteady problem
(with stationary data). The isotropic radial solution is then given by a single function of time,
Q(t), found by solving the corresponding ordinary di�erential equation. We �nd that the solution
either converges asymptotically to one of the steady solutions or it blows up in �nite time.

We also report the results of the �nite element simulations of the �ow. Examining �rst the
aforementioned isotropic radial setting, we observe that a common numerical scheme based
on Newton's method can �nd the both of the two steady solutions, depending on the given
initial guess. Examining the unsteady case, we can con�rm numerically the behaviour found
analytically, including the blow-up of the unsteady solutions in �nite time. We then focus on more
practical examples: Examining the planar �ow in a diverging channel, we obtain numerical results
that are qualitatively similar to those in the isotropic radial setting, including �nding a non-trivial
solution to the trivial data problem with the do-nothing boundary conditions. Finally, we provide
a numerical example addressing a hemodynamical �ow problem: two di�erent solutions to the
�ow through a bifurcating tube with two out�ow sections ended by the do-nothing boundaries.
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The �eld of values bounds on ideal GMRES

J. Liesen 1, P. Tichý 2

1Technische Universität Berlin, Germany
2Charles University in Prague

1 Introduction

Consider a linear algebraic system Ax = b with a nonsingular matrix A ∈ Fn×n and a right hand
side b ∈ Fn, where F = R or F = C. Given an initial approximation x0 ∈ Fn and the initial
residual r0 ≡ b−Ax0, the GMRES method iteratively constructs approximations xk such that

‖rk‖ = ‖b−Axk‖ = min
p∈πk(F)

‖p(A)r0‖, k = 1, 2, . . . ,

where ‖v‖ ≡ 〈v, v〉1/2 denotes the Euclidean norm on Fn, and πk(F) is the set of polynomials p
of degree at most k with coe�cients in F, and with p(0) = 1.

The convergence analysis of GMRES has been a challenge since the introduction of the algorithm;
see [11] or [10, Section 5.7] for surveys of this research area. Here we focus on GMRES convergence
bounds that are independent of the initial residual, i.e., for a given A, we consider the worst-case
behavior of the method. It is easy to see that for each given A, b and x0, the kth relative GMRES
residual norm satis�es

‖rk‖
‖r0‖

≤ max
v∈Fn
‖v‖=1

min
p∈πk(F)

‖p(A)v‖.

The expression on the right hand side is called the kth worst-case GMRES residual norm. For
each given matrix A and iteration step k, this quantity is attainable by the relative GMRES
residual norm for some initial residual r0. Mathematical properties of worst-case GMRES have
been studied in [8]; see also [12].

2 Elman's and Starke's bounds

Let F = R and let M ≡ 1
2(A + AT ) be the symmetric part of A. Assuming that M is positive

de�nite, a widely known result of Elman, stated originally for the relative residual norm of the
GCR method in [6, Theorem 5.4 and 5.9], implies that

max
v∈Rn
‖v‖=1

min
p∈πk(R)

‖p(A)v‖ ≤
(

1− λmin(M)2

λmax(ATA)

)k/2
; (1)

see also the paper [5, Theorem 3.3].

Let F(A) be the �eld of values of A ∈ Fn×n, and let ν(A) be the distance of F(A) from the
origin, i.e.,

F(A) ≡ {〈Av, v〉 : v ∈ Cn, ‖v‖ = 1}, ν(A) ≡ min
z∈F(A)

|z|.
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Then the bound (1) can be written as

max
v∈Rn
‖v‖=1

min
p∈πk(R)

‖p(A)v‖ ≤
(

1− ν(A)2

‖A‖2

)k/2
. (2)

It can be easily shown (see [1]), that the bound (2) holds for general nonsingular matrices
A ∈ Cn×n, without any assumption on the Hermitian part of A.

Starke proved in [13, Section 2.2] and the subsequent paper [14, Theorem 3.2], that if A ∈ Rn×n
has a positive de�nite symmetric part M , then

max
v∈Rn
‖v‖=1

min
p∈πk(R)

‖p(A)v‖ ≤
(
1− ν(A)ν(A−1)

)k/2
. (3)

For a general nonsingular matrix we have

ν(A)

‖A‖2
≤ min

w∈Cn\{0}

∣∣∣∣〈Aw,w〉〈w,w〉
〈w,w〉
〈Aw,Aw〉

∣∣∣∣ = min
v∈Cn\{0}

∣∣∣∣∣
〈
A−1v, v

〉
〈v, v〉

∣∣∣∣∣ = ν(A−1),

which yields

1− ν(A)ν(A−1) ≤ 1− ν(A)2

‖A‖2
.

Hence, as pointed out by Starke in [13, 14], the bound (3) improves Elman's bound (1). In [4,
Corollary 6.2], Eiermann and Ernst proved that the bound (3) holds for any nonsingular matrix
A ∈ Cn×n. In particular, no assumption on the Hermitian part of A is required. Note, however,
that the bound (3) provides some information about the convergence of (worst-case) GMRES
only when 0 /∈ F(A), or, equivalently, 0 /∈ F(A−1).

In many situations the convergence of GMRES and even of worst-case GMRES is superlin-
ear, and therefore linear bounds like (2) and (3) may signi�cantly overestimate the (worst-case)
GMRES residual norms. Nevertheless, such bounds can be very useful in the practical analy-
sis of the GMRES convergence, since they depend only on simple properties of the matrix A,
which may be estimated also in complicated applications. For example, Starke used his bound
in [13, 14] to analyze the dependence of the convergence of hierarchical basis and multilevel
preconditioned GMRES applied to �nite element discretized elliptic boundary value problems
on the mesh size and the size of the skew-symmetric part of the preconditioned discretized op-
erator. Similarly, Elman's bound was used in the analysis of the GMRES convergence for �nite
element discretized elliptic boundary value problems that are preconditioned with additive and
multiplicative Schwarz methods [2, 3]. Many further such applications exist.

3 Ideal GMRES bound

A straightforward upper bound on the kth worst-case GMRES residual norm is given by the kth
ideal GMRES approximation, originally introduced in [9],

max
v∈Fn
‖v‖=1

min
p∈πk(F)

‖p(A)v‖

︸ ︷︷ ︸
worst-case GMRES

≤ min
p∈πk(F)

‖p(A)‖︸ ︷︷ ︸
ideal GMRES

. (4)

As shown by examples in [7, 16] and more recently in [8], there exist matrices A and iteration
steps k for which the inequality in (4) can be strict. The example in [16] even shows that the
ratio of worst-case and ideal GMRES can be arbitrarily small. A survey of the mathematical
relations between the two approximation problems in (4) is given in [15].
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4 Results

The main goal of this contribution is to show that the right hand side of the bound (3) also
represents an upper bound on the ideal GMRES approximation for general (nonsingular) complex
matrices. In other words, the main goal is to show that

min
p∈πk(F)

‖p(A)‖ ≤
(
1− ν(A)ν(A−1)

)k/2
.

This has been stated without proof already in our paper [11, p. 168] and later in the book [10,
Section 5.7.3]. In light of the practical relevance of Elman's and Starke's bounds, and of the fact
that the inequality in (4) can be strict, we believe that providing a complete proof is important.

We will further discuss some possible improvements of the known bounds based on the �eld of
values. For example, we conjecture that

min
‖b‖=1

cos∠(b, Ab) ≥ ν(A)

r(A)

holds for any square matrix A, where

r(A) ≡ max
z∈F(A)

|z|

is the numerical radius of A satisfying 1
2‖A‖ ≤ r(A) ≤ ‖A‖. If the above mentioned conjecture

is true, then Elman's bound can be improved by replacing ‖A‖ with r(A) in (2).

Finally, assuming that F(A) is contained in a disk D with center c and radius δ given by

c =
ν(A) + r(A)

2
, and δ =

r(A)− ν(A)

2
,

we show that

min
p∈πk
‖ p(A) ‖ ≤ 2

 r(A)
ν(A) − 1

r(A)
ν(A) + 1

k

.

This bound can be seen as a generalization of the bound, which is known from the steepest
descent method. In particular, if A is Hermitian positive de�nite, then r(A)/ν(A) = κ(A).

Acknowledgement: This work was partially supported by project 17-04150J of the Grant
Agency of the Czech Republic. This work was motivated by a question of Otto Strnad, a student
of Zden¥k Strako² at the Charles University in Prague.
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A uniform parallel framework to large-scale

simulations of wave-type equations

D.Luká²

Department of Applied Mathematics, FEECS, V�B -Technical University of Ostrava

1 Introduction

In many engineering areas such as nondestructive testing of materials and structures investiga-
tion of ultrasonic waves is of a great importance. In this paper we shall describe an e�cient
parallel implementation of a related �nite element method. Let us consider a 3-dimensional
computational domain Ω with a Lipschitz continuous boundary Γ, the time interval (0, T ), and
the following initial boundary value problem for a wave-type equation

ρ∂
2u
∂t2
− L∗ (σ (L(u))) = f in Ω× (0, T ),

γN(σ(L(u))) = g on Γ× (0, T ),
u = 0 in Ω× {0},
∂u
∂t = 0 in Ω× {0},

(1)

where L denotes a linear �rst-order spatial di�erential operator, L∗ denotes the related adjoint
(with respect to L2(Ω)) operator, σ represents a linear constitutive law, and γN is the Neumann
trace operator. We are mostly interested in elastodynamics, in which case L := ∇, L∗ := div are
vectorial operators, ρ stands for the mass density, σ is a tensor representing the linearized Hooke's
law, γN(σ) := σ · n is vectorial, where n is the outward unit normal vector to Ω. Nonetheless,
the framework is common also for acoustics and electromagnetism. In case of acoustics, L := ∇,
L∗ := div are scalar operators, ρ is the mass density, σ(φ) := φ, and γN(σ) := σ · n is the scalar
product. In case of electromagnetism, L = L∗ := curl, ρ := 1, σ(φ) := c2φ, where c denotes the
wave speed, and γN(σ) := curl(σ)× n.

Now we pose a weak formulation of (1). To this end we consider the Sobolev space V :=
H(L; Ω) :=

{
v ∈ L2(Ω) : L(u) ∈ L2(Ω)

}
and its dual V ′ with respect to the pivot space L2(Ω),

which is vectorial in case of elastodynamics or electromagnetism. The problem is to �nd u ∈
L2(0, T ;V ) with du

dt ∈ L
2(0, T ;L2(Ω)), d

2u
dt2
∈ L2(0, T ;V ′), u(0) = 0, and du

dt (0) = 0 such that〈
ρ
d2u

dt2
, v

〉
V ′×V

+ (σ(L(u)),L(v))L2(Ω) = (f, v)L2(Ω) + (g, v)L2(Γ) ∀v ∈ V ∀t ∈ (0, T ). (2)

We discretize Ω into tetrahedra and approximate V by a conforming �nite element method
(FEM). The degrees of freedom (DOFs) are scalar or vectorial values at vertices in case of acous-
tics or elastodynamics and oriented tangential moments along edges in case of electromagnetism.
We employ an unconditionaly stable implicit Newmark time stepping scheme, where in each out
of m time steps tk := k∆t, where ∆t := T

m , the following linear system is solved(
M +

(∆t)2

4
K

)
ük+1 = bk −K

(
uk + ∆tu̇k +

(∆t)2

4
ük

)
, (3)

where M and K are matrices arising from the respective bilinear forms on the left-hand side
of (2), bk is the discretization of the linear form on the right-hand side of (2), and uk, u̇k, ük are
FEM-coordinate approximations to u(tk), dudt (tk), d

2u
dt2

(tk). Thanks to the high-frequency nature
∆t is very small, hence in the operator the mass matrix M dominates. We solve (3) by the
conjugate gradients (CG) method with the diagonal preconditioning.
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2 Parallel implementation by domain decomposition

The domain Ω, and so the collection of tetrahedra, is decomposed into N nonoverlapping sub-
domains, each of which is associated to exactly one concurrent process. This induces a non-
overlapping distribution of matrices, e.g., M =

∑N
i=1 Gi(Mi), where Gi is a local-to-global map-

ping of DOFs. On the other hand, vectors are distributed with overlaps in the sense that DOFs
on interfaces are shared among the adjacent processes. That gives rise to communication.

The CG method is running on each process locally up to three instructions per iteration � one
action of the system matrix and two dot-products. The communication proceeds as follows:

• Matrix-vector product s := A · p. First local contributions s̃i := Ai · pi are computed
in parallel. The result is correct up to the interface DOFs. They are updated using
a nonblocking (asynchronous) communication. Each process successively sends copies of
interface restrictions of s̃i to all of its neighbours. Then the process successively reads
similar messages from the neighbours and sums them up leading to the correct vector s.
Notice that assembling the diagonal preconditioner proceeds similarly.

• Dot-product α := s · p. Each process knows a subset (mask) Mi of its interface DOFs
so that this distribution is globally non-overlapping. It applies the mask to the vectors,
p̂i := (pi)Mi , and computes the local dot-product αi := ŝi · p̂i. The result α =

∑N
i=1 αi is

gained by the all-to-all communication with a single-valued message per process.

We illustrate the parallel e�ciency of our approach in Tab. 1. On the discretization level we
combine the domain decomposition with a multigrid approach. First of all, a nontrivial geometry
of a piezo-acoustical sensor of an oil level was discretized coarsely (≈ 104 nodal DOFs). The
coarse mesh was decomposed into 24, 48, . . . , 192 subdomains (multiples of 24 computational
cores per node of our cluster Salomon). On the coarse level all local and global DOF indices were
assigned and interfaces were found. Then we applied the uniform re�nement, which is free of
communication since re-computing the global indices (nodes, edges, faces, tets) is done locally.
We employed four re�nements leading to 34 milion DOFs and one more leading to 271 milion
DOFs. This amount was necessary to capture the wavelength.

Table 1: CPU and memory parallel e�ciency of 100 actions of the matrix and the preconditioner.

number Number of cores (1 node = 24 cores)
of DOFs 24 48 72 96 120 144 168 192

17 s 8 s 5 s 3 s 3 s 3 s 2 s 1 s
34 mil. 106% 113% 142% 113% 94% 121% 213%

1.59GB 0.90GB 0.66GB 0.55GB 0.48GB 0.43GB 0.40GB 0.37GB
29 s 25 s 22 s 20 s

271 mil. 97% 94% 91%
2.48GB 2.11GB 1.84GB 1.65GB

Acknowledgement: This work has been supported by the Czech Science Foundation under
the project 17-22615S and by The Ministry of Education, Youth and Sports from the Large
Infrastructures for Research, Experimental Development and Innovations project `IT4Innovations
National Supercomputing Center � LM2015070'.
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High-order 2D boundary element method

D.Luká², D.Ul£ák

Department of Applied Mathematics, FEECS, V�B -Technical University of Ostrava

1 Introduction

Probably most popular algorithms for numerical solving of partial di�erential equations are Finite
Element Method (FEM) and Boundary Element Method (BEM). The di�erence between them
is di�erent formulation on the one hand, and matrices arising from them on the other: FEM
produces sparse matrices whereas BEM produces dense ones. There are many e�ective ways to
solve systems of linear equations with sparse matrices, so BEM matrices are often sparsi�cated
before solving the system. However, vectorisation, i.e. simultaneous processing of more items on
one CPU, provides interesting alternative since it does work very well with dense matrices.
In cases when surface/volume ratio of the problem is low enough, BEM matrices have smaller
dimension than FEM ones, because BEM deals only with boundary of the domain. We will have
a brief look at possibility of further decreasing BEM matrices dimensions via using generally
polynomial basis instead of constant/linear one. This work is mostly focused on 2-dimensional
case.

2 Gaussian quadrature rules

Let w ∈ L1(a, b) be positive function almost everywhere in 〈a, b, 〉 and let
∫ b
a w(x)f(x)dx < ∞

hold for every f ∈ L2(a, b). Then we call the function w weight function and the bilinear form

(f, g)w =

b∫
a

w(x)f(x)g(x)dx (1)

de�nes inner product on L2(a, b). Using Gram-Schmidt orthogonalization process on set of mono-
mials {1, x, x2, . . . , xn}, we can get {p0,w(x), p1,w(x), p2,w(x) . . . , pn,w(x)} - a set of polynomials
orthogonal with respect to (., .)w. It can be shown that by putting p−1(x) = 0, p0(x) = 1,
following recurrence relation holds:

pn+1(x) =

(
x− (xpn, pn)w

(pn, pn)w

)
pn(x)− (pn, pn)w

(pn−1, pn−1)w
pn−1(x). (2)

If we denote x0, . . . , xn roots of polynomial pn+1,w, Gaussian quadrature rule of nth degree is
de�ned as follows:

b∫
a

w(x)f(x)dx =

n∑
i=0

wif(xi), (3)

which is exact for every polynomial up to degree 2n + 1. For analytic non-polynomial func-
tions, quadrature has asymptotically exponential convergence rate. Weights w0, . . . , wn can be
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computed by solving linear system
p0(x0) p0(x1) . . . p0(xk)
p1(x0) p1(x1) . . . p1(xk)

...
...

. . . . . .
pk(x0) pk(x1) . . . pk(xk)



w0

w1
...
wk

 =


∫ b
a w(x)dx

0
...
0

 . (4)

In 2d BEM, we will have to deal with integrals containing certain polynomials and a logarithmic
singularity. By suitable simpli�cation, it is possible to use w(x) = − lnx, a = 0, b = 1 for
e�ective computation of single-layer matrix elements. Furthermore, this can be considered also
in 3d BEM with semi-analytic approach.

3 High-order BEM

Let us consider following Laplace problem:

Ω ∈ L, f ∈ L2(Ω), g ∈ H
1
2 (ΓD) :

{
−∆u = 0, u ∈ Ω

γDu = g, x ∈ ΓD,
(5)

where γD is the Dirichlet trace operator. Employing Green's 3rd identity (and Green function in
2d G(x, y) = − 1

2π ln‖x−y‖), we can get boundary integral formulation of problem (5) as follows:
We need to search for t ∈ H−

1
2 (Γ) such that

∀v ∈ H−
1
2 (Γ) : 〈v, V t〉 =

〈
v,

(
1

2
I +K

)
g

〉
(6)

holds, considering single-layer potential V , double-layer potential K and identity I:

〈u, V w〉 =

∫
Γ
u(x)

∫
Γ
w(y)G(x, y)d`(y)d`(x), (7)

〈u,w〉 =

∫
Γ
u(x)w(x)d`(x), (8)

〈u,Kw〉 =

∫
Γ
u(x)

∫
Γ
w(y)

dG

dny
d`(y)d`(x). (9)

In 2d, it is necessary that domain Ω lies within unit circle for the sake of uniqueness. However,
this can be easily arranged by re-scaling problem.
Now, let us consider discretization of Γ by segments τi, their parametrization x = x1

i + t(x2
i −

x1
i ), t ∈ 〈0, 1〉 and basis functions above ith element, i.e.

x ∈ τi : ψ
(i)
k (x) = Lk(t), ϕ

(i)
0 (x) = 1− t, ϕ

(i)
1 (x) = t, ϕ

(i)
k (x) = t(1− t)Lk−2(t), (10)

where Lk is kth Legendre polynomial on interval 〈0, 1〉 and functions are considered as zero for
x /∈ τi. If we use functions ψ(i)

k as piecewise discontinuous basis for approximation of space

H−
1
2 (Γ) and also functions ϕ(i)

k as piecewise continuous basis for approximating space H
1
2 (Γ) in

Galerkin manner, we �nally get system of linear equations

Vt =

(
1

2
M + K

)
g, (11)
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Figure 1: Example of comparison of classical and high-order BEM with respect to dimensions of
matrices for Laplace equation on square within unit circle

where g is projection of Dirichlet boundary condition onto basis ϕ(i)
k ,

V(i,j)
k,l =

∫
τi

ψk(x)

∫
τj

ψl(y)G(x, y)d`(x)d`(y), (12)

and analogously for matrices K,M.
With particular analytic integration and utilization of Legendre polynomials properties, logarith-
mic quadrature can be used to evaluate most of the single-layer matrix elements exactly, while
non-(sub)diagonal blocks of matrix M and high-order diagonal blocks of matrix K are zero, the
rest of elements in either matrix can be computed via Gauss-Legendre quadrature. It can be
shown ([3]), that for solution regular enough, high-order BEM has exponential convergence rate,
see Figure 1.

4 Conclusion

By employing higher-order base functions and Gauss-log quadrature, we achieved another way to
decrease dimensions of produced matrices, since increasing order of basis is much more e�cient
than re�ning the discretization grid for regular solutions. However, for areas with lower regularity
(e.g. L-shape) there should be used more discretization elements rather than polynomials of
higher degree. Thus the pairing of classical and high-order BEM could be employed for such
domains.
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Solution of Gao beam in contact with a deformable foundation
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1 Introduction

The nonlinear beam model (see [2])

EI w′′′′ − Eα (w′)2w′′ + Pµw′′ = f in (0,L) (1)

together with a deformable elastic foundation will be considered here and we are going to study
some contact problems between these two objects. This text follows [5], where details and
notations can be found.

The foundation is assumed to be 1-parameter with foundation modulus kF > 0 which is modi�ed
as cF = (1− ν2)kF . The resulting equation is then as follows

EIw′′′′ − Eα(w′)2w′′ + Pµw′′ − cF (g − w)+ = f in (0,L). (2)

Note that a solution of this equation can be found as a minimum point on V of the functional

ΠT (v) =
1

2

∫ L

0
EI(v′′)2dx+

1

12

∫ L

0
Eα(v′)4dx− 1

2

∫ L

0
Pµ(v′)2dx−

∫ L

0
fvdx+ (3)

+
1

2

∫ L

0
cF ((g − v)+)

2
dx, v ∈ V, (4)

which appears in the variational formulation of the contact problem mentioned in [5]. The space
V is determined by the prescribed boundary conditions.

If P < P cr, where P cr is something like critical value for the axial loading, then the problem
has exactly one solution. In the following text this will always be assumed.

2 Solving boundary value problems using CVM

Here we concisely present reformulation of the fundamental boundary value problems for Gao
beam by means of the Control Variational Method (CVM) to the next optimal control problem

Find u∗ ∈ Uad = {u ∈ L2((0,L)) : |u(x)| ≤ C a.e. in (0,L)} such that
J(w(u∗), u∗) = min

u∈Uad
J(w(u), u),

where w(u) solves state problem for control value u ∈ Uad.
(5)

More details and equivalence proofs are published in [3] and [4].

(P1) Beam �xed at both ends (Fig.1): w(0) = w′(0) = 0, w(L) = w′(L) = 0

1st transformation: v′ → z
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state equation: EIw′′′′ = f + u

cost functional: J1(w, u) =
1

2

∫ L

0
u(w − ŵ)dx+

1

12

∫ L

0
Eα(w′)4dx− 1

2

∫ L

0
Pµ(w′)2dx+

+
1

2

∫ L

0
cF ((g − w)+)

2
dx, ŵ : EI ŵ′′′′ = f

(P2) Propped cantilever beam (Fig.1): w(0) = w′(0) = 0, w(L) = w′′(L) = 0

1st transformation: v′ → z

state equation: EIw′′′′ = f + u

cost functional: J2(w, u) = J1(w, u)

Figure 1: (P1) (P2)

(P3) Cantilever beam (Fig.2): w(0) = w′(0) = 0,
w′′(L) = 0, EIw′′′(L) = 1

3Eα(w′(L))3 − Pµw′(L)

2nd transformation: v′ → z, v′′ → z′, f → g

state equation:

−EI z′′ = g + u g : g′ = −f
z(0) = z′(L) = 0 g(L) = 0

w′ = z
w(0) = 0

cost functional: J3(w, u) =
1

2

∫ L

0
u(w′ − ŵ′)dx+

1

12

∫ L

0
Eα(w′)4dx− 1

2

∫ L

0
Pµ(w′)2dx+

+
1

2

∫ L

0
cF ((g − w)+)

2
dx, ŵ = ẑ : EI ẑ′′ = g

Figure 2: (P3) (P4)

(P4) Simply supported beam (Fig.2): w(0) = w′′(0) = 0, w(L) = w′′(L) = 0

3rd transformation: v′ → z, v′′ → y, f → g

state equation:
{
−EIw′′ = g + u g : −g′′ = f

w(0) = w(L) = 0 g(0) = g(L) = 0

cost functional: J4(w, u) =
1

2

∫ L

0

1

EI
u2 dx+

1

12

∫ L

0
Eα(w′)4dx− 1

2

∫ L

0
Pµ(w′)2dx+

+
1

2

∫ L

0
cF ((g − w)+)

2
dx
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3 Numerical realization and examples

First the transformed function g is computed, if it is necessary. Then the state equation is
discretized by the �nite element method. Cubic Hermite elements are used for problems (P1)
and (P2), while problems (P3) and (P4) need linear elements only. The discretization of state
equation leads to the matrix form

Kw = f + u , (6)

whereas cost functional is then represented by a function F(u,w). Nonlinear Conjugate Gradient
Method is applied to minimization of this function in the following form (see [1]):

Let u0 be given.
Compute w0 = Su0 and d0 = −∇F(u0,w0).
Then for k = 0, 1, . . . (until convergence)

evaluate αk > 0,
set uk+1 = uk + αkd

k,
compute wk+1 = Suk+1,
determine gradient gk+1 = ∇F(uk+1,wk+1),
compute βk such that

βk =
(hk)>gk+1

(dk)>yk
, where hk = yk − 2dk

(yk)>yk

(yk)>dk
and yk = gk+1 − gk,

set dk+1 = −gk+1 + βkd
k.

By symbol S we denoted a solution operator of the state problem (6), which is linear. Computa-
tion of gradient ∇F(uk+1,wk+1) is based on the adjoint method, see [6]. Step-size calculations
use Wolfe conditions and projection operator on the set Uad.

Next, four examples are presented. Results for the nonlinear Gao beam are compared with results
for the classical Euler�Bernoulli beam model. The Gao beam is tougher than the classical one,
accordingly in the following �gures the upper curves represent the Gao beam and the lower curves
the Euler�Bernoulli beam results.

The input data for beams are E = 21 · 104 MPa, ν = 0.3, h = 0.1m, I = 0.666667 · 10−3 m4,
L = 1m. In the following �gures on their left sides there are results for bending and on the right
sides for contact problems. The gap between beam and foundation is always g = 0.001m, the
foundation modulus is kF = 5 · 1010 Nm−2. Beams �xed at both ends (Fig. 3) have prescribed
constant vertical load q = −108 Nm−1 and axial load P = −108 N. Results for propped cantilever
beams with loading q = −5 · 107 Nm−1 and P = 108 N are shown in Fig. 4. In Fig. 5 cantilever
beam results are presented using q = −2 · 107 Nm−1 and P = 108 N. The last �gure displays
simply supported beam results for data q = −5 · 107 Nm−1 and P = −108 N.

Figure 3: Beams �xed at both ends
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Figure 4: Propped cantilever beams

Figure 5: Cantilever beams

Figure 6: Simply supported beams
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1 Introduction

This contribution represents an extension of our earlier studies on the paradigmatic example of
the inverse problem of the di�usion parameter estimation from spatio-temporal measurements of
�uorescent particle concentration, see [6, 1, 3, 4, 5]. More precisely, we continue to look for an op-
timal bleaching pattern used in FRAP (Fluorescence Recovery After Photobleaching), being the
initial condition of the Fickian di�usion equation maximizing a sensitivity measure. As follows,
we de�ne an optimization problem and we show the special feature (so-called complementarity
principle) of the optimal binary-valued initial conditions.

2 Problem formulation

We consider the Fickian di�usion problem with a constant di�usion coe�cient δ > 0 and assume
a spatially radially symmetric observation domain, i.e., the data are observed on a cylinder with
the �xed radius R and �xed height T . In [5] it is shown how to perform the scaling of the space
and time coordinates. Thus, without loss of generality we can assume R = 1 and T = 1.

In FRAP, the usual governing equation for the radially symmetric spatio-temporal distribution
of �uorescent particle concentration u(r, t) is the di�usion equation

∂u

∂t
= δ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, (1)

where r ∈ (0, 1], t ∈ [0, 1], with the initial and Neumann boundary conditions

u(r, 0) = u0(r),
∂u

∂r
(1, t) = 0. (2)

The main issue in FRAP and related estimation problems is to �nd the value of the di�usion
coe�cient δ from spatio-temporal measurements of the concentration u(r, t), cf. [1, 6].

Each data entry quanti�es the variable u at discrete spatio-temporal points (r, t), which are
distributed with the constant step-size ∆r and the time interval ∆t (between two consecutive
measurements), i.e.,

u(ri, tj), i = 0 . . . n, r0 = 0, rn = 1, ∆r = 1/n

j = 0 . . .m, t0 = 0, tn = 1, ∆t = 1/m,
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where i is the spatial index uniquely identifying the pixel position where the value of �uorescence
intensity u is measured and j is the time index. The initial condition u0(r) can be considered as
an (n+ 1)-dimensional vector u0 ∈ Rn+1.

Given the data as above, the di�usion coe�cient δ can be computed numerically by solving the
inverse problem to (1)-(2). If all the parameters R, T,∆r,∆t are �xed, the estimation of the true
di�usion parameter δT can be improved by maximizing the so called sensitivity measure

SGRS(u0) = δ2
n∑
i=0

m∑
j=1

[
∂

∂δ
u(ri, tj)

]2

, (3)

i.e., to consider the initial condition (bleach) u0 in (2) as the experimental design parameter.
By optimizing the bleach design, we mean to select the initial conditions in such a way that
SGRS is maximized and hence the expected error in δT is minimized [5]. As we will show later,
the optimal initial condition is binary valued, it has only zero and non-zero components. The
non-zero components represent the optimal bleached area.

We used the Crank-Nicolson (CN) scheme (described in the next section) to solve the initial
boundary value problem (1)-(2). Then, the sensitivity measure SGRS can be approximated by

Sapp(u0) =

m∑
j=1

j2
n∑
i=0

[u(ri, tj)− u(ri, tj−1)]2 =

m∑
j=1

j2‖uj − uj−1‖2, (4)

see [5], where the vector uj ∈ Rn+1 is de�ned in the next section. The optimization problem is
formulated as follows

uopt0 = arg max
u0∈Rn+1

Sapp(u0) subject to 0 ≤ u0i ≤ 1, i = 0, . . . , n. (5)

The upper bounds u0i ≤ 1 serve to determine where the initial condition is considered. Note
that an arbitrary positive value can be used.

3 Numerical issues of the initial boundary value problem

When computing a numerical solution ui,j := u(ri, tj), i = 0 . . . n, j = 1 . . .m, of the IBV
problem (1)-(2), the �nite di�erence CN scheme is used. Starting with an initial u0 ∈ Rn+1 and
after some algebraic manipulation we arrive at a linear system with a three-diagonal symmetric
positive de�nite matrix

Auj = Buj−1 (6)

for uj = (u0,j , . . . , un−1,j)
T ∈ Rn, j = 1 . . .m. The Neumann boundary condition implies the

last component un,j = un−1,j . Here,

A =

(
1

nδ
Z + hT

)
, B =

(
1

nδ
Z − hT

)
,

T =



1
4 −s0

−s0 1 −s1

−s1 2 −s2

· · · · · · · · ·
−sn−3 n− 2 −sn−2

−sn−2 n−1− sn−1

 ,
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Z = diag

(
1

4
, 1, 2, . . . , n− 2, n− 1

)
, h =

n

m
, sk =

2k + 1

4
, k = 0, . . . , n− 1.

The matrix T is positive semide�nite and singular. As

sk + sk+1 = k + 1, k = 0, . . . , n− 2,

the sum of the o�-diagonal elements in T is equal to the diagonal element and thus

Te = 0, e = (1, . . . , 1)T .

The matrix Z is positive de�nite, so the same is A. Denote

C = A−1B.

Then for the spectral radius of C we have

%(C) ≤ 1.

Using the above notation we can adjust the function Sapp as follows. It holds

Auj = Buj−1 ⇒ uj = Cuj−1 = Cju0, j = 1, . . . ,m.

From this we can conclude that

uj − uj−1 = Cj−1(C − I)u0

and

Sapp(u0) =
m∑
j=1

j2‖Cj−1(C − I)u0‖2. (7)

The function Sapp is quadratic and nonnegative. The maximum is achieved at a vertex of the
constrained set 0 ≤ u0i ≤ 1, i = 0, . . . , n, which is (n+1)-dimensional hypercube. Thus, uopt0 is a
{1, 0}-function, see also [3]. The jumps between these values in fact represent the discontinuities
in bleached domain leading to more complex optimal bleaching patterns.

Moreover, since
Te = 0 ⇒ (C − I)e = 0, (8)

we have
Sapp(αe) = 0, α ∈ [0, 1]. (9)

Note that (9) holds for an arbitrary α but we consider only a unit hypercube, see (5).

The most important property of the function Sapp is

Sapp(u0) = Sapp(e− u0). (10)

This implies that if uopt0 is an optimal vertex solution to problem (5), then also e − uopt0 is a
solution with the same function value. In practice it means that if e.g. the disc is an optimal
bleaching pattern, then also its complement, the annulus touching the bleached domain, is an
optimal bleaching pattern.

To show (10), denote v0 = e− u0. Using the same CN scheme with v0 and using (8), we obtain

vj − vj−1 = Cj−1(C − I)v0 = Cj−1(C − I)(e− u0) = −Cj−1(C − I)u0

and from (7) Sapp(u0) = Sapp(v0).
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4 Conclusion

In this contribution, the problem of the optimal initial condition for the further identi�cation
of a constant di�usion coe�cient is formulated. We set up the numerical procedure leading
simultaneously to the optimal size and shape of a bleached domain for which the sensitivity
measure reaches the maximal value, hence assuring the smallest relative error of the estimated
parameter. The optimal initial shapes or bleaching patterns are functions of δ. Optimal shapes
are not only disks of various radii (the usual bleach shape used in the FRAP community). For
high values of the dimensionless di�usion coe�cient, the disc is the optimal shape and for smaller
values, shapes with more and more components (i.e., annuli-type shapes) become optimal.

Having prescribed δ and other parameters re�ecting the experimental protocol, there exist two
corresponding optimal initial conditions (and hence optimal bleach sizes and shapes). These
initial conditions satisfy a complementarity principle and thus whichever of them can be used in
practice as the optimal bleaching pattern.
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Gao beam: From de�nition to contact problems

H.Netuka, J.Machalová

Department of Mathematical Analysis and Applications of Mathematics
Faculty of Science, Palacký University, Olomouc

1 Gao beam model

Let us consider an elastic beam subjected to a distributed vertical load q(x) and an external
axial force P (which is compressive if P > 0) at the right end as shown in Fig.1.

Figure 1: Cantilever beam

It is well known that the original Euler�Bernoulli theory is valid only for in�nitesimal strains.
This theory can be extended in a straightforward manner to problems involving moderately large
displacements provided that the strain remains small by using the von Kármán strains. Based
on the Euler�Bernoulli hypothesis (i.e. straight lines normal to the mid-surface remain straight
and normal to the mid-surface after deformation) governing equations for a nonlinear isotropic
beam model can be expressed as follows, see e.g. [6],

(EIw′′)′′ − (EA [u′ +
1

2
(w′)2]w′)′ = q, (1)

−(EA [u′ +
1

2
(w′)2])′ = 0, (2)

where w and u are transverse and horizontal displacements, respectively, E is Young's modulus,
A cross-section area, I area moment of inertia, q(x) distributed transverse load (per unit length).
The same result one can obtain from the von Kármán nonlinear plate model in one-dimension
with

σx = EA [u′ +
1

2
(w′)2] (3)

as the axial stress. From (1) and (2) we get

(EIw′′)′′ − (EA [u′ +
1

2
(w′)2])w′′ = q in (0,L), (4)

but, as a consequence of (2), this is evidently a linear equation. According to D.Y. Gao, the main
reason for this paradox is due to the fact that the stress in the lateral direction was ignored.

Using the following additional assumptions:
- the beam has a uniform cross-section of the rectangular shape, i.e. I = 2

3 h3b, A = 2hb,
- the beam is under moderately large elastic deformations,
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- some small terms in the Green�Saint Venant strain tensor are omitted,
- the stresses and the deformations in the y-direction are not neglected,
- constitutive relations from the plane stress problem are used to de�ne the stresses,

a nonlinear beam model was proposed by Gao in the form of the system (see [2])

EIw′′′′ − (σw′)′ = f, (5)

σ =
1

3
Eα(w′)2 − (1 + ν)(1− ν2)P, (6)

u′ = − 1

2
(w′)2(1 + ν)− 1− ν2

2hbE
P, (7)

where f = (1 − ν2)q, α = 3hb(1 − ν2), ν denotes the Poisson's ratio and σ is the canonical
dual stress - in contrast to the previous model (1)-(3) non-constant. Substituting (6) into (5)
and using abbreviation µ = (1 + ν)(1− ν2) we �nally obtain the equation for de�ections

EI w′′′′ − Eα (w′)2w′′ + Pµw′′ = f in (0,L) (8)

and the corresponding functional of potential energy

ΠG(v) =
1

2

∫ L

0
EI (v′′)2dx+

1

12

∫ L

0
Eα(v′)4dx− 1

2

∫ L

0
Pµ(v′)2dx−

∫ L

0
fvdx, (9)

de�ned on some kinematically admissible space V . Usual boundary conditions can be applied to
this model with only one exception - free end conditions for cantilever beam now take the form
w′′(L) = EIw′′′(L)− 1

3 Eα(w′(L))3 + Pµw′(L) = 0.

The most important properties of ΠG are (see e.g. [3])
a) ΠG is coercive for any P ,
b) ΠG is strictly convex if P < PGcr ,

where critical value PGcr could be determined by the convexity condition

Π
′′
G(w, v, v) =

∫ L

0
EI (v′′)2dx− P

∫ L

0
µ (v′)2 dx+

∫ L

0
Eα(w′)2(v′)2 dx ≥ 0 ∀w, v ∈ V. (10)

Let us note that now we do not solve an eigenvalue problem as it is usual for classical Euler�
Bernoulli beam. For simplicity, instead of exact value PGcr the value

P cr = min
v∈V

∫ L
0 EI (v′′)2 dx∫ L

0 µ (v′)2 dx
=

1

µ
PEcr ≤ PGcr , (11)

is used in the text below, where PEcr is the well-known Euler limit load. As a result we get that
for any P s.t. P < P cr the variational problem{

Find w ∈ V such that
ΠG(w) = min

v∈V
ΠG(v), (12)

which describes beam bending, has exactly one solution.

