Physiological Research Pre-Press Article

Factors responsible for cerebral hypoxia in haemodialysis population

Anna Valerianova¹⁾, Jana Lachmanova²⁾, Lucie Kovarova¹⁾, Tereza Kmentova¹⁾, Magdalena Bartkova²⁾, Jan Malik¹⁾

¹⁾3rd Department of Internal Medicine, 1st Faculty of Medicine Charles University and General University Hospital in Prague

²⁾Department of Nephrology, 1st Faculty of Medicine Charles University and General University Hospital in Prague

Corresponding author:

Anna Valerianova

3rd Department of Internal Medicine

General University Hospital

First Faculty of Medicine

U Nemocnice 1

128 08 Prague 2

Czech Republic

E-mail: anna.valerianova@vfn.cz

Fax: (+420)224962765

Telephone number: (+420)224962363

Short title: Brain ischemia in end-stage renal disease

Summary

lower in haemodialysis patients than in the healthy population and is associated with

Brain tissue oxygenation (rSO₂) measured by near-infrared spectroscopy (NIRS) is

cognitive dysfunction. The involved mechanisms are not known. We conducted this

study to identify the factors that influence the rSO₂ values in end-stage renal disease

(ESRD) patients and to describe rSO₂ changes during haemodialysis. We included a

cohort of ESRD patients haemodialyzed in our institution. We recorded rSO₂ using

INVOS 5100C oximetry system (Medtronic, Essex, U.K.) and analysed changes in

basic laboratory values and haemodynamic fluctuations. Baseline rSO₂ was lower in

patients with heart failure (45.2±8.3% vs. 54.1±7.8%, p=0.006) and was significantly

linked to higher red cell distribution width (RDW) (r=-0.53; p<0.001) and higher BNP

level (r=-0.45; p=0.01). The rSO₂ value decreased in first 15 minutes of

haemodialysis, this decrease correlated with drop in white blood count during

the same period (r=0.43, p=0.02 in 10 minutes; r=0.43, p=0.02 in 20 minutes). Lower

rSO₂ values in patients with heart failure and higher RDW suggest that

haemodynamic instability combined with vascular changes probably leads to worse

cerebral oxygenation in these patients. Decrease of rSO₂ in 15th minute of

haemodialysis accompanied with a significant drop in leukocyte count could be

explained by complement activation.

Key words: heart failure; chronic renal failure; haemodialysis, cerebral hypoxia

Introduction:

End-stage renal disease (ESRD) patients treated by haemodialysis suffer from tissue ischemia (brain, peripheral muscle), which is aggravated by haemodialysis sessions (Malik et al. 2017). Brain ischemia leads to cognitive decline in haemodialysis patients (Kovarova et al. 2018). Brain oxygenation can be measured non-invasively by the near-infrared spectroscopy (NIRS), which gives the cerebral tissue oxygenation (rSO₂) (Ito et al. 2015; Matsukawa et al. 2017; Papadopoulos et al. 2013; Hoshino et al. 2014). The near-infrared spectroscopy (NIRS) is a method that estimates regional tissue oxygenation by transcutaneous measurement. It differs from the finger oximetry by using two photo-electrodes – shallow and deep. The data from the shallow electrode is subtracted from the data from the deep electrode. The result (rSO2) combines venous, microcirculatory and arterial haemoglobin saturation (McCormick et al. 1991). Although it is known that dialysis patients have considerably lower rSO₂ values than healthy controls (Malik et al. 2017; Ito et al. 2015; Hoshino et al. 2014) and that this finding is related to cognitive impairment, responsible mechanisms are not completely understood. Otherwise, NIRS is used mostly for non-invasive cerebral oxygenation monitoring during surgery or critical states (McCormick et al. 1991; Douchet et al. 1996). Lower rSO2 values were linked with worse neurological prognosis in patients after cardiac surgery (Yao et al. 2004; Slater et al. 2009), and with worse survival and neurological outcome in patients after cardiopulmonary resuscitation (Ibrahim et al. 2015; Ito et al. 2014). Lower brain oxygenation was also related to symptoms of cerebral hypoxia in de-compensated heart failure patients (Madsen et al. 2000). Anyway, It should be stressed out that there is no threshold value of the "pathological" rSO2 values (Jonsson et al. 2017; Bickler et al. 2017).

Thus, cerebral rSO₂ is decreased in ESRD patients and further falls after the initiation of hemodialysis according to our pilot study, but the involved mechanisms are to be elucidated. Therefore, we extended our pilot study with the attempt to get more robust data describing rSO₂ changes in ESRD patients and to understand the mechanisms responsible for both lower rSO₂ values at baseline and during haemodialysis.

Materials and methods:

We included a cohort of patients in chronic haemodialysis programme in our university hospital, who agreed to take part in this study and signed the informed consent. Inclusion criteria were presence of ESRD, clinically stable state and lack of overt dementia or history of stroke. The study was approved by local ethical committee and conforms with the Helsinki Declaration.

The measurements were performed during regular haemodialysis session with no changes of patients' dry weight, medication, or compliance to therapeutic regime. Recorded demographic characteristics included gender, age, weight, height, comorbidities - coronary artery disease, heart failure, diabetes mellitus, arterial hypertension, dyslipidaemia, previous thrombosis or pulmonary embolism - and smoking status.

