MATHEMATICA BOHEMICA, Vol. 125, No. 1, pp. 39-54, 2000

A generalized maximum principle for boundary value problems for degenerate parabolic operators with discontinuous coefficients

Salvatore Bonafede, Francesco Nicolosi

Salvatore Bonafede, Dipartimento di Economia dei Sistemi Agro-Forestali, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; Francesco Nicolosi, Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

Abstract: We prove a generalized maximum principle for subsolutions of boundary value problems, with mixed type unilateral conditions, associated to a degenerate parabolic second-order operator in divergence form.

Keywords: weak subsolution, generalized maximum principle, comparison theorem, degenerate equation

Classification (MSC 1991): 35B50, 35K10, 35K65, 35K85


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]