2 Contact problems

Now let us consider two fundamental contact problems for the Gao beam and a foundation, see
Fig. 2. The gap g ≤ 0 between them is generally a function but, for simplicity, we will consider
it here as a given constant.
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Figure 2: Beam and a foundation

The �rst problem deals with undeformable (or rigid) foundation. Using the non-penetration (or
Signorini) condition w ≥ g in (0,L), we arrive at the variational problem{

Find w ∈ K such that
ΠG(w) = min

v∈K
ΠG(v), (13)

where K = {v ∈ V : v ≥ g in (0,L)} is closed convex subset of space V . Thus, as in the
original problem (12), it can be said that for P < P cr problem (13) has just one solution. Of
course, this problem could be rewritten as a variational inequality.

The second case concerns a deformable foundation with kF > 0 as the foundation modulus. It
can be modelled using the so-called normal compliance condition, see e.g. [1], [4]. The total
potential energy ΠT of the whole system is now given by

ΠT (v) = ΠG(v) +
1

2

∫ L

0
cF ((g − v)+)

2
dx, v ∈ V, (14)

where cF = (1− ν2)kF , v
+(x) = max{0, v(x)}. This functional has the same properties which

have been mentioned above in connection with the functional ΠG. Hence the problem{
Find w ∈ V such that
ΠT (w) = min

v∈V
ΠT (v) (15)

has one solution if P < P cr. This problem, contrary to (13), is not an inequality but has the
form of a nonlinear variational equation.

3 Solution using Control Variational Method

The Control Variational Method (CVM) was proposed by D. Tiba and M. Sofonea as a method
for analysing and solution of boundary value problems for di�erential systems. The idea behind
CVM consists in transforming the original problem into the new one which is an optimal control
problem. Contact problems for cantilever Euler�Bernoulli beam were studied by means of CVM
in [1]. Our research generalizes this approach to nonlinear Gao beam which is in addition
subjected to axial load and with all kinds of possible boundary conditions.

CVM is realized in the three steps:
1) transformation of the loading function f (if it is considered useful),
2) de�nition of the state equation,
3) transformation of the potential energy functional into a cost functional J .

These steps result into problem transformation.
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The key principle here is to make the state equation linear (optimization then will be easier),
the key tool for these purposes are following transformations:

1st transformation: v′ → z,

2nd transformation: v′ → z, v′′ → z′, f → g:
∫ L

0
fvdx =

∫ L

0
gv′dx ∀v ∈ V ,

3rd transformation: v′ → z, v′′ → y, f → g:
∫ L

0
fvdx = −

∫ L

0
gv′′dx ∀v ∈ V .

Applying the three steps using one of the above transformation we arrive at the �nal optimal
control problem. These problems are two-stage problems with the basic stage known as the state
problem. It is a boundary value problem and the scheme for it has the following form

For given u ∈ Uad �nd w := w(u) such that
w solves state equation in (0,L)
together with prescribed boundary conditions,

(16)

where the set od admissible controls is given by

Uad = {u ∈ L2((0,L)) : |u(x)| ≤ C a.e. in (0,L)} (17)

for some positive constant C (because we do not want to break the beam). The second stage
represents an optimization problem

Find u∗ ∈ Uad such that
J(w(u∗), u∗) = min

u∈Uad
J(w(u), u),

where w(u) solves (16)
for control value u ∈ Uad.

(18)

Examples of using CVM for solving contact problems including numerical solution are given in
[5]. More details related to the transformation process together with existence theorems and
proofs of problems equivalence can be found in [3] and [4].
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1 Introduction

In electronic structure calculations, the total energy of a system of atoms is an important quantity,
whose derivatives with respect to movement of atomic centres, also known as the Hellmann-
Feynman forces (HFF), present a suitable tool for the material science to determine various
material properties �ab-initio�. Those forces act on atoms out of the equilibrium positions. By
consequence, e�cient evaluation of the HFF has many applications such as in seeking stable
atomic positions or in molecular dynamics calculations.

According to the Hellmann-Feynman theorem [4], supposing that a �xed discretization basis is
used, the forces can be calculated from the gradient of the Hamiltonian (energy operator) H

~fa = −∇etot = −∇
(
ψ+Hψ

)
= −ψ+∇ (H)ψ , (1)

where the gradient is considered with respect to the shift of atomic centers, + denotes Hermitian
transpose and ψ is the wave function describing a quantum state. As can be seen in (1), the
Hellmann-Feynman theorem states that the wave functions can be �frozen� and the gradient is
applied to the Hamiltonian H only.

2 Total energy derivatives

The total energy (including the interaction energy of atomic cores) in the density functional
theory is given by (see e.g. [5, 6])

etot =
n∑
i=1

wi

∫
ψ+
i

1

2
∇2ψi +

∫
ψ+
i Vextψ +

∫
EH(ρ) +

∫
EXC(ρ) + eion , (2)

where wi are occupation numbers of ψi states, Vext is the external potential, EH is the electrostatic
energy, EXC is the exchange-correlation energy, ρ is the charge density and eion is the atomic core
repulsion energy. In our case Vext is the sum of pseudopotentials of atomic cores, each of them
constituted by a long-range local part and a short-range nonlocal l-dependent part:

Vext =
∑
a

(
V a
loc

+
∑
l

V a,l
nl
P al

)
, (3)

where P al is a projection operator into a l-subspace, spanned by the spherical harmonics basis
Yl,m, of the a-th center:

Pl = Yl,mY
+
l,m , Plψ =

∑
m

Yl,m

∫
θ,ϕ

Yl,mψ dϕ dθ .
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Following from (1), the gradient of the total energy contains only the terms with the explicit
dependence on atom positions (no implicit dependence through wavefunctions):

∇aetot =

∫
∇V a

loc
ρ+

∑
l,i

wi

∫
ψ+
i ∇

(
V a,l
nl
P al

)
ψi +∇eion . (4)

The most di�cult term of equation (4) is the middle one: the nonlocal part of electron-ion
interaction ( a omitted for brevity):

~fNL ≡ ψ+∇a (VlPl)ψ = ψ+ (∇aVl)Plψ + ψ+Vl (∇aPl)ψ , (5)

where ψ+ (∇aVl)Plψ is the force originating from the shift of the potential that can be evaluated
by means of spherical projections relatively easily. On the other hand, ψ+Vl (∇aPl)ψ, which
is the change of the charge density in the given l-subspace that occurs due to the shift of the
centers of the l−projections, presents a signi�cant di�culty in practical evaluation, because by
di�erentiating the projector Pl we obtain the gradient of the spherical harmonic functions

ψ+Vl (∇aPl)ψ =ψ+Vl∇a
∑
m

(
Yl,mY

+
l,m

)
ψ =

ψ+Vl
∑
m

(
(∇aYl,m)Y +

l,m + Yl,m

(
∇aY +

l,m

))
ψ ,

with a singularity (for l > 0) at the origin.

Figure 1: The total energy (left) and the HFF (right) computed for the varying interatomic
distance in the NO molecule. The curves marked by wrong correspond to results without the
spherical harmonics gradients.

In literature, this term is treated in various ways: several authors simply neglect it, as in the
original paper [5], while in later works, e.g. in Quantum Monte Carlo methods [1], the authors
explicitly claim that the term can be neglected. In Fig. 1 we demonstrate, that in our case this
term cannot be omitted. In Fig. 1 (left) the dependence of the total energy on the interatomic
distance between N and O in the NO molecule is shown, with the equilibrium position marked
by the vertical dotted line. The HFF dependence on the interatomic distance as calculated with
(~f) or without (~fwrong) the spherical harmonics gradients are shown in Fig. 1 (right). Besides
the total forces, also the nonlocal components ~fNL are shown. It can be readily seen that only
the curves corresponding to ~f are zero in the position of the minimal total energy (marked by
the dotted vertical line), and the curves of the forces acting on N and on O coincide exactly.
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a NO molecule a CO2 molecule a CF4 molecule

Figure 2: The self-consistent charge densities ρ of the test molecules.

For ~fwrong, the forces are not zero in the equilibrium position and moreover the action-reaction
principle does not hold (two curves, for N and O, are visible).

In the poster, several approaches to evaluating the term ~fNL, within the density functional
theory in combination with nonlocal ab-initio pseudopotentials and the �nite-element method
as implemented in our new real space code for electronic structure calculations [7, 3, 2], will be
analyzed in terms of e�ciency and accuracy using test calculations on simple molecules of nitric
oxide, carbon dioxide and tetra�uormethane, see Fig. 2.
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1 Support Vector Machines

The Support Vector Machine (SVM) [1] is a supervised binary classi�er, i.e., in training phase of
classi�er, a classi�cation model is determined from already categorized training samples belonging
to Class A (label +1) or Class B (label −1). The essential idea of the SVM classi�er training is
to �nd the hyperplane that maximizes the margin between the Class A and the Class B samples,
i.e. maximal margin hyperplane. The samples contributing to the de�nition of such hyperplane
are called support vectors.

Let us denote the training samples as a set of ordered pairs such that

T := {(x1, y1) , (x2, y2) , . . . , (xm, ym)},

where xi ∈ Rn, n represents number of features, is i-th samples and yi ∈ {−1,+1} is the label
of i-th sample. Let H be the maximal margin hyperplane wTx + b = 0, where w is its normal
vector. For the case of non-linearly separable classes, we introduce hinge-loss function ξi =
max

[
0, 1− yi

(
wTxi + b

)]
, which quanti�es error between predicted and correct classi�cation of

sample xi. If sample xi is correctly classi�ed, a value of the hinge loss function equals 0. For the
case of a sample misclassi�cation, a value of hinge loss function is the distance between hyperplane
H and misclassi�ed sample. The problem of �nding the hyperplane H can be formulated as a
constrained optimization quadratic programming problem in the following primal formulation

arg min
w, b, ξi

1

2
wTw + C

m∑
i=1

ξi s.t.

{
yi
(
wTxi − b

)
≥ 1− ξi,

ξi ≥ 0,
(1)

where C is user de�ned penalty hat penalizes misclassi�cation error. Higher value of C increases
the importance of minimising the hinge loss functions ξi and the importance of minimising ‖w‖.

The primal formulation SVM (1) can be modi�ed by exploiting the Lagrange duality. Evaluating
the Karush-Kuhn-Tucker conditions, the problem results into the dual formulation with box and
equality constraints

arg min
α

1

2
αTY TXTXY α−αTe s.t.

{
o ≤ α ≤ Ce,
Beα = 0,

(2)

where X = [x1, x2, . . . ,xm], y = [y1, y2, . . . , ym]T , Y := diag(y),Be :=
[
yT
]
. The Hessian

of (2) is de�ned as follows H := Y TXTXY , which is symmetric positive semi-de�nite (SPSD)
matrix.

Further, we introduce dual to primal reconstruction formulas for the normal vector w = XY α,
and the bias b = 1

|ISV |
∑

i∈ISV
(
xTi w − yi

)
, where ISV denotes the support vector index set, i.e.

ISV := {i | 0 < αi < C, i = 1, 2, . . . ,m}.
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2 Hessian regularization

In previous dual formulation (2), the Hessian matrix is SPSD. The essential idea of regularization
the Hessian in dual is to use square sum of the loss functions ξi instead of linear sum in primal
so that

arg min
w, b, ξi

1

2
‖w‖2 +

C

2

n∑
i=1

ξ2
i s.t. yi

(
wTxi + b

)
≥ 1− ξi, i ∈ {1, 2, . . . , n}. (3)

Then, we derive dual formulation by the Lagrange duality and, evaluating the Karush-Kuhn-
Tucker conditions, the primal formulation (3) results into the dual formulation

arg min
α

1

2
αT
(
H + C−1I

)
α−αTe s.t.

{
0 ≤ α,
Beα = 0.

(4)

Since the Hessian is regularized by means matrix C−1I, it becomes symmetric positive de�nite
(SPD). Mathematically, the associated optimization problem would be more computationally
stable than in a case of (2).

3 No-bias data classi�cations

In high dimensional space, we do not need the bias term in the primal formulation [2], therefore
the equality constraints vanished in the dual formulations so that

arg min
α

1

2
αTHα−αTe s.t. 0 ≤ α ≤ C, (5)

arg min
α

1

2
αT
(
H + C−1I

)
α−αTe s.t. 0 ≤ α, (6)

which are called the no-bias formulation. Mathematically, the previous soft-margin problems
reduce into solving rotation of the separating hyperplane that best �ts the classi�cation problems.
However, the no-bias formulations may be a cause of poor performance score of model in some
applications. Standard approach for improving the performance score is to append each sample
with an additional feature in the following way xi ← [xi, c], where c ∈ R+. In many classi�cation
problems, the value of c is typically set to 1 [2].

4 Numerical experiments

In numerical experiments, we will analyze convergence rates and performance scores of models
related to the no-bias formulations (5) and (6) achieved by means PermonSVM classi�er on 3
public available datasets, namely Diabetes, Heart, Ionosphere, downloaded from LIBSVM dataset
webpages [3]. We will evaluate performances of models on test datasets by means of accuracy
and F1 score. For the MPRGP (Modi�ed Proportioning with Reduced Gradient Projection)
[4] algorithm, all initial guess components are set to 0.99 ∗ C, the relative norm of projected
gradient being smaller than 1e− 1 is used as stopping criterion. The expansion step-size is �xed
and determined such as α = 2.0/‖H‖2, where ‖H‖2 =

√
λmax (HTH). The values of penalty

C are chosen from the set {1.0, 5.0, 10.0}

Looking at Table 2 and Table 3, the performance scores of models are slightly higher in cases of
l1-loss for the Diabetes, Heart, and Ionosphere datasets � summarized in Table 4. The theory
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Dataset #samples #samples+ #samples- #features

Diabetes (training) 514 332 182
8

Diabetes (test) 254 168 86

Heart (training) 180 84 96
13

Heart (test) 90 36 54

Ionosphere (training) 235 154 81
34

Ionosphere (test) 116 71 45

Table 1: Diabetes, Heart, Ionosphere: the training and test descriptions of datasets.

Dataset C Hessian mult. CG steps Exp. steps Accuracy [%] F1

Diabetes 1.0 365 1 181 73.62 0.80
Diabetes 5.0 563 38 261 73.23 0.80
Diabetes 10.0 680 107 285 73.23 0.80

Heart 1.0 130 0 64 80.00 0.74
Heart 5.0 273 69 99 83.33 0.78
Heart 10.0 327 98 112 82.22 0.76

Ionosphere 1.0 262 10 124 81.90 0.87
Ionosphere 5.0 321 47 135 82.76 0.87
Ionosphere 10.0 392 91 148 81.90 0.87

Table 2: No-bias SVM formulation (5): Comparison of the number of iterations, CG steps,
expansion steps, and Hessian multiplications obtained after solver converged and evaluating
performance scores of models.

Dataset C Hessian mult. CG steps Exp. steps Accuracy [%] F1

Diabetes 1.0 68 3 32 72.83 0.79
Diabetes 5.0 79 8 35 72.44 0.79
Diabetes 10.0 83 10 36 72.83 0.80

Heart 1.0 32 1 15 77.78 0.71
Heart 5.0 36 5 15 77.78 0.71
Heart 10.0 38 7 15 80.00 0.74

Ionosphere 1.0 133 26 53 77.59 0.84
Ionosphere 5.0 204 39 82 75.86 0.83
Ionosphere 10.0 220 49 85 76.72 0.83

Table 3: No-bias SVM formulation (5) (regularized Hessian): Comparison of the number of
iterations, CG steps, expansion steps, and Hessian multiplication obtained after solver converged
and evaluating performance scores of models.

described by Dostál et al. [5] guarantees the convergence of MPRGP for both SPSD and SPD
Hessians. We observe the convergence rate is slower for all tested datasets in case of SPSD Hes-
sian, it corresponds to our remark about computation stability for the problem with regularized
Hessian. The maximum value of Hessian multiplication speed up is 8.61, minimum, mean, and
median are 1.38, 4, 25, 3.01, respectively. The number of expansion steps is approximately 3 to
5 times higher than CG steps for both no-bias formulations. Standard implementation of the ex-
pansion step is more expensive than CG step, because it needs one more Hessian multiplication,
therefore reduction of expansion steps is required. Therefore, we work on non-�xed expansion
step-size, i.e. an adaptive step-size.

It seems, (5) problem formulation is more robust (catches up outliers during training phase) than
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minimum maximum mean median

accuracy [%] 0.4 6.9 3.15 2.22
F1 0.00 0.07 0.03 0.03

Table 4: Diabetes, Heart, Ionosphere: Comparing di�erences of performance scores of model
trained by means formulations (5) and (6).

(6), however it produces SPSD Hessian in dual that causes slower convergence rate. Therefore, we
start to work on dual formulations arising from primal formulation with general the loss function
C
p

∑m
i=1 ξ

p
i . For the exponent lies somewhere between 1 and 2, we assume the regularization of

Hessian to be SPD and model should keep robustness of model trained by means formulation
(5).

5 Conclusions

In this article, we analyzed no-bias SVM formulation without and with regularized Hessian. We
benchmarked our implementation in PermonSVM tool on 3 public available datasets, namely
Diabetes, Heart, and Ionosphere. We evaluate performance score of models by means accuracy
and F1 scores. For all tests, the MPRGP algorithm was used as a solver for the QP problem
arising from the no-bias dual formulations. We observe, training SVM classi�er by means QP for-
mulation with SPSD Hessian produces more robust model however convergence rate is obviously
slower than in case of training classi�er by means QP formulation with SPD Hessian. Therefor,
we derive dual formulations arising from primal formulation with general loss functions. Further,
we work on the adaptive expansion step-size to reduce the number of the expansion steps.
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Domain decomposition methods with Parareal
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1 Introduction

Develop an e�cient and also robust method for solving space-time problems is an actual but
quite di�cult task through last years. In a paper the Parareal scheme in combination with some
domain decomposition method (DDM) is described, i.e. the Parareal with Schwarz method for
solving 1D parabolic problem and the Parareal with non-overlapping DDM which is based on
[2, 1] for solving 2D parabolic problem. The Parareal algorithm uses semi-discretization process
in which we used a standard �nite element method for a spatial domain.

2 Parareal

The Parareal algorithm was introduced in [3]. A core of the Parareal algorithm forms a method
of lines where an implicit Euler technique is used to approximate the time derivative.

At the beginning a solution with a coarse time step dT > 0 is computed. Then the coarse solution
is used as initial conditions for n independent time subintervals [(i− 1) · dT ; i · dT ], i = 1, . . . , n,
which are solved with a �ne time step dt > 0, dt� dT . At the end of a cycle the coarse solution
is corrected by obtained �ne solution.

A main interest of our work was to make solving of linear systems for �ne step more e�cient.
To do that we chose mentioned DDM techniques.

3 Parareal coupled with Schwarz DDM in 1D

For more e�cient computation in case of time-space problems we split our domain in both time
and space into smaller subdomains. This can be done by using Parareal combined with some
DDM. Basic idea of coupling both methods is to use also overlapping Schwarz method [4] when
solving independent problems with �ne time step on each subinterval in Parareal.

This approach creates new independent time-space problems with boundary and initial condi-
tions. Problems are solved iteratively on each of n time subintervals. After each Schwarz iteration
we update boundary conditions between overlapping subdomains and then solve problems again
with new boundary conditions. Fine solution on each time subinterval does not have to fully
convergate in one iteration of Parareal therefore we can only use �xed number of iterations for
Schwarz method. Solution on coarse mesh is done by Parareal in the same way as if no DDM
was used.
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3.1 Numerical results

in following experiments we consider 1D heat equation in this form

cH
∂u

∂t
(x, t)−∆xu(x, t) = 1 ∀(x, t) ∈ (0; 1)× (0;T ] ,

u(0, t) = 0 ∀t ∈ (0;T ] ,

u(1, t) = 0 ∀t ∈ (0;T ] ,

u(x, 0) = 0 ∀x ∈ (0; 1)

(1)

where cH > 0 is heat capacity, we choose cH = 25, and T is the end of time interval T = 1.

The aim of experiments is to show how use of Schwarz method a�ects convergence of Parareal.
We investigate error of pure Parareal solution compared to Parareal coupled with Schwarz. The
error was computed as euclidean norm on some coarse mesh. For all test we use spatial step
h = 1

100 , �ne time step dt = dT/10. Coarse time step will be variable(number of time subintervals
describes also coarse time step dT = 1

20 = 20 subintervals). In Figure 1. comparison of error in
given iteration for both approaches is shown. We can see that coupling with Schwarz method
does not a�ect convergence, in fact our coupled method seems to be a little bit better for higer
number of subintervals as long as enough Schwarz iterations is used. It is also important to notice
that both Parareal and coupled Parareal and Schwarz will be faster to use only if computations
are done in parallel.

Figure 1: Comparison of pure Parareal solution error in given iteration to Parareal-Schwarz with
6 iterations of Schwarz method for 4 spatial subdomains with 8 elements overlap in each time
subinterval.

4 Parareal coupled with DDM in 2D

For 2D spatial domain the non-overlapping DDM based on [2, 1] was used. In short, the spatial
domain without Dirichlet boundaries is divided into inner subdomains and a skeleton. The skele-
ton is further divided to edges and vertices which join individual edges together. Hence, a re-
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sulting matrix A is decomposed to a form

A =

[
III OIG

AGIA
−1
II IGG

] [
AII OIG

OGI S

] [
III A−1

II AIG

OGI IGG

]
(2)

where index I represents a set of nodes of inner subdomains, index G set of nodes of the skeleton,
I (O) is identity matrix (zero matrix) and S is the Schur complement.

The Schur complement is further decomposed into a similar form

S =

[
IEE OEV

−RV E IV V

] [
SEE S̃EV
S̃V E S̃V V

] [
IEE −RT

V E

OV E IV V

]
(3)

where index E represents a set of nodes forming edges of the skeleton, index V is a set of vertexes,
RV E is an interpolation matrix of standard basis functions to basis functions over the skeleton
(coarse mesh).

In the next step, we replace the Schur complement S by its approximation Ŝ

Ŝ =

[
IEE OEV

−RV E IV V

] [
SEE OEV

OV E AH

] [
IEE −RT

V E

OV E IV V

]
(4)

where SEE is a block diagonal matrix where each block correspond to one edge of the skeleton
and AH is a matrix corresponding to the skeleton (coarse mesh).

4.1 Numerical results

For some numerical experiments we considered a following problem

cH
∂u

∂t
(x, t)−∆xu(x, t) = 0 ∀(x, t) ∈ (0; 1)2 × (0;T ] ,

u(x, t) = 0 ∀x ∈ ΓD = ∂Ω ∀t ∈ (0;T ] ,

u(x, 0) = sin(πx) sin(πy) ∀x ∈ (0; 1)2

(5)

where cH > 0 is heat capacity, in our example cH = 1, and T is the end time, in our example
T = 2.

During numerical experiments we were focusing on an error between approximate solution
of the Parareal algorithm to approximate solution of the implicit Euler method with �ne time
step dt. It is obvious that a resulting error of the Parareal algorithm to an exact solution will
be at the end of the algorithm same as an error of the sequential implicit Euler method to the
exact solution so we don't mentioned it in our results. Our goal is to emphasize �how much
faster� we obtain the approximate solution of the Parareal technique than it will be done by
sequential attempt of fully implicit Euler method. The error was computed as euclidean norm
on some coarse mesh which was common for all tests. In a Table 1. below a number of Parareal
iteration k, in which we reached a given precision, and number of iterations of conjugate gradi-
ents nCG required to obtain approximate solution in each step of �ne implicit Euler method is
shown. Left side of the Table 1. (before double line) is dedicated to the Parareal method without
DDM preconditioning and right side to the Parareal method with DDM preconditioning. The
given precision was set up as ε = 1 · 10−16. By h we note the step in spatial domain, dT repre-
sents the coarse step and by nSD we note the number of subdomains for DDM preconditioning.
The �ne time step dt was �xed dt = dT

32 for all cases.
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To better understanding of the table below we note that if we choose the coarse step dT = 1
4

it means that we divide the time interval [0; 2] onto 8 independent subdomains so after k = 8
iterations is the Parareal algorithm �nearly� equal to sequential implicit Euler method with �ne
step dt. We said �nearly� because there are some additional calculations which are required to
update new initial conditions in the Parareal method.

Table 1: Results without DDM and with DDM.

without DDM with DDM

dT h k nCG nSD k nCG

1
4

1
8 4 13 16 4 7

1
4

1
16 4 25 64 4 24

1
4

1
32 5 44 64 5 31

1
4

1
32 5 44 256 5 27

1
8

1
8 7 12 16 7 8

1
8

1
16 8 22 64 8 25

1
8

1
32 8 40 64 8 30

1
8

1
32 8 40 256 8 27

5 Conclusion

We have shown possible decomposition of space-time domain into smaller subdomains suitable for
parallel computations with coupled Parareal and Schwarz method. Described DDM techniques
improve the e�ciency of the Parareal algorithm in a way of decreased number of iterations which
are necessary to obtain solution of given linear systems. We guess that we could also improve
the convergence rate of the Parareal scheme by using another time stepping scheme instead of
the implicit Euler scheme. We leave this topic as a future work.

References

[1] D. Luká², J. Bouchala, P. Vodstr£il, L. Malý: 2-Dimensional primal domain decomposition
theory in detail. Applications of Mathematics, Jun. 2015, vol. 60, no. 3, pp. 265�283.

[2] J.H. Bramble, J.E. Pasciak, A.H. Schatz: The Construction of Preconditioners for Elliptic
Problems by Substructuring. I. Mathematics of Computation, Jul. 1986, vol. 47, no. 175, p.
103.

[3] J.L. Lions, Y. Maday, G. Turinici: Résolution d'EDP par un schéma en temps �pararéel�.
Comptes Rendus de l'Académie des Sciences � Series I � Mathematics, Apr. 2001, vol. 332,
no. 7, pp. 661�668.

[4] A. Toselli, O. Widlund: Domain decomposition methods-algorithms and theory. 2006 Springer
Science & Business Media

118



Stability of network centrality indices

S. Pozza 1, F. Tudisco 2

1Charles University in Prague
2University of Strathclyde, Glasgow, Scotland

1 Introduction

One of the major goals of network analysis is to identify important components in a network by
exploiting the topological structure of connections between its nodes. To this end, recent years
have seen the introduction of many new measures of importance of a node or a set of nodes,
de�ned in terms of suitable entries of functions of matrices f(A), for di�erent choices of f and
A. However, this approach requires a signi�cant computational e�ort to address the entries of
f(A). This is particularly prohibitive when the network changes frequently and the important
components have to be updated.

Let G = (V,E) be a directed network where V = {1, . . . , N} is the �nite set of nodes, E ⊆ V ×V
is the set of edges. To any network G = (V,E) corresponds an entry-wise nonnegative adjacency
matrix A de�ned by

Ak` =

{
1 if k, ` are starting and ending points of e ∈ E, respectively
0 otherwise

.

In this work we address the problem of estimating the changes in the entries of f(A) with
respect to changes in the edge set E. Intuition suggests that, if the topology of connections in
the new network G̃ = (V, Ẽ) is not signi�cantly distorted, relevant components in G maintain
their leading role in G̃. We propose a bound showing that the magnitude of the variation of the
entry f(A)k,` decays exponentially with the distance in G that separates either k or ` from the
set of nodes touched by the edges that are perturbed.

The details about this work can be found in [10].

2 Subgraph centrality and communicability indeces

Given two nodes k, ` ∈ V , a walk in G from k to ` is an ordered sequence of edges {e1, . . . , er} ⊆ E
such that k is the starting point of e1, ` is the endpoint of er and, for any i = 1, . . . , r − 1, the
endpoint of ei is the starting point of ei+1. The length of a walk is the number of edges forming
the sequence (repetitions are allowed). The length of the shortest walk from k to ` is called the
(geodesic or shortest-path) distance in G from k to ` and it is denoted by dG(k, `). The diameter
of G is the longest shortest-path distance between any two nodes. Given a set S ⊆ V and a node
k ∈ V , we set

dG(k, S) = min
s∈S

dG(k, s) and dG(S, k) = min
s∈S

dG(s, k) ,

with the convention that dG(k, k) = 0 and thus dG(k, S) = dG(S, k) = 0, for any k ∈ S. Notice
that for the sake of simplicity we do not consider networks with weighted edges; however, it is
possible to extend all the results we are presenting to such case (see [10]).
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In order to identify the most important nodes in a network, one needs a quantitative de�nition
of the importance of a node k or a pair of nodes (k, `). Although these quantities have a long
history, dating back to the early 1950s, recent years have seen the introduction of many new
centrality scores based on the entries of certain function of matrices [8, 7, 3]. The idea behind
such metrics is to measure the relevance of a node, for example, by quantifying the number of
subgraphs of G that involve that node.

The powers of the adjacency matrix A can be used to count the number of walks of di�erent
lengths in G. More precisely, (An)k` is the number of n-length walks from k to `. This property
can be used to de�ne the centrality (and communicability) indeces as follows. Let f : C→ C be
such that f(z) =

∑
n≥0 θn z

n, for any |z| ≤ r, with θn > 0. Assuming r larger than the spectral
radius of A, we can de�ne the matrix function

f(A) =

∞∑
n=0

θnA
n;

see, e.g., [9]. The f -centrality of the node k ∈ V is de�ned as the quantity f(A)kk. Similarly,
the f -communicability from node k to node ` is the quantity f(A)k`. This idea was �rstly
introduced by Estrada and Rodriguez-Vasquez in [8], for the particular choice f(z) = exp(z),
and then developed and extended in many subsequent works; see, e.g., [7, 3] and the references
therein.

3 Index stability and upper bounds

Assume that the network G = (V,E), with adjacency matrix A, is modi�ed into the network
G̃ = (V, Ẽ), where Ẽ ⊆ E ∪ δE is obtained adding or erasing the edges in δE. Then the
adjacency matrix of G̃ is Ã = A + δA, with δA a sparse perturbation. We are interested in
a-priori estimations of the absolute variation of the entries of f(Ã) with respect to those of
f(A). To this end, we have derived bounds for |f(A)k` − f(Ã)k`| employing the theory of Faber
polynomials. This family of polynomials have been used for the analysis of the decay of the
elements of functions of banded non-Hermitian matrices [4, 2]. Given a convex continuum Ω,
Faber polynomials are de�ned by means of a conformal map φ (with inverse ψ) which maps the
exterior of Ω onto the exterior of the unitary disk {z ∈ C : |z| ≤ 1}, and satis�es the conditions
φ(∞) = ∞, and limz→∞ φ(z)/z = d > 0. Finally, to state our main result we introduce the
�eld of values (or numerical range) of a matrix A, which is the convex and compact subset of C
de�ned as F(A) = {v∗Av : v ∈ CN , ‖v‖2 = 1}.

Theorem 1. Let Ω be a convex continuum containing F(A) and F(Ã), and let φ and ψ be
conformal maps for Ω as de�ned above. Moreover, denote with S = {s|(s, t) ∈ δE} and T =
{t|(s, t) ∈ δE} respectively the sets of sources and tips of modi�ed edges δE. Given τ > 1, if f
is analytic in the level set Ω ∪ {ψ(z)|z /∈ Ω, |z| ≤ τ}, then∣∣∣(f(A)− f(Ã)

)
k`

∣∣∣ ≤ µτ (f)
2

π

τ

τ − 1

(
1

τ

)δ+2

,

where δ = dG(k, S) + dG(T, `) and µτ (f) =
∫
Dτ
|f(ψ(z))|dz, with Dτ = {z : |z| = τ}.
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Figure 1: The red crosses are the di�erence | exp(A)kk − exp
(
Ã
)
kk
| for every node k, whereas

the blue dots correspond to the bound obtained specializing Theorem 1 to each case. Left: Erdös
collaboration network. Right: London city transportation network.

4 Numerical examples

The �rst example is an undirected network borrowed from [5] and represents the Erdös collabo-
ration network (Number of nodes: 472). Notice that the diameter is 11, hence it is proportional
to the logarithm of the number of nodes. This feature is common to many complex networks
and is related to the so called �small-world� phenomenon. We focus here on the analysis of the
correlation between the variation of the network centralities and the variation of the distances
in G with respect to the set of perturbed edges. For this reason, normalized adjacency matrix
A is considered in the �rst example, so to guarantee the �eld of values of both the original and
the perturbed matrices to be constrained within the unit segment [−1, 1].

The second example is borrowed from a real-world data set representing the London city trans-
portation network [6] (Number of nodes: 369). The undirected network that we consider here is
the aggregate version of the original multi-layer network. The nodes correspond to train stations
and the existing routes between them are the edges.

In both the examples we have selected, respectively, the 10 and the 5 nodes having smallest
centrality exp(A)kk and we have perturbed the edge topology of the networks by adding all the
missing edges among those nodes. Figure 1 represents the variation of network exp-centrality
values | exp(A)kk−exp

(
Ã
)
kk
| (red crosses) and the bound obtained specializing Theorem 1 (blue

circles). Let us point out that in both the left and right plot of Figure 1 we are relabeling the
nodes according with the distance from (and to) the set of modi�ed nodes.

5 Conclusion

When A is modi�ed into Ã = A+δA, the entries of f(Ã) should in principle be re-computed from
scratch and this is can be a very costly operation. Therefore being able to e�ciently update the
entries of f(A) is a relevant task. When δA has low rank, this problem can be easily addressed
via the Sherman-Morrison formula for the special function f(z) = z−1. For the case of general
functions f , important advances in this direction have been made in [1], simultaneously and
independently with respect to the present work.
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On a related but di�erent line, using the bounds we have proposed, we are able to predict the
magnitude of variation in the f -centralities of G when changes occur in a localized set of edges
or, vice-versa, for each node k we can locate a set of nodes whose change in the edge topology
a�ects the score f(A)kk by a small order of magnitude.

Acknowledgement: The work of S.P. has been supported by Charles University Research pro-
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1 Introduction

Fluids injected under high pressure to boreholes in rock massif can induce mechanical deformation
or even seismic waves with undesirable e�ects. On the other hand, the creation of microscopic
�ssures is an important e�ect in hydraulic fracturing, a process to increase the permeability of
underground reservoirs.

Our aim is to develop a model that can describe the hydro-mechanical interaction in the presence
of fractures and their possible evolution. In this contribution we present a mathematical model
of �uid �ow and linear elastic response in a porous media containing a fracture. We consider a
domain Ω ⊂ Rd, d ∈ {2, 3}, consisting of two parts: the so-called matrix Ωm and the fracture
Ωf (see Fig. 1).

The basic mathematical model of hydro-mechanical interaction is based on the Biot system [2]:

∂t (Sp+ α∇ · u)−K∆p = g

−∇ · (2µε[u] + λ(∇ · u)I) + α∇p = f

}
in (0, T )× Ωm. (1)

Here the pressure p and the displacement u are the principal unknowns and ε[u] := (∇u +
∇u>)/2 is the symmetric part of gradient of u. For simplicity, the storativity S, the Biot
coe�cient α, the hydraulic conductivity tensor K, the Lamé parameters µ, λ, the �uid volumetric
source g and the body force f are assumed to be constant in Ωm and K symmetric positive
de�nite.

Ωm

Ωf δ γ

Ωm

γ+

γ−

n

Figure 1: The model domain with full and reduced fracture.

2 Equations in reduced fracture

We assume that the fracture is of the form Ωf := {x+ sn; x ∈ γ, s ∈ (−δ/2, δ, 2)}, where γ is
a (d− 1)-dimensional manifold and n is the unit normal to γ in a chosen direction. If the width
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δ is small compared to the size of Ω then, it is reasonable to replace Ωf by γ. Indeed, dne can
introduce the averaged quantities on γ:

P :=
1

δ

∫ δ/2

−δ/2
p(·+ sn) ds, U :=

1

δ

∫ δ/2

−δ/2
u(·+ sn) ds

and the approximate tangential and normal gradients on γ± := γ ± n:

∇p|γ± = (∇τp+∇νp)|γ± ≈ ∇τP ±
2

δ
(p|γ± − P )n,

∇u|γ± = (∇τu+∇νu)|γ± ≈ ∇τU ±
2

δ
(u|γ± −U)⊗ n.