Basic haemodialysis data was collected (ultrafiltration rate, dry weight, length of dialysis session). We recorded the course of frontal lobe tissue oxygen saturation for 5 minutes prior to haemodialysis (= baseline) and then during haemodialysis session, measured by near-infrared spectroscopy (NIRS) using the INVOS 5100C oximetry system (Medtronic, Essex, U.K.). The sampling frequency of this device is 6 seconds. The signal was recorded using one probe placed over the dominant

frontal lobe. The data was averaged in 1-minute interval and visualized in a chart. Basic haemodynamic parameters (blood pressure, heart rate) were recorded every 10 minutes during first 30 minutes of haemodialysis session and then every 60 minutes until the end of the dialysis session. The blood pressure (BP) was taken by non-invasive measurement on the non-access upper extremity. The mean arterial blood pressure (MAP) was calculated by the equation: MAP = 2/3 diastolic BP + 1/3 systolic BP. Blood samples were taken from the dialysis arteriovenous access before the start of dialysis session, in 10, 20 and 30 minutes and at the end of the dialysis session. We analysed the blood count including red cell distribution width – RDW, the acid base status (pH, partial pressure of carbon dioxide – pCO₂, serum total carbon dioxide, partial pressure of oxygen – pO₂, haemoglobin saturation with oxygen – SatO₂), serum lactate, brain natriuretic peptide (BNP), serum albumin and protein levels. The measured BNP values were logarithmically transformed to get Gaussian distribution for analysis; the original BNP results are presented as median and quartile range.

The statistical analysis was performed using the STATISTICA Software, version 12 (StatSoft, Inc.). We used the univariate correlation analysis, Chi-square test, paired t-test, ANOVA as appropriate and multiple linear regression analysis. P<0.01 was considered significant for univariate correlation analysis and p<0.05 for the multiple linear regression analysis.

Results:

We included 46 patients in our study, 24 men and 22 women, aged 63.3 ± 15.6 years. Dialysis vintage was 46.8 ± 54.4 months (range 1-207 months, median 24.4 months), dialysis access flow volume 1076 ± 548 ml/min. The cause of end stage

renal disease was hypertensive nephropathy in 11 patients, diabetic nephropathy in 7 patients, polycystic kidney disease in 5 patients, IgA nephropathy, multiple myeloma and infection in 4 patients, systemic lupus erythematosus, renal cell carcinoma, rapidly progressive glomerulonephritis and tubulointerstitial nephritis in 2 patients, focal segmental nephrosclerosis, membranous glomerulopathy and amyloidosis in 1 patient. Eleven patients (24 %) had history of coronary artery disease, 8 patients (17 %) of chronic heart failure, 18 patients (39 %) of diabetes mellitus, 37 patients (80 %) of arterial hypertension, 19 patients (41 %) had dyslipidaemia, 10 patients (22 %) had history of previous venous thrombosis or pulmonary embolism. Twenty-two patients (48 %) were current or former smokers.

Baseline rSO₂ measurement

Mean rSO_2 values at baseline were 53 ± 8 % in our study, which differed only slightly from the pilot study (where it was 52 ± 8 %) [1].

Of the comorbidities, only the presence of heart failure was associated with significantly lower rSO₂ values (45.2 ± 8.3 % vs. 54.1 ± 7.8 %, p = 0.006).

There was no significant relation between rSO_2 value and dialysis vintage, dialysis access blood flow volume, blood pressure or heart rate. Of the laboratory values, rSO_2 decreased significantly with increasing both RDW (r = -0.53; p < 0.001) and BNP (r = -0.45; p = 0.01). See **Table 1** for all baseline values and results of univariate analysis.

We tested several multiple regression models by adding age, heart failure, BNP and RDW (2-3 variables for each model). In all of them, age was not significantly related to rSO2. The presence of heart failure and higher BNP lost

significance when RDW was added; RDW remained the strongest determinant of rSO2.

rSO₂ changes during haemodialysis

Baseline and end-of dialysis rSO₂ values did not differ significantly (52.6 \pm 8.5 % vs. 52.1 \pm 9.0 %, p = 0.53). The time course of rSO₂ during haemodialysis is depicted in **Figure 1**. We observed two drops of rSO₂ value during haemodialysis; the first one in 15th minute after the start of haemodialysis (to 51.3 \pm 8.7 %, p = 0.003 vs. baseline), the second one after 3 hours (50.7 \pm 9.6 %, p = 0.01 vs. baseline).

The decrease in brain tissue oxygenation 10 and 20 minutes after the start of haemodialysis was significantly accompanied by the decrease of leukocyte count (r = 0.43, p = 0.02 in 10 minutes; r = 0.43, p = 0.02 in 20 minutes). The leukocyte count dropped significantly in 10^{th} and 20^{th} minute (from $6.2 \pm 2 \times 10^{3}$ /µl at baseline, to $5.2 \pm 2.0 \times 10^{3}$ /µl, p = 0.00001 in 10^{th} minute and $5.4 \pm 1.9 \times 10^{3}$ /µl, p < 0.0000001 in 20^{th} minute, respectively, compared to baseline). Apart from this, the changes of rSO_2 in 10^{th} , 20^{th} and 30^{th} minute of haemodialysis and at the end of haemodialysis did not have any significant relation with any of the measured laboratory and haemodynamic parameters – see **Table 2** for details.

We observed that some patients had more pronounced rSO_2 changes during haemodialysis than others. To analyse possible physiological importance, we divided the patients into two groups according to the stability of rSO_2 value during the haemodialysis sessions ("stable" vs. "unstable"). The median value of rSO_2 fluctuation and thus the cut-off