A Logic of Questions Based on Łukasiewicz Fuzzy Logic

VÍT PUNČOCHÁŘ

The Czech Academy of Sciences, Institute of Philosophy e-mail: vit.puncochar@centrum.cz

The aim of this paper is to enrich Łukasiewicz fuzzy logic (see Hájek, 1993) with a new operator, known from inquisitive semantics (Ciardelli & Roelofsen, 2011) as *inquisitive disjunction*. This operator allows to form new type of sentences that represent questions. The resulting system, which we will call *The Inuqisitive Extension of Łukasiewicz Fuzzy Logic*, will be a logic of questions based on Łukasiewicz Fuzzy Logic of declarative sentences. The results are taken from (Punčochář, 201X).

I will start with a brief introduction of an abstract semantic framework for substurctural logics. It is a modification and extension of the semantics proposed in (Došen, 1989). The semantic structures of this framework will be called information models. An informational model is a structure of the type $\mathcal{M} = \langle S, +, \cdot, 0, 1, C, V \rangle$ that satisfies the following conditions: $\langle S, + \rangle$ is a join-semilattice, determining an ordering: $a \leq b$ iff a + b = b; 0 is the least element, i.e. 0 + a = a; moreover, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$, and $(b + c) \cdot a = (b \cdot a) + (c \cdot a)$; $1 \cdot a = a$ and $0 \cdot a = 0$; C is a binary (compatibility) relation such that: there is no a such that 0Ca, if aCb then bCa, and (a + b)Cc iff aCc or bCc; finally, V is a valuation defined as a function assigning an ideal (a nonempty downset closed under +) to every atomic formula.

L will denote a language standardly used in substructural logics. $L^{?}$ is the inquisitive extension of L, i.e. L enriched with one binary connective ? (inquisitive disjunction). For example, the formula p?q represents the question whether p or q.

Given any information model $\mathcal{M} = \langle S, +, \cdot, 0, 1, C, V \rangle$, we will define a relation between the elements of S and formulas of $L^{?}$ by the following semantic clauses:

- $a \vDash p$ iff $p \in V(a)$.
- $a \vDash \bot \text{ iff } a = 0.$
- $a \vDash t$ iff $a \le 1$.
- $a \models \neg \varphi$ iff for any b, if bCa then $b \nvDash \varphi$.
- $a \vDash \varphi \rightarrow \psi$ iff for any b, if $b \vDash \varphi$, then $a \cdot b \vDash \psi$.
- $a \vDash \varphi \land \psi$ iff $a \vDash \varphi$ and $a \vDash \psi$.
- $a \vDash \varphi \otimes \psi$ iff for some $b, c: b \vDash \varphi, c \vDash \psi$, and $a \le b \cdot c$.
- $a \vDash \varphi \lor \psi$ iff for some $b, c: b \vDash \varphi, c \vDash \psi$, and $a \le b + c$.
- $a \vDash \varphi? \psi$ iff $a \vDash \varphi$ or $a \vDash \psi$.

A formula φ of the language $L^{?}$ is valid in \mathcal{M} iff $1 \vDash \varphi$ in \mathcal{M} . The set of *L*-formulas valid in all information models is a non-distributive modification of the logic known as Full Lambek enriched with a paraconsistent negation. A suitable corresponding axiomatic system for this logic (that will be presented during the talk) will be denoted as *FL*. I will present also an axiomatization of the set of all $L^{?}$ -formulas valid in class of all information models. The axiomatic system will be denoted as InqFL (an inquisitive extension of *FL*).

Let us denote the set of L-formulas that are valid in a class of informational models C as Log(C). A set of L-formulas λ is called a logic of declarative sentences if there is a class of informational models C such that $\lambda = Log(C)$.

Let us denote the set of $L^?$ -formulas that are valid in a class of informational models C as $Log^?(C)$ and the class of models of some given set of L-formulas Δ as $Mod(\Delta)$.

Let λ be a logic of declarative sentences. The *inquisitive extension* of λ , denoted as $\lambda^{?}$, is the set of all $L^{?}$ -formulas that are valid in every model of λ . In symbols, $\lambda^{?} = Log^{?}(Mod(\lambda))$.

Theorem 1. If *FL* plus a set of axioms A axiomatizes λ , then InqFL plus A axiomatizes $\lambda^{?}$.

A product of two information models will be defined in a natural way and the following result will be shown.

Theorem 2. Let C be a class of informational models. If $Log(C) = \lambda$ and C is closed under products, then $Log^{?}(C) = \lambda^{?}$.

In the next step, I will define a class of information models that will determine the inquisitive extension of Łukasiewicz fuzzy logic.

Fuzzy models are structures of the form $\mathcal{M}_E^n = \langle S, +, \cdot, 0_n, 1_n, C, V \rangle$, where $n \ge 1$ is a natural number, $E = \langle e_1, \ldots, e_n \rangle$ is an *n*-tuple of functions from atomic formulas to the closed interval [0, 1], and it holds:

- $S = \{ \langle a_1, \dots, a_n \rangle; a_1, \dots a_n \in [0, 1] \},\$
- $\langle a_1, \ldots, a_n \rangle + \langle b_1, \ldots, b_n \rangle = \langle max\{a_1, b_1\}, \ldots, max\{a_n, b_n\} \rangle,$
- $\langle a_1, \ldots, a_n \rangle \cdot \langle b_1, \ldots, b_n \rangle = \langle a_1 * b_1, \ldots, a_n * b_n \rangle$, where $a * b = max\{0, a + b 1\}$.
- $1_n = \langle 1, \ldots, 1 \rangle$, where 1 is *n*-times.
- $0_n = \langle 0, \dots, 0 \rangle$, where 0 is *n*-times.
- $\langle a_1, \ldots, a_n \rangle C \langle b_1, \ldots, b_n \rangle$ iff for some $i \ (1 \le i \le n), \ 1 b_i < a_i$.
- $\langle a_1, \ldots, a_n \rangle \in V(p)$ iff for all $i \ (1 \le i \le n), a_i \le e_i(p)$.

Lemma 1. Every fuzzy model is an informational model.

Lemma 2. The class of fuzzy models is closed under products.

Let *L* represent the set of *L*-formulas valid in Łukasiewicz fuzzy logic.

Theorem 3. For any *L*-formula α , $\alpha \in L$ iff α is valid in every fuzzy model.

Theorem 4. For any $L^{?}$ -formula $\varphi, \varphi \in L^{?}$ iff φ is valid in every fuzzy model.

If time allows I will discuss also the possibility to extend other fuzzy logics with the inquisitive disjunction.

References

Ciardelli, I., Roelofsen, F. (2011) Inquisitive Logic, *Journal of Philosophical Logic*, 40, 55–94.

Došen, K. (1989). Sequent Systems and Groupoid Models, Part 2, *Studia Logica*, 48, 41–65. Hájek, P. (1993) *Metamathematics of Fuzzy Logic*. Kluwer.

Punčochář, V. (201X) Substructural Inquisitive Logics. Under revision in The Review of Symbolic Logic.