After integrating the Biot system over the width of the fracture and using the above approxi-
mations, one obtains the following reduced equations in γ (see [4] for details on the dimension
reduction and [3] for error analysis of reduced model of �ow):

δ {∂t (SfP + αf∇τ ·U)−∇τ · (Kf∇τP )}+ F+ + F− − ∂tG = δgf

δ {−∇τ · (2µfετ [U ] + λf (∇τ ·U)I) + αf∇τP}+Q+ +Q− −∇τ · R = δff

}
in (0, T )×γ. (2)

Here Sf , αf , Kf , gf , µf , λf , ff are physical constants in the fracture and ετ stands for the
symmetric part of ∇τ . The fracture can be void (µf = λf = 0) or �lled by an elastic material
(µf , λf > 0). The terms F±, Q± represent �uxes and normal stresses, respectively, acting on
both sides of the fracture and G, R are extra terms arising from the dimension reduction.

The systems (1) and (2) are coupled through the following interface conditions:

K∇p · n = ±F±, (2µε[u] + λ(∇ · u)I)n− αpn = ±Q± in (0, T )× γ±. (3)

If the fracture is immersed into the matrix then we assume no interaction in the tangential
direction, i.e. homogeneous Neumann conditions on the appropriate part of the relative boundary
of γ.

3 Approximation and numerical solution

For convenience of spacial discretization we replace Ωm by Ω\γ. The equations (1) are discretized
by equal order discontinuous Galerkin method which helps prevent locking problems in the nearly-
incompressible regime and allows easy treatment of internal discontinuities along the fracture.
The system (2) is discretized by the standard �nite element method. The temporal discretization
is done using the implicit Euler method.

We implement the approximate problem using the FEniCS library [1]. We employ a �xed-
stress splitting technique [5] to decouple the equations for �ow and mechanics and analyze its
convergence.

We test the reduced problem in a simpli�ed model of injection of a �uid into the fracture. We
use a 2d domain Ω = (0, 1)2 with γ = (1

2 , 1)× {1
2}. The results are depicted in Figure 2.

4 Conclusion

We have derived the reduced model for the Biot poroelasticity in domains containing discrete
fractures. The model has been tested using a suitable approximation on a simple problem of
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p = pin

u · n = 0

p = 0

u = 0

Figure 2: Test problem � injection onto fracture. Dirichlet boundary conditions (left); pressure
on the deformed mesh (middle: t = 0.01, right: t = 0.1).

injection into fracture. The numerical results show good agreement with the fully d-dimensional
model. Our next aim will be to extend the model to nonlinear mechanics and apply XFEM to
treat fracture evolution.
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1 Introduction

Limit analysis is one of the main methods for solution of geotechnical and other stability prob-
lems. By this method, we determine a limit value ζ∗ of the load parameter ζ ≥ 0 for a prescribed
set of applied external forces. An investigated body collapses beyond the limit value and thus
this ultimate load also enables us to describe failure mechanisms. The value ζ∗ is de�ned by
a convex optimization (variational) problem which can be formulated either in terms of stress
or kinematic �elds leading to the static, and kinematic approaches, respectively. We refer to
[2, 3, 4] and the references therein.

The aim of this paper is to investigate abilities of this method for computation of compressive
strengths of composite materials. To this end, we choose a laboratory prepared sample consisting
of a hard coal matrix and a polyurethane (PUR) resin, see see Figure 1. Properties of this coal-
PUR composite was studied in [1] by using laboratory experiments, X-ray CT visualization and
numerical simulations. The numerical treatment was done there in linear elastic range including
a �nite element homogenization with voxel grid derived from CT scans of samples.

The rest of the paper is organized as follows. First, we introduce material models for the coal
and the PUR resin. Then, we de�ne the kinematic limit analysis problem and brie�y describe
its numerical solution. Finally, we present results of numerical experiments for two di�erent
CT-based 2D geometries.

2 Material models

For purposes of modelling presented in this paper, we use the following simpli�ed assumptions:
a) the coal matrix is homogeneous and isotropic and b) the PUR resin has a constant degree of
foaming in the composite sample. Further, the Drucker-Prager yield criterion is used for the coal
because it enables to distinguish di�erent material behavior in tension and compression. The

Figure 1: Coal (a) and coal-PUR (b) samples and their failures caused by compressive tests.
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corresponding set of admissible stress tensors reads as

B1 =
{
τ ∈ R3×3

sym | |τD|+
a

3
tr τ ≤ γ

}
, a :=

3
√

2 tanφ√
9 + 12 tan2 φ

, γ :=
3c
√

2√
9 + 12 tan2 φ

, (1)

where R3×3
sym is a space of second order symmetric tensors, τ represents the Cauchy stress tensor,

τD is the deviatoric part of τ , |τD| stands for the Frobenius norm of τD, tr τ is the trace of τ
and a, γ > 0 are material parameters computed from the cohesion c and the friction angle φ.

The resin is modelled by the von Mises yield criterion. This criterion is chosen since PUR has
much more similar properties in tension and compression than the coal. The corresponding
admissible stress tensors are de�ned as follows:

B2 =
{
τ ∈ R3×3

sym | |τD| ≤ Y
}
, Y :=

√
2/3σc, (2)

where σc > 0 denotes the yield stress which depends on the degree of foaming.

3 Kinematic problem of limit analysis

We consider that the body occupies the domain Ω. The space of admissible kinematic �elds
de�ned in Ω is denoted as V. We assume that these �elds satisfy homogeneous Dirichlet boundary
conditions on selected parts of ∂Ω. Further, L : V → R denotes the load functional which may
consist of volume or surface external forces, and

ε(v) :=
1

2
[∇v + (∇v)>] in Ω, v ∈ V (3)

represents the linearized strain tensor. Finally, we de�ne the plastic dissipation potential

J∞(v) =

∫
Ω
j∞(ε(v)) dx, j∞(e) := sup

τ∈B
τ : e, e ∈ R3×3

sym, (4)

where B is a set of plastically admissible stress tensors depending on a yield criterion and x ∈ Ω.
Notice that the supremum over B need not be �nite everywhere in R3×3

sym and thus the value +∞
of j∞ is allowed.

The kinematic limit analysis leads to the following problem [2, 3, 4]: �nd ζ∗ ≥ 0 such that

ζ∗ = inf
v∈K
L(v)=1

J∞(v), K := {v ∈ V | J∞(v) < +∞ in Ω}. (5)

In general, the minimizer exists in the BD-space and thus may be discontinuous along certain
zones in the body which predict the failure.

Next, we specify problem (5) for the coal-PUR composite. To this end, we split Ω into two
parts, Ω1 and Ω2 representing the coal matrix and the resin, respectively. In Ωi, we set B := Bi,
i = 1, 2, and �nd a closed form of the function j∞ for these two particular cases. The resulting
limit analysis problem reads as

ζ∗ = inf
v∈K
L(v)=1

{γ
a

∫
Ω1

divv dx+ Y

∫
Ω2

|ε(v)|dx
}
, (6)

K := {v ∈ V | div v ≥ a|εD(v)| in Ω1, div v = 0 in Ω2}, (7)
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where div v = tr ε(v) denotes the divergence of v. We see that the Drucker-Prager yield criterion
leads to a linear functional and conic constraints, while the von Mises yield criterion gives a
nonsmooth functional and linear equality constraints.

To solve (5), we use a numerical procedure developed in [2, 3, 4, 5]. First, the following penal-
ization method is applied:

ζα = inf
v∈V

L(v)=1

Jα(v), Jα(v) =

∫
Ω
jα(ε(v)) dx, jα(e) = sup

τ∈B
{τ : e− 1

2α
|τ |2}, e ∈ R3×3

sym, (8)

where α > 0 is the penalty parameter. The function jα is �nite-valued (unlike j∞), convex,
smooth and jα → j∞ pointwisely as α→ +∞. It holds that the function α 7→ ζα is continuous,
nondecreasing and ζα ≤ ζ∗. Under appropriate assumptions, it is also possible to prove that
ζα → ζ∗ as α → +∞. Further, we solve the penalized problem by the �nite element method,
continuation techniques and the semismooth Newton method. To improve accuracy of results,
local mesh adaptivity introduced in [5] is also used. In particular, we use P2-elements and 7-point
Gauss quadrature for numerical integration. Numerical solution is implemented in Matlab.

4 Numerical experiments

We consider two plane strain problems de�ned in the same square domain Ω with the size 13
[cm]. These problems follow from two CT-based images, CT1 and CT2, with the resolution
107 × 107 pixels, see Figures 2 and 3 on the left, respectively. The coal matrix is indicated by
dark color. Further, the symmetry boundary conditions are prescribed on the left and bottom
sides of Ω. The load functional L is de�ned by the unit uniaxial compression [MPa] applied on
the top of Ω, i.e.,

L(v) = −
∫ 13

0
v2(x1, 13) dx1, v = (v1, v2) ∈ V, (9)

We set φ = 20 [Deg], c = 7 [MPa] in Ω1 and σc = 17 [MPa] in Ω2. The original mesh follows from
the image resolution. Then, three levels of adaptive re�nements are used. The �nest CT-based
meshes have about 125 thousands degrees of freedom and 220 thousands integration points.

The computed strengths (ζ∗) are equal to 19.96 and 19.81 [MPa] for CT1 and CT2, respectively.
For visualization of the failure, we use the quantity

γ

a
divv∗ in Ω1, Y |ε(v∗)| in Ω2, (10)

where v∗ denotes the numerical minimizer in problem (6). The failure zones for CT1 and CT2
images are depicted in Figures 2 and 3 (middle), respectively. The corresponding kinematic �elds
v∗ with enlarged deformed shapes are shown in Figures 2 and 3 (right).

5 Conclusion

We use limit analysis to compute the compressive strength of composite materials and to visualize
failure zones. Numerical examples illustrate abilities of limit analysis. For example, this method
in combination with local mesh adaptivity is capable to signi�cantly reduce the number of degrees
of freedom because kinematic �elds are rigid far from the failure zones.

Acknowledgement: This work has been supported by the Czech Science Foundation, project
No. 19-11441S.
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Figure 2: Image CT1 (left), the corresponding failure zones (middle) and kinematic �eld (right).

Figure 3: Image CT1 (left), the corresponding failure zones (middle) and kinematic �eld (right).
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1 Adaptive mesh re�nement and domain decomposition

Adaptive mesh re�nement is an important part of solving problems with complicated solutions or
when a prescribed accuracy needs to be achieved. In this approach, solution is found on a given
mesh and its local error is estimated. Regions where the estimated error is high are then re�ned
to improve the accuracy, and the solution is recomputed. This strategy leads to accumulation of
degrees of freedom to regions with abrupt changes in the solution, such as boundary or internal
layers.

The growing size of the problems, especially in 3D, more and more often requires solving these
on a parallel computer. To this end, partitioning of the computational mesh into subdomains
is required. If the partitioning is not adjusted to the new meshes in the adaptive process, large
imbalances in subdomain sizes quickly emerge, and utilization of the parallel computer becomes
ine�cient.

A viable way to maintain the subdomain sizes balanced is repartitioning using the space-�lling
curves, which maintains approximately equal number of elements in each subdomain. Such
approach is o�ered by the p4est library [1]. However, this repartitioning strategy typically
produces subdomains composed of several disconnected components.

Another important ingredient of simulations based on FEM is the solver for the arising system
of linear equations. A good match for a parallel computation is using a domain decomposition
method, and a recent member of this family is the multilevel Balancing Domain Decomposi-
tion based on Constraints (BDDC) [2, 3]. This method is implemented in our parallel solver
BDDCML3 [4].

We have developed a custom implementation of the FEM to study the impact of the special
structure of the subdomains created by the p4est library on the BDDC solver. Disconnected
components of subdomains are detected using subdomain mesh graphs while hanging nodes are
incorporated naturally into the computation by the non-overlapping domain decomposition.

2 Numerical results and discussion

The solver has been applied to a number of benchmark Poisson and linear elasticity problems.
The problem geometry was a unit cube in all our experiments. These experiments were performed
using up to about 1 billion unknowns and 4096 CPUs of the Salomon supercomputer at the
IT4Innovations supercomputing centre.

3http://users.math.cas.cz/~sistek/software/bddcml.html
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Figure 1: A benchmark for a parallel adaptive computation: visualization of the exact solution
(left), adaptively re�ned mesh partitioned into subdomains (centre), and convergence of the H1

norm of the error on 2048 subdomains for di�erent polynomial orders (right), adaptive (colour
lines) vs. uniform (grey lines) mesh re�nements.

In the �rst set of experiments, we have generated a mesh re�ned in several prede�ned regions.
The behaviour of the solver was compared to uniformly re�ned meshes resulting in approximately
half of the iterations, yet comparable in time to solution.

The next experiment was running a benchmark adaptive computation, see Fig. 1. This test was
performed for the Poisson problem using linear, quadratic, and fourth-order �nite elements. The
solver has allowed us to verify the convergence rate for problems re�ned up to 1 billion unknowns
using 2048 subdomains (and CPU cores). More details can be found in our paper [5].

Acknowledgement: This research was supported by the Czech Science Foundation through
grant 18�09628S, and by the Czech Academy of Sciences through RVO:67985840. Computa-
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Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports
via the project Large Research, Development and Innovations Infrastructures (LM2011033).
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On polynomial robustness of �ux reconstructions

M.Vlasák, Z.Vlasáková

Faculty of Mathematics and Physics, Charles University in Prague

1 Continuous and discrete problem

We assume Poisson equation

−∆u = f on Ω, (1)

where Ω ⊂ Rd, f ∈ L2(Ω), u|∂Ω = 0. The solution u ∈ H1
0 (Ω) of problem (1) is approximated as

uh ∈ Vh by the �nite element method (FEM), where Vh ⊂ H1
0 (Ω) is the classical �nite element

space consisting of piecewise polynomial functions up to degree p.

2 A posteriori error estimates

For the sake of simplicity we assume that function f is piecewise polynomial function, otherwise
the estimates need to be enhanced by the oscillation term. A posteriori error estimates for
problem (1) with a guaranteed upper bound, i.e. all the constants in the upper bound are known
and available/computable, are often motivated by the well known Hyper-circle theorem from [4]:

Theorem 1. Let u ∈ H1
0 (Ω) be the exact solution of problem (1) and let σ ∈ H(div,Ω) satisfy

−div σ = f . Then

‖∇u−∇v‖2L2(Ω) + ‖∇u− σ‖2L2(Ω) = ‖σ −∇v‖2L2(Ω) ∀v ∈ H1
0 (Ω). (2)

Setting v = uh the FEM solution and assuming that such a σ is available, we get guaranteed
upper bound

‖∇u−∇uh‖L2(Ω) ≤ ‖σ −∇uh‖L2(Ω). (3)

To investigate the quality of bound (3), which depends on the choice of �ux σ, we examine the
opposite inequality, i.e. the local e�ciency estimate

‖σ −∇uh‖L2(K) ≤ C‖∇u−∇uh‖L2(ω(K)), (4)

where K is an element of �nite element mesh and ω(K) is a patch of elements surrounding K.
It is possible to show for usual choices of �ux σ that the constant C from (4) is independent of
solutions u, uh and of the FEM mesh size h. But there are only a few results investigating the
dependence of this constant on the polynomial degree p of FEM.
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3 Construction of �ux σ

There are many approaches to the construction of the �ux σ. According to [1], the e�ciency
constant is independent of the polynomial degree for the construction of σ based on the local
mixed FEM. The polynomial robustness of this construction is proved for other underlying
methods in [3].

Nevertheless, such a construction is quite complicated and not very comfortable for implemen-
tation. Therefore, we suggest following approach. Let RTp(K) = Pp(K)d + xPp(K) be the local
Raviart-Thomas space. For the details about approximation spaces to H(div,Ω) see [2]. We
seek σ|K ∈ RTp(K) such that

σ · n = 〈∇uh〉 · n on ∂K (5)

(σ,w)L2(K) = (∇uh, w)L2(K) ∀w ∈ Pp−1(K)d,

where n is unit outer normal vector and 〈∇uh〉 is the mean value. On rectangular meshes the
construction of σ can be de�ned analogically.

4 p-robustness

The goal of the talk is to present the robustness and practical usefulness of �ux construction (5).
To this end, we present following result:

Theorem 2. Let d = 1. Let u ∈ H1
0 (Ω) be the exact solution of problem (1) and uh be its FEM

approximation. Let σ be given by (5). Then the e�ciency constant from (4) increases at most
as
√
p, i.e.

‖σ −∇uh‖L2(K) ≤ C
√
p‖∇u−∇uh‖L2(ω(K)), (6)

where the constant C from the e�ciency estimate (6) is independent of the polynomial degree p.

Acknowledgement: The research of M. Vlasák was supported by the grant 17-01747S of the
Czech Science Foundation. M. Vlasák was a junior member of the university centre for mathe-
matical modeling, applied analysis and computational mathematics (MathMAC).
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Acceleration of FFT-based homogenisation

by low-rank tensors approximations
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1 Introduction

The main task of the homogenization is to homogeneously describe material properties of hetero-
geneous materials, based on knowledge of microstructure geometry and properties of its phases.
Evaluation of the homogenised properties with high accuracy requires a detailed knowledge of
materials' microstructure. Unfortunately, this knowledge comes hand in hand with high memory
and time requirements of approximate solution to homogenisation problem. To �nd a solution we
use Fourier spectral method. This method, based on the Fast Fourier Transform (FFT), has been
introduced in 1994 by Moulinec and Suquet [3] and lately explained by Vond°ejc, Zeman and
Marek in [2]. The Fourier spectral method has lower time and memory requirements compared
to other methods but still needs signi�cant computational resources. Especially, for precisely
characterized three-dimensional microstructure, the memory requirements can easily over�ow
the memory capacity of a typical workstation. In an e�ort to overcome these issues, we have
tried to employ low-rank tensors to our homogenisation scheme. The idea of low-rank tensors, or
low-rank approximations is to express large multidimensional tensors by fewer parameters. This
compression can lead to a huge reduction of the mentioned computational requirements.

2 Homogenisation problem

We solve a scalar homogenization problem: to �nd AH ∈ Rd×d, d = 2, 3, such that for all
constant vectors E ∈ Rd

AHEi =
1

|Y|

∫
Y
A(x) (Ei +∇ui(x)) dx, i = 1, . . . ,d (1)

where u ∈ V is the solution of

∇ · (A(x)∇ui(x)) = ∇ · (A(x)Ei) on Y, i = 1, . . . , d (2)

satisfying periodic boundary conditions and having zero mean on Y. We consider a rectangular
domain Y and a material data function A(x) : Y → Rd×d, which is symmetric and uniformly
positive de�nite in Y. The core of the numerical computation of AH is then the solution of d
problems of the type (2) with Ei chosen consecutively as d particular vectors of some basis of Rd.

3 Fourier-Galerkin method

To �nd a numerical solution of (2) we use the Fourier-Galerkin method with the FFT algorithm.
This method approximates the solution of (2) by complex trigonometric polynomials, also called

134



the Fourier basis. The resulting linear system is

F−1
N ∇̂

∗
NFNÃF−1

N ∇̂NFNui = −FN∇̂∗NF−1
N ÃEi,N, i = 1, . . . , d (3)

where FN and F−1
N are Fourier transform and its inverse. The di�erential operators of gradient

∇̂N and divergence ∇̂∗N are naturally applied on trigonometric polynomials in the Fourier space.
The tensor Ã ∈ Rd×d×N×N is a block diagonal tensor with components of material matrix A(x).
Finally ui ∈ Rd×N a is tensor of unknown solution.

4 Approximation by low-rank tensors

The Size (memory requirements) of unknown ui in the system (3) is Nd and doubles after
applying the gradient operator. The exponential dependency on the dimension causes problems
with memory. This issue can be overcome by representation of these �elds as low-rank tensors.
Beside N and d, the size of these tensors depend on rank-r and fortunately a large class of
"natural" tensors can be expressed with low rank-r [1]. In following sections, we present chosen
format used for the homogenisation problem. We �rst present the canonical format is suitable for
two dimensional tensors. For higher dimensions we chose generalisation of the canonical format
named Tucker format. Both of these formats and their properties are described in [1, 4].

4.1 Canonical format

A canonical approximation of a tensor v ∈ KN1×···×Nd ( K is R or C) is a sum of r rank-1 tensors.
The canonical format is only used for tensors with order 2 (d = 2) in this case the representation
has the form:

v ≈ ṽ =
r∑
i=1

c[i]b1[i]⊗ b2[i]

with b(j) ∈ Kr×Nj stores the basis vectors in spatial direction j and ⊗ denotes tensor prod-
uct. The memory requirement is dNr, which is linearly dependent on the rank r,N and the
dimension [1].

4.2 Tucker format

The decomposition of higher order tensors have many variants. The Tucker format representation
is linked to the de�nition of a tensor subspace V =

⊗d
j=1 Vj where Vj is a subspace of RNj

generated by basis vectors {bj [i]i = 1, . . . , rj} in the spatial direction j. The Tucker format
is then a linear combination of tensor products of all possible combinations of basis vectors in
di�erent directions, i.e.

v ≈ ṽ =

r1∑
i1=1

· · ·
rd∑
id=1

c[i1, . . . , id]

d⊗
j=1

bj [ij ].

where the core c ∈ Rr is a tensor of order d. The canonical format is then a special form of the
Tucker format with a diagonal core. The memory requirement is dNr+ rd, where the size of the
core is exponentially dependent on the dimension [1].
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Figure 1: Relative error of AH low-rank approximation for canonical format in 2D (left) and
Tucker format in 3D (right).

5 Numerical experiment and results

The homogenisation scheme (3) equipped with the canonical and Tucker tensors were tested on
two microstructures. One with a rigid square inclusion representing a discontinuous material
matrix A�(x) and second with a smooth material matrix AS(x). For both formats, canonical
and Tucker, we set rank r = {1, 3, 5, 7, 10} and compute the solutions for di�erent discretization
Nd number of points.

Approximation properties of scheme (3) with low-rank tensors is shown in Fig.(1). As an indicator
of the approximation quality we chose the relative error of the homogenised material property.
The correct homogenised matrix AH was computed with full tensors and corresponding dis-
cretization. We can see, in Fig.(1), that with increasing rank-r we obtain better approximation
of full solution. It was also observed that the method converges faster for smooth material.

As mentioned above, the most interesting part is the method converges faster memory consump-
tion during solution. With the memory e�ciency we mean the memory consumption compared
to the full tensor solution. In Fig.(2) you can see the memory e�ciency as a function of the so-
lution rank r. An important observation is that memory savings grows with increasing number
of discretization points N.
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Figure 2: Memory e�ciency of low-rank solutions compared to full tensor solution. Canonical
tensor for 2D on left and Tucker for 3D.
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6 Conclusion

This work is focused on acceleration of the Fourier�Galerkin method using low-rank approxima-
tions for problems of numerical homogenisations. The complexity of full computation is based
on FFT algorithm which is also very natural for low-rank formats as the d-dimensional the FFT
is transformed into the series of one-dimensional FFTs. We consider the canonical format in 2D
and Tucker format in 3D. The main result is that low-rank approximations lead to a signi�cant
memory and computational reduction. Since the low-rank approximation provides a signi�cant
memory reduction it can allow to solve the problems on a �ner grid compared to the full solution.
It means that with �xed memory demands the low-rank approximation technique can provide
better accuracy than full solutions.
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High-Performance Variants of 
Krylov Subspace Methods: I/II
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Lecture Outline

� Parallel computers and performance modeling

� Architecture trends

� Krylov subspace methods

� Properties

� Performance bottlenecks at scale

� High-performance variants of Krylov subspace methods

� Early approaches

� Pipelined methods

� s-step methods

� Practical implementation issues and challenges

2

Computational and Data Science at Scale
� Why are we interested in solving larger and larger problems?

� Enables new frontiers in computational science and engineering

� Finer-grained simulation, over longer time scales, processing huge 
amounts of available data

3

� Atmosphere, Earth, Environment
� Physics - applied, nuclear, particle, fusion, photonics
� Bioscience, Biotechnology, Genetics
� Chemistry, Molecular Sciences
� Geology, Seismology
� Electrical Engineering, Circuit Design, Microelectronics
� Mechanical Engineering - from prosthetics to spacecraft

� Also industrial and commercial interests

� "Big Data", databases, data mining
� Artificial Intelligence (AI)
� Medical imaging and diagnosis
� Pharmaceutical design
� Financial and economic modeling
� Advanced graphics and virtual reality
� Oil exploration

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
þMoores Lawÿ

Mooreûs Law

Microprocessors have become 
smaller, denser, and more 
powerful.

Gordon Moore (co-founder of Intel) 
predicted in 1965 that the transistor 
density of semiconductor chips would 
double roughly every 18 months. 

Slide source: Jack Dongarra
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Microprocessor Transistors / Clock (1970-2000)
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Historical Impact of Device Shrinkage

� What happens when the feature size (transistor size) shrinks by a factor of x?

� Clock rate goes up by x because wires are shorter

� actually less than x, because of power consumption

� Transistors per unit area goes up by x2

� Die size has also increased 

� typically another factor of 1 x

� Raw computing power of the chip goes up by 1 x4 !

� typically x3 is devoted to either on-chip

� parallelism: hidden parallelism such as ILP

� locality: caches

� So most programs x3 times faster, without changing them

6Slide source: Kathy Yelick



Power Density Limits Serial Performance
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Scaling clock speed (business as usual) will not work

� High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power
- Implicit parallelism discovery

� More transistors, but not faster serial processors

� Concurrent systems are more 
power efficient 

} Dynamic power is 
proportional to 86B%

} Increasing frequency (B) also 
increases supply voltage (8) 
Æ cubic effect

} Increasing cores increases 
capacitance (%) but only 
linearly

} Save power by lowering 
clock speed

7Slide source: Kathy Yelick

Revolution in Processors

� Chip density is continuing increase 12x every 2 years

� Clock speed is not

� Number of processor cores may double instead

� Power is under control, no longer growing
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Parallel Computer Architectures

� Takeaway: all programs that need to run faster will have to become parallel 
programs

� Since mid 2000s - not only are fastest computers parallel, but nearly all
computers are parallel 

9

Evolution of HPC Nodes

10

https://str.llnl.gov/march-2015/still

HPC Architectures Today
Summit (Oak Ridge National Lab, Tennessee)

� current #1 on the TOP500

11

HPC Architectures Today

12

https://www.olcf.ornl.gov/wp-content/uploads/2018/12/summit_workshop_thompto.pdf

One Processor: 22 SIMD processing cores, on-chip accelerators
� Each core supports 4 hardware threads
� Each core has separate L1 cache; pairs of cores share L2 and L3 cache



13

https://www.olcf.ornl.gov/for-users/system-user-
guides/summit/summit-user-guide/#nvidia-v100-gpus

HPC Architectures Today

One GPU (NVIDIA V100): 80 streaming multiprocessors (SMs), 16 GB of high-

bandwidth memory (HBM2), 6 MB L2 cache shared by SMs

14https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/#nvidia-v100-gpus

One SM:

32 FP64 (double-precision) cores, 

64 FP32 (single-precision) cores, 

64 INT32 cores, 

8 tensor cores,

128-KB shared memory/L1 cache

HPC Architectures Today

HPC Architectures Today

15https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Socket: 1 CPU, 3 GPUs

HPC Architectures Today

16https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Node: 2 sockets

HPC Architectures Today

17

One Rack: 18 nodes
� Dual-rail EDR InfiniBand network with non-blocking fat-tree topology
� Node bandwidth of 23 GB/s

HPC Architectures Today

18https://en.wikichip.org/wiki/supercomputers/summit



Designing High-Performance Parallel Algorithms

� To design an efficient parallel algorithm, must first model physical costs ---
runtime or energy consumption --- of executing a program on a machine

� Tradeoff: 

� More detailed model: more accurate results for a particular machine, but 
results may not apply to other machines

� Less detailed model: results applicable to a variety of machines, but may 
not be accurate for any

� but abstracting machine details can still give us a general sense of an 
efficient implementation

19

Performance Modeling: Latency-Bandwidth Model

A simplified runtime model: 

� Time to perform a floating point operation: L�

� Time to move a message of n words: J + Kn

� J = latency (seconds), K = 1/bandwidth (seconds/word)

Runtime = L (# flops) + K (# words) + J (# msgs)

#flops,words,msgs are counted along a critical path in the schedule:  

20

Performance Modeling: Latency-Bandwidth Model

Û is per-flop: 

� To improve: more parallelism (no longer increase clock 
frequency)

Ú is per-word: 

� Models bandwidth: maximum amount of data that can be in-
flight simultaneously

� To improve: add more ports/wires/etc. 

Ù is per-message and independent of message size

� Models latency: time for data to travel across machine

� Difficult to improve, due to fundamental limits (speed of light, 
atomic radius,...)

�%DQGZLGWK�LV�PRQH\��EXW�ODWHQF\�LV�SK\VLFV�
21

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak sr5: flops/s sr5< flops/s 100

Node Memory

Bandwidth
sr6 GB/s sr7 GB/s 10

Interconnect 

Bandwidth
sr5 GB/s sr6 GB/s 10

Memory Latency sr?; s w � sr?< s 2

Interconnect Latency sr?: s w � sr?; s 2
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CPU 

Cache
CPU 

DRAM

DRAM

CPU 

DRAM

CPU 

DRAM

CPU 

DRAM

Exascale System Projections

� Gaps will only grow larger

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

� Reducing time spent moving data/waiting for data will be essential for 
applications at exascale! 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak sr5: flops/s sr5< flops/s 100

Node Memory

Bandwidth
sr6 GB/s sr7 GB/s 10

Interconnect 

Bandwidth
sr5 GB/s sr6 GB/s 10

Memory Latency sr?; s w � sr?< s 2

Interconnect Latency sr?: s w � sr?; s 2

� Movement of data (communication) is much more expensive than floating 
point operations (computation), in terms of both time and energy

22

Exascale Computing: The Modern Space Race

� "Exascale": sr5< floating point operations per second

� with maximum energy consumption around 20-40 MWatts

23

� Technical challenges at all levels

Nothing tends so much to the 
advancement of knowledge as the 
application of a new instrument. 

- Sir Humphry Davy

� Advancing knowledge, addressing social 
challenges, improving quality of life, 
influencing policy, economic 
competitiveness 

hardware    to    algorithms    to    applications

� Large investment in HPC worldwide



An Exaflop of what?

� When will victory be declared?

� When a supercomputer reaches exaflop performance on the LINPACK 
benchmark (TOP500)

� Solving dense #T L > using Gaussian elimination with partial pivoting

� Summit supercomputer has already exceeded exaflop performance for a certain 
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

� Does that mean we are done?

� LINPACK benchmark is typically a compute-bound problem ("BLAS-3")

� Not a good indication of performance for a large number of scientific applications!

� Lots of remaining work even after exascale performance is achieved

� Has led to incorporation of other benchmarks into the TOP500 ranking

� e.g., HPCG: Solving sparse #T L > iteratively using the conjugate gradient 
method

24

Krylov subspace methods

� In each iteration, 

� Add a dimension to the Krylov subspace

± Forms nested sequence of Krylov subspaces

å5 #á N4 ? å6 #á N4 ? ® ? åÜ:#á N4;

� Orthogonalize (with respect to some ÝÜ)

� Select approximate solution TÜ Ð T4 EåÜ:#á N4;

using NÜ L > F #TÜ c ÝÜ

� Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual 
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 

� Krylov Subspace Method is a projection process onto the Krylov subspace

åÜ #á N4 L VSDQ N4á#N4á#
6N4á å á#

Ü?5N4

where # is an 0 H0 matrix and N4 L > F #T4 is a length-0 vector

Ý

N���

#Ü

N4

r

� Linear systems #T L >, eigenvalue problems, singular value problems, least squares, etc. 
� Best for: # large & very sparse, stored implicitly, or only approximation needed 
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Krylov Subspace Methods in the Wild

Climate Modeling 

Computational Cosmology
(Dark Matter Simulation, 
Almgren et al., LBNL)

Medical Treatment

Computer Vision
(Contour Detection, Berkeley 

Computer Vision Group)

Power Grid Modeling

Chemical Engineering
(Low-Emission Combustion 
Simulation, CCSE, LBNL)

Financial Portfolio 
Optimization 

Latent Semantic Analysis
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The conjugate gradient method

# is symmetric positive definite, ÝÜ L åÜ:#á N4;

NÜ c åÜ #á N4 ; T F TÜ º L ���
íÐë,>åÔ:ºáå,;

T F V º

: NÇ>5 L r

Connection with Lanczos

� With R5 L N4� N4 , E iterations of Lanczos produces 0 H E matrix 8Ü L
R5á å áRÜ , and E H E tridiagonal matrix 6Ü such that 

#8Ü L 8Ü6Ü E ÜÜ>5RÜ>5AÜ
Í
á 6Ü L 8Ü

Û#8Ü

� CG approximation TÜ is obtained by solving the reduced model 

6ÜUÜ L N4 A5á TÜ L T4 E 8ÜUÜ

� Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and 6WUDNRû)

� CG (and other Krylov subspace methods) are highly nonlinear

� Good for convergence, bad for ease of finite precision analysis 27

Implementation of CG

� Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

� Uses three 2-term recurrences for updating TÜ á NÜ áLÜ

N4 L > F #T4á L4 L N4
for E L s:nmax

ÙÜ?5 L
åÔ7-
Å åÔ7-

ãÔ7-
Å ºãÔ7-

TÜ L TÜ?5 E ÙÜ?5LÜ?5

NÜ L NÜ?5 F ÙÜ?5#LÜ?5

ÚÜ L
åÔ
ÅåÔ

åÔ7-
Å åÔ7-

LÜ L NÜ E ÚÜLÜ?5

end

minimizes T F TÜ º along line
V Ù L TÜ?5 E ÙLÜ?5

T4 EåÜ #á N4 L T4 E ����<L4á åLÜ?5=

If 
LÜ cº LÝ for E M F, 

1-dimensional minimizations in each 
iteration give E-dimensional 
minimization over the whole subspace
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Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1 
on top500

LINPACK benchmark 
(dense #T L >, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

29

Summit - IBM Power System AC922

HPCG benchmark 
(sparse #T L >, iterative)

1.5% efficiency



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
H Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

N4 L > F #T4á L4 L N4
for E L s:nmax

ÙÜ?5 L
åÔ7-
Å åÔ7-

ãÔ7-
Å ºãÔ7-

TÜ L TÜ?5 E ÙÜ?5LÜ?5

NÜ L NÜ?5 F ÙÜ?5#LÜ?5

ÚÜ L
åÔ
ÅåÔ

åÔ7-
Å åÔ7-

LÜ L NÜ E ÚÜLÜ?5

end
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o Sparse matrix-vector multiplication (SpMV)
� 1:nnz; flops
� Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)

Low computation/communication ratio 

� Performance is communication-bound

SpMV

orthogonalize

Cost Per Iteration

31

H

o Inner products
� 1:0; flops
� global synchronization (MPI_Allreduce)

� all processors must exchange data and wait for 
all communication to finish before proceeding

� Multiple reads/writes to slow memory

H

32Image source: Sam Williams

General Strategy Guide
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Roofline Model Example

Generally three approaches to improving 
performance:

� Maximize in-core performance (e.g. 
get compiler to vectorize)

Roofline Model (Williams, Waterman, 
Patterson, 2009)

� Provides estimates of performance for 
various applications (based on arithmetic 
intensity) for given machine

� attainable flop/s = min(peak flop/s, peak 
bandwidth H arithmetic intensity)

� "ceilings" give peak bandwidth or peak 
flops in absence of possible optimizations
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Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of 
computation to communication) in CG:

� Early work: CG with a single synchronization point per iteration
� 3-term recurrence CG 

� Using modified computation of recurrence coefficients

� Using auxiliary vectors

� Pipelined Krylov subspace methods
� Uses modified coefficients and auxiliary vectors to reduce synchronization points 

to 1 per iteration 

� Modifications also allow decoupling of SpMV and inner products - enables 
overlapping (MPI non-blocking collectives)

� s-step Krylov subspace methods
� Compute iterations in blocks of s using a different Krylov subspace basis

� Enables one synchronization per s iterations
34

Early approaches to reducing synchronization

� Goal: Reduce the 2 synchronization points per iteration in (HS)CG 
to 1 synchronization point per iteration

� Compute ÚÜ from ÙÜ?5 and #LÜ?5 using relation

NÜ
6
L ÙÜ?5

6 #LÜ?5
6
F NÜ?5

6

� Can then also merge the updates of TÜ, NÜ, and LÜ
� Developed independently by Johnson (1983, 1984), van 

Rosendale (1983, 1984), Saad (1985)

� Many other similar approaches

� Could also compute ÙÜ?5 from ÚÜ?5:

ÙÜ?5 L
NÜ?5
Í #NÜ?5

NÜ?5
Í NÜ?5

F
ÚÜ?5

ÙÜ?6

?5
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CG with two three-term recurrences (STCG)
� HSCG recurrences can be written as 

#2Ü L 4Ü>5.Ü á 4Ü L 2Ü7Ü
we can combine these to obtain a 3-term recurrence for the residuals (STCG):

#4Ü L 4Ü>56Ü á 6Ü L .Ü7Ü

Can be accomplished with 

a single synchronization 

point on parallel 

computers (^���l}� 1985, 

1987)

� Similar approach (computing ÙÜ using ÚÜ?5) used by D'Azevedo, Eijkhout, Romaine 

(1992, 1993)

� First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young 

(1981)

� Motivated by relation to three-term recurrences for orthogonal polynomials

N4 L > F #T4á L4L N4á T?5L T4á N?5L N4á A?5L r

for E L s:nmax

MÜ?5 L
:åÔ7-áºåÔ7-;

:åÔ7-áåÔ7-;
F AÜ?6

TÜ L TÜ?5 E
5

äÔ7-
NÜ?5 E AÜ?6:TÜ?5 F TÜ?6;

NÜ L NÜ?5 E
5

äÔ7-
F#NÜ?5 E AÜ?6:NÜ?5 F NÜ?6;

AÜ?5 L MÜ?5
:åÔáåÔ;

:åÔ7-áåÔ7-;

end
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Chronopoulos and Gear's CG (ChG CG)

� Chronopoulos and Gear (1989) 

� Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

� Reduces synchronizations/iteration to 1 by changing computation of ÙÜ and 
using an auxiliary recurrence for #LÜ

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

N4 L > F #T4á L4L N4á

O4 L #L4á Ù4L :N4á N4;�:L4á O4;

for E L s:nmax

TÜ L TÜ?5 E ÙÜ?5LÜ?5

NÜ L NÜ?5 F ÙÜ?5OÜ?5

SÜ L #NÜ

ÚÜ L
:åÔáåÔ;

:åÔ7-áåÔ7-;

ÙÜ L
:åÔáåÔ;

êÔáåÔ ?: ¤	Ô �Ô7-;:åÔáåÔ;

LÜ L NÜ E ÚÜLÜ?5

OÜ L SÜ E ÚÜOÜ?5

end 37

Pipelined CG (GVCG)

� Pipelined CG of Ghysels and Vanroose (2014)

� Similar to Chronopoulos and Gear approach

� Uses auxiliary vector OÜ  #LÜ and same formula for ÙÜ

� Also uses auxiliary vectors for #NÜ and #6NÜ to remove sequential 
dependency between SpMV and inner products

� Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

� Hides the latency of global communications
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GVCG (Ghysels and Vanroose 2014)

N4 L > F #T4, L4 L N4

O4 L #L4áS4 L #N4á V4 L #S4,
Ù4 L N4

ÍN4�L4
ÍO4

for E L s:nmax 

TÜ L TÜ?5 E ÙÜ?5LÜ?5

NÜ L NÜ?5 F ÙÜ?5OÜ?5

SÜ L SÜ?5 F ÙÜ?5VÜ?5

MÜ L #SÜ

ÚÜ L
åÔ
ÅåÔ

åÔ7-
Å åÔ7-

ÙÜ L
åÔ
ÅåÔ

êÔ
ÅåÔ? ¤	Ô �Ô7- åÔ

ÅåÔ

LÜ L NÜ E ÚÜLÜ?5

OÜ L SÜ E ÚÜOÜ?5

VÜ L MÜ E ÚÜVÜ?5

end
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GVCG (Ghysels and Vanroose 2014)

N4 L > F #T4, L4 L N4

O4 L #L4áS4 L #N4á V4 L #S4,
Ù4 L N4

ÍN4�L4
ÍO4

for E L s:nmax 

TÜ L TÜ?5 E ÙÜ?5LÜ?5

NÜ L NÜ?5 F ÙÜ?5OÜ?5

SÜ L SÜ?5 F ÙÜ?5VÜ?5

MÜ L #SÜ

ÚÜ L
åÔ
ÅåÔ

åÔ7-
Å åÔ7-

ÙÜ L
åÔ
ÅåÔ

êÔ
ÅåÔ? ¤	Ô �Ô7- åÔ

ÅåÔ

LÜ L NÜ E ÚÜLÜ?5

OÜ L SÜ E ÚÜOÜ?5

VÜ L MÜ E ÚÜVÜ?5

end
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GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner 
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

N4 L > F #T4, L4 L N4

O4 L #L4áS4 L #N4á V4 L #S4,
Ù4 L N4

ÍN4�L4
ÍO4

for E L s:nmax 

TÜ L TÜ?5 E ÙÜ?5LÜ?5

NÜ L NÜ?5 F ÙÜ?5OÜ?5

SÜ L SÜ?5 F ÙÜ?5VÜ?5

MÜ L #SÜ

ÚÜ L
åÔ
ÅåÔ

åÔ7-
Å åÔ7-

ÙÜ L
åÔ
ÅåÔ

êÔ
ÅåÔ? ¤	Ô �Ô7- åÔ

ÅåÔ

LÜ L NÜ E ÚÜLÜ?5

OÜ L SÜ E ÚÜOÜ?5

VÜ L MÜ E ÚÜVÜ?5

end
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Precond

MPI Non-Blocking Communication

� "Non-blocking" or "asynchronous" collectives available since MPI 3

40

MPI_Iallreduce(...,MPI_Request,...)

// ...other work (SpMV, 

preconditioner, etc.)

MPI_Wait(...,MPI_Request)

call to MPI_Iallreducecall to MPI_Wait

PETSc provides a construct for asynchronous dot-
products: 
VecDotBegin (...,&dot); 

PetscCommSplitReductionBegin (comm); 

// ...other work 

VecDotEnd (...,&dot); P. Ghysels, et al. SIAM J. Scientific Computing, 
35(1):C48C71, (2013).

Deep Pipelining

� Motivation: want to have perfect overlap of computation of inner products 
and SpMVs/preconditioner application

� But this depends on the machine, matrix, etc. 

� If inner products take much longer than 1 SpMV, do º SpMVs instead

� � "deep" pipelined CG with pipeline length º

� º should be chosen to be the number of SpMV/precond. operations 
that can be done in the time it takes for one Allreduce

� Deep pipelined GMRES variant

� Deep pipelined CG variant 
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Available Software

� Implementations in PETSc:

� KSPPGMRES: pipelined GMRES

� KSPPIPECG: pipelined CG

� KSPPIPECR: pipelined CR

� KSPGROPPCG: Gropp asynchronous variant

� KSPPIPEBCGS: pipelined BiCGSTAB

� KSPPIPELCG: deep pipelined CG

42

Performance of Pipelined CG

43(Cornelis, Cools, Vanroose, arXiv: 1801.04728, 2018)

48 compute nodes, each with two 14-core Intel E5-2680v4, 
Broadwell generation CPUs; EDR InfiniBand

20 compute nodes, each with two 6-
core Intel Xeon X5660 Nehalem 
2:80 GHz processors each (12 cores 
per node); 4QDR InfiniBand



s-step Krylov subspace methods

� Idea: Compute blocks of O iterations at once 

� Compute updates in a different basis

� Communicate every O iterations instead of every iteration

� Reduces number of synchronizations per iteration by a factor of s

� $Q�LGHD�UHGLVFRYHUHG�PDQ\�WLPHV�
� First related work: s-dimensional steepest descent, least squares

� Khabaza �������Forsythe �������Marchuk and Kuznecov ����) 
� Flurry of work on s-step Krylov PHWKRGV�LQ����V�HDUO\����V��VHH��H�J���9DQ�

Rosendale (1983);   Chronopoulos and Gear (1989)

� Resurgence of interest in recent years due to growing problem sizes; 
growing relative cost of communication
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History of O-step Krylov Subspace Methods
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1983

Van 

Rosendale: 

CG

1988

Walker: 

GMRES

Chronopoulos

and Gear: CG

1990 1991 1992

First termed 

^�-step 

u��Z}��_

de Sturler: 

GMRES

1989

Bai, Hu, and Reichel:

GMRES

Chronopoulos

and Kim: 

Nonsymm. 

Lanczos

Joubert and 

Carey: GMRES

Erhel:

GMRES

Toledo: CG

de Sturler and 

van der Vorst: 

GMRES

1995 2001

Chronopoulos

and Kinkaid: 

Orthodir

Chronopoulos and 

Kim: Orthomin, 

GMRES Chronopoulos: 

MINRES, GCR, 

Orthomin

Kim and 

Chronopoulos:  

Arndoli, Symm. 

Lanczos

Leland: 

CG

Key observation: After iteration E, for F Ð <rá ä ä á O=,

TÜ>Ý F TÜ á NÜ>Ý á LÜ>Ý Ð åæ>5 #á LÜ Eåæ #á NÜ

s-step CG

s steps of s-step CG:

Expand solution space � dimensions at once

&RPSXWH��EDVLV��PDWUL[�ó such that   ���� ó L åæ>5 #á LÜ Eåæ #á NÜ according to 

the recurrence #ó L ó Ü

Compute inner products between basis vectors in one synchronization 
á L óÍó

Compute s iterations of vector updates
Perform O iterations of vector updates by updating coordinates in basis ó:

TÜ>Ý í TÜ L óTÝ
ñ
á NÜ>Ý L óNÝ

ñ
á LÜ>Ý L óLÝ

ñ
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\

\

ó:ÜLÝ
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1:O;

1:O;

H

NÝ
ñÍáNÝ

ñ

H H

:NÜ>Ý á NÜ>Ý;

#LÜ>Ý

H

HJ

J

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
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xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

#óLÝ
ñ

L L

L NÝ
ñÍóÍóNÝ

ñ
L

s-step CG

For s iterations of updates, inner products and SpMVs (in basis ó) can be 
computed by independently by each processor without communication: 
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s-step CG

Outer Loop

Compute basis 
O(s) SPMVs

O(O6) Inner 
Products (one 

synchronization)

Inner Loop

Local Vector 
Updates (no 

comm.)

End Inner Loop

Inner Outer Loop

s 

times

N4 L > F #T4áL4 L N4

for G L r:nmax/O

Compute óÞ and ÜÞ such that #óÞ L óÞÜÞ and 

span(óÞ) = åæ>5 #á LæÞ Eåæ #á NæÞ

áÞ L óÞ
ÍóÞ

T4
ñ
L rá N4

ñ
L Aæ>6áL4

ñ
L A5

for F L sã O

ÙæÞ>Ý?5 L
åÕ7-
òÅ

áÖåÕ7-
ò

ãÕ7-
òÅ áÖÜÖãÕ7-

ò

TÝ
ñ
L TÝ?5

ñ
E ÙæÞ>Ý?5LÝ?5

ñ

NÝ
ñ
L NÝ?5

ñ
F ÙæÞ>Ý?5ÜÞLÝ?5

ñ

ÚæÞ>Ý L
åÕ
òÅ
áÖåÕ

ò

åÕ7-
òÅ áÖåÕ7-

ò

LÝ
ñ
L NÝ

ñ
E ÚæÞ>ÝLÝ?5

ñ

end

>Tæ Þ>5 FTæÞ á Næ Þ>5 áLæ Þ>5 ? L óÞ>Tæ
ñ á Næ

ñáLæ
ñ?

end
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Sparse Matrix Computations

� Sparse Matrix x Vector (SpMV) (U L #T)

� Very communication-bound; no reuse

� Lower bound depends on sparsity
structure, algorithm used (1D 
rowwise/colwise, 2D, etc.)

� Communication cost depends on partition

� Hypergraph models capture 
communication dependencies 
(Catalyurek, Aykanat, 1999)

� minimize hypergraph cut = minimize 
words moved

49

� Repeated SpMVs (; L >#Tá#6Tá å á#ÞT?)

� Naive approach: k repeated SpMVs

� Communication-avoiding approach: "matrix powers kernel"

� see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)



Example: Tridiagonal matrix

SpMV Dependency Graph

) L :8á'; where 8 L U4á å á Uá?5 ë <T4á å á Tá?5= and UÜ á TÝ Ð ' if #ÜÝ M r
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Avoids communication:

� In serial, by exploiting temporal locality:

� Reading #, reading vectors

� ,Q�SDUDOOHO��E\�GRLQJ�RQO\����H[SDQG��SKDVH�
(instead of O).

� 5HTXLUHV�VXIILFLHQWO\�ORZ��VXUIDFH-to-YROXPH��
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v

A2v

Av

v

A3v

A2v

Av

v

black = local elements

red = 1-level dependencies

green = 2-level dependencies

blue = 3-level dependencies

Also works for 

general graphs!
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Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:

s messages per neighbor

Matrix powers 

optimization:

1 message per neighbor

Parallel Matrix Powers Kernel
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Complexity comparison

Example of parallel (per processor) complexity for O iterations of  CG vs. s-step 

CG for a 2D 9-point stencil:

(Assuming each of L processors owns 0�L rows of the matrix and O Q 0�L)

All values in the table meant in the Big-O sense (i.e., lower order terms 

and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 

CG

O0

L

O0

L
O ¤0 L O ���6 L O O ���6 L

s-step CG
O0

L

O60

L
O ¤0 L O6 ���6 L s ���6 L
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s-step GMRES

54

N4 L > F #T4á R4 L N4�!N4!

for E L sãG

S L #RÜ?5
Orthogonalize S against >R4á å á RÜ?5?

Update vector RÜ, matrix *

end

Use *á >R4á å á RÞ? to construct the solution

N4 L > F #T4á R4 L N4�!N4!

for E L rã OãG F O

Compute 9 such that span(>RÜ á9?) = åæ>5 #á RÜ
Make 9 orthogonal against >R4á å á RÜ?

Make 9 orthogonal

Update >RÜ>5á å á RÜ>æ?, matrix *

end

Use *á >R4á å á RÞ? to construct the solution

Classical GMRES

s-step GMRES

e.g., Modified Gram-Schmidt

"matrix powers kernel"

Block Gram-Schmidt

"Tall-Skinny QR"

Tall-Skinny QR (TSQR)

� TSQR: QR factorization of a tall 
skinny matrix using Householder 
transformations

� QR decomposition of m x b matrix W, 
m >> b 

� P processors, block row layout 

� Classic Parallel Algorithm 

� Compute Householder vector for 
each column 

� Number of messages ß b log P

� Communication Avoiding Algorithm 

� Reduction operation, with QR as 
operator 

� Number of messages ß log P 
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Dual Core

TSQR implementations in Intel MKL library, 
GNU Scientific Library, ScaLAPACK, Spark 



Performance Results
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(Mohiyuddin et al, 2009)

Performance and Applications

� Example applications: s-step BICGSTAB used in 

� combustion, cosmology [Williams, C., et al., IPDPS, 2014]

� geoscience dynamics [Anciaux-Sedrakian et al., 2016] 

� far-field scattering [Zhang et al., 2016]

� wafer defect detection [Zhang et al., 2016]
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up to 4.2x on 24K 

cores on Cray XE6 

� Performance studies

� s-step GMRES on hybrid CPU/GPU 
arch. (Yamazaki et al., 2014)

� comparison of s-step and pipelined 
GMRES (Yamazaki et al., 2017)

Alternative Approaches

� Enlarged Krylov subspace methods (Grigori, Moufawad, Nataf, 2016)

� Split vector into t parts based on domain decomposition of A; enlarge 
Krylov subspace by t dimensions each iteration

� Faster convergence, more parallelizable

� Combined s-step pipelined methods 

� (ºá O)-GMRES (Yamazaki, Hoemmen, Luszczek, Dongarra, 2017)

� Hybrid approach which combines ideas of s-step and pipelined methods; 
reduces number of global synchronizations and also overlaps them with 
other work
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Practical Implementation Challenges

� How to pick parameters? (pipeline depth in pipelined method; s in s-step 
method)

� Choice must take into account matrix structure, machine, partition, as 
well as numerical properties (more on this next time!)

� Preconditioning

� Must consider overlap in pipelined methods (if enough to overlap with)

� For s-step, can diminish potential gain from matrix powers kernel if 
preconditioner is dense (but still win from savings in Allreduce)
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Choosing s

� How do we expect communication costs to change as s 
increases?

� Initially decrease, but at some point, start increasing

� Point depends on sparsity structure of matrix, 
partition of matrix, and latency/bandwidth 
parameters of the machine

� Bandwidth cost can start to dominate

� For s large enough, the extra entries we need go past 
our neighbors boundaries

� more messages required -> increased latency 
cost

� For GMRES, best s for matrix powers may not be best 
s for TSQR kernel

� Choice of s requires co-tuning 
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Lower Bound Tradeoffs for Matrix Powers

62

� Matrix powers kernel attains this lower bound when ¤J× L R I×>×

where J× is # mesh points

� Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs 
between three basic costs of a parallel algorithm: synchronization, data 
movement, and computational cost.

� By considering critical path, tradeoffs give lower bounds on the 
execution time which are dependent on the problem size but 
independent of the number of processors (assuming homogeneity) 

� Theorem: Any parallel execution of an O-dimensional Krylov basis 
computation for a tI E s ×-point stencil on a @-dimensional regular 
mesh requires

3:I×>×O; flops,       3:I×>×?5O; words, 3 ¤O > messages,

for some > Ð <sá å á O=

Performance Modeling to Estimate Parameters

63

� Goal: estimate best blocking factor > for matrix powers 
computation

� Starting place for parameter selection t to get close to optimal 
answer, would need more accurate model of time, costs including 
constants

� Cost model:

Time = Û H flops + Ú H words moved + Ù H # messages

� Choose > to minimize 

Time 1 Û I×>×O E ÚI×>×?5O E Ù ¤O >

� Latency/BW tradeoff point :   > 1
� ¤- Ï

à	-�Ï

Matrix Partitioning

64

� For computing matrix powers (i.e., constructing the basis matrix in s-step 
methods, we really want to partition the structure of #æ rather than #
� Analogous to single SpMV, can construct a hypergraph model such 

that the minimum cut gives a partition with minimum communication 
volume 

� Load balancing 
� The parallel matrix powers kernel involves redundantly computing 

entries of the vectors on different processors
� Entries which need to be redundantly computed determined by 

partition

Hypergraph Partitioning for Matrix Powers

� �V-OHYHO��URZ- and column-nets encode the structure of #æ

� But expensive to compute (s × Boolean sparse matrix-matrix multiplies)
� Only worth it if # has particularly irregular sparsity structure (e.g., number of nonzeros

per column in #Ü grows at various rates) and same matrix will be reused
� Potential use of randomized algorithms to estimate nnz/column in #Ü

row-nets represent
domain of dependence

column-nets represent
domain of influence

Parallel communication for
U L #æT,

given 1D rowwise layout of #æ

Parallel communication for
8 L >Tá#Tá#tTá å á#æT?á

given a sparse tiling of # =
(assuming no 

cancellation and 
nonzero diagonal)
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Preconditioning for s-step variants

� Preconditioners improve spectrum of system to improve convergence 
rate

� E.g., instead of #T L >, solve /?5#T L /?5>, where /?5
N #?5

� Essential in practice

� In s-step variants, general preconditioning is a challenge

� Except for very simple cases, ability to exploit temporal locality 
across iterations is diminished by preconditioning

� If possible to avoid communication at all, usually necessitates 
significant modifications to the algorithm

� Tradeoff: speed up convergence, but increase time per iteration due to 
communication!

� For each specific app, must evaluate tradeoff between 
preconditioner quality and sparsity of the system 
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Preconditioning for s-step KSMs

� Much recent/ongoing work in developing communication-avoiding 
preconditioned methods 

� Many approaches shown to be compatible

� Diagonal

� Sparse Approx. Inverse (SPAI) } for s-step BICGSTAB by Mehri
(2014)

� HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, 
C., Demmel, 2014); same general technique for any system that can 
be written as sparse + low-rank

� Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step 
GMRES (Yamazaki et al., 2014) 

� CA-ILU(0) } Moufawad and Grigori (2013)

� Domain decomposition } avoid introducing additional communication 
E\��XQGHUODSSLQJ��VXEGRPDLQV��Yamazaki et al., 2014)
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"Underlapping" Domain Decomposition

68

(Yamazaki et al., 2014)

� Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces 
between the subdomains without additional communication beyond what is required by 
sparsity structure of A

In order to "localize" effects of preconditioner,
� form "interior" by removing s-level "underlap"
� apply "local" preconditioner on "interior"

� ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
� apply diagonal Jacobi on "underlap"

The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
� No longer have exact Krylov

subspace
� Can lose numerical rank deficiency
� Residuals no longer orthogonal -

Minimization of T F TÜ º no 
longer exact

2. Loss of attainable accuracy
� Rounding errors cause true 

residual > F #TÜ and updated 
residual NÜ deviate!

#: bcsstk03 from SuiteSparse, 

>: equal components in the eigenbasis of #, > L s

0 L sstá â # N y�x

Much work on these results for CG; See Meurant and 6WUDNRû (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG
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CG (double)
exact CG

Conjugate Gradient method for solving Ax = b
double precision (Ý L t?97)

TÜ F T º L TÜ F T
Í#:TÜ F T;

TÜ L TÜ?5 E ÙÜLÜ
NÜ L NÜ?5 F ÙÜ#LÜ
LÜ L NÜ E ÚÜLÜ
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Review
� Cost of data movement (relative to low computational cost) causes 

bottlenecks in classical formulations of Krylov subspace methods

� Motivates various approaches

� Pipelined Krylov subspace methods

� Add auxiliary recurrences to enable decoupling of inner products 
and SpMVs; can then be overlapped using non-blocking MPI

� Effectively hides the cost of synchronization in each iteration

� s-step Krylov subspace methods

� Block iterations in groups of s; use block computation of O(s) basis 
vectors and block orthogonalization

� Increases temporal locality, allowing asymptotic reduction in 
number of messages per iteration

� Many practical implementation details: choosing parameters, 
preconditioning, etc. 

� For certain (e.g., latency-bound) problems, these approaches can reduce the 
time-per-iteration cost

2

runtime L ���� ���

���������
H ������ �� ����������

����� �����������

reduced precision

approximate 
operators

asynchronous 
execution

modify algorithm 
to reduce 

communication

increased 
precision

preconditioning

block methods

eigenvalue 
deflation

Reduce number of iterationsReduce time per iteration

subspace 
recycling

To minimize runtime, must understand how modifications affect:

1) attainable accuracy      2) convergence rate      3) time per iteration

3

Improving Performance of Iterative Solvers

reduced precision

approximate 
operators

asynchronous 
execution

modify algorithm 
to reduce 

communication

increased 
precision

preconditioning

block methods

eigenvalue 
deflation

Reduce number of iterationsReduce time per iteration

subspace 
recycling

3

runtime L ���� ���

���������
H ������ �� ����������

����� �����������

Improving Performance of Iterative Solvers

Lecture Outline

� Effects of finite precision in Krylov subspace methods

� Maximum attainable accuracy

� Convergence delay

� Existing results for classical Krylov subspace methods

� Results for pipelined and s-step Krylov subspace methods

� Potential remedies for finite precision error in high-performance variants

� Choosing a method in practice

� The future of Krylov subspace methods

4

The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
� No longer have exact Krylov

subspace
� Can lose numerical rank deficiency
� Residuals no longer orthogonal -

Minimization of T F TÜ º no 
longer exact

2. Loss of attainable accuracy
� Rounding errors cause true 

residual > F #TÜ and updated 
residual NÜ deviate!

#: bcsstk03 from SuiteSparse, 

>: equal components in the eigenbasis of #, > L s

0 L sstá â # N y�x

Much work on these results for CG; See Meurant and 6WUDNRû (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG

5

CG (double)
exact CG



Conjugate Gradient method for solving Ax = b
double precision (Ý L t?97)

TÜ F T º L TÜ F T Í#:TÜ F T;
TÜ L TÜ?5 E ÙÜLÜ
NÜ L NÜ?5 F ÙÜ#LÜ
LÜ L NÜ E ÚÜLÜ

6

� Accuracy T F ÜTÜ generally not computable, but T F ÜTÜ L #?5 > F #ÜTÜ
� Size of the true residual, > F # ÜTÜ , used as computable measure of accuracy 

� Rounding errors cause the true residual, �F mÝ��, and the updated residual, Ü��, 
to deviate

� Writing > F #ÜTÜ L ŅÜ E > F # ÜTÜ F ŅÜ,   
> F # ÜTÜ Q ŅÜ E > F # ÜTÜ F ŅÜ

� As ŅÜ \ r, > F #ÜTÜ depends on > F # ÜTÜ F ŅÜ

� Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst 
and Modersitzki (2001), Björck, Elfving and 6WUDNRû (1998) and Gutknecht 
and 6WUDNRû (2000).

Maximum attainable accuracy

7

� In finite precision HSCG, iterates are updated by 

ÜTÜ L ÜTÜ?5 E ÜÙÜ?5ĻÜ?5 F ¾�� and         ŅÜ L ŅÜ?5 F ÜÙÜ?5#ĻÜ?5 F ¾��
� Let BÜ  > F #ÜTÜ F ŅÜ

BÜ L > F # ÜTÜ?5 E ÜÙÜ?5ĻÜ?5 F ÜTÜ F ŅÜ?5 F ÜÙÜ?5#ĻÜ?5 F ÜNÜL BÜ?5 E #ÜTÜ E ÜNÜL B4 E Ãà@5Ü #ÜTà E ÜNà

Maximum attainable accuracy of HSCG

BÜ Q 1:Ý; # T E ���
à@4áåáÜ

ÜTà Greenbaum, 1997

BÜ Q 1 Ý Ãà@4
Ü 0º # ÜTà E Ņà van der Vorst and Ye, 2000

BÜ Q 1 Ý 0º # #?5 Ãà@4
Ü Ņà Sleijpen and van der Vorst, 1995

8

Maximum Attainable Accuracy in HPC Variants

� Various synchronization-reducing modifications/variants discussed in Part I

� Modified recurrence coefficient computation 

� 3-term CG (STCG)

� Addition of auxiliary recurrences

� Pipelined CG

� s-step methods

9

Modified recurrence coefficient computation

� What is the effect of changing the way the recurrence coefficients (Ù
and Ú) are computed in HSCG?

� But may change computed ÜTÜ, ŅÜ, which can affect convergence rate...

� Notice that neither Ù nor Ú appear in the bounds on BÜ
BÜ L > F # ÜTÜ F ŅÜL > F # ÜTÜ?5 E ÜÙÜ?5ĻÜ?5 F ÜTÜ F ŅÜ?5 F ÜÙÜ?5#ĻÜ?5 F ÜNÜ

� As long as the same ÜÙÜ?5 is used in updating ÜTÜ and ŅÜ, 

BÜ L BÜ?5 E #ÜTÜ E ÜNÜ
still holds

� Rounding errors made in computing ÜÙÜ?5 do not contribute to the 
residual gap

10

Modified recurrence coefficient computation

ÙÜ?5 L NÜ?5
Í #NÜ?5

NÜ?5
Í NÜ?5

F ÚÜ?5

ÙÜ?6

?5

Example: HSCG with modified formula for  ÙÜ?5

11



Attainable accuracy of STCG

� Analyzed by Gutknecht and 6WUDNRû (2000)

� Attainable accuracy for STCG can be much worse than for 
HSCG

� Residual gap bounded by sum of local errors PLUS local errors 
multiplied by factors which depend on 

���
4¸º´Ý¸Ü

NÝ
6

Nº
6

� Large residual oscillations can cause these factors to be large!

� Local errors can be amplified!

12

STCG

14

Attainable accuracy of pipelined CG

� What is the effect of adding auxiliary recurrences to the CG method?

� To isolate the effects, we consider a simplified version of a pipelined 
method

� Uses same update formulas for Ù and Ú as HSCG, but uses 
additional recurrence for #LÜ

N4 L > F #T4áL4 L N4á O4 L #L4

for E L s:nmax 

ÙÜ?5 L :åÔ7-áåÔ7-;

:ãÔ7-áæÔ7-;

TÜ L TÜ?5 E ÙÜ?5LÜ?5
NÜ L NÜ?5 F ÙÜ?5OÜ?5
ÚÜ L :åÔáåÔ;

:åÔ7-áåÔ7-;

LÜ L NÜ E ÚÜLÜ?5
OÜ L #NÜ E ÚÜOÜ?5

end
15

Attainable accuracy of simple pipelined CG

ÜTÜ L ÜTÜ?5 E ÜÙÜ?5ĻÜ?5 E ¾�� ŅÜ L ŅÜ?5 F ÜÙÜ?5 O̧Ü?5 E ¾��
BÜ L ŅÜ F :> F # ÜTÜ;
L BÜ?5 F ÜÙÜ?5 O̧Ü?5 F #ĻÜ?5 E ÜNÜ E #ÜTÜ
L B4 E Ãà@5Ü :ÜNà E #ÜTà; F )Ü@Ü

where 

)Ü L �5Ü F # à2Ü,   @Ü L ÜÙ4á å á ÜÙÜ?5 Í

16

Attainable accuracy of simple pipelined CG

)Ü Q 1 Ý

sF 1 Ý
â:á7Ü; # à2Ü E # à4Ü á7Ü?5

á7Ü L
s F �Ú5 r r

r s ° r

­ ° s F �ÚÜ?5
r å r s

á7Ü?5 L
s �Ú5 å å �Ú5 �Ú6® �ÚÜ?5

r s �Ú6 å �Ú6® �ÚÜ?5
­ ° ° ° ­

­ ° s �ÚÜ?5
r ® ® r s

� Residual oscillations can cause these factors to be large!
� Errors in computed recurrence coefficients can be amplified!

� Very similar to the results for attainable accuracy in the 3-term STCG
� Seemingly innocuous change can cause drastic loss of accuracy

ÚºÚº>5®ÚÝ L NÝ
6

Nº?5
6
á º O F

17

Simple pipelined CG

18

effect of using auxiliary vector OÜ  #LÜ



Simple pipelined CG

18

effect of changing formula for recurrence coefficient Ù and 

using auxiliary vector OÜ  #LÜ

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
OÜ  #LÜ á MÜ  /?5#LÜ á QÜ  /?5NÜ á SÜ L #/?5NÜ á VÜ  #/?5#LÜ

Computed explicitly: IÜ  /?5SÜ  /?5#/?5NÜ á RÜ L #IÜ : #/?5#/?5NÜ;

19

ÜTÜ>5 L ÜTÜ E ÜÙÜĻÜ E ÜÜë
ŅÜ>5 L ŅÜ F ÜÙÜ O̧Ü E ÜÜåÝSÜ>5 L ÝSÜ F ÜÙÜV̧Ü E ÜÜêÜQÜ>5 L QÜ F ÜÙÜ ÜMÜ E ÜÜè

ĻÜ L ÜQÜ E �ÚÜĻÜ?5 E ÜÜã
O̧Ü L ÝSÜ E �ÚÜO̧Ü?5 E ÜÜæ
V̧Ü L # ÝIÜ E �ÚÜV̧Ü?5 E ÜÜíÜMÜ L ÝIÜ E �ÚÜ ÜMÜ?5 E ÜÜä

BÜ>5 L > F # ÜTÜ>5 F ŅÜ>5
L BÜ F ÜÙÜ #ĻÜ F O̧Ü F #ÜÜë F ÜÜå

CÜ L �ÚÜCÜ?5 E # ÜQÜ>5 F ÝSÜ>5 E #ÜÜã F ÜÜæ
DÜ>5 L DÜ F ÜÙÜ #ÜMÜ F V̧Ü E #ÜÜè F ÜÜê

FÜ L �ÚÜFÜ?5 E #ÜÜä F ÜÜí

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

BÜ>5 L B4 FÍ
Ý@4

Ü

ÜÙÝCÝ FÍ
Ý@4

Ü

:#ÜÝ
ë E ÜÝå;
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CÝ L Ñ
Þ@5

Ý

�ÚÞ C4 EÍ
Þ@5

Ý

Ñ
º@Þ>5

Ý

�Úº #ÜÞ
ã F ÜÞæ EÍ

Þ@5

Ý

Ñ
º@Þ>5

Ý

�Úº DÞ

DÞ L D4 FÍ
º@4

Þ?5

ÜÙºFº EÍ
º@4

Þ?5

:#Üº
è F Üºê;

Fº L Ñ
à@5

º

�Úà F4 E Í
à@5

º

Ñ
á@à>5

º

�Úá #Üà
ä F Üàí

Local rounding errors 
all potentially 

amplified!

Pipelined CG

21

effect of changing formula for recurrence coefficient Ù and 

using auxiliary vectors OÜ  #LÜ, SÜ  #NÜ á VÜ  #6NÜ

Effect of Deeper Pipelines
� Deeper pipeline -> effectively adding more auxiliary recurrences

� We expect residual gap to increase with increasing pipeline depth

� Some initial work (Cools, 2018) uses Chebyshev shifts to attempt to 
stabilize (deep) pipelined CG; but increasing gap is still apparent

22

2D Poisson problem, 0 L trr, > set such that TÜ L s� 0

(Cools, 2018) 

(Cools, 2018) 

square root 
breakdown + 
explicit restart

s-step CG

Outer Loop

Compute basis 
O(s) SPMVs

O(O6) Inner 
Products (one 

synchronization)

Inner Loop

Local Vector 
Updates (no 

comm.)

End Inner Loop

Inner Outer Loop

s 

times

N4 L > F #T4áL4 L N4

for G L r:nmax/O

Compute óÞ and ÜÞ such that #óÞ L óÞÜÞ and 

span(óÞ) = åæ>5 #á LæÞ Eåæ #á NæÞ

áÞ L óÞ
ÍóÞ

T4
ñ L rá N4

ñ L Aæ>6áL4
ñ L A5

for F L sã O

ÙæÞ>Ý?5 L åÕ7-
òÅ áÖåÕ7-

ò

ãÕ7-
òÅ áÖÜÖãÕ7-

ò

TÝ
ñ L TÝ?5

ñ E ÙæÞ>Ý?5LÝ?5ñ

NÝ
ñ L NÝ?5

ñ F ÙæÞ>Ý?5ÜÞLÝ?5ñ

ÚæÞ>Ý L åÕ
òÅáÖåÕ

ò

åÕ7-
òÅ áÖåÕ7-

ò

LÝ
ñ L NÝ

ñ E ÚæÞ>ÝLÝ?5ñ

end

>Tæ Þ>5 FTæÞ á Næ Þ>5 áLæ Þ>5 ? L óÞ>Tæ
ñ á Næ

ñáLæ
ñ?

end
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Error in 

basis change

Sources of local roundoff error in s-step CG

Error in computing 

O-step basis

Error in updating 

coefficient vectors

Computing the O-step Krylov subspace basis:

# àóÞ L àóÞÜÞ E �óÞ
Updating coordinate vectors in the inner loop:

ÜTÞáÝñ L ÜTÞáÝ?5ñ E ÜMÞáÝ?5ñ E æÞáÝ
ŅÞáÝ
ñ L ŅÞáÝ?5

ñ F ÜÞ ÜMÞáÝ?5ñ E ßÞáÝ
with   ÜMÞáÝ?5ñ L ��: ÜÙæÞ>Ý?5ĻÞáÝ?5ñ ;

Recovering CG vectors for use in next outer loop:

ÜTæÞ>Ý L àóÞ ÜTÞáÝñ E ÜTæÞ E öæÞ>Ý
ŅæÞ>Ý L àóÞŅÞáÝñ E ðæÞ>Ý

24

� We can write the gap between the true and updated residuals B in terms 
of these errors:

Attainable accuracy of s-step CG

� Using standard rounding error results, this allows us to obtain an upper 

bound on BæÞ>Ý .

25

BæÞ>Ý L B4

FÍ
º@4

Þ?5

#öæº>æ E ðæº>æ EÍ
Ü@5

æ

# àóºæºáÜ E àóºßºáÜ F �óº ÜMºáÜ?5ñ

F#öæÞ>Ý F ðæÞ>Ý FÍ
Ü@5

Ý

# àóÞæÞáÜ E àóÞßÞáÜ F �óº ÜMÞáÜ?5ñ

For CG:

Attainable accuracy of s-step CG

BæÞ>Ý Q B4 E Ý�$¡� Í
à@5

æÞ>Ý

s E 0 # ÜTà E Ņà

BÜ Q B4 E Ý Í
à@5

Ü

s E 0 # ÜTà E Ņà

For s-step CG: E  OG E F

where ? is a low-degree polynomial in O, and

$�Þ L ���
º¸Þ

�º ,     where     �º L àóº> � àóº

BÜ  >F# ÜTÜFŅÜ

(see C., 2015)
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s-step CG

s-step CG with monomial basis (ó L >LÜ á#LÜ á å á#
æLÜ á NÜ á#NÜ á å#

æ?5NÜ?)

Can also use other, more well-conditioned bases to improve convergence rate 

and accuracy (see, e.g. Philippe and Reichel, 2012). 
27

s-step CG

� Even assuming perfect parallel scalability with s (which is usually not the case 

due to extra SpMVs and inner products), already at O L v we are worse than 

HSCG in terms of number of synchronizations!
28

"Backwards-like" analysis of Greenbaum

� Anne Greenbaum (1989): finite precision CG with matrix # behaves like 
exact CG run on a larger matrix �# whose eigenvalues lie in tight clusters 
around the eigenvalues of #

� Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

� Complete rounding error analysis

� Computed eigenvalues lie between extreme eigenvalues of A to within a 
small multiple of machine precision

� At least one small interval containing an eigenvalue of A is found by 
the Nth iteration

� The algorithm behaves as if it used full reorthogonalization until a close 
eigenvalue approximation is found

� Loss of orthogonality among basis vectors follows a rigorous pattern 
and implies that some eigenvalue approximation has converged

� Can we make similar statements for HPC variants?

29



Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (# is0 H 0 with at most J nonzeros per row)

# à8à L à8à à6à E �Úà>5 ÜRà>5AàÍ E Ü à8à
à8à L ÜR5á å á ÜRà ,       Ü à8à L Ü ÜR5á å á Ü ÜRà ,         à6à L

ÜÙ5 �Ú6
�Ú6 ° °

° ° �Úà
�Úà ÜÙà

ê  # 6

àê  # 6

Lanczos [Paige, 1976] 

Ý4 L 1 Ý0

Ý5 L 1 ÝJà

for E Ð <sá å áI=,

Ü ÜRÜ 6 Q Ý5ê
�ÚÜ>5 ÜRÜÍ ÜRÜ>5 Q tÝ4êÜRÜ>5Í ÜRÜ>5 F s Q ¤Ý4 t

�ÚÜ>5
6 E ÜÙÜ6 E �ÚÜ

6 F # ÜRÜ 6
6 Q vE uÝ4 E Ý5 ê6

s-step Lanczos [C., Demmel, 2015]:

Ý4 L 1 Ý0¡Û

Ý5 L 1 ÝJà¡

� L ? ����
º¸Þ

àóº> àóº 30

� Roundoff errors in s-step variant follow same pattern as classical variant, 
but amplified by factor of � or �6

� Theoretically confirms empirical observations on importance of basis 
FRQGLWLRQLQJ��GDWLQJ�EDFN�WR�ODWH����V�

� Using the definition     
�  �Þ L ���

º¸Þ
óº
> 	 óº

gives simple, but loose bounds

� What we really need: ó �U"� Q � óU" to hold for the computed basis ó
and coordinate vector U" in every bound.

� Alternate definition of ¡ gives tighter bounds; requires light bookkeeping 

� Example: for bounds on �ÚÜ>5 ÜRÜÍ ÜRÜ>5 and ÜRÜ>5Í ÜRÜ>5 F s , we can use the 
definition

�ÞáÝ  ���
ëÐ<ÝêÖáÕò áÝèÖáÕò áÜéÖáÕò áÜéÖáÕ7-ò =

àóÞ TàóÞT

The amplification term 
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Problem: 2D Poisson, 

J L twx, 

random starting vector 

ÜRÜ>5Í ÜRÜ>5 F s Q ¤Ý4 t

�ÚÜ>5 ÜRÜÍ ÜRÜ>5 Q tÝ4ê

Computed value

Bound 

Amplification factor �ÞáÝ
6

� L Ý
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Problem: 2D Poisson, 

J L twx, 

random starting vector 

Computed value

Bound 

Amplification factor �ÞáÝ
6

� L á

ÜRÜ>5Í ÜRÜ>5 F s Q ¤Ý4 t

�ÚÜ>5 ÜRÜÍ ÜRÜ>5 Q tÝ4ê

� L ÚÛ

Problem: 2D Poisson, 

J L twx, 

random starting vector 

Computed value

Bound 

Amplification factor �ÞáÝ
6
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ÜRÜ>5Í ÜRÜ>5 F s Q ¤Ý4 t

�ÚÜ>5 ÜRÜÍ ÜRÜ>5 Q tÝ4ê

Convergence of Ritz Values in s-step Lanczos

� All results of Paige [1980], e.g., loss of orthogonality o eigenvalue 
convergence, hold for s-step Lanczos as long as 

ã

1:Ý07 # ;

1:Ý07 # ¡
Û;

Lanczos

� Bounds on accuracy of Ritz values depend on �6

s-step Lanczos

� Q tvÝ 0 E ssO E sw ? ¤5 6 N s

0Ý
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Convergence of Ritz Values in s-step Lanczos

� All results of Paige [1980], e.g., loss of orthogonality o eigenvalue 
convergence, hold for s-step Lanczos as long as 

ã

1:Ý07 # ;

1:Ý07 # ;

Lanczos

� Bounds on accuracy of Ritz values depend on �6

s-step Lanczos behaves 

the same numerically 

as classical Lanczos

If ¡ N Ú:

s-step Lanczos

� Q tvÝ 0 E ssO E sw ? ¤5 6 N s

0Ý
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� L ? ����
º¸Þ

àóº> àóº
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Problem: Diagonal matrix with J L srr with 

evenly spaced eigenvalues between ãàÜá L räs

and ãàÔë L srr; random starting vector

Top plots:

Computed �ÞáÝ
6

tv:Ý:J E ssO E sw; ?5

Bottom Plots:

� L Û

Computed Ritz values True eigenvalues 

Bounds on range of computed Ritz values

monomial basis Chebyshev basis

� L Ý

Bottom Plots:

Problem: Diagonal matrix with J L srr with 

evenly spaced eigenvalues between ãàÜá L räs

and ãàÔë L srr; random starting vector

Top plots:

Computed Ritz values True eigenvalues 

Bounds on range of computed Ritz values

Computed �ÞáÝ
6

tv:Ý:J E ssO E sw; ?5

monomial basis Chebyshev basis
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� L ÚÛ

Bottom Plots:

Problem: Diagonal matrix with J L srr with 

evenly spaced eigenvalues between ãàÜá L räs

and ãàÔë L srr; random starting vector

Top plots:

Computed Ritz values True eigenvalues 

Bounds on range of computed Ritz values

Computed �ÞáÝ
6

tv:Ý:J E ssO E sw; ?5

monomial basis Chebyshev basis
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Problem: Diagonal matrix with J L srr with evenly spaced eigenvalues between 

ãàÜá L räs and ãàÔë L srr; random starting vector

���
Ü
�VÜ

à Í ÜRà>5�
���
Ü

�Úà>5ßàáÜ
:à;

classical Lanczos s-step Lanczos, monomial basis, O L t

� Q y H sr6

Measure of loss 

of orthogonality
Measure of Ritz 

value convergence 40

Problem: Diagonal matrix with J L srr with evenly spaced eigenvalues between 

ãàÜá L räs and ãàÔë L srr; random starting vector

���
Ü
�VÜ

à Í ÜRà>5�
���
Ü

�Úà>5ßàáÜ
:à;

classical Lanczos s-step Lanczos, monomial basis, O L v

� Q u H sr7

Measure of loss 

of orthogonality
Measure of Ritz 

value convergence 41



Problem: Diagonal matrix with J L srr with evenly spaced eigenvalues between 

ãàÜá L räs and ãàÔë L srr; random starting vector

���
Ü
�VÜ

à Í ÜRà>5�
���
Ü

�Úà>5ßàáÜ
:à;

classical Lanczos s-step Lanczos, monomial basis, O L z

� Q t H sr:

Measure of loss 

of orthogonality
Measure of Ritz 

value convergence 42

Problem: Diagonal matrix with J L srr with evenly spaced eigenvalues between 

ãàÜá L räs and ãàÔë L srr; random starting vector

���
Ü
�VÜ

à Í ÜRà>5�
���
Ü

�Úà>5ßàáÜ
:à;

classical Lanczos s-step Lanczos, Chebyshev basis, O L z

� Q t H sr7

Measure of loss 

of orthogonality
Measure of Ritz 

value convergence 43

Towards understanding convergence delay

� Coefficients = and Ú (related to entries of 6Ü) determine distribution functions 
ñ Ü ã which approximate distribution function ñ:ã; determined by inputs #á >á T4
in terms of the Eth Gauss-Christoffel quadrature

� CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& 6WUDNRû, 2013])

� A-norm of CG error for B ã L ã?5 given as scaled quadrature error

± ã?5@ñ ã LÍ
º@5

Ü

ñº
:Ü;

àº
Ü

?5 E T F TÜ º
6

N4
6

� For particular CG implementation, can the computed Ýñ Ü :ã; be associated with 
some distribution function Ýñ:ã; related to the distribution function ñ:ã;, i.e., 

± ã?5@ñ ã N ± ã?5@Ýñ ã LÍ
º@5

Ü

ÝñºÜ �àº
Ü

?5 E T F ÜTÜ º
6

N4
6

E (Ü
where (Ü is small relative to error term?

� For classical CG, yes; proved by Greenbaum [1989]

� For pipelined CG and s-step CG, THOROUGH ANALYSIS NEEDED!
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(matrix bcsstk03)

Differences in entries ÛÜ á ÜÜ in Jacobi matrices 6Ü in HSCG vs. GVCG
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*

o

x
eigenvalues of #

eigenvalues of à6844, HSCG

eigenvalues of à6844, GVCG

value

fr
eq

u
en

cy
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A different problem...

#: nos4 from UFSMC, 

>: equal components in the eigenbasis

of # and > L s

0 L srrá â # N t�u

If application only requires 

T F TÜ º Q sr?54, 

any of these methods will work!



A different problem...

#: nos4 from UFSMC, 

>: equal components in the eigenbasis

of # and > L s

0 L srrá â # N t�u

If application only requires 

T F TÜ º Q sr?54, 

any of these methods will work!

Need adaptive, problem-dependent approach based 
on understanding of finite precision behavior!

Summary

� Finite precision errors cause loss of attainable accuracy and convergence 
delay

� In classical CG, attainable accuracy limited only by sum of local rounding 
errors

� In pipelined CG, sum of many different local rounding errors can be 
(globally!) amplified

� Amplification depends on CG recurrence coefficients Ù and Ú

� Not much to do except try to decrease local errors (e.g., by 
stabilizing shifts)

� In s-step CG, local rounding errors in each outer loop are amplified by a 
factor related to the condition number of the generated s-step basis matrix

� Amplification effects are still "local" within an outer loop (block of s 
iterations)

� Suggests that basis condition number plays a huge role

� More difficult to precisely characterize convergence delay; further work 
needed
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Choosing a Polynomial Basis

� Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., åæ>5 #áLÜ  VSDQ<LÜá#LÜ á å á#

æLÜ=

49

� Two choices based on spectral information that usually lead to well-
conditioned bases:

� Newton polynomials 

� Chebyshev polynomials

� Simple loop unrolling gives monomial basis, e.g., óÞ L Làá#Làá å á#
æLà

� Condition number can grow exponentially with O

� Condition number = ratio of largest to smallest eigenvalues, ãk_v�ãkgl
� Recognized early on that this negatively affects convergence and accuracy 

(Leland, 1989), (Chronopoulous & Swanson, 1995)

� Improve basis condition number to improve numerical behavior:  Use different 
polynomials to compute a basis for the same subspace. 

Better conditioned bases

� The Newton basis:

Rá # F à5 Rá # F à6 # F à5 Rá å á # F àæ ® # F à5 R
where <à5á å áàæ= are approximate eigenvalues of #,  ordered according to Leja ordering

± In practice: recover Ritz values from the first few iterations, iteratively refine 
eigenvalue estimates to improve basis

± Used by many to improve O-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel 
(1995), Hoemmen (2010)

� Chebyshev basis: given ellipse enclosing spectrum of # with foci at @ G ?, we can 
generate the scaled and shifted Chebyshev polynomials as:

ÁìÝ V L XìÝ
×?í

Ö
ìÝ

×

Ö

where ìÝ Ý¹4
are the Chebyshev polynomials of the first kind

± In practice: estimate @ and ? parameters from Ritz values recovered from the first 
few iterations

± Used by many to improve O-step variants: e.g., de Sturler (1991), Joubert and 
Carey (1992), de Sturler and van der Vorst (1995)
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Better basis 

choice allows 

higher s values

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16

But can still see loss of 

accuracy/convergence 

delay

CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 

J L wst6, 0 N sr:, â # N sr8

> L #:s J � ���� Já s ;

Residual replacement strategy

� Improve accuracy by replacing computed residual Ņ� by the true residual 

�F m ÜT� in certain iterations

� Related work for classical CG: van der Vorst and Ye (1999)
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� Based on derived bound on deviation of residuals, can devise a residual 
replacement strategy for s-step CG

� Choose when to replace ŅÜ with > F # ÜTÜ to meet two constraints: 

1. BÜ L > F # ÜTÜ F ŅÜ is small  (relative to Ý0 # ÜTà>5 )

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)

� Implementation has negligible cost



if @Ü?5 Q ¸Ý NÜ?5 	�� @Ü P ¸Ý NÜ 	�� @Ü P säs@ÜáÜç
V L V E óÞ TÞáÝñ E TæÞ
TÜ L r

NÜ L > F #V
@ÜáÜç L @ÜL Ý s E t0" # V E NÜ
LÜ L óÞLÞáÝ

ñ

break from inner loop and begin new outer loop
end

Residual replacement for s-step CG

� Use computable bound for > F # ÜTÜ F ŅÜ to update @Ü, an estimate of error 
in computing NÜ, in each iteration

� Set threshold ¸Ý N Ý, replace whenever @Ü� NÜ reaches threshold
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Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual

� In each iteration, update error estimate @Ü (E  OG E F) by:

A computable bound

o.w.

F L O

where  0ñ L ��� 0á tO E s ä

Extra computation all lower order terms, communication only 

increased by at most factor of 2
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EÝ ] # ÜTæÞ>æ E tEt0ñ # àóÞ 	 ÜTÞáæñ E0ñ àóÞ 	 ŅÞáæñ á

rá

@Ü  @Ü?5

EÝ vE0" # àóÞ 	 ÜTÞáÝñ E àóÞ 	 ÜÞ 	 ÜTÞáÝñ E àóÞ 	 ŅÞáÝñ

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG+RR true
CG+RR updated
s-step CG+RR (monomial) true
s-step CG+RR (monomial) updated
s-step CG+RR (Newton) true
s-step CG+RR (Newton) updated
s-step CG+RR(Chebyshev) true
s-step CG+RR(Chebyshev) updated

Residual Replacement 

can improve accuracy 

orders of magnitude 

for negligible cost

Maximum 

replacement steps 

(extra reductions) 

for any test: 8

Model Problem: 2D Poisson (5-pt stencil), 

J L wst6,  0 N sr:, â # N sr8

> L #:s J � ���� Já s ;

Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)
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20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node), 2D Poisson problem 
with 1e6 unknowns; in pipelined CG with residual replacement, 39 replacements were performed.

� Consider the growth of the relative residual gap caused by errors in outer loop 
G, which begins with global iteration number I

� We can approximate an upper bound on this quantity by

Bà>æ F Bà
# T

/ Ý sE â # �Þ

���
ÝÐ<4áåáæ=

Ņà>Ý

# T

� If our application requires relative accuracy ÝÛ, we must have 

�Þ  ? � àóÞ> àóÞ /
ÝÛ

Ý ���
ÝÐ<4áåáæ=

Ņà>Ý

� ŅÜ large \ �Þ must be small; ŅÜ small \ �Þ can grow

� adaptive s-step approach [C., 2018]

� O starts off small, increases at rate depending on ŅÜ and ÝÛ

Adaptive s-step CG

BÜ  >F# ÜTÜFŅÜ
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mesh3e1 (UFSMC)
J L tz{

â # N sr

>Ü L s� 0

s-step CG

adpt. s-step CG

CG

Adaptive s-step CG

58



mesh3e1 (UFSMC)
J L tz{

â # N sr

>Ü L s� 0

Adaptive s-step CG

s-step CG

adpt. s-step CG

CG
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Extensions to adaptive s-step CG

� Method of Meurant and Tichý (2018) for cheap approximation of extremal Ritz 
values 

� Uses Cholesky factors of Lanczos tridiagonal 6Ü, 6Ü L .Ü.Ü
Í

� Use Ù and Ú computed during each iteration to incrementally update estimates 

of .Ü 6
6 L ãàÔë 6Ü N ãàÔë:#;, .Ü

?5

6

?6 L ãàÜá 6Ü N ãàÜá:#;

� Essentially no extra work, no extra communication

� Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of â:#; (used in determining which s to use)

2. Incrementally refine parameters used to construct Newton or Chebyshev
polynomials
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Fixed s-step Old adaptive s-step
Improved adaptive s-step 

w/Newton
Improved adaptive s-step 

w/Chebyshev
classical CG

- 132 59 53 414

Number of global synchronizations

# = 494bus from SuiteSparse

>g = s� 0

Fixed s-step Old adaptive s-step
Improved adaptive s-step 

w/Newton
Improved adaptive s-step 

w/Chebyshev
classical CG

111 111 43 43 407

Number of global synchronizations

# = 494bus from SuiteSparse

>g = s� 0
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When to use an HPC variant

� Solve constitutes a bottleneck within the application (Amdahl's law)

� Krylov solve is communication-bound (particularly latency bound due to global 
synchronization)

� Extremal eigenvalues are known or easy to estimate

� Accuracy much less than machine epsilon required by the application

� s-step methods

� The matrix is well-partitioned into domains with low surface-to-volume ratio

� Simple preconditioning is sufficient/the preconditioner is amenable to 
communication avoidance

� The same coefficient matrix (or at least a coefficient matrix with the same 
nonzero structure) will be reused over multiple solves

� improvement even for small numbers of nodes (reduces both intra- and inter-
processor communication)

� (deep) pipelined methods

� cost of applying preconditioner + SpMV is less than or the same as a global 
synchronization

� improvement only for large numbers of nodes
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Which method to use?
CG, BICG, GMRES, BICGSTAB, etc.

Depends on: Matrix structure, values, storage requirements

What kernels are 
required?

Matrix Powers Kernel TSQR

Matrix Powers + 
TSQR?

Must co-tune!

Which reduction tree to use? 
Depends on: target architecture

Which variants? 
Sequential and/or parallel, 

explicit or implicit
Depends on: Matrix structure, 

architecture

Which partitioning 
strategy?

Graph, hypergraph, etc. 
Depends on: Matrix 

structure

Hypergraph
partitioning: How to 

estimate A^s? How to 
estimate load 

balance?

Max basis size?
Depends on: Surface to 

vol. ratio, cond. A, 
chosen basis

Which basis?
Depends on: cond A, 

eigs A

Which variant?
Multiple RHS 

(AkM), 
streaming, A and 

A^T, etc. 
Depends on: 

Method chosen

2-term or 3-term 
recurrence?

Depends on: Values of 
A, storage requirements

Usual parallel and 
sequential optimizations:

blocking, reordering, 
SIMD, NUMA, register 
tiling, cache bypass, etc. 

Preconditioned Matrix Powers Kernel? 
Avoiding communication for given 

preconditioner structure? (e.g., HSS -> 
blocking covers?)



Looking Forward

� Hybrid methods 

� stationary iterative method + Krylov subspace method

� Fault tolerance

� MTTF=0 on an exascale machine

� A problem to be handled at the algorithm level, or...?

� Making use of specialized hardware

� accelerators, GPUs, etc. 

� multiple precisions?

� new performance model, new programming model, bigger tuning space
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Outline

1 Introduction.

2 XFEM in crack problems.

3 XFEM in multi-phase problems.

4 Fictitious domain � XFEM formulation

of 2nd order elliptic PDE's.
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1. Introduction

Standard FEM

V , V ′ . . . a Hilbert space, its dual, respectively

a : V × V → R . . . a bounded, V -elliptic bilinear form

f ∈ V ′

Find u ∈ V : a(u, v) = 〈f , v〉 ∀v ∈ V (P)

Vh ⊂ V , dim Vh = n(h), Vh = {φi}n(h)i=1

Find uh ∈ Vh : a(uh, vh) = 〈f , vh〉 ∀vh ∈ Vh (P)h

uh =
∑n(h)

i=1
uiφi , u ∈ Rn(h): Au = f

A = (aij)
n(h)
i,j=1

, aij = a(φj , φi ), f = (fi )
n(h)
i=1

, fi = 〈f , φi 〉
It holds: ‖u − uh‖V ≤ c inf

vh∈ Vh

‖u − vh‖V

Jaroslav Haslinger XFEM SNA'19 21.-25.1.2019 3 / 21

1. Introduction

discontinuity of solutions

(crack problems, the evaluation of dislocations, grain boundaries, . . . )

Moës, N., Dolbow, J., Belytschko, T.A.: A FEM for crank growth without
remeshing. Int. J. Numer. Meth. Eng. 46 (1999), 131�150.

discontinuity of gradients of solutions (multi-phase problems)

Sukumar, N., Chopp, D.Z., Moës, N., Belytschko, T.A.: Modeling holes and
inclusions by level sets in the extended �nite-element method, Comput.
Meth. Appl. Mech. Eng. 190 (2001), 6183�200.

Topical review paper:

Belytschko, T.A., Gracie, R., Ventura, G.: A review of extended /generalized
�nite element methods for material modeling, Modelling Simul. Mater. Sci.
Eng. 17 (2009): 043001.

applications in �uid mechanics

(�uid-structure interactions, free surface �ows, . . . )

Jaroslav Haslinger XFEM SNA'19 21.-25.1.2019 4 / 21

1. Introduction

Abstract setting of XFEM

uh =

n(h)
∑

i=1

uiφi +

m(h)
∑

j=1

ajMj , ui , aj ∈ R,

Mj = ψjΨ, Ψ . . . global enrichment function,

{ψj}m(h)
j=1

. . . partition of unity

Usually: ψj = Nj . . . Courant basis functions, j = 1, . . . ,m(h)

Vh = {φi}n(h)i=1
⊕ {NjΨ}m(h)

j=1

Find uh ∈ Vh : a(uh, vh) = 〈f , vh〉 ∀vh ∈ Vh (P)h,X

(

Auu Aua

A⊤
ua Aaa

)(

u

a

)

=

(

F u

F a

)

Auu ∈ R
n×n, Aaa ∈ R

m×m, Aua ∈ R
n×m, n := n(h), m := m(h)

Jaroslav Haslinger XFEM SNA'19 21.-25.1.2019 5 / 21

2. XFEM in crack problems

Discontinuity of solutions. Crack problems.

a) scalar case in plane

m

ΓN

ΓD

ΓS ωc

Ω

−△u = f in Ω
u = 0 on ΓD

∂u
∂n = g on ΓN

∂u
∂n = 0 on ΓS



















f , g , Ω̄ . . . su�ciently smooth

Find u ∈ V : (∇u,∇v)0,Ω = (f , v)0,Ω + (g , v)0,ΓN
∀v ∈ V (P)

V = {v ∈ H1(Ω) | v = 0 on ΓD}
∃! u ∈ H3/2−ǫ(Ω) ∩ V solving (P), ǫ > 0 is arbitrary

u = ur + us , ur ∈ H2(Ω) � regular part, us = χK
√
r sin θ/2 � singular part

χ � cut-o� function, K � stress intensity factor, (r , θ) - local polar coord.

Jaroslav Haslinger XFEM SNA'19 21.-25.1.2019 6 / 21



2. XFEM in crack problems

b) vector case in plane

−div σ(u) = f in Ω
u = 0 on ΓD

σ(u)n = g on ΓN

σ(u)n = 0 on ΓS















σ(u) = λ(tr ε(u))I + 2µε(u), ε(u) = 1

2
(∇u + (∇u)⊤)

λ, µ . . . the Lamé coe�cients

V = {v ∈ (H1(Ω))2 | v = 0 on ΓD}

Find u ∈ V : (σ(u), ε(v))0,Ω = (f , v)0,Ω + (g , v)0,ΓN
∀v ∈ V (P)

u = ur + us , ur ∈ (H2(Ω))2, us = χ

4
∑

j=1

c jFj , c j ∈ R
2

{Fj}4j=1
= {

√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
cos θ,

√
r cos

θ

2
sin θ}
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2. XFEM in crack problems

XFEM for crack problems

a) scalar case
[Nicaise, S., Renard, Y., Chahine, E.: Optimal convergence analysis for XFEM. Int. J. Numer.

Meth. Eng. 86 (2011), 528�548]

Ω ⊂ R
2 . . . polygonal domain, {Th}h→0+ . . . family of regular triang. of Ω̄

S . . . straight line segment

I . . . the set of all node indices of P1 elements

IH ⊂ I , i ∈ IH ⇐⇒ suppNi is completely cut by the crack

χ ∈ W 2,∞(Ω) . . . cut-o� function:







χ(r) = 1, r < r0
0 < χ(r) < 1, r0 < r < r1

χ(r) = 0, r < r1

Heaviside type function:

H(x) =

{

1, (x − x∗).n ≥ 0
−1, (x − x∗).n < 0

}

�
�
��@@I

x∗ . . . crack tip

S

n

r

r
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2. XFEM in crack problems

Vh = {Ni}i∈I ⊕ {HNi}i∈IH ⊕ {χus}, us =
√
r sin θ

2

vh ∈ Vh ⇐⇒ vh =
∑

i∈I

aiNi +
∑

i∈IH

biHNi + Khχus , ai , bi ,Kh ∈ R

Find uh ∈ Vh such that

(∇uh,∇vh)0,Ω = (f , vh)0,Ω + (g , vh)0,ΓN
∀vh ∈ Vh

}

(P)h

b) vector case

Vh =
{

vh | vh =
∑

i∈I

aiNi +
∑

i∈IH

biHNi +

4
∑

j=1

c jχFj , ai ,bi , c j ∈ R
2

}
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2. XFEM in crack problems

Error estimates

Vh ⊂ V =⇒ ‖u − uh‖1,Ω ≤ c inf
vh∈Vh

‖u − vh‖1,Ω ≤ c‖u −Πhu‖1,Ω
Πh . . . XFEM interpolation operator

H|Ωk
= (−1)k+1, k = 1, 2

ur = u − χus , u
k
r := ur |Ωk

∈ H2(Ωk)

ũkr . . . extension of ukr onto Ω̄

‖ũkr ‖2,Ω̄ ≤ c‖ukr ‖2,Ωk
, k = 1, 2

S
Ω1

Ω2

Πhu =
∑

i∈I

aiNi +
∑

i∈IH

biHNi + χus

if i ∈ I \ IH then ai = ur (xi )

if i ∈ IH and xi ∈ Ω̄k , k = 1, 2 then

ai =
1

2

(

ukr (xi ) + ũℓr (xi )
)

bi =
1

2

(

ukr (xi )− ũℓr (xi )
)

H(xi )

}

ℓ ∈ {1, 2}, ℓ 6= k
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2. XFEM in crack problems

Lemma: It holds:

Πhu = πhur + χus on any triangle K non-enriched by H

Πhu|K∩Ωk
= πhũ

k
r |K∩Ωk

+ χus |K∩Ωk
, k = 1, 2 on any triangle totally

enriched by H,

where πh is the standard Lagrange interpolation operator by P1-elements.

Approximation properties of Πh

K ∈ Th, hK = diam(K ), ̺K . . . diameter of the circle inscribed in K

Lemma: Let K ∈ Th be a triangle totally enriched by H. Then there exists an
absolute constant c > 0 such that

‖u −Πhu‖1,K∩Ω1
≤ chKσK |ũ1r |2,K

and
‖u −Πhu‖1,K∩Ω2

≤ chKσK |ũ2r |2,K ,
where σK = hK/̺K .
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2. XFEM in crack problems

Lemma: Let K ∈ Th be a triangle partially enriched by H and denote
K∗ = K \ S . Then

‖u −Πhu‖1,K∗ ≤ chK
(

|ũ1r |2,B(x∗,2hk ) + |ũ2r |2,B(x∗,2hk )

)

,

where c > 0 is an absolute constant.

Lemma: Let K ∈ Th be a triangle containing the crack tip. Then

‖u −Πhu‖1,K∗ ≤ chK
(

|ũ1r |2,B(x∗,hk ) + |ũ2r |2,B(x∗,hk )

)

.

Theorem: Let f , g , Ω be su�ciently smooth such that u − us ∈ H2(Ω). Then

‖u − uh‖1,Ω ≤ ch‖u − χus‖2,Ω ,

where uh ∈ Vh is the solution of (P)h, us is the singular part of u and
χ ∈ W 2,∞(Ω) is the cut-o� function.

Jaroslav Haslinger XFEM SNA'19 21.-25.1.2019 12 / 21



3. XFEM in multi-phase problems

3. XFEM in multi-phase problems

Diez, P. Cottereau, R., Zlotnik, S.: A stable XFEM formulation for multi-phase problems

enforcing the accuracy of the �uxes through Lagrange multipliers. Int. J. Numer. Meth.
Eng. 96 (2013) 303�322.

Moës, N., Cloirec, M., Cartraud, P., Remacle, J.F.: A computational approach to handle

complex microstructure geometries. Comp. Meth. Appl. Eng. 192 (2003) 3163�3177.

Setting of the problem:

Ω ⊂ R
2, Ω̄ = Ω̄1 ∪ Ω̄2, Γ = Ω̄1 ∩ Ω̄2

Ω1 = {x ∈ Ω | ℓ(x) > 0}
Ω2 = {x ∈ Ω | ℓ(x) < 0}

Ω2

Ω1 Γ

−div(k∇u) = f in Ω
u = 0 on ∂Ω

}

, k =

{

k1 on Ω1

k2 on Ω2

, k1 ≫ k2 > 0

Find u ∈ H1

0
(Ω) :

∫

Ω
k∇u.∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0
(Ω) (P)
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3. XFEM in multi-phase problems

Hidden conditions in (P): ui = u|Ωi
, i = 1, 2

u1 = u2 on Γ =⇒ ∂u1
∂s = ∂u2

∂s on Γ

k1
∂u1
∂n = k2

∂u2
∂n on Γ =⇒ jump of ∂

∂n across Γ

XFEM formulation:

Ω ⊂ R
2 . . . polygonal domain, Th . . . triangulation of Ω̄

I , I0 . . . the set of indices of the nodes of Th in Ω̄, and intΩ, respectively

{Ni}i∈I . . . the Courant basis functions

ℓ ≈ ℓh =
∑

i∈I Niℓi , ℓi . . . the nodal values of ℓ

Ω1 ≈ Ω1h = {x ∈ Ω | ℓh(x) > 0}
Ω2 ≈ Ω2h = {x ∈ Ω | ℓh(x) < 0}
Γ ≈ Γh = {x ∈ Ω | ℓh(x) = 0}
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3. XFEM in multi-phase problems

Ridge function R:

R =
∑

i∈I

Ni |ℓi | −
∣

∣

∣

∑

i∈I

Niℓi

∣

∣

∣

It holds:

R ≡ 0 in all elements not crossed by the interface Γ . Consequently, the
support of R is the set of all elements which will be enriched.

Let Ia be the set of indices of the nodes of enriched elements. Then

R =
∑

i∈Ia

Ni |ℓi | −
∣

∣

∣

∑

i∈Ia

Niℓi

∣

∣

∣

XFEM space:
Vh = {Ni}i∈I0 ⊕ {RNi}i∈Ia∩I0
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4. Fictitious domain and XFEM

4. Fictitious domain / XFEM formulation
of 2nd order elliptic PDE's

[J.H., Y. Renard: A new �ctitious domain approach inspired by the XFEM. SIAM J. Numer.

Anal. 47 (2009) 1474-1499]

−△u = f in Ω
u = 0 on ΓD

∂u
∂n = g on ΓN







, f ∈ L2(Ω), g ∈ L2(ΓN)

V = H1(Ω), V0 = {v ∈ V | v = 0 on ΓD}
a(u, v) = (∇u,∇v)0,Ω , ℓ(v) = (f , v)0,Ω + (g , v)0,ΓN

Find u ∈ V0 : a(u, v) = ℓ(v) ∀v ∈ V0 (P)

Mixed formulation of (P): Find (u, λ) ∈ V ×W

a(u, v) + 〈λ, v〉W×X = ℓ(v) ∀v ∈ V

〈µ, u〉W×X = 0 ∀µ ∈ W

}

, (M)

where X = {w ∈ L2(ΓD) | ∃v ∈ V : w = v on ΓD}, W = X ′
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4. Fictitious domain and XFEM

Theorem.

Problem (M) has a unique solution (u, λ).

In addition, u solves (P) and λ = −∂u
∂n on ΓD .

(M) is equivalent to the problem of �nding a saddle-point of L on V ×W ,
where

L(v , µ) = 1

2
a(v , v) + 〈µ, v〉W×X − ℓ(v).

Fictitious domain / XFEM formulation of (M).

Ω̂ ⊃ Ω . . . simple shaped domain, {Th}h>0 . . . family of partitions of Ω̂

V̂h ⊂ H1(Ω̂), Ŵh ⊂ L2(Ω̂) . . . �nite element spaces on Th:

V̂h = {vh ∈ C (Ω̂) | vh|T ∈ P(T ) ∀T ∈ Th}, P(T ) ⊇ Pk(T ), k ≥ 1 integer

De�ne: Vh = V̂h|Ω , Wh = Ŵh|Ω .
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4. Fictitious domain and XFEM

Fictitious domain / XFEM formulation of (M): Find (uh, λh) ∈ Vh ×Wh:

a(uh, vh) + (λh, vh)0,ΓD
= ℓ(vh) ∀vh ∈ Vh

(µh, uh)0,ΓD
= 0 ∀µh ∈ Wh

}

, (M)h

Assumptions:

(i) 1|ΓD
∈ Wh

(ii) µ̄h ∈ Wh : (µ̄h, vh)0,ΓD
= 0 ∀vh ∈ Vh =⇒ µ̄h = 0

(i) + (ii) =⇒ (M)h has a unique solution

Stabilized formulation of (M)h:

Let Rh : Vh → L2(ΓD) appoximates the normal derivative on ΓD and

(iii) h1/2‖Rhvh‖0,ΓD
≤ c‖∇vh‖0,Ω ∀vh ∈ Vh, ∀h > 0.

De�ne

Lh(vh, µh) = L(vh, µh)−
γ

2
‖µh + Rhvh‖20,ΓD

, (vh, µh) ∈ Vh ×Wh,

where γ := hγ0, γ0 > 0 are given
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4. Fictitious domain and XFEM

Stabilized problem (M)st,h: Find (uh, λh) ∈ Vh ×Wh such that

a(uh, vh) + (λh, vh)0,ΓD
− γ(λh + Rhuh,Rhvh)0,ΓD

= ℓ(vh) ∀vh ∈ Vh

(µh, uh)0,ΓD
− γ(λh + Rhuh, µh)0,ΓD

= 0 ∀µh ∈ Wh

}

Equivalent form of (M)st,h: Find (uh, λh) ∈ Vh ×Wh such that

Bh(uh, λh; vh, µh) = ℓ(vh) ∀(vh, µh) ∈ Vh ×Wh

Bh : (Vh ×Wh)
2 → R

}

Bh(uh, λh; vh, µh) = a(uh, vh) + (λh, vh)0,ΓD
+ (µh, uh)0,ΓD

−γ(λh + Rhuh,Rhvh + µh)0,ΓD

Inf-sup property of Bh:

(iv) Let Ph : L
2(ΓD) → Wh be the L2-projection on Wh and

‖Phv − v‖0,ΓD
≤ ch1/2‖v‖1/2,ΓD

∀v ∈ H1/2(ΓD),

c > 0 does not depend on h
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4. Fictitious domain and XFEM

Lemma. Let (i)�(iv) be satis�ed. Then for γ0 > 0 su�ciently small there exists
a constant c > 0 independent of h such that

sup
(zh,ηh)∈Vh×Wh

(zh,ηh) 6=0

Bh(vh, µh; zh, ηh)

|||(zh, ηh)|||
≥ c |||(vh, µh)||| ∀(vh, µh) ∈ Vh ×Wh,

where
|||(zh, ηh)|||2 = ‖zh‖21,Ω + h−1‖zh‖20,ΓD

+ h‖ηh‖20,ΓD

Theorem. Let (i)�(iv) be satis�ed and γ0 > 0 be su�ciently small. If (u, λ) is a
solution to (M) and λ ∈ L2(ΓD) then there exists a constant c > 0 independent
of h such that

|||(u − uh, λ− λh)||| ≤ c inf
vh∈Vh

µh∈Wh

(

|||(u − vh, λ− µh)|||+ h1/2
∥

∥

∥
Rhvh −

∂u

∂n

∥

∥

∥

0,ΓD

)

.
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4. Fictitious domain and XFEM
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Outline of the tutorial

▸ Lecture I

Introduction to tensors

Basic terminology and basic manipulation with tensors

Rank of a tensor

Tensor arithmetics

▸ Lecture II

Basic decompositions of a tensor

Low-rank arithmetics of tensors

Graph interpretation: Tensor networks & Hierarchical formats

Arithmetics of hierarchical Tucker

An example of practical application

[T. G. Kolda, B. W. Bader: Tensor decompositions and

applications, SIAM Review 51(3), pp. 455–500, 2009]
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Introduction to tensors
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Introduction
The standard tensor definition

A first (and only) definition of a tensor I met at school:

Tensor T of order k is a k1-covariant and k2-contravariant
(k = k1 + k2) multilinear form on linear vector space V over R,

T ∶ V × V ×⋯× V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k1-times

×V
∗ × V

∗ ×⋯× V
∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k2-times

Ð→ R.

In this way tensors are used in many branches of mathematics and
physics (differential geometry, solid-state physics, continuum
mechanics, general relativity, etc.).

It is something like a matrix, but ...
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What is a matrix?
Three (distinct) reference frames

A matrix A can be seen as a mapping between linear vector spaces

A ∶ Rn Ð→ R
m

u z→ w = Au,

as a bilinear form

A ∶ Rn ×Rm Ð→ R

(u, v) z→ f (u, v) = vTAu,

and also as an algebraic vector, a member of linear vectors space

A ∈ Rm×n.
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What is a matrix?
Transformations of matrices

Let m = n (A is square). We change the basis in R
n as follows

x = Zx ′, i.e., x z→ x ′ = Z−1x , then

Au = w

A(Zu′) = Zw ′

(Z−1AZ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u′ = w ′
,

f (u, v) = vTAu

f (Zu′,Zv ′) = (Zv ′)TA(Zu′)

f ′(u′, v ′) = v ′
T
(ZTAZ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u′
.

We get two different transf’s of A, Az→ Z−1AZ (similarity transf.;
eigenvalues) and Az→ ZTAZ (congruence; quadratic forms), resp.

On the other hand, we can study the matrix itself—e.g.,
decompositions:

A = LU, A = LLT, A = QR , A = XDX−1, A = UΣV T, etc.
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Definition of a tensor
... and its ‘justification’

Similarly to matrices, we can observe a tensor from different
perspectives: As a (multi)linear mapping(s) between different
vector spaces, or form on V (and its dual V

∗).

In many applications, however, we are focused more on the
‘interior structure’ of the tensor (e.g., we are looking for some
decomposition), than on its interactions with its ‘surroundigs’.

Definition. Tensor T of order k is a k-way array of real numbers
of the given dimension,

T = (ti1,i2,...,ik ) ∈ R
n1×n2×⋯×nk .

Note that ni ≠ nj for i ≠ j , in general, thus we do not need to
distinguish the co- and contravariant indices.
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Why tensors?

▸ Tensors in this form was introduced in psychometrics and
chemometrics while analysis of large multidim. arrays of data

▸ The goal is to find some structure in the data (big data) that
allows to analyze (interpret, understand) the data, and
simplifies it in such a way, we can easier manipulate it; c.f.
the singular value decomposition (SVD) in the case of matrix.

▸ The memory consumption while storing the tensor as it is,
scales exponentialy with k , so-called “curse of dimensionality”,

∼ nk where n = max{n1,n2, . . . ,nk}.

▸ We want to employ basic linear algebra tools (matrix
decompositions, etc.).

▸ In the optimal case, we would like to find a structure
(decomposition) that scales linearly with the tensor order k .
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Basic terminology

and basic manipulation

with tensors
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Order and shape of tensor
Tensors of small orders

By the order of tensor T = (ti1,i2,...,ik ) ∈ R
n1×n2×⋯×nk we understood

the number of its indices, i.e., the number k . Tensors of small
orders have special names, for

▸ k = 0 we call them scalars (and denote by α, β, etc.);

▸ k = 1 we call them vectors (and denote by x , y , etc.);

▸ k = 2 we call them matrices (and denote by A, B , etc.);

▸ k ≥ 3 we call them just tensors (and denote by T , S, etc.).

By the dimension, we understood the k-tuple (n1,n2, . . . ,nk). If

▸ k = 2 and n1 = n2, we call them square matrices;

▸ k ≥ 3 and n1 = n2 = ⋯ = nk , we call them cubic tensors.

Moreover, we denote N =∏k
κ=1 nκ = n1 ⋅ n2 ⋅ ⋯ ⋅ nk .
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Tensors and subtensors
General subtensors

Our tensor T is an ordered set of numbers ti1,i2,...,ik ∈ R with indices

iκ ∈ {1,2, . . . ,nκ} ≡ Iκ, for κ = 1,2, . . . , k ,

or, equivalently, with multiindices

(i1, i2, . . . , ik) ∈ I1 ×I2 ×⋯×Ik .

Let I
′
κ ⊆ Iκ. The subarray of T obtained by employing only the

multiindices in the subset I
′
1 ×I

′
2 ×⋯×I

′
k is called a subtensor.

There are several kinds of subtensors of particular importance, e.g.,
so-called fibres, slices, and co-fibres.
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Subtensors: Fibres
Rows, columns, tubes, and the others...

Let T ∈ Rn1×n2×⋯×nk , let for some fixed ℓ

I
′
ℓ = Iℓ = {1,2, . . . ,nℓ}, and I

′
κ = {iκ} for all κ ≠ ℓ.

The associated subtensor is called the ℓ-mode fibre specified by the
(k−1)-tuple of indices (i1, . . . , iℓ−1, iℓ+1, . . . , ik). We denote it

Ti1,...,iℓ−1,☆,iℓ+1,...,ik ∈ R
1×⋯×1×nℓ×1×⋯×1,

it is isomorphic to an nℓ-vector. There is N/nℓ of ℓ-mode fibres.

The ℓ-mode fibres, ℓ = 1,2, . . . , k are for

▸ k = 2 called the columns and rows, respectively;

▸ k = 3 called the columns, rows, and tubes, respectively.
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Subtensors: Fibres
Rows, columns, tubes, and the others...

For k = 3, the ℓ-mode fibres, ℓ = 1,2,3, i.e.,

T☆,i2,i3 ∈ R
n1×1×1, Ti1,☆,i3 ∈ R

1×n2×1, Ti1,i2,☆ ∈ R
1×1×n3

are called the columns, rows, and tubes, respectively.
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Subtensors: Slices
Horizontal, lateral, frontal, and the others...

Let T ∈ Rn1×n2×⋯×nk , let for some fixed τ and ß (τ ≠ ß)

I
′
τ = Iτ , I

′
ß = Iß and I

′
κ = {iκ} for all κ ≠ τ and κ ≠ ß.

If τ < ß, the subtensor is called the (τ, ß)-mode slice given by the
(k−2)-tuple (i1, . . . , iτ−1, iτ+1, . . . , iß−1, iß+1, . . . , ik). We denote it

Ti1,...,iτ−1,☆,iτ+1,...,iß−1,☆,iß+1,...,ik ∈ R
1×⋯×1×nτ×1×⋯×1×nß×1×⋯×1,

it is isomorphic to an nτ -by-nß matrix. There is N/(nτ ⋅ nß) of
them.

Sometimes, the fibers and slices are considered to be the vectors
and matrices. Then we can introduce both, the (τ, ß)- and
(ß, τ)-mode slices. Since they are matrices, they are mutually
transposed.
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Subtensors: Slices
Horizontal, lateral, frontal, and the others...

For k = 3, the (τ, ß)-mode slices, (τ, ß) = (2,3), (1,3), (1,2), i.e.,

Ti1,☆,☆ ∈ R
1×n2×n3 , T☆,i2,☆ ∈ R

n1×1×n3 , T☆,☆,i3 ∈ R
n1×n2×1,

are called the horizontal, lateral, and frontal, respectively.
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Subtensors: Co-fibres

We see that it is easier to identify the type (i.e., horizontal, lateral,
frontal) slices of 3-way by the ‘missing index’ than by the pair
(τ, ß) of ‘generating indices’.

Thus we also introduce the ℓ-mode co-fibres such that,

I
′
ℓ = {iℓ} and I

′
κ = Iκ for all κ ≠ ℓ,

specified by the single index (iℓ), denoted

T☆,...,☆,iℓ,☆,...,☆ ∈ R
n1×⋯×nℓ−1×1×nℓ+1×⋯×nk .

For k = 3, the ℓ-mode co-fibres = the (τ, ß)-mode slices (ℓ ≠ τ ,
ℓ ≠ ß, τ < ß).

We can continue in a similar manner, but...
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Matricization
Unfolding a tensor into a matrix

Collection of all ℓ-mode fibres (handled as vectors) of the given
tensor T into a single matrix T {ℓ} ∈ Rnℓ×(N/nℓ) in the inverse

lexicographical order is called the ℓ-mode matricization. For

T =

6 6 2
7 1 0
7 7 0
3 0 8

6 4 1
3 3 4
9 7 4
0 7 6

��

��

��

��

∈ R4×3×2, we get

T {1} = [T☆,1,1,T☆,2,1,T☆,3,1,T☆,1,2,T☆,2,2,T☆,3,2] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 6 2 6 4 1
7 1 0 3 3 4
7 7 0 9 7 4
3 0 8 0 7 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

T {2}=
⎡⎢⎢⎢⎢⎢⎣
6 7 7 3 6 3 9 0
6 1 7 0 4 3 7 7
2 0 0 8 1 4 4 6

⎤⎥⎥⎥⎥⎥⎦
, T {3}= [ 6 7 7 3 6 1 7 0 2 0 0 8

6 3 9 0 4 3 7 7 1 4 4 6
].
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Generalized matricization
Unfolding a tensor into a matrix

Let T be a k-way tensor and

R = {r1, r2, . . . , rµ}, r1 < r2 < ⋯ < rµ,

C = {c1, c2, . . . , cν}, c1 < c2 < ⋯ < cν ,

such that R ∪C = {1,2, . . . , k} and R ∩C = ∅. Then

T R = T {r1,r2,...,rµ} ∈ RnR×nC , nR =∏
µ

i=1
ri , nC =∏

ν

j=1
cj .

The entry ti1,i2,...,ik of T is in the matrix T R in the row and
column specified by multiindices

(r1, r2, . . . , rµ) and (c1, c2, . . . , cν), respectively.

Rows and columns are in T R sorted in the inverse lexicographical
order w.r.t. their multiindices.
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Generalized matricization
Examples

Clearly, in general (T R)T = T C .

For our 4 × 3 × 2 tensor,

T {1} =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 6 2 6 4 1
7 1 0 3 3 4
7 7 0 9 7 4
3 0 8 0 7 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (T {2,3})T,

T {2} =
⎡⎢⎢⎢⎢⎢⎣
6 7 7 3 6 3 9 0
6 1 7 0 4 3 7 7
2 0 0 8 1 4 4 6

⎤⎥⎥⎥⎥⎥⎦
= (T {1,3})T,

T {3} = [ 6 7 7 3 6 1 7 0 2 0 0 8
6 3 9 0 4 3 7 7 1 4 4 6

] = (T {1,2})T.
But there are two more matricizations...
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Generalized matricization
Examples

The last two case for 3-way tensor are for R = {1,2,3} and ∅,

T {1,2,3} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1,1,1
t2,1,1
t3,1,1
t4,1,1
t1,2,1
t2,2,1
t3,2,1
t4,2,1
t1,3,1
t2,3,1
t3,3,1
t4,3,1

t1,1,2
t2,1,2
t3,1,2
t4,1,2
t1,2,2
t2,2,2
t3,2,2
t4,2,2
t1,3,2
t2,3,2
t3,3,2
t4,3,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
7
7
3

6
1
7
0

2
0
0
8

6
3
9
0

4
3
7
7

1
4
4
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (T ∅)T ≡ vec(T ).
We call this

↑
the vectorization

of a tensor (or matrix).
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Generalized matricization
Matricization–vectorization relation

Recall that the ℓ-mode matricization is a matrix that contain the
ℓ-mode fibres as columns (particularly sorted).

The rows of ℓ-mode matricization are then vectorizations of
ℓ-mode co-fibres.

In our case, columns of T {1} are the 1-mode fibres (columns) of T ,

T {1} = [T☆,1,1,T☆,2,1,T☆,3,1,T☆,1,2,T☆,2,2,T☆,3,2].
and rows of T {1} (i.e., transposed columns of T {2,3}) are the
transposed vectorizations of the 1-mode co-fibrer (i.e., actually the(2,3)-slices (the horizontal slices)) of T .
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Note on transposition

The matrix transposition

A ∈ Rm×n z→ AT ∈ Rn×m

exchanges the roles of columns (1-mode) and rows (2-mode fib’s).

Tensors can be manipulated in a similar fashion, in general, by an
arbitrary permutation of roles of individual fibres. Let

Π = ( 1 2 ⋯ k

π(1) π(2) ⋯ π(k) ) ,
then

T ∈ Rn1×n2×⋯×nk z→ T Π ∈ Rnπ(1)×nπ(2)×⋯×nπ(k) ,

(T Π)i1,i2,...,ik = tiπ(1),iπ(2),...,iπ(k) .
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Norm and scalar product of tensors

We use the simplest available norm

∥T ∥ = (∑n1

j1=1
∑

n2

j2=1
⋯∑

nk
jk=1
∣tj1,j2,...,jk ∣2)

1
2
= (vec(T )Tvec(T )) 12

which directly generalizes the standard
● Euclidean norm of vectors and
● Frobenius norm of matrices.

Moreover, it is induced by the inner product

⟨T ,S⟩ =∑n1

j1=1
∑

n2

j2=1
⋯∑

nk
jk=1

sj1,j2,...,jk ⋅ tj1,j2,...,jk = vec(S)Tvec(T )
which directly generalizes the standard
● Euclidean scalar product of vectors ⟨x , y⟩ = yTx and
● commonly used scalar prod. of matrices ⟨A,B⟩ = trace(BTA).
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Rank of a tensor
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Rank of a matrix
Let start gently...

What is the rank of a matrix A ∈ Rm×n?

▸ The order of the largerst nonzero minor of A ;-).

▸ The maximal number of linearly independent columns of A.

▸ The maximal number of linearly independent rows of A.

▸ The minimal number of pairs (xj , yj) ∈ Rm
×R

n, such that

A = x1y
T
1 + x2y

T
2 +⋯ =∑̺

x̺y
T
̺ ,

i.e., the length of the shortest dyadic expansion of A.

Note that the SVD of A serves the shortest dyadic expansion with
mutually orthogon(norm)al x̺’s and y̺’s.
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Number of linearly independent fibres...
The ℓ-rank

Since columns and rows are the 1-mode and 2-mode fibres of a
matrix, there is a straightforward generalization:

The ℓ-mode rank of the tensor T is the maximal number of linearly
independent ℓ-mode fibres, i.e.,

rank{ℓ}(T ) ≡ rank(T {ℓ}), T {ℓ} ∈ Rnℓ×(N/nℓ), N =∏
k

κ=1
nκ.

Since T {ℓ} is a matrix, whose rows are transposed vectorizations of
ℓ-mode co-fibres, we get:

the maximal number of linearly independent ℓ-mode fibres

= the maximal number of linearly independent ℓ-mode co-fibres.

Recall that for k = 2 (in the matrix case), the 1-mode co-fibres are
the 2-mode fibres (rows) and vice versa.
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Number of linearly independent fibres...
The vector rank of tensor

Consequently, for ℓ ≠ ß, there is no direct relation between

rank{ℓ}(T ) and rank{ß}(T ).
The different-mode ranks may be different. Therefore we introduce
the vector rank of the tensor,

Ð→
rank(T ) ≡ (rank{1}(T ), rank{1}(T ), . . . , rank{k}(T )).

For example

T = 1 0
0 1

1 0
0 1

��

��

��

��

∈ R2×2×2 is of
Ð→
rank(T ) = (2,2,1).
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Number of linearly independent fibres...
The vector rank of tensor

Consider now three of such vectors but of diferent dimensions,

T = 1 0
0 1

1 0
0 1

��

��

��

��

∈ R2×2×2 and similarly S ∈ R3×3×3, F ∈ R4×4×4,

i.e.,
Ð→
rank(T ) = (2,2,1), Ð→rank(S) = (3,3,1), Ð→rank(F) = (4,4,1).

Their permutations and direct sum (i.e., block-diagonal assembly),

diag3(T ,S( 13 2
1
3
2
),F(

1
2
2
3
3
1
)) ≡

T ⊕S(
1
3
2
1
3
2
)
⊕F(

1
2
2
3
3
1
) =

,

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�
�

�

�
�

�

�
T

SΠ1

FΠ2

is of vector rank (2,2,1)+(3,1,3)+(1,4,4)=(6,7,8).
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Shortest polyadic expansion
Polyadic rank of a tensor

Any matrix A, r ≡ rank(A) can be written in the dyadic expansion,

A = x1y
T
1 + x2y

T
2 +⋯ =∑

r

̺=1
x̺y

T
̺ , where

A̺ ≡ x̺y̺
T = , (A̺)i ,j = (xρ)i ⋅ (yρ)j

is the rank-one matrix—the outer product of two vectors

This motivates the polyadic expansion of k-way tensor as the sum
of rank-one terms—the outer products of k vectors; e.g., for k = 3

T̺ ≡ (x̺, y̺, z̺)⊗, where x̺ ∈ R
n1 , y̺ ∈ R

n2 , z̺ ∈ R
n3 ,

(T̺)i1,i2,i3 = (xρ)i1 ⋅ (yρ)i2 ⋅ (zρ)i3 .
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Shortest polyadic expansion
Polyadic rank of a tensor

Then the polyadic expansion takes form T = ∑̺(x̺, y̺, z̺)⊗,

��

��

��

��

=

⊗

�

�

�

�
�

�

�

�����
����

+ . . . +

⊗

�

�

�

�
�

�

�

�����
����

.

It represents our first kind of tensor decomposition into three
matrices X = [x1, x2, . . .] ∈ Rn1×?, Y = [y1, y2, . . .] ∈ Rn2×?,
Z = [z1, z2, . . .] ∈ Rn3×?.

This decomposition is intensively studied and it is known under
names CanDeComp (Canonic DeComposition), ParaFac (Paralel
Factorization), or CP decomposition (CanDeComp–ParaFac).
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Shortest polyadic expansion
Polyadic rank of a tensor

In the case of matrices:

▸ The polyadic expansion can be done in such a way that both
X ∈ Rn×r and Y ∈ Rm×r have orthogon(norm)al columns (via
the SVD).

▸ Rank of A is the minimal number of terms (length of the
shortest dyadic exp.).

▸ The Eckart–Young–Mirsky theorem shows that the difference
between A and its approximation obtained by employing only
q terms, q < r = rank(A), i.e., the approximation error has
nonzero minimum, equal to σr(A), the smallest nonzero
singular value of A.

What about tensors?
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Shortest polyadic expansion
Polyadic rank of a tensor

We can play with the orthogonality by employing QR decomp’s of
X , Y , Z , etc. It will be briefly mentioned later.

The number of rank-one terms is bounded by N, thus there is the
minimal number, defining the polyadic rank,

max
ℓ=1,2,...,k

rank{ℓ}(T ) ≤ polyrank(T ) ≤ nnz(T ) ≤ N = n1 ⋅ n2 ⋅ ⋯ ⋅ nk .
This rank, however, is not robust. Let

X = [x ′, x ′, x ′′] ∈ Rn1×3, Y = [y ′, y ′′, y ′] ∈ Rn2×3, Z = [z ′′, z ′, z ′] ∈ Rn3×3,

and rank(X ) = rank(Y ) = rank(Z) = 2. Consider
T = (x ′, y ′, z ′′)⊗ + (x ′, y ′′, z ′)⊗ + (x ′′, y ′, z ′)⊗ ,
Tε =

1

ε
(x ′ + εx ′′, y ′ + εy ′′, z ′ + εz ′′)⊗ − 1

ε
(x ′, y ′, z ′)⊗ , then

∥T − Tε∥ = ε∥(x ′′, y ′′, z ′)⊗ + (x ′′, y ′, z ′′)⊗ + (x ′, y ′′, z ′′)⊗ + ε(x ′′, y ′′, z ′′)⊗∥.
[P. Paatero, J. of Chemometrics 14(3), pp. 285–299, 2000].
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Sum of rank-one terms
Another generalization of dyadic expansion

Note that rank-one (rank-at-most-one) terms

(x̺, y̺)⊗ = xyT, (x̺, y̺, z̺)⊗, x̺ ∈ R
n1 , y̺ ∈ R

n2 , z̺ ∈ R
n3 ,

form submanifolds witin R
n1×n2 and R

n1×n2×n3 , respectively.

We can take another suitable submanifold and its members
consider to be the rank-one terms. For example,

T̺ = (x̺,M̺)⊗, where x̺ ∈ R
n1 , M̺ ∈ R

n2×n3 ,

and (T̺)i1,i2,i3 = (x̺)i1 ⋅ (M̺)i2,i3 .
Then rank of T can be defined as the length of shortest sum

T =∑̺
T̺ =∑̺

⊗

�

�

�

�

����
����

; this rank = rank{1}(T ) = rank(T {1}).
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Another example
4-way tensor & the Kronecker product

Let T ∈ Rn1×n2×n3×n4 and T = ∑̺ T̺, where

T̺ ≡ (K̺,M̺)⊗ such that (T̺)i1,i2,i3,i4 = (K̺)i1,i2 ⋅ (M̺)i3,i4 ,
and K̺ ∈ R

n1×n2 , M̺ ∈ R
n3×n4 .

The length of the shortest sum can be observed after rearraging to

T {1,2} =∑̺
T {1,2}̺ =∑̺

vec(K̺)(vec(M̺))T ∈ R(n1⋅n2)×(n3⋅n4);
it is the rank of this matrix, in general rankR(T ) ≡ rank(TR).
Note another rearranging gives

T {1,3} ∈ R(n1⋅n3)×(n2⋅n4), T {1,3} =∑
rank{1,2}(T )

̺=1 M̺⊗K̺ ,

where ⊗ is the Kronecker product of matrices.
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Note on Kronecker product

For matrices, the standard matrix and Kronecker products we have

(AB)⊗ (CD) = (A⊗ C)(B ⊗D).
Thus, if any two of the following three matrices

A, C , E = A⊗ C

are invertible, then the third is also invertible.

We can intepret E as the {1,3}-matricization of a 4-way tensor E ,
i.e., E = E{1,3} = A⊗ C . Then its {1,2}-matricization takes form

E{1,2} = vec(A)(vec(C))T
All three E , E{1,3}, E{1,2} represent the same rank-one object (just
differently rearranged) in the given submanifold of 4-way tensors.

But E{1,3} may be invertible whereas rank(E{1,2}) = 1 always.
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Final note on ranks
For a given tensor T , we have

▸ rank{ℓ}(T ) ≡ rank(T {ℓ}) for ℓ = 1,2, . . . , k ,

▸
Ð→
rank(T ) ≡ (rank{1}(T ), rank{2}(T ), . . . , rank{k}(T )),

▸ rankR(T ) ≡ rank(TR) for R ⊆ {1,2, . . . , k},
▸ clearly

{rank{ℓ}(T ) , ℓ = 1,2, . . . , k} ⊆ {rankR(T ) , R ⊆ {1,2, . . . , k}} ,
▸ polyrank(T ):

max
R⊆{1,2,...,k}

rankR(T ) ≤(∗) polyrank(T ) ;
(∗) ((x ′, y ′, z ′′)⊗ + (x ′, y ′′, z ′)⊗ + (x ′′, y ′, z ′)⊗){1,2}

= [(y ′ ⊗ x ′), (y ′′ ⊗ x ′) + (y ′ ⊗ x ′′)][z ′′, z ′]T.
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Tensor arithmetics
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Basic operations
Linear combinations, direct sum, outer product

We already know some basic operations.

▸ Since tensors of the given fixed dimensions form a linear
vector space, we can do componentwisely

αT , T + S, αT + β S, ∑ℓ
αℓ Tℓ .

▸ We can do the direct sum of tensors of the same(?!) order k

T ⊕ S = diagk(T ,S) ∈ R(n1+m1)×(n2+m2)×⋯×(nk+mk).

▸ We can do the outer product (a.k.a. tensor or Kronecker p.)
of any two (or more) tensors

S ⊗ T = (T ,S)⊗ ∈ Rn1×n2×⋯×nk×m1×m2×⋯×mt

(S ⊗ T )i1,i2,...,ik ,j1,j2,...,jt = (T )i1,i2,...,ik ⋅ (S)j1,j2,...,jt
(S ⊗ T ){i1,i2,...,ik} = vec(T ) (vec(S))T
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Multiplication: Tensor-matrix (TM) product

The basic structure of TM is the same as for matrices: Sums of
products of individual entries of given fibres and col’s or rows. Let

T ∈ Rn1,n2,...,nk , S ∈ Rc×nℓ , M ∈ Rnℓ×d .

The ℓ-mode (pre-/post-)multiplication of tensor by a matrix

S ×ℓ T ∈ R
n1,...,nℓ−1,c,nℓ+1,...,nk , T ℓ×M ∈ R

n1,...,nℓ−1,d ,nℓ+1,...,nk

is defined as

(S ×ℓ T )i1,...,iℓ−1,j ,iℓ+1,...,ik ≡∑nℓ
iℓ=1
(S)j ,iℓ ⋅ (T )i1,...,iℓ−1,iℓ,iℓ+1,...,ik ,

(T ℓ×M)i1,...,iℓ−1,j ,iℓ+1,...,ik ≡∑nℓ
iℓ=1
(T )i1,...,iℓ−1,iℓ,iℓ+1,...,ik ⋅ (M)iℓ,j .

Clearly T ℓ×M =M
T
×ℓ T , thus we focus on the pre-multiplication.

(The so-called Einstein’s notation omits the ‘sum’ signs.)
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Multiplication: Tensor-matrix (TM) product

We can see it as MV-product of S with all the ℓ-mode fibres, i.e.,

(S ×ℓ T ){ℓ} = ST {ℓ} ∈ Rc×((∏κ=1k
nκ)/nℓ).

Tensor-matrix product is associative in the following two meanings

P ×ℓ (S ×ℓ T ) = (PS) ×ℓ T
P×τ(S×ßT ) = S×ß(P×τT ), for τ ≠ ß.

Multiplication by two matrices in two different modes can be again
rearranged by matricization as follows:

(P ×τ (S ×ß T )){τ,ß} = (S ⊗ P)T {τ,ß} or (P ⊗ S)T {τ,ß}
for τ < ß, or ß > τ , respectively (recall the inverse lexicographical

ordering of multiindices while matricization).
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Linear transformation of a tensor
Employing the associativity while multiplication in different modes,
we get for

T ∈ Rn1,n2,...,nk , Sκ ∈ R
cκ×nκ , κ = 1,2, . . . , k ,

(S1,S2, . . . ,Sk ∣T ) ≡ S1 ×1 (S2 ×2 (⋯ (Sk ×k T )⋯ )) ∈ Rc1,c2,...,ck

a general linear transformation of T . In the post-mult. fashion it
takes form (T ∣M1,M2, . . . ,Mk) for Mκ ∈ R

nκ×dκ .

A single tensor-matrix product can be written as

P×ℓ T = (In1 , . . . , Inℓ−1 ,P , Inℓ+1 , . . . , Ink ∣T ).
Employing vectorization gives

vec((S1,S2, . . . ,Sk ∣T )) = (Sk ⊗⋯⊗ S2 ⊗ S1)vec(T );
recall that vec(T ) = T {1,2,...,k}.
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Note on tensors of order two
Matrix-matrix product treated as tensor-matrix

First note that A{1} = A, A{2} = AT. Since:

(S1 ×1 A){1} = S1A{1}, then S1 ×1 A = S1A,

(S2 ×2 A){2} = S2A{2}, then S2 ×2 A = AS
T
2 ,

(S1,S2 ∣A) = S1 ×1 (S2 ×2 A), then (S1,S2 ∣A) = S1AST
2 ,

for the pre-multiplication and

A 1×M1 =M
T
1 ×1 A, then A 1×M1 =M

T
1 A,

A 2×M2 =M
T
2 ×2 A, then A 2×M2 = AM2,

(A ∣M1,M2) = (A 1×M1) 2×M2, then (A ∣M1,M2) =MT
1 AM2,

for the post-mutliplication.

For tensors of order one (vectors): S1 ×1 v = S1v , v 1×M1 =M
T
1 v .
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Tensor-tensor (TT) product a.k.a. Contraction
Let T and tF be tensors of orders k and s,

T ∈ Rn1,n2,...,nk , F ∈ Rm1,m2,...,ms , and nℓ = mß.

Then their (ℓ, ß)-mode product is a tensor of order (k + s − 2),
T ×(ℓ,ß) F ∈ R

n1,...,nℓ−1,nℓ+1,...,nk ,m1,...,mß−1,mß+1,...,ms ,

where (T ×(ℓ,ß) F)i1,...,iℓ−1,iℓ+1,...,ik ,j1,...,jß−1,jß+1,...,js
=∑

nℓ
α=1
(T )i1,...,iℓ−1,α,iℓ+1,...,ik ⋅ (F)j1,...,jß−1,α,jß+1,...,js .

The other available product is

F×(ß,ℓ)T = (T ×(ℓ,ß)F)Π, where Π = ( 1
k

2
k+1

⋯

⋯ k+s−2 1 2
⋯

⋯

k+s−2
k−1 ).

Alternatively

(T ×(ℓ,ß) F){1,2,...,k−1} = (T {ℓ})TF{ß},
(F ×(ß,ℓ) T ){1,2,...,s−1} = (F{ß})TT {ℓ}.
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Tensor-tensor (TT) product a.k.a. Contraction
Analogously, we can introduce mutiplication (contraction) in two
pairs of indices at once. For

T ∈ Rn1,n2,...,nk , F ∈ Rm1,m2,...,ms , and nℓ = mß, nτ = mσ, ℓ < τ,

we get the (k + s − 4)-way tensor

T ×((ℓ,τ),(ß,σ)) F ,

with entries (depending on relations between ß and σ) either / or

∑αβ
(T )i1,...,iℓ−1,α,iℓ+1,...,iτ−1,β,iτ+1,...,ik ⋅ (F)j1,...,jß−1,α,jß+1,...,jσ−1,β,jσ+1,...,js ,

∑αβ
(T )i1,...,iℓ−1,α,iℓ+1,...,iτ−1,β,iτ+1,...,ik ⋅ (F)j1,...,jσ−1,β,jσ+1,...,jß−1,α,jß+1,...,js .

Again,

(T ×((ℓ,τ),(ß,σ)) F){1,2,...,k−2} = (T {ℓ,τ})T(FΠ){ß,σ},
and Π = Id or (⋯

⋯

σ
ß
⋯

⋯

ß
σ
⋯

⋯
). Similarly for several pairs of indices.
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MM- and TM-products as TT-products
If matrices treated as tensors

Note that TM and TT have different ordering of indices,

S ×ℓ T = (S ×(2,ℓ) T )( 1ℓ 2
1
⋯
⋯

ℓ

ℓ−1
ℓ+1
ℓ+1

⋯
⋯
)
= (T ×(ℓ,2) S)(⋯⋯ ℓ−1

ℓ−1
ℓ

ℓ+1
⋯
⋯

k−1
k

k

ℓ
)
,

T ℓ×M =M
T
×ℓ T = (M ×(1,ℓ) T )Π = (T ×(ℓ,1)M)Π.

For MM-products we get

AB = A ×(2,1) B = A
T
×(1,1) B = A ×(2,2) B

T = AT
×(1,2) B

T

= (B ×(1,2) A)Π = (B ×(1,1) AT)Π = (BT
×(2,2) A)Π = (BT

×(2,1) A
T)Π

= (BTAT)T
where Π = (12 2

1). Similarly for

ATB = A×(1,1)B = . . . , AB
T = A×(2,2)B = . . . , A

TBT = A×(1,2)B = . . . .
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Relation between outer and tensor product
Recall that a vector can be interpreted as a single-column matrix, a
matrix as a single-front-slice 3-way tensor, etc.

We formalize that in the form of ‘uparrow’ operator

↑ ∶ v ∈ Rn z→ v ↑ ∈ Rn×1,

A ∈ Rn×d z→ A↑ ∈ Rn×d×1,

↑2 = ↑↑ ∶ v ∈ Rn z→ v ↑↑ ∈ Rn×1×1,

etc.

Then for a k-way tensor T and s-way tensor F we have

(T ,F)⊗ = (T ↑) ×(k+1,s+1) (F↑).
Note again:
The outer product is a.k.a. tensor and Kronecker product.
The tensor (TT) product is a.k.a. contraction.
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Basic decompositions of a tensor
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Singular value decomposition (SVD)
Let start with matrices

Let A ∈ Rm×n be a matrix of rank r = rank(A), then
A = UΣV T = (U,V ∣Σ) = U ′Σ′V ′T = (U ′,V ′ ∣Σ′)

where U−1 = UT, U = [U ′ , U ′′ ] ∈ Rm×m, U ′ ∈ Rm×r ,

where V −1 = V T, V = [V ′ , V ′′ ] ∈ Rn×n, V ′ ∈ Rn×r ,

Σ = [ Σ′ 0
0 0

] ∈ Rm×n, Σ′ = diag(σ1, σ2, . . . , σr) ∈ Rr×r ,

σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0.

A

=

U Σ

Σ′

U ′
V ′

T

0 0

0

V T

=

U ′ Σ′ V ′
T
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SVDs of ℓ-mode matricizations

Let T ∈ Rn1×n2×⋯×nk of
Ð→
rank(T ) ≡ (r1, r2, . . . , rk), where

rℓ = rank{ℓ}(T ) = rank(T {ℓ}), T {ℓ} ∈ Rnℓ×(N/nℓ), N = n1⋅n2⋅⋯ ⋅nk .

Consider then the SVDs

T {ℓ} = UℓΣℓV
T
ℓ = U

′
ℓΣ
′
ℓV
′
ℓ
T

where Uℓ = [U ′ℓ , U ′′ℓ ]∈ Rnℓ×nℓ , U ′ℓ ∈ R
nℓ×rℓ ,

Σ′ℓ = diag(σ1,ℓ, σ2,ℓ, . . . , σrℓ,ℓ) ∈ Rrℓ×rℓ , σ1,ℓ ≥ σ2,ℓ ≥ ⋯ ≥ σrℓ,ℓ > 0.

Thus

[ U ′ℓ
TT {ℓ}

U ′′ℓ
T
T {ℓ}

] = Uℓ
TT {ℓ} = ΣℓV

T
ℓ = [ Σ′ℓV

′
ℓ
T

0
] .
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SVDs of ℓ-mode matricizations

Clearly, this is the ℓ-mode product,

(Uℓ
T
×ℓ T ){ℓ} = Uℓ

TT {ℓ} = ΣℓV
T
ℓ = [ Σ′ℓV

′
ℓ
T

0
] ∈ Rnℓ×(N/nℓ),

and (U ′ℓT ×ℓ T ){ℓ} = U ′ℓTT {ℓ} = Σ′ℓV ′ℓT ∈ Rrℓ×(N/nℓ).

For a three-way tensor and ℓ = 1:

×1

��

��

��

��

=

�
�

�
�

�

��
��

��
��

��

��

��

��

��

Note that mutliplication by other Ußs in the other modes (ß ≠ ℓ)
does not involve these already made zero co-fibres.
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Tucker decompostion a.k.a. high-order SVD (HOSVD)

Finally we get for T ∈ Rn1×n2×⋯×nk a linear transformation

(UT
1 ,U

T
2 , . . . ,U

T
k ∣T ) = diagk(CT ,0) ∈ Rn1×n2×⋯×nk ,

where the subtensor

CT = (U ′1T,U ′2T, . . . ,U ′kT ∣ T ) ∈ Rr1×r2×⋯×rk

is called the Tucker core of tensor T . Since Uℓ’s are invertible and
orthogonal the first equation can be rearranged to

T = (U1,U2, . . . ,Uk ∣diagk(CT ,0)) = (U ′1,U ′2, . . . ,U ′k ∣CT )
that is called the Tucker decomposition or HOSVD of tensor T .
[L. R. Tucker, Psychometrika 31(3), pp. 279–311, 1966]
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Tucker decompostion a.k.a. high-order SVD (HOSVD)

Thus, for T with
Ð→
rank(r1, r2, . . . , rk) we have decomposition

T = (U ′1,U ′2, . . . ,U ′k ∣CT ), CT ∈ Rr1×r2×⋯×rk ,

U ′ℓ ∈ R
nℓ×rℓ , U ′ℓ

T
U ′ℓ = Irℓ .

��

��

��

��

=

×1

��

��

��

��
×2

×3 ��

��

Moreover, the ℓ-mode co-fibres of CT are sorted in a nonincreasing
sequence w.r.t. their norms equal to σ1,ℓ, σ2,ℓ, . . . , σrℓ,ℓ.

This allows to generalize the Eckart–Young–Mirsky theorem.
Compare with the SVD.
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Polyadic expansion as the CP decompostion
Recall the polyadic decompostion of T

��

��

��

��

=

⊗

�

�

�

�
�

�

�

�����

����

+ . . . +

⊗

�

�

�

�
�

�

�

�����

����

.

Collecting all the particular vectors into matrices

X1 ∈ R
n1×r , X2 ∈ R

n2×r , . . . Xk ∈ R
nk×r

and using an “identity-like” cubic tensor of order k and dim’s r ,

Ir ,k =
��

��

��

��

1
1

1
1

1
1

∈ Rr×r×⋯×r , we get

T = (X1,X2, . . . ,Xk ∣Ir ,k) .
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Comparison of both basic decompositions
Tucker decomposition (HOSVD)

T = (U ′1,U ′2, . . . ,U ′k ∣CT )
▸ Matrices U ′ℓ with orthonormal columns (+)
▸ Different numbers of columns equal to rank{ℓ}(T ) (±)
▸ Core of dimensions equal to

Ð→
rank(T ) with the norm

“accumulated” in leading principal corner (+)

CP decoposition (CanDeComp, ParaFac)

T = (X1,X2, . . . ,Xk ∣Ir ,k)
▸ Matrices Xℓ may have linearly dependent columns (−)
▸ The same number of columns equal to polyrank(T ) (±)
▸ “Core tensor” is cubic with very simple structure; so simple it
need not be stored (+ + +)

Note that both decompostitions have similar structure—an inner
core tensor of (typically?) smaller dimensions than T , surrounded
by k matrices, also called leaves (from graph theory).
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Low-rank arithmetics of tensors
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Let start with matrices. SVD (re)compression

Let A ∈ Rm×n be a (low-rank) matrix given in the form of product
of two thin matrices A = XY T, or, in more general case of three

A = XSY T, X ∈ Rm×p, m≫ p, S ∈ Rp×q, Y ∈ Rn×q, n≫ q.

Our goal is to compute its SVD without evaluating A:
Step 1: Compute economic QR decompositions of thin X and Y

X = QXRX , QX ∈ R
m×rX , RX ∈ R

rX×p, rX = rank(X ),
Y = QYRY , QY ∈ R

n×rY , RY ∈ R
rY ×q, rY = rank(Y ).

Thus A = QXWQY
T where W = RXSRY

T ∈ RrX×rY .
Step 2: Compute the economic SVD of the small matrix W

W = U ′WΣ′WV ′W
T
, U ′W ∈ R

rX×r , Σ′W ∈ R
r×r , V ′W ∈ R

rY ×r .

Thus A = (QXU
′
W )Σ

′
W (QYV

′
W )

T.
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Sum of two low-rank matrices

Let A,B ∈ Rm×n be two low-rank matrices given the form of their
economic SVDs,

A = U ′AΣ
′
AV
′
A
T
, B = U ′BΣ

′
BV
′
B
T
,

with rA = rank(A), rB = rank(B).

Then

M = ϕA + ψB = [U ′A , U ′B ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X∈Rm×(rA+rB )

[ ϕΣ′A 0
0 ψΣ′B

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S∈R(rA+rB )×(rA+rB )

[V ′A , V ′B ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y ∈Rn×(rA+rB )

T.

Compression then serves the economic SVD of M.
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Product of low-rank matrix with another matrix

Let A ∈ Rm×n be a low-rank matrix given the form of its economic
SVD,

A = U ′AΣ
′
AV
′
A
T
.

If also B is a low-rank matrix given similarly, then

M = AB = U ′A°
QX

(Σ′A(V ′AT
U ′B)Σ′B)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

W ∈RrA×rB

V ′B°
QY

T.

If B is a general matrix, then

M = AB = U ′A°
QX

Σ′A°
RXS

(BTV ′A)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

T.

Compression (which is already partially done) then serves the
economic SVD of M.
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And similarly for tensors: Compression
Let

T = (X1,X2, . . . ,Xk ∣S) ∈ Rn1×n2×⋯×nk , S ∈ Rp1×p2×⋯×pk , nℓ ≫ pℓ

(e.g. the CP decomp. / polyadic exp., or another similar product).
Step 1: Compute k economic QR decomp’s of thin Xℓ = QℓRℓ,

(X1,X2, . . . ,Xk ∣S) = (Q1,Q2, . . . ,Qk ∣ (R1,R2, . . . ,Rk ∣S)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
W

).

Step 2: Compute the Tucker decomposition of small tensor W ,

W = (U ′1,W ,U ′2,W , . . . ,U ′k,W ∣ CW).
This gives

T = (Q1U
′
1,W´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

U′1,T

,Q2U
′
2,W´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

U′2,T

, . . . ,QkU
′
k,W´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

U′
k,T

∣ CW°
CT

)

the Tucker decomposition of large tensor T .
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Sum of two tensors

Let T ,F ∈ Rn1×n2×⋯×nk in Tucker form

T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣ CT ), F = (U ′1,F ,U ′2,F , . . . ,U ′k,F ∣ CF).
Then

E = ϕT +ψF = ( [U ′1,T ,U ′1,F ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X1

, . . . , [U ′k,T ,U ′k,F ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Xk

∣ diagk(ϕCT , ψCF)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

).

The compression then yields the Tucker decomposition of E .
Cost: Instead of nk of sums of two number, we need to do:

▸ k-times the economic QR decomposition of n × r matrix;
▸ k-times the product of (r×k)-tensor with (r × r)-matrix;
▸ one Tucker decompostion of (r×k)-tensor;
▸ k-times the product of (n × r)-matrix with (r × r)-matrix.

(Here n = max{n1,n2, . . . ,nk} and r = max{r1, r2, . . . , rk}.)
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Tensor matrix product

Let T , ∈ Rn1×n2×⋯×nk in Tucker form

T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣ CT ), andM ∈ Rm×nℓ

Then E =M ×ℓ T = (U ′1,T , . . . ,MU ′ℓ,T´¹¹¹¹¹¸¹¹¹¹¹¹¶
Xℓ

, . . . ,U ′k,T ∣ CT ).

The compression then yields the Tucker decomposition of E .
Cost: Instead of nk−1 of MV products, we need to do:

▸ r -times the MV product;
▸ one economic QR decomposition of n × r matrix;
▸ one Tucker decompostion of (r×k)-tensor;
▸ one product of (r×k)-tensor with (r × r)-matrix;
▸ k-times the product of (n × r)-matrix with (r × r)-matrix.

61 / 144

Note on norm and scalar product
Recall that

⟨T ,F⟩ = vec(F)Tvec(T ), ∥T ∥ = (⟨T ,T ⟩) 12 ,
T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣ CT ),

vec(T ) = (U ′k,T ⊗⋯⊗U ′2,T ⊗U ′1,T )vec(CT ),
and similarly for F . Then ⟨T ,F⟩

= vec(CF)T(U ′k,F ⊗ . . .⊗U ′1,F)T(U ′k,T ⊗ . . .⊗U ′1,T )vec(CT )
= vec(CF)T((U ′1,FTU ′k,T )⊗⋯⊗ (U ′1,FTU ′k,T ))vec(CT )
= vec(CF)T vec((U ′1,FTU ′k,T ), . . . , (U ′1,FTU ′k,T ) ∣ CT )

but also

= vec((U ′1,T TU ′k,F), . . . , (U ′1,T TU ′k,F) ∣ CF)T vec(CT )
one of the last two lines needs to be evaluated (note that one core
may be smaller than the other).
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Why to do such complicated arithmetics?
Consider the following problem

A (X) = B, where A ∈L (Rn1×n2×⋯×nk ,Rn1×n2×⋯×nk )
and B are given and the goal is to find X .
For example: The Lyapunov operator on R

n×n,

A (X ) = AX +XAT, vec(A (X )) = (I ⊗A +A⊗ I )vec(X ).
For rank-one rhs B = bbT, b ≠ 0, the solution X is of full rank with
exponentially decaying singular values.

If A is SPD, then also A is SPD, and then, e.g., the method of
conjugate gradients (CG) can be used for solving A (X) = B. With
an initial guess X0 = (0,0, . . . ,0 ∣0) and employing the low-rank
arithmetics, we get solution in Tucker format.

Cost of CG iteration is changing, it depends on ranks!
(Truncation, open pbs.)
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A final note on Tucker decomposition
First note that the “Tucker-like” decompositions

T = (U ′1,U ′2, . . . ,U ′k ,CT ) ∈ Rn1×n2×⋯×nk

are not sufficient (from the computational point of view) for
handling really large tensors.

Let
Ð→
rank(T ) = (r1, r2, . . . , rk), i.e., the Tucker core

CT ∈ Rr1×r2×⋯×rk and let r1 = r2 = ⋯ = rk = 2.

Then the memory requirement to store T are roughly

k ⋅ (n ⋅ 2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U′
ℓ

+ 2k°
CT

≈ 2k ,

i.e., for example for k = 100 we need to store

≈ 2100 ≈ 1.2677 ⋅ 1030 numbers ≈ 9.2234 ⋅ 1018TiB in doubles.
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Graph interpretation:

Tensor networks & Hierarchical formats
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Tensors & graphs

To simplify a bit our notion about tensors, tensor products and
tensor decompositions, we employ the graph theory.

Any tensor T is interpreted as a graph vertex, and number of
indices of T as the degree of the vertex.

Thus the scalar, vector, matrix, 3-, 4-, and, e.g., 8-way tensors

t, ti , ti ,j , ti1,i2,i3 , ti1,...,i4 , ti1,...,i8

are interpreted as
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Basic products

Scalar, MV, and MM-products can be then drawn as follows:

y ∈ Rn, x ∈ Rn

yTx = α ∈ R

A ∈ Rm×n, x ∈ Rn

Ax = y ∈ Rm

A ∈ Rm×n, B ∈ Rn×d

AB = C ∈ Rm×d

∑n
j=1 ∑n

j=1 ∑n
j=1

Prod. of scalars, outer prod’s. of (two and three) vec’s and mat’s:
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Products involving tensors

▸ Tensor-matrix product (pre- or post-multiplication)

∼ W =M ×ℓ T ,
▸ Tensor-tensor product (contraction)

∼ W = F ×(ß,ℓ) T ,
▸ Tensor-tensor product (contraction) in several pairs of indices
at once

∼ W = F ×((ß,σ),(ℓ,τ)) T .
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It allows us to be more creative :-)

▸ A product of matrix A ∈ Rn×n with itself?

∼ ∑
n

i=1
ai ,i = trace(A)

▸ A circular product of matrices A ∈ Rm×n, B ∈ Rn×d , C ∈ Rd×m?

∼ ∑
m

i=1∑
n

j=1∑
d

ℓ=1
ai ,j ⋅ bj ,ℓ ⋅ cℓ,i

▸ But recall the scalar product of tensors! For matrices
A ∈ Rm×n and B ∈ Rm×n it takes form of both—the circular

product and product of a matrix with itself :-)

⟨A,B⟩ =∑m

i=1∑
n

j=1
bi ,j ⋅ ai ,j = trace(BTA)
=
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Tucker decomposition
Graph of the Tucker decompostion

T = (U ′1,U ′2,U ′3, . . . ,U ′k ∣ CT )
takes form

Our goal is to break up the high-order core tensor CT to product of
several lower-orders tensors. Computationally, we want to replace
the core as it is, whos number of entries scales exponentially (≈ rk)
with the tensor order k , by a set of tensors, whos number of
entries scales linearly or logarithmically with k . How to do it can
be easily understood by using graphs.
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A general tensor network

By a general tensor network we understand interpretation of a
high-order tensor T as a (prescribed) structured product of a set of
lower-order tensors.

The tensor network can be seen as a (de)composition or
approximation framework of the tensor T .

i1
i2

i3 i4
i5

i6

i7

i8

α
β

γ

δ
ǫ

φ

A

B C

D E

F

ti1,i2,i3,i4,i5,i6,i7,i8 =

∑α,β,γ,δ,ǫ,φ ai1,i2,α ⋅ bα,β,γ,i8 ⋅

cγ,δ,ǫ,φ ⋅ dβ,i3,δ ⋅

ei4,i5,ǫ ⋅ fφ,i6,i7

n8 Ð→ 4n3 + 2n4

The simples structure for decomposing tensor is a (binary) tree (it
avoids computationally complicated circles).
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Tree decomposition of the Tucker core
Recall T = (U ′1,U ′2, . . . ,U ′k ∣ CT ). There are two different extremes:
The balanced (as much as possible) binary tree

rk Ð→ (k − 2)r3 + r2 ≈ kr3
So-called hierarchical Tucker
decompostion (HTD).

[L. Grasedyck, SIMAX 31(4), 2010]

The most-unbalanced binary tree

rk Ð→ (k − 2)r3 + 2r2 ≈ kr3
So-called tensor train
decompostion (TTD).

[I. V. Oseledets, SISC 33(5), 2011]

The blue two-way tensors (matrices) are roots of these binary trees.
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How to find the prescribed tree structure?
The root

The root is always a tensor of second order (a matrix). Let, for
simplicity, the indices (modes) of the whole core C ∈ Rr1×r2×⋯×rk be
ordered in such a way that

i1, i2, . . . , it and it+1, it+2, . . . , ik

correspond to the left and right branches, respectively.

Thus, for HTD and even k , t = k/2; for TTD t = 1.

Consider the economic SVD of the matricizaton of C
CR = U ′RΣ′RV ′R

T, where R = {1,2, . . . , t},
▸ Then the matrix Σ′

R
is the root of the tree and

▸ matrices U ′
R
, V ′

R
= U ′

C
can be decomposed into left and right

branches of the tree, respectively; C = {1, . . . , k} ∖R.
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How to find the prescribed tree structure?
A single vertex of degree three

Since indices of C are order properly, any vertex of deg.3 looks like:

↑ to the root ↑
iα+1, . . . , iβ

iα+1, . . . , iτ iτ+1, . . . , iβ
↓ to leaves ↓

Let us consider three corresponding
matricizations and their economic SVDs:

C{α+1,...,β}=U ′{α+1,...,β}Σ′{α+1,...,β}V ′{α+1,...,β}T,
C{α+1,...,τ}=U ′{α+1,...,τ}Σ′{α+1,...,τ}V ′{α+1,...,τ}T,
C{τ+1,...,β}=U ′{τ+1,...,β}Σ′{τ+1,...,β}V ′{τ+1,...,β}T.

The key theorem of all tree-form decomp’s (HTD, TTD, ...) says:

range(U ′{α+1,...,β}) ⊆ range(U ′{τ+1,...,β} ⊗U ′{α+1,...,τ}).
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How to find the prescribed tree structure?
Tensor-tree-decomposition theorem

Theorem:

range(U ′{α+1,...,β}) ⊆ range(U ′{τ+1,...,β} ⊗U ′{α+1,...,τ}), α < τ < β.

Sketch of the proof: Any column of C{⋯} is a vector v ∈ R(β−α),
that can be reshaped into a matrix M ∈ R(τ−α)×(α−β), v = vec(M).
Note that columns of M are in range(U ′{⋯}) = range(C{⋯}) and
rows of M in range(U ′{⋯}) = range(C{⋯}). Thus

M = C{...}C{⋯}†M and MT = C{...}C{⋯}†MT´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M = C{...} C{⋯}†M C{⋯}†T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ C{...}

T

giving vec(M) = v = (C{...} ⊗ C{...})(C{⋯}† ⊗ C{⋯}†)v .
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How to find the prescribed tree structure?
How to employ the tensor-tree-decomposition theorem?

Denote the three-way tensor Rα,τ,β. Since

↑ to the root ↑
iα+1, . . . , iβ

iα+1, . . . , iτ iτ+1, . . . , iβ
↓ to leaves ↓

Rα,τ,β

range(U ′{⋯}) ⊆ range(U ′{⋯} ⊗U ′{⋯})
There exists a matrix R such that

U ′{⋯} = (U ′{⋯} ⊗U ′{⋯})R , RTR = I

R ∈ R(rank{⋯}(C) ⋅ rank{⋯}(C))× (rank{⋯}(C))

It remains to interpret R =R{1,2}
α,τ,β

so

Rα,τ,β ∈ R
(rank{⋯}(C))×(rank{⋯}(C))×(rank{⋯}(C))

Doing this with all deg.3 vertices yields the HTD with any binary
tree (recall the matrices on leaves). The last tensor of order two in
TTD is just an identity matrix.

It can be applied on any (not necessarily binary) tree-form decomp.
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A few notes on hierarchical / tree-form decompositions

▸ There is a lot of different ranks of T in the game
(dimensions of cubes).

▸ To be efficent, these ranks needs to be small.
▸ To be effective, T has to be either of low rank, or well
approximable by a such low rank tensor.

▸ Otherwise we are not able to manage T in this way.
▸ Design of the tree should reflect knowledge about the problem.
▸ Employ symmetries between modes (if there are; ti ,j ,ℓ = tj ,i ,ℓ).

Note that there are also cyclic decompositions:

Tensor train

decomposition

Ð→

Tensor chain

decomposition
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A few notes on hierarchical / tree-form decompositions
Recall that we first did the Tucker decomposition of a tensor and
now the tree-form decomposition of the Tucker core.

Both together gives the HTD with structure like:

T = (U ′1,U ′2, . . . ,U ′k ∣ C) =

C↲

Note that in this particular case R = {1,2,3,4},

T R =

U ′R³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(U ′4 ⊗U ′3 ⊗U ′2 ⊗U ′1) (R{1,2}2,3,4 ⊗R{1,2}0,1,2 ) (R{1,2}0,2,4 ) Σ′R
( (U ′8 ⊗U ′7 ⊗U ′6 ⊗U ′5) (R{1,2}6,7,8 ⊗ I) (R{1,2}5,6,8 ⊗ I) (R{1,2}4,5,8 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V ′R

)T
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Arithmetics of hierarchical Tucker
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Motivation

Recall that we want to solve, e.g.,

A (X) = B, where X , B ∈ Rn1×n2×⋯×nk ,

where A is symmetric positive definite (SPD) typically represented
by one or more sparse matrices in outer (Kronecker) product, and
the low-rank right-hand side B is given in HTD.

By taking X0 = 0 and storing it in the same tree structure as B
(e.g., by replacing all numbers by zeros), we can start to search forX for example by the method of conjugate gradients (CG).

We need to know how to (i) do linear combinations, (ii)
TM-product, and (iii) calculate scalar products and norms in HTD.
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A sum (a linear combination) of two HTDs
Let T and F be of the same order k , of the same dimensions, and
with HTDs of the same structure:

T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣ CT ) =

CT↲
.

In the top, there is one root matrix Σ′T , in the middle, there is
bunch of inner cubes (3-way tensors) Rα,τ,β,T , and in the bottom
k leaves matrices U ′j ,T .

Recall that

(Rα,τ,β,T
{1,2})TR{1,2}

α,τ,β,T
= I = Irank{α+1,...,β}(T ) for all α < τ < β,

U ′j ,T
TU ′j ,T = I = Irank{j}(T ) for j = 1,2, . . . , k .
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A sum (a linear combination) of two HTDs

A linear combination E = ϕT + ψF
will be done in several steps: Step 1: Concatenation of leaves,
block diagonal composition (direct sum) of inner cubes and roots:

[U ′j ,T , U ′j ,F],
�

�
�

�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�

�

�
�

�

�R⋯,T R⋯,F , [ ϕΣ′T 0
0 ψΣ′F

] ,

gives the sum E formally in the same HTD structure. However,
dimensions of all objects are twice as large and U ′⋯’s and R{1,2}⋯ ’s
do not have orthonormal columns.

Step 2: (Re)compression of the sum enforing wanted properties
requires plenty of QR’s, TM-prod’s and one SVD.
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A sum (a linear combination) of two HTDs
Recompression

QR QR QR QR QR QR QR QR

e-QR decomp’s of leaves matrices; triangular factors go up to cubes
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

TM TM TM

W

W

Multiplication of cubes by triangular factors (two are waiting)
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

QR QR QR

W

W

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

TM
TM

W

Multiplication of cubes by triangular factors (one is waiting)
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

QR
QR

W

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

TM

W

Multiplication the last cube by triangular factors (root is waiting)
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

QR

W

{1,2}-ma’tions & e-QR decomp’s of the last cube
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

W

MM

Multiplication the root by triangular factors
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

W

SVD

e-SVD of the root; we’ve the root Σ′E ; U
′ and V ′ are going down
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

TM
"

TM

"

The last two multiplications of cubes.
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A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

"
"

"

"

Done! " " "
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Tensor-matrix multiplication

Similarly we can do the ℓ-mode tensor-matrix multiplication,

E =M ×ℓ T .
It will be done again in sevaral steps: Step 1: Multplication of M
with the particular (the ℓth) leaf:

[MU ′ℓ,T ]
that gives the product E formally in the HTD structure. Similarly
as before we can do the:

Step 2: (Re)compression of the product E . Since we multiplied
only in one mode, everything is a bit simpler.
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Tensor-matrix multiplication

Similarly we can do the ℓ-mode tensor-matrix multiplication,

E =M ×ℓ T .
It will be done again in sevaral steps: Step 1: Multplication of M
with the particular (the ℓth) leaf:

[MU ′ℓ,T ]
that gives the product E formally in the HTD structure. Similarly
as before we can do the:

Step 2: (Re)compression of the product E . Since we multiplied
only in one mode, everything is a bit simpler.
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Tensor-matrix multiplication (3-mode)
Recompression

QR

e-QR decomp. of the third leaf; triangular factor goes up to cubes
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Tensor-matrix multiplication (3-mode)
Recompression

"

TM

Multiplication of cubes by triangular factors (two are waiting)
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Tensor-matrix multiplication (3-mode)
Recompression

"

QR

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up

97 / 144

Tensor-matrix multiplication (3-mode)
Recompression

"

"

TM

Multiplication of cubes by triangular factors (one is waiting)
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Tensor-matrix multiplication (3-mode)
Recompression

"

"

QR

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up
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Tensor-matrix multiplication (3-mode)
Recompression

"

"

W

MM

Multiplication the root by triangular factors
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Tensor-matrix multiplication (3-mode)
Recompression

"

"

W

SVD

e-SVD of the root; we’ve the root Σ′E ; U
′ and V ′ are going down
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Tensor-matrix multiplication (3-mode)
Recompression

"

"

TM
TM

"

The last two multiplications of cubes.
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Tensor-matrix multiplication (3-mode)
Recompression

"

"

"
"

"

Done! " " "
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Scalar product of two tensors in HTD

Finally, we present evaluation of the scallar product

⟨T ,F⟩
of two vectors in HTD with the same trees; and also of the norm

∥T ∥ = (⟨T ,T ⟩) 12 .
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Scalar product of two tensors in HTD

Two tensors with the same tree
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Scalar product of two tensors in HTD

Two tensors with the same tree and their scalar product
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Scalar product of two tensors in HTD

Two tensors with the same tree and their scalar product
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Scalar product of two tensors in HTD

Two tensors with the same tree and their scalar product
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Scalar product of two tensors in HTD

Evaluation starts with bunch of MM-products of leaves
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Scalar product of two tensors in HTD

MM-products result in matrices
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Scalar product of two tensors in HTD

Then comes bunch of TM-prod’s; we choose smaller resulting dim’s
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Scalar product of two tensors in HTD

TM-products result in tensors
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Scalar product of two tensors in HTD

We continue with bunch of two-mode TT-products
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Scalar product of two tensors in HTD

Two-mode TT-products of cubes result in matrices
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Scalar product of two tensors in HTD

We continue with bunch of TM-products; we can choose faster way
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Scalar product of two tensors in HTD

TM-products result in tensors
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Scalar product of two tensors in HTD

We continue with bunch of two-mode TT-products
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Scalar product of two tensors in HTD

Two-mode TT-products of cubes result in matrices
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Scalar product of two tensors in HTD

The last TM-product
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Scalar product of two tensors in HTD

The last TM-product results in tensor as well
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Scalar product of two tensors in HTD

The last two-mode TT-product
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Scalar product of two tensors in HTD

The last two-mode TT-products of cubes results in matrix as well
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Scalar product of two tensors in HTD

The circular prod. of four matrices! We start with two MM prod’s
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Scalar product of two tensors in HTD

Thus we end up with two matrices
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Scalar product of two tensors in HTD

We calculate their scalar product
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Scalar product of two tensors in HTD

Done! " " "
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Final notes on arithmetics of HTDs
For a linear combination and scallar product of two tensors

ϕT + ψF , ⟨T ,F⟩,
T , F need to be of the same dimensions (and thus also the order).

It seems that requirement on the same tree-structure brings a new
restriction, but it is possible do that also with tensors with
different tree-structures.

However, while doing that with tensors with different binary trees,
there always appear tensors of higher orders than presented.
Typically (i.e., if the root is not in the game), there appear at least
one inner ‘cube’ of order four (no hihger orders are needed(?!)).

While summation, it can employ some maximal (or the greates(?!))
common sub-tree of both and recalculate the structure of one.

[Kressner, Tobler, htucker—Matlab toolbox, 2012]
http://anchp.epfl.ch/htucker
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That’s All Volks!
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Thank You for Your Attention
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Reliable numerical methods

To compute (approximate) solution is not sufficient.

We should provide an information about the error.

Can we provide
a guaranteed upper bound?

‖u − uh‖ ≤ η
Sinking of the Sleipner A off-

shore platform in 1991, Nor-

way. The failure resulted from

inaccurate NASTRAN calcula-

tions.

Babuška, Verfürth, Ainsworth, Rannacher, Repin, . . .

Eigenvalue problems

Laplace eigenvalue problem

−∆un = λnun in Ω

un = 0 on ∂Ω

Finite element method

◮ Very flexible (various domains, high order, various problems, . . . )

◮ Converges with optimal speed

◮ Adaptive mesh refinement

◮ Nice theory

Guaranteed upper bound

? ≤ λn ≤ λh,n

Can we dream about anything else? Lower bounds!
Guaranteed error bounds on eigenfunctions: ‖un − uh,n‖ ≤ η

Outline

1. Motivation

2. Theory

2.1 Existence
2.2 Min-max principle
2.3 Optimal constants

3. Rayleigh–Ritz (Galerkin) method

4. Lower bounds on eigenvalues

4.1 Weinstein’s bound
4.2 Lehmann–Goerisch method
4.3 Interpolation constant based methods

5. Guaranteed bounds on eigenfunctions

6. Literature



2. Theory

2.1 Existence

Abstract formulation
Eigenvalue problem: Find eigenvalue λn and eigenfunction
un ∈ V \ {0} such that

a(un, v) = λnb(un, v) ∀v ∈ V .

◮ V is a Hilbert space.
◮ a(·, ·) and b(·, ·) are two bilinear forms on V .

Example

−∆un = λnun in Ω

un = 0 on ∂Ω

Weak formulation

(∇un,∇v) = λn(un, v) ∀v ∈ V

◮ V = H1
0 (Ω)

◮ a(u, v) = (∇u,∇v)
◮ b(u, v) = (u, v) (u, v) =

∫

Ω uv dx

Hilbert–Schmidt theorem

Sun = µnun

Let

◮ V be a Hilbert space

◮ S : V → V be linear, bounded, compact, self-adjoint operator

Then

◮ there is (at most) countable sequence of nonzero real
eigenvalues of S (repeated according to their multiplicity):
|µ1| ≥ |µ2| ≥ |µ3| ≥ · · · > 0,
and if the sequence is infinite then limn→∞ µn = 0

◮ eigenfunctions un corresponding to these µn form a complete
orthonormal system in range S

◮ V = (ker S)⊕ (range S)

Assumptions

Find λn ∈ R, un ∈ V \ {0}: a(un, v) = λnb(un, v) ∀v ∈ V

◮ V is a real Hilbert space

◮ a(·, ·) is continuous, bilinear, symmetric, V -elliptic

◮ b(·, ·) is continuous, bilinear, symmetric, positive semidefinite

◮ ‖v‖a = a(v , v)1/2 is the norm induced by a(·, ·)
◮ |v |b = b(v , v)1/2 is the seminorm induced by b(·, ·)
◮ | · |b is compact with respect to ‖ · ‖a,

i.e. from any sequence bounded in ‖ · ‖a, we can extract a

subsequence which is Cauchy in | · |b



Existence

Theorem. There exists (at most) countable sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

and the corresponding eigenfunctions can be normalized to satisfy

b(ui , uj) = δij ∀i , j = 1, 2, . . . .

Proof

◮ Solution operator S : V → V : a(Su, v) = b(u, v) ∀v ∈ V

◮ a(un, v) = λn b(un, v)
︸ ︷︷ ︸

a(Sun, v)

∀v ∈ V ⇔ Sun =
1

λn
un

◮ Exercise: compactness of | · |b with respect to ‖ · ‖a is
equivalent to compactness of S

◮ Hilbert–Schmidt theorem: µ1 ≥ µ2 ≥ µ3 ≥ · · · > 0, λn = 1/µn

because 0 < ‖un‖2a = λn|un|2b.
Note

1

λi

a(ui , uj) = δij ∀i , j = 1, 2, . . .

Orthonormal basis of eigenfunctions
Theorem. The space V can be decomposed as

V = K ⊕M,

where K = {v ∈ V : |v |b = 0} and M = span{u1, u2, . . . }.
Moreover,

a(u, v) = 0 ∀u ∈ K, ∀v ∈ M,

b(u, v) = 0 ∀u ∈ K, ∀v ∈ V . (∗)

Proof

◮ (∗) follows from |b(u, v)| ≤ |u|b|v |b = 0

◮ Hilbert–Schmidt theorem: V = (ker S)⊕M
Now, ker S = K, because
(a) u ∈ K ⇒ 0 = b(u, v) = a(Su, v) ∀v ∈ V

⇒ Su = 0 ⇒ u ∈ ker S
(b) u ∈ ker S ⇒ 0 = a(Su, u) = b(u, u) = |u|2b ⇒ u ∈ K

◮ Express v ∈ M as v =
∑∞

n=1 cnun and

a(u, v) =

∞
∑

n=1

cna(u, un) =

∞
∑

n=1

cnλnb(u, un)
(∗)
= 0.

Parseval’s identities

Theorem. For all v ∈ V , there are unique vK ∈ K and vM ∈ M
such that

v = vK + vM, vM =

∞
∑

n=1

cnun, cn = b(vM, un) = b(v , un)

|v |2b =

∞
∑

n=1

|b(v , un)|2,

‖v‖2a = ‖vK‖2a + ‖vM‖2a with ‖vM‖2a =
∞
∑

n=1

λn|b(v , un)|2.

Proof

◮ v = vK + vM = vK +
∑∞

n=1 cnun

◮ |v |2b = b(v , vK +
∑∞

n=1 cnun) =
∑∞

n=1 cnb(v , un)

◮ ‖v‖2a = ‖vM‖2a + ‖vK‖2a and ‖vM‖2a =
∑∞

n=1 λnc
2
n

Example 1: Dirichlet Laplacian

−∆un = λnun in Ω

un = 0 on ∂Ω

Weak formulation: Find λn ∈ R, un ∈ H1
0 (Ω) \ {0}:

(∇un,∇v) = λn(Iun, Iv) ∀v ∈ H1
0 (Ω),

where I : H1
0 (Ω) → L2(Ω) is the identity operator.

◮ V = H1
0 (Ω)

◮ a(u, v) = (∇u,∇v) . . . cont., bilin., sym., V -elliptic

◮ b(u, v) = (Iu, Iv) . . . cont., bilin., sym., pos. def.

◮ Compactness: I is a compact operator by Rellich theorem.
Definition: I is compact if from a sequence {vi} ⊂ H1

0 (Ω)
bounded in ‖∇v‖L2(Ω) ≤ C we can extract a subsequence

such that {Ivij} is Cauchy in L2(Ω).



Example 1: Dirichlet Laplacian

−∆un = λnun in Ω

un = 0 on ∂Ω

Exact solution for an interval Ω = (0, L)

λn =
n2π2

L2
, un(x) = sin

nπx

L
, n = 1, 2, 3, . . .

Easy to verify

u′n(x) =
nπ

L
cos

nπx

L

u′′n(x) = −n2π2

L2
sin

nπx

L
= −n2π2

L2
un(x)

Is it complete?

Exact solution for a square Ω = (0, π)2

λk,ℓ = k2 + ℓ2, uk,ℓ(x , y) = sin(kx) sin(ℓy), k , ℓ = 1, 2, . . .

λ1 = 2 (k = 1, ℓ = 1) λ6 = 10 (k = 1, ℓ = 3)

λ2 = 5 (k = 2, ℓ = 1) λ7 = 13 (k = 3, ℓ = 2)

λ3 = 5 (k = 1, ℓ = 2) λ8 = 13 (k = 2, ℓ = 3)

λ4 = 8 (k = 2, ℓ = 2) λ9 = 17 (k = 4, ℓ = 1)

λ5 = 10 (k = 3, ℓ = 1) λ10 = 17 (k = 1, ℓ = 4)

Example: Square
λ1 = 2, u1(x , y) = sin(x) sin(y)

λ2 = 5, u2(x , y) = sin(2x) sin(y)

λ3 = 5, u3(x , y) = sin(x) sin(2y)

Example: Two squares
λ1 = 2 λ2 = 2

λ3 = 5 λ4 = 5

λ5 = 5 λ6 = 5

Example: Dumbbell
λ1 ≈ 1.9558 λ2 ≈ 1.9607

λ4 ≈ 4.8299 λ3 ≈ 4.8008

λ5 ≈ 4.9968 λ6 ≈ 4.9968



2. Theory

2.2 Min-max principle

Minimum principle

Rayleigh quotien: R(v) =
a(v , v)

b(v , v)
=

‖v‖2a
|v |2b

Theorem. Numbers 0 < λ1 ≤ λ2 ≤ · · · and functions
u1, u2, · · · ∈ V \ {0} are eigenpairs of

a(un, v) = λnb(un, v) ∀v ∈ V

if and only if

λ1 = min
v∈V , |v |b 6=0

R(v) u1 = argmin
v∈V , |v |b 6=0

R(v),

λn = min
v∈M⊥

n−1

R(v) un = argmin
v∈M⊥

n−1

R(v),

where Mn−1 = span{u1, u2, . . . , un−1},
M⊥

n−1= {v ∈ M : b(v , ui ) = 0, ∀i = 1, 2, . . . , n − 1}
= {v ∈ V : b(v , ui ) = 0, ∀i = 1, 2, . . . , n − 1

and |v |b 6= 0}.

Minimum principle
Proof. (Including n = 1).
⇒ Let a(un, v) = λnb(un, v) ∀v ∈ V .
Then un ∈ M⊥

n−1, λn = R(un), and thus infM⊥

n−1
R(v) ≤ λn.

If v ∈ M⊥
n−1 then vK = 0, ci = b(v , ui ) = 0 for i = 1, . . . , n − 1, and

R(v) =
‖v‖2a
|v |2b

=

∑∞
i=n λic

2
i

∑∞
i=n c

2
i

≥ λn

∑∞
i=n c

2
i

∑∞
i=n c

2
i

= λn

⇐ The minimum is attained: ∃un ∈ M⊥
n−1 : λn = R(un).

Let t ∈ R, v ∈ M⊥
n−1 and ϕ(t) = R(un + tv).

Derivative ϕ′(0) exists and

ϕ′(0) =
2

|un|b

(

a(un, v)−
‖un‖2a
|un|2b

b(un, v)

)

Since ϕ(t) has a minimum at t = 0, we have ϕ′(0) = 0.
If v = ui , i = 1, 2, . . . , n − 1, then

b(un, ui ) = 0 and a(un, ui ) = λib(un, ui ) = 0.

(Courant–Fischer–Weyl) Min-max principle
Theorem.

λn = min
v∈M⊥

n−1

R(v) = min
E∈V(n)

max
v∈E

R(v)

where V(n) is the set of all n-dimensional subspaces of M.
Moreover, the mininum is attaind for E = span{u1, . . . , un}.
Proof. (Induction over n.)
n = 1: Since R(αv) = R(v) for all α 6= 0, we have

min
E∈V(1)

max
v∈E

R(v) = min
v∈M

R(v) = min
v∈V , |v |b 6=0

R(v)

n > 1: Let ˜V(n) ⊂ V(n) be a set of all spaces
˜E z = span{u1, . . . , un−1, z}, where b(z , ui ) = 0 for i = 1, . . . , n − 1.

min
E∈V(n)

max
v∈E

R(v) ≤ min
Ẽ z∈Ṽ(n)

max
v∈Ẽ z

R(v) = min
z∈M⊥

n−1

max
v∈Ẽ z

R(v)
(!)
= min

z∈M⊥

n−1

R(z)

To prove (!), let v ∈ ˜E z , |v |b = |z |b = 1. Thus,
v = αz +

∑n−1
i=1 ciui , |v |2b = α2 +

∑n−1
i=1 c2i = 1, and

R(v) = ‖v‖2a = α2‖z‖2a+
n−1
∑

i=1

c2i ‖ui‖2a ≤
(

α2 +

n−1
∑

i=1

c2i

)

‖z‖2a = R(z),

because z ∈ M⊥
i−1 for all i = 1, 2, . . . , n − 1 and R(ui ) ≤ R(z).

n > 1: (cont’d)
Let E ∈ V(n).
There exists z ∈ E : |z |b 6= 0 and b(z , ui ) = 0 for i = 1, 2, . . . , n − 1.

max
v∈E

R(v) ≥ R(z) ≥ min
z∈M⊥

n−1

R(z)



Example 2: Neumann Laplacian

−∆un = λnun in Ω

∂un
∂ν

= 0 on ∂Ω

Weak formulation: Find λn ∈ R, un ∈ H1(Ω) \ {0}:

(∇un,∇v) = λn(un, v) ∀v ∈ H1(Ω)

Problem: u0 ≡ 1, λ0 = 0
⇒ bilinear form a(u, v) = (∇u,∇v) is not H1(Ω)-elliptic.

◮ V = {v ∈ H1(Ω) :
∫

Ω v = 0}
◮ a(u, v) = (∇u,∇v) . . . cont., bilin., sym., V -elliptic

◮ b(u, v) = (u, v) . . . cont., bilin., sym., pos. def.

◮ Compactness: by Rellich theorem.

Exact solution for a square Ω = (0, π)2

λk,ℓ = k2 + ℓ2, uk,ℓ(x , y) = cos(kx) cos(ℓy), k , ℓ = 0, 1, 2, . . .

λ0 = 0 (k = 0, ℓ = 0) λ5 = 4 (k = 0, ℓ = 2)

λ1 = 1 (k = 1, ℓ = 0) λ6 = 5 (k = 2, ℓ = 1)

λ2 = 1 (k = 0, ℓ = 1) λ7 = 5 (k = 1, ℓ = 2)

λ3 = 2 (k = 1, ℓ = 1) λ8 = 8 (k = 2, ℓ = 2)

λ4 = 4 (k = 2, ℓ = 0) λ9 = 9 (k = 3, ℓ = 0)

Example 2: Neumann Laplacian

λ1 = 1 λ2 = 1 λ3 = 2 λ4 = 4

λ5 = 4 λ6 = 5 λ7 = 5 λ8 = 8

Example 3: Steklov eigenvalue problem

−∆un + un = 0 in Ω

∂un
∂ν

= λnun on ∂Ω

Weak formulation: Find un ∈ H1(Ω), ‖un‖L2(∂Ω) 6= 0, and λn ∈ R:

(∇un,∇v) + (un, v) = λn(γun, γv)∂Ω ∀v ∈ H1(Ω)

◮ V = H1(Ω), V = K ⊕M, K = {v ∈ H1(Ω) : γv = 0 on ∂Ω}
M = {v ∈ H1(Ω) : γv 6= 0 on ∂Ω}

◮ a(u, v) = (∇u,∇v) + (u, v) . . . cont., bilin., sym., V -elliptic

◮ b(u, v) = (u, v)∂Ω . . . cont., bilin., sym., pos. semidefinite

◮ Compactness:
Trace operator γ : H1(Ω) → L2(∂Ω) is compact

[Kufner, John, Fuč́ık 1997], [Biegert 2009]

Exact solution for a square Ω = (−L, L)2

λ1 =

√
2

2
tanh

(√
2

2
L

)

, u1(x , y) = cosh

(√
2

2
x

)

cosh

(√
2

2
y

)

λ2 =?

λ3 =?

λ4 =

√
2

2
coth

(√
2

2
L

)

, u4(x , y) = sinh

(√
2

2
x

)

sinh

(√
2

2
y

)

Example 3: Steklov eigenvalue problem (L = π/2)

λ1 = 0.5687 λ2 = 0.7610 λ3 = 0.7610 λ4 = 0.8791

λ5 = 1.739 λ6 = 1.739 λ7 = 1.763 λ8 = 1.763



2. Theory

2.3 Optimal constants

Optimal constants
Abstract eigenvalue problem: Find λn ∈ R, un ∈ V \ {0}:

a(un, v) = λnb(un, v) ∀v ∈ V

Theorem

|v |b ≤ λ
−1/2
1 ‖v‖a ∀v ∈ V , with equality for v = u1.

Proof
Let v ∈ V , |v |b 6= 0.

λ1 = min
w∈V ,|w |b 6=0

‖w‖2a
|w |2b

≤ ‖v‖2a
|v |2b

⇔ |v |2b ≤ λ−1
1 ‖v‖2a

Example 1: Dirichlet Laplacian.
V = H1

0 (Ω), ‖v‖a = ‖∇v‖L2(Ω) |v |b = ‖v‖L2(Ω)

Corollary 1. The optimal constant in Friedrichs inequality

‖v‖L2(Ω) ≤ CF‖∇v‖L2(Ω) ∀v ∈ H1
0 (Ω) is CF = λ

−1/2
1 ,

where λ1 is the principal eigenvalue of the Dirichlet Laplacian.

◮ Ω = (0, L) ⇒ CF = L
π

◮ Ω = (0, L1)× (0, L2) ⇒ CF = 1
π

(

1
L21

+ 1
L22

)−1/2

Example 2: Neumann Laplacian.
V = {v ∈ H1(Ω) :

∫

Ω v dx = 0}, ‖v‖a = ‖∇v‖L2(Ω), |v |b = ‖v‖L2(Ω)

Corollary 2. The optimal constant in Poincaré inequality

‖v‖L2(Ω) ≤ CP‖∇v‖L2(Ω) ∀v ∈ H1(Ω),

∫

Ω
v dx = 0, is CP = λ

−1/2
1 ,

where λ1 is the principal eigenvalue of the Neumann Laplacian.

◮ Ω = (0, L1)× (0, L2) ⇒ CP =
max{L1, L2}

π

Optimal constants
Abstract eigenvalue problem: Find λn ∈ R, un ∈ V \ {0}:

a(un, v) = λnb(un, v) ∀v ∈ V

Theorem

|v |b ≤ λ
−1/2
1 ‖v‖a ∀v ∈ V , with equality for v = u1.

Example 3: Steklov eigenvalue problem.
V = H1(Ω), ‖v‖2a = ‖∇v‖2

L2(Ω) + ‖v‖2
L2(Ω), |v |b = ‖v‖L2(∂Ω)

Corollary 3. The optimal constant in trace inequality

‖v‖L2(∂Ω) ≤ CT‖v‖H1(Ω) ∀v ∈ H1(Ω) is CT = λ
−1/2
1 ,

where λ1 is the principal eigenvalue of the Steklov problem.

◮ Ω = (−L, L)2 ⇒ CT =
(√

2 coth(
√
2L/2)

)1/2

3. Rayleigh–Ritz (Galerkin)

method



Rayleigh–Ritz (Galerkin) method

Eigenvalue problem: Find λn ∈ R, un ∈ V \ {0}:

a(un, v) = λnb(un, v) ∀v ∈ V

Finite dimensional subspace: Vh ⊂ V , dimVh = N < ∞.

Discrete eigenvalue problem: Find λh,n ∈ R, uh,n ∈ Vh \ {0}:

a(uh,n, vh) = λh,nb(uh,n, vh) ∀vh ∈ Vh

Properties
Discrete eigenvalue problem: Find λh,n ∈ R, uh,n ∈ Vh \ {0}:

a(uh,n, vh) = λh,nb(uh,n, vh) ∀vh ∈ Vh

◮ 0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,N

◮

1

λh,i

a(uh,i , uh,j) = b(uh,i , uh,j) = δij ∀i , j = 1, 2, . . . ,N.

◮ Minimum principle:

λh,1 = min
vh∈Vh, |vh|b 6=0

R(vh) uh,1 = argmin
vh∈Vh, |vh|b 6=0

R(vh),

λh,n = min
vh∈M

⊥

h,n−1

R(vh) uh,n = argmin
vh∈M

⊥

h,n−1

R(vh),

where M⊥
h,n−1 = {vh ∈ Vh : |vh|b 6= 0 and b(vh, uh,i ) = 0

∀i = 1, 2, . . . , n − 1}.
Min-max principle:

λh,n = min
Eh∈V

(n)
h

max
vh∈Eh

R(vh)

where V(n)
h is the set of all n-dimensional subspaces of Vh.

◮ Theorem.
λn ≤ λh,n, n = 1, 2, . . . ,N

Proof.

V(n)
h ⊂ V(n) ⇒ λn = min

E∈V(n)
max
v∈E

R(v) ≤ λh,n

4. Lower bounds on eigenvalues

4.1 Weinstein’s bound

Lower bounds – history

Standard (conforming) approach:
Temple (1928), Weinstein (1937), Kato (1949),
Lehmann (1949), Goerisch (1985), . . .

Nonconforming FEM:
Carstensen, Gedicke, Gallistl (2014), Xuefeng LIU (2015), . . .

Many results: M.G. Armentano, G. Barrenechea, H. Behnke,
R.G. Duran, L. Grubǐsić, Jun Hu, J.R. Kuttler, Y.A. Kuznetsov,
Fubiao Lin, Qun Lin, M. Plum, S.I. Repin, V.G. Sigillito,
M. Vohraĺık, Hehu Xie, Yidu Yang, Zhimin Zhang, . . .many others



Recall
Find λn ∈ R and un ∈ V \ {0} such that

a(un, v) = λnb(un, v) ∀v ∈ V

◮ V is a Hilbert space.

◮ a(·, ·) and b(·, ·) are two bilinear forms on V .

◮ V = K ⊕M
◮ K = {v ∈ V : |v |b = 0}
◮ M = span{u1, u2, . . . }
◮ v = vK + vM

◮ vM =
∞
∑

n=1
cnun, cn = b(vM, un) = b(v , un)

◮ |v |2b =
∞
∑

n=1
|b(v , un)|2

◮ ‖v‖2a = ‖vK‖2a + ‖vM‖2a with ‖vM‖2a =
∞
∑

n=1
λn|b(v , un)|2

Weinstein’s bound
Theorem
Let λ∗ ∈ R and u∗ ∈ V with |u∗|b 6= 0 be arbitrary and w ∈ V be
given by

a(w , v) = a(u∗, v)− λ∗b(u∗, v) ∀v ∈ V .

Then
min
j

|λj − λ∗|2
λj

≤ ‖w‖2a
|u∗|2b

.

Proof: w = wK + wM

‖wM‖2a =
∞
∑

j=1

λj |b(w , uj)|2 =
∞
∑

j=1

|a(w , uj)|2
λj

=

∞
∑

j=1

|a(u∗, uj)− λ∗b(u∗, uj)|2
λj

=

∞
∑

j=1

|λj − λ∗|2
λj

|b(u∗, uj)|2

Thus,

‖w‖2a ≥ ‖wM‖2a ≥ min
j

|λj − λ∗|2
λj

∞
∑

j=1

|b(u∗, uj)|2

Weinstein’s bound
Corollary: Let λn has multiplicity m, i.e.,
λn−1 6= λn = · · · = λn+m−1 6= λn+m. If

√

λn−1λn ≤ λ∗ ≤
√

λnλn+m (closeness)

and
‖w‖a ≤ η

then
ℓn ≤ λn,

where ℓn =
1

4|u∗|2b

(

−η +
√

η2 + 4λ∗|u∗|2b
)2

.

Proof: Clearly,

(λn − λ∗)
2

λn
= min

j

|λj − λ∗|2
λj

≤ ‖w‖2a
|u∗|2b

≤ η2

|u∗|2b
and solve for λn.

Complementary upper bound on the residual

Laplace eigenvalue problem: Find λn and un ∈ H1
0 (Ω) \ {0}:

(∇un,∇v) = λn(un, v) ∀v ∈ H1
0 (Ω)

Definition. Flux q ∈ H(div,Ω) is equilibrated if − div q = λ∗u∗.

Theorem. If q is an equilibrated flux then

‖∇w‖0 ≤ η = ‖∇u∗ − q‖0.

Proof: Let v ∈ H1
0 (Ω), then

(∇w ,∇v) = (∇u∗,∇v)− λ∗(u∗, v)− (div q, v)− (q,∇v)

= (∇u∗ − q,∇v)− (λ∗u∗ + div q, v)

≤ ‖∇u∗ − q‖0‖∇v‖0

[Neittaanmäki, Repin 2004], [Repin 2008], [Braess, Schöberl, 2008],

[Ainsworth, Vejchodský 2011,2014], [Vohraĺık at al.]



Avoiding equilibration

Shifted eigenvalue problem:

(∇un,∇v) + γ(un, v)
︸ ︷︷ ︸

aγ(un, v)

= (λn + γ)(un, v) ∀v ∈ H1
0 (Ω)

Theorem. Let q ∈ H(div,Ω) and γ > 0. Then

‖∇w‖0 ≤ ‖w‖aγ ≤ η, η2 = ‖∇u∗ − q‖20 +
1

γ
‖λ∗u∗ + div q‖20

Proof:
aγ(w , v) = (∇u∗,∇v)− λ∗(u∗, v)− (div q, v)− (q,∇v)

= (∇u∗ − q,∇v)− (λ∗u∗ + div q, v)

≤ ‖∇u∗ − q‖0‖∇v‖0 + γ−1/2‖λ∗u∗ + div q‖0 γ1/2‖v‖0
≤
(

‖∇u∗ − q‖20 + γ−1‖λ∗u∗ + div q‖20
)1/2 (‖∇v‖20 + γ‖v‖20

)1/2

Thus, ‖w‖2aγ ≤ ‖∇u∗ − q‖20 + γ−1‖λ∗u∗ + div q‖20

How to compute q?
Global flux reconstruction: Find qh ∈ Wh ⊂ H(div,Ω) minimizing

η2 = ‖∇u∗ − qh‖20 +
1

γ
‖λ∗u∗ + div qh‖20

FEM space:
Vh = {vh ∈ V : vh|K ∈ P

1(K ) ∀K ∈ Th}
FEM approximation:
u∗ = uh,n ∈ Vh, λ∗ = λh,n

Raviart–Thomas space:
RT1(K ) = [P1(K )]2 ⊕ xP1(K ) (local)
Wh = {qh ∈ H(div,Ω) : qh|K ∈ RT1(K ) ∀K ∈ Th} (global)
Euler–Lagrange equations:

(qh,wh) +
1

γ
(div qh, divwh) = (∇u∗,wh)−

1

γ
(λ∗u∗, divwh)

∀wh ∈ Wh

Equivalent to linear system:

My = F ,

where qh =
∑

j yjψj , Mij = (ψj ,ψi ) +
1

γ
(divψj , divψi ),

Fi = (∇u∗,ψi )−
1

γ
(λ∗u∗, divψi )

Example: dumbbell

−∆un = λnun in Ω = dumbbell

un = 0 on ∂Ω

Rel. error:
|λn − λh,n|

λn
≤ λh,n − ℓn

ℓn
γ = 10−6
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h
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degrees of freedom

10 -3

10 -2

10 -1

10 0

re
la

ti
v
e
 e

rr
o
r

Uniform, dumbbell, lambda1

Local flux reconstruction

Flux reconstruction:
z

ΓE
z

ωz

qh =
∑

z∈Nh

qz

Local problems: Find qz ∈ Wz minimizing

‖ϕz∇u∗ − qz‖2L2(ωz )
+

1

γ
‖λ∗ϕzu∗ + div qz‖2L2(ωz )

Euler–Lagrange equations:

(qz ,wh)ωz
+
1

γ
(div qz , divwh)ωz

= (ϕz∇u∗,wh)ωz

−1

γ
(λ∗ϕzu∗, divwh)ωz

∀wh ∈ Wz

Patch of elements: ωz =
⋃{K ∈ Th : z ∈ K}

Partition of unity:
∑

z∈Nh
ϕz = 1

Wz = {q ∈ H(div, ωz) : q|K ∈ RT1(K ) ∀K ⊂ ωz , q · nz = 0 on ΓE
z
}



Example: dumbbell

−∆un = λnun in Ω = dumbbell

un = 0 on ∂Ω

Rel. error:
|λn − λh,n|

λn
≤ λh,n − ℓn

ℓn
γ = 10−6

10 -3 10 -2 10 -1 10 0

h
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Uniform, dumbbell, lambda1

global

local

Closeness assumption for dumbbell

√

λn−1λn ≤ λ∗ ≤
√

λnλn+m ⇒ ℓn ≤ λn

Exact eigenvalues: λ1 = 1.955793794588, λ2 = 1.960683031595

h ℓ1 λh,1 closeness

h1 = 1.1781 1.6618 2.0228 no
h2 = 0.5890 1.7711 1.9759 no
h3 = 0.2945 1.8449 1.9620 no
h4 = 0.1473 1.8899 1.9578 yes
h5 = 0.0736 1.9163 1.9565 yes
h6 = 0.0368 1.9319 1.9560 yes
h7 = 0.0184 1.9411 1.9559 yes

Weinstein’s bound – summary

◮ easy to use

◮ it is a generalization of Bauer–Fike estimates for matrices

◮ good for general symmetric elliptic problems

◮ sub-optimal speed of convergence

◮ a priori information on spectrum needed for guaranteed lower
bounds

4. Lower bounds on eigenvalues

4.2 Lehmann–Goerisch method



Lehmann–Goerisch method

General setting:
Find λn ∈ R and un ∈ V \ {0} such that

a(un, v) = λnb(un, v) ∀v ∈ V

Lehmann method
Theorem
Let λ̃N < ρ ≤ λN+1

◮ ũ1, ũ2, . . . , ũN ∈ V be linearly independent

◮ A0,ij = a(ũi , ũj)

◮ A1,ij = b(ũi , ũj)

◮ wi ∈ V : a(wi , v) = b(ũi , v) ∀v ∈ V

A2,ij = a(wi ,wj)

◮ µ1 ≤ µ2 ≤ · · · ≤ µN : (ρA1−A0)x = µ(A0−2ρA1+ρ2A2)x

Then 0 < µ1 and

ρ− ρ

1 + µn
≤ λn, n = 1, 2, . . . ,N.

[Lehmann 1949, 1950], [Goerisch, Haunhorst 1985]

Lehmann–Goerisch method
Theorem
Let λ̃N < ρ ≤ λN+1

◮ ũ1, ũ2, . . . , ũN ∈ V be linearly independent

◮ A0,ij = a(ũi , ũj)

◮ A1,ij = b(ũi , ũj)

◮ X . . . vector space
B . . . positive semidefinite symmetric bilinear form on X

T : V → X . . . linear operator:
(a) B(Tu,Tv) = a(u, v) ∀u, v ∈ V

(b) ŵi ∈ X : B(ŵi ,Tv) = b(ũi , v) ∀v ∈ V

(c) Â2,ij = B(ŵi , ŵj)

◮ µ̂1 ≤ µ̂2 ≤ · · · ≤ µ̂N : (ρA1−A0)x̂ = µ̂(A0−2ρA1+ρ2Â2)x̂

Then 0 < µ̂1 and

ρ− ρ

1 + µ̂n
≤ λn, n = 1, 2, . . . ,N.

[Lehmann 1949, 1950], [Goerisch, Haunhorst 1985]

Proof: Lehmann ⇒ Goerisch

It suffices to show that Â2 − A2 is positive semidefinite, because

⇒ 0 < µ̂i ≤ µi for all i = 1, 2, . . . ,N,

⇒ ρ− ρ

1 + µ̂n
≤ ρ− ρ

1 + µn
≤ λn.

To show that Â2 − A2 is positive semidefinite:
Let x ∈ R

N , ũ =
∑N

i=1 xi ũi , w =
∑N

i=1 xiwi , ŵ =
∑N

i=1 xi ŵi , and

0 ≤ B(ŵ− Tw , ŵ− Tw) = B(ŵ, ŵ)− 2 B(ŵ,Tw)
︸ ︷︷ ︸

(b)
= b(ũ,w)
= a(w ,w)

+B(Tw ,Tw)
︸ ︷︷ ︸

(a)
= a(w ,w)

.

Thus,

0 ≤ B(ŵ, ŵ)− a(w ,w)
(c)
= x

T (Â2 − A2)x .



Application to Laplace eigenvalue problem

(∇ui ,∇v) + γ(ui , v) = (λi + γ)(ui , v) ∀v ∈ H1
0 (Ω), Ω ⊂ R

2

Setting
◮ V = H1

0 (Ω), a(u, v) = (∇u,∇v) + γ(u, v), b(u, v) = (u, v)

◮ X =
[

L2(Ω)
]3

◮ B(û, v̂) = (û1, v̂1) + (û2, v̂2) + γ(û3, v̂3)

◮ Tu =

(

∇u

u

)

Facts

(a) B(Tu,Tv) = a(u, v)

(b) B(ŵi ,Tv) = b(ũi , v) ⇐ ŵi =

(

σi

ŵi ,3

)

=

(

σi
1
γ
(ũi + divσi )

)

σi ∈ H(div,Ω)

(σi ,∇v) + γ(ŵi ,3, v) = (ũi , v) ∀v ∈ V

−(divσi , v) + γ(ŵi ,3, v) = (ũi , v) ∀v ∈ V

ŵi ,3 =
1

γ
(ũi + divσi )

(c) Â2,ij = B(ŵi , ŵj) ⇔ Â2,ij = (σi ,σj) +
1
γ
(ũi + divσi , ũj + divσj)

Application to Laplace eigenvalue problem
Theorem (Lehmann–Goerisch)
Let λ̃N + γ < ρ ≤ λN+1 + γ, γ > 0

◮ ũ1, ũ2, . . . , ũN ∈ V be linearly independent

◮ A0,ij = (∇ũi ,∇ũj) + γ(ũi , ũj)

◮ A1,ij = (ũi , ũj)

◮ σ1,σ2, . . . ,σN ∈ H(div,Ω) be arbitrary
Â2,ij = (σi ,σj) +

1
γ
(ũi + divσi , ũj + divσj)

◮ µ̂1 ≤ µ̂2 ≤ · · · ≤ µ̂N : (ρA1−A0)x̂ = µ̂(A0−2ρA1+ρ2Â2)x̂

Then 0 < µ̂1 and

ℓn = ρ− γ − ρ

1 + µ̂n
≤ λn, n = 1, 2, . . . ,N

[Behnke, Mertins, Plum, Wieners 2000]

How to find good ŵi?

Observation: Let ũi ≈ ui and λ̃i ≈ λi .

⇒ a(wi , v) = b(ũi , v) ≈ 1
λ̃i
a(ũi , v) ∀v ∈ V

⇒ wi ≈ 1
λ̃i
ũi

Need

⇒ Â2 ≈ A2

⇒ B(ŵi , ŵj) ≈ a(wi ,wj)
(a)
= B(Twi ,Twj)

⇒ ŵi ≈ Twi ≈ 1
λ̃i
Tũi

Natural idea
make | 1

λ̃i
Tũi − ŵi |2B small

For Laplacian: Find σh,i ∈ H(div,Ω) that

makes

∥

∥

∥

∥

∇uh,i

λh,i + γ
− σh,i

∥

∥

∥

∥

2

0

+
1

γ

∥

∥

∥

∥

λh,iuh,i

λh,i + γ
+ divσh,i

∥

∥

∥

∥

2

0

small

Choice of σi – global

Global minimization:
Find σh,i ∈ Wh ⊂ H(div,Ω), i = 1, 2, . . . ,N, that minimizes

∥

∥

∥

∥

∇uh,i

λh,i + γ
− σh,i

∥

∥

∥

∥

2

0

+
1

γ

∥

∥

∥

∥

λh,iuh,i

λh,i + γ
+ divσh,i

∥

∥

∥

∥

2

0

Euler–Lagrange equations:

(σh,i ,wh)+
1

γ
(divσh,i , divwh) =

( ∇uh,i

λh,i + γ
,wh

)

−1

γ

(

λh,iuh,i

λh,i + γ
, divwh

)

∀wh ∈ Wh

Wh = {σh ∈ H(div,Ω) : σh|K ∈ RT1(K ) ∀K ∈ Th}



Choice of σi – local
Flux reconstruction:

z

ΓE
z

ωzσh,i =
∑

z∈Nh

σz ,i

Local problems: Find σz ,i ∈ Wz , i = 1, 2, . . . ,N minimizing
∥

∥

∥

∥

ϕz

∇uh,i

λh,i + γ
− σz ,i

∥

∥

∥

∥

2

0,ωz

+
1

γ

∥

∥

∥

∥

λh,iϕzuh,i

λh,i + γ
+ divσz ,i

∥

∥

∥

∥

2

0,ωz

Euler–Lagrange equations:

(σz ,i ,wh)ωz
+

1

γ
(divσz ,i , divwh)ωz

=

(

ϕz

∇uh,i

λh,i + γ
,wh

)

ωz

− 1

γ

(

ϕzλh,iuh,i

λh,i + γ
, divwh

)

ωz

∀wh ∈ Wz

Patch of elements: ωz =
⋃

{K ∈ Th : z ∈ K}
Partition of unity:

∑

z∈Nh
ϕz = 1

Wz = {σ ∈ H(div, ωz) : σ|K ∈ RT1(K ) ∀K ⊂ ωz , σ · nz = 0 on ΓE
z
}

Comparison of flux reconstructions

Weinstein: Find qh,i ∈ Wh minimizing

‖∇uh,i − qh,i‖20 +
1

γ
‖λh,iuh,i + div qh,i‖20

Lehmann–Goerisch: Find σh,i ∈ Wh minimizing

∥

∥

∥

∥

∇uh,i

λh,i + γ
− σh,i

∥

∥

∥

∥

2

0

+
1

γ

∥

∥

∥

∥

λh,iuh,i

λh,i + γ
+ divσh,i

∥

∥

∥

∥

2

0

Thus,

σh,i =
qh,i

λh,i + γ

[Vejchodský 2018]

Example: dumbbell

−∆un = λnun in Ω = dumbbell

un = 0 on ∂Ω

Rel. error:
|λn − λh,n|

λn
≤ λh,n − ℓn

ℓn
γ = 10−6
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How to get the a priori lower bound ρ?

Monotonicity principle: If V ⊂ ˜V then V(n) ⊂ ˜V(n) and

λ̃n = min
E∈Ṽ(n)

max
v∈E

R(v) ≤ min
E∈V(n)

max
v∈E

R(v) = λn

Example 1.
Ω ⊂ ˜Ω ⇒ H1

0 (Ω) ⊂ H1
0 (
˜Ω) ⇒ λ̃n ≤ λn

Example 2.
H1
0 (Ω) ⊂ H1(Ω) ⇒ λNeumann

n ≤ λDirichlet
n

Homotopy

Ω(0) Ω(1) Ω(2) Ω(3) Ω(4)

Analytically:

12.16 ≤ λ
(0)
17

ρ = 12.16
ℓ15

.
= 11.39

ρ = 11.39
ℓ13

.
= 10.77

ρ = 10.77
ℓ11

.
= 9.988

ρ = 9.988

[Plum 1990, 1991]



Adaptive mesh refinement

Recall the residual

w ∈ V : (∇w ,∇v) = (∇uh,i ,∇v)− λh,i (uh,i , v) ∀v ∈ V

Recall theorem:

‖∇w‖0 ≤ η, where η2 = ‖∇uh,i−qh,i‖2L2(Ω)+
1

γ
‖λh,iuh,i+div qh,i‖2L2(Ω)

Local error indicators for mesh refinement:

η2K = ‖∇uh,i − qh,i‖2L2(K) +
1

γ
‖λh,iuh,i + div qh,i‖2L2(K)

Note: Good for both Weinstein and Lehmann–Goerisch method:

σh,i =
qh,i

λh,i + γ

Example: dumbbell

−∆ui = λiui in Ω

ui = 0 on ∂Ω
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1

5.15

p=1

p=2

p=3

p=4

p=5

Weinstein

Kato

Leh-Goe

2 3 4 5 6 7 8 9 10

Computed bounds (p = 5, adaptive):

1.9557937945883 ≤ λ1 ≤ 1.9557937945884

1.9606830315950 ≤ λ2 ≤ 1.9606830315951

4.8007611240339 ≤ λ3 ≤ 4.8007611240345

4.8298952545005 ≤ λ4 ≤ 4.8298952545010

4.9968370972489 ≤ λ5 ≤ 4.9968370972490

4.9968509041015 ≤ λ6 ≤ 4.9968509041016

7.9869672921028 ≤ λ7 ≤ 7.9869672921038

7.9870343068216 ≤ λ8 ≤ 7.9870343068227

Lehmann–Goerisch method – summary

◮ optimal speed of convergence

◮ implementation based on standard FEM

◮ adaptivity for free

◮ naturally generalize to higher orders

◮ good for a wide class of problems

◮ an a priori lower bound on some eigenvalue is needed

4. Lower bounds on eigenvalues

4.3 Interpolation constant

based methods

[Carstensen, Gallistl, Gedicke 2014], [Liu 2015]



Nonconforming approximation

Eigenvalue problem: Find λn and un ∈ V \ {0} such that

a(un, v) = λnb(un, v) ∀v ∈ V

Finite dimensional space: dimVh = N < ∞, but it can be Vh 6⊂ V .
Discrete eigenvalue problem: Find λh,n ∈ R, uh,n ∈ Vh \ {0}:

a(uh,n, vh) = λh,nb(uh,n, vh) ∀vh ∈ Vh

Definition:
V (h) = V + Vh = {v + vh : v ∈ V , vh ∈ Vh}
Extensions of bilinear forms:
ah, bh : V (h)× V (h) → R

ah(u, v) = a(u, v) and bh(u, v) = b(u, v) ∀u, v ∈ V

ah(·, ·) is symmetric and V (h)-elliptic
bh(·, ·) is symmetric and positive semidefinite on V (h)
Notation: a = ah and b = bh

Lemmas

Lemma 1 (Discrete Friedrichs inequality).

|vh|b ≤ λ
−1/2
h,1 ‖vh‖a ∀vh ∈ Vh

Proof. λh,1 = min
wh∈Vh

‖wh‖2a
|wh|2b

≤ ‖vh‖2a
|vh|2b

Elliptic projection: Ph : V (h) → Vh

a(u − Phu, vh) = 0 ∀vh ∈ Vh

Lemma 2.
‖u‖2a = ‖Phu‖2a + ‖u − Phu‖2a

Proof.
‖u − Phu‖2a = ‖u‖2a − 2a(u,Phu) + ‖Phu‖2a

a(u,Phu) = a(Phu,Phu) = ‖Phu‖2a

Lower bound
Theorem. Let |u − Phu|b ≤ Ch‖u − Phu‖a. Then

λh,n

1 + λh,nC
2
h

≤ λn, n = 1, 2, . . . ,N.

Proof (for λ1 only). Let v ∈ V .

|v |b ≤ |Phv |b + |v − Phv |b
≤ λ

−1/2
h,1 ‖Phv‖a + Ch‖v − Phv‖a

≤
(

λ−1
h,1 + C 2

h

)1/2
(

‖Phv‖2a + ‖v − Phv‖2a
)1/2

=

(

1 + λh,1C
2
h

λh,1

)1/2

‖v‖a

λ1 = min
v∈V

‖v‖2a
|v |2b

≥ λh,1

1 + λh,1C
2
h

Crouzeix–Raviart (CR) elements

Laplace eigenvalue problem: Find λn ∈ R, un ∈ H1
0 (Ω) \ {0}:

(∇un,∇v) = λn(un, v) ∀v ∈ H1
0 (Ω)

CR space: vh ∈ VCR

h if

◮ vh|K ∈ P
1(K )

◮ vh is continuous at midpoints of interior edges

◮ vh = 0 at midpoints of boundary edges

CR eigenvalue problem: Find λCR

h,i ∈ R, uCR

h,i ∈ VCR

h \ {0} :

(∇uCR

h,i ,∇vh) = λCR

h,i (u
CR

h,i , vh) ∀vh ∈ VCR

h .



Crouzeix–Raviart interpolation
Let ei , i = 1, 2, 3, be edges of triangle K .
Definition: Πh : H1(K ) → P

1(K ) such that
∫

ei

u − Πhu ds = 0 ∀i = 1, 2, 3.

Note: If mi is a midpoint of ei then Πhu(mi ) =
1

|ei |

∫

ei

u ds.

Lemma. Πh = Ph

Proof.
Let u ∈ H1(Ω)⊕ VCR

h and vh ∈ VCR

h .

a(u − Πhu, vh) =
∑

K∈Th

∫

K

∇(u − Πhu) · ∇vh

=
∑

K∈Th







3
∑

i=1

∫

ei

(u − Πhu)
∂vh
∂n
︸︷︷︸

=const.

ds −
∫

K

(u − Πhu) ∆vh
︸︷︷︸

=0

dx






= 0

The value of Ch

Interpolation error estimate:

‖u − Πhu‖L2(Ω) ≤ Ch‖∇u −∇Πhu‖L2(Ω)

Local interpolation error estimate:

‖u − Πhu‖L2(K) ≤ Ch(K )‖∇u −∇Πhu‖L2(K)

Lemma.
Ch ≤ max

K∈Th
Ch(K )

Proof.

‖u−Πhu‖2L2(Ω) =
∑

K∈Th

‖u−Πhu‖2L2(K) ≤
∑

K∈Th

C 2
h (K )‖∇u−∇Πhu‖2L2(K)

≤ max
K∈Th

C 2
h (K )‖∇u −∇Πhu‖2L2(Ω)

Explicit estimates of Ch

Interval

◮ Ch = h/π

Triangle

◮ Ch = 0.4396h [Carstensen, Gedicke 2014]

◮ Ch = 0.2983h [Carstensen, Gallistl 2014]

◮ Ch = 0.1893h [Liu 2015]

Tetrahedron

◮ Ch = 0.3804h [Liu 2015]

Explicit estimate of Ch for an interval

Setting: Ω = (α, β), V = H1
0 (α, β),

a(u, v) =
∫ β

α
u′v ′ dx , b(u, v) =

∫ β

α
uv dx

Partition: α = z0 < z1 < · · · < zN = β
Elements: Ki = [zi−1, zi ], i = 1, 2, . . . ,N,

hi = zi − zi−1, h = maxi=1,...,N hi
CR space: Vh = {v ∈ H1

0 (α, β) : v |Ki
∈ P

1(Ki ), i = 1, 2, . . . ,N}
Interpolation: Πh : H1

0 (α, β) → Vh

(Πhu)(xi ) = u(xi ), i = 0, . . . ,N
Lemma.

‖u − Πhu‖L2(Ω) ≤
h

π
‖u′ − (Πhu)

′‖L2(Ω)

Proof.

min
v∈H1(Ki )

R(v−Πhv) = min
w∈H1

0 (Ki )
R(w) = R

(

sin
π(x − zi )

hi

)

= π2/h2i



Upper bound

Interpolation to continuous functions: I : VCR

h → ˜Vh ⊂ H1(Ω)
Examples:

◮ Oswald quasi-interpolation [Oswald 1994]

◮ Interpolation to refined mesh [Carstensen, Merdon 2013]

Upper bound

◮ T ∗
h is the red refinement of Th

◮ u∗h,i = ICMũCR

h,i for i = 1, 2, . . . ,m

◮ S ,Q ∈ R
m×m with entries S j ,k = (∇u∗h,j ,∇u∗h,k) and

Q j ,k = (u∗h,j , u
∗
h,k)

◮ Syi = Λ∗
i Qyi , i = 1, 2, . . . ,m

◮ Λ∗
1 ≤ Λ∗

2 ≤ · · · ≤ Λ∗
m

◮ λi ≤ Λ∗
i for i = 1, 2, . . . ,m

Example: dumbbell

−∆un = λnun in Ω = dumbbell

un = 0 on ∂Ω

Rel. error:
|λn − λh,n|

λn
≤ λh,n − ℓn

ℓn
γ = 10−6
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Interpolation constant based method – summary

◮ no a priori information needed

◮ optimal speed of convergence

◮ easy to implement

◮ interpolation constant known in special cases only

◮ adaptivity is not for free

◮ higher order variant is not available

5. Guaranteed bounds on

eigenfunctions

[work in progress, collaboration with X. Liu]



Laplace eigenvalue problem in a rectangle
α = 1.27, λ4 = 6.4800 α = 1.28, λ4 = 6.4414

α = 1.29, λ4 = 6.4037 α = 1.30, λ4 = 6.3254

π

απ

Laplace eigenvalue problem in a rectangle

−∆un = λnun in Ω = (0, απ)× (0, π)

un = 0 on ∂Ω

Dependence of eigenvalues on α

1 2 3 4
0

2

4

6

8

10

1 , 1

2 , 1

1 , 2

2 , 2

3 , 1

1 , 3

λk,m =
k2

α2
+m2

uk,m = sin
kx

α
sin(my)

α∗ =
√

5/3
≈ 1.2910

[Trefethen, Betcke 2006]

Error bounds on eigenfunctions

Problem

◮ Eigenfunctions may be ill-posed ⇒ spaces of eigenfunctions

◮ Directed distance of spaces δ(E ,Eh) [Meyer 2000]

Assume

◮ λn, λn+1, . . . , λN (cluster)

◮ E = span{un, un+1, . . . , uN} (space of eigenfunctions)

◮ Eh = span{uh,n, uh,n+1, . . . , uh,N} (its approximation)

◮ ℓi ≤ λi ≤ λh,i (two sided bounds on eigenvalues)

⇒
Compute an upper bound on δ(E ,Eh)

Directed distance of spaces

Definition
Let E and Eh be two subspaces of a Hilbert space V then

δ(E ,Eh) = max
v∈E
‖v‖=1

min
vh∈Eh

‖v − vh‖

Properties

◮ if dimE = dimEh then δ(E ,Eh) = δ(Eh,E )

◮ δ2(E ,Eh) = 1− min
v∈E
‖v‖=1

max
vh∈Eh

‖vh‖=1

|(v , vh)|2

Example
Let E = span{u} and Eh = span{uh} then

δ2(E ,Eh) = 1− |(u, uh)|2
‖u‖2‖uh‖2

= 1− cos2 α = sin2 α

‖u − uh‖2 = ‖u‖2 + ‖uh‖2 − 2‖u‖‖uh‖
√

1− δ2(E ,Eh)



Lehmann-like estimate of eigenfunctions

Eigenvalue problem:
Find λn > 0 and un ∈ V \ {0} such that

a(un, v) = λnb(un, v) ∀v ∈ V .

Consider

◮ E = span{un, un+1, . . . , uN}, b(ui , uj) = δij , a(ui , uj) = λiδij
◮ Eh = span{uh,n, uh,n+1, . . . , uh,N}

Goal
Upper bound on δ(E ,Eh) = max

v∈E
‖v‖a=1

min
vh∈Eh

‖v − vh‖a

Lehmann–Goerisch-like estimate of eigenfunctions

Theorem

Let λn−1 ≤ ξ < λn, λN < ρ ≤ λN+1, θ ≥ max
i=n,...,N

(

ξ + ρ

λi

− ξρ

λ2
i

)

◮ uh,n, uh,n+1, . . . , uh,N ∈ V be linearly independent

◮ A0,ij = a(uh,i , uh,j)

◮ A1,ij = b(uh,i , uh,j)

◮ wi ∈ V : a(wi , v) = b(uh,i , v) ∀v ∈ V

A2,ij = a(wi ,wj)

◮ µmin be the smallest eigenvalue of [(ξ + ρ)A1 − ξρA2] x = µA0x

Then

δ2(E ,Eh) ≤
θ − µmin

θ − 1

Lehmann–Goerisch-like estimate of eigenfunctions

Theorem

Let λn−1 ≤ ξ < λn, λN < ρ ≤ λN+1, θ ≥ max
i=n,...,N

(

ξ + ρ

λi

− ξρ

λ2
i

)

◮ uh,n, uh,n+1, . . . , uh,N ∈ V be linearly independent

◮ A0,ij = a(uh,i , uh,j)

◮ A1,ij = b(uh,i , uh,j)

◮ X . . . vector space
B . . . positive semidefinite symmetric bilinear form on X

T : V → X . . . linear operator:
(a) B(Tu,Tv) = a(u, v) ∀u, v ∈ V

(b) ŵi ∈ X : B(ŵi ,Tv) = b(ũi , v) ∀v ∈ V

(c) Â2,ij = B(ŵi , ŵj)

◮ µ̂min be the smallest eigenvalue of
[

(ξ + ρ)A1 − ξρÂ2

]

x = µ̂A0x

Then

δ2(E ,Eh) ≤
θ − µ̂min

θ − 1

Example

Laplace eigenvalue problem in a square

−∆un = λnun in Ω = (0, π)2

un = 0 on ∂Ω

Exact eigenvalues
λ1 = 2, λ2 = λ3 = 5, λ4 = 8, λ5 = λ6 = 10, λ7 = λ8 = 13
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Appendix: Guaranteed computations

Weinstein bound:

◮ λ∗, u∗, q can be arbitrary

◮ η2 = ‖∇u∗ − q‖20 + 1
γ
‖λ∗u∗ + div q‖20

must be evaluated exactly (∗)
Lehmann–Goerisch method:

◮ ũi , σi can be arbitrary

◮ (A0 − ρA1)x̂ = µ̂(A0 − 2ρA1 + ρ2Â2)x̂
must be solved exactly (∗)

Interpolation constant based method:

◮ λCR

h,i must be computed exactly (∗)

(∗) or bounded by interval arithmetic!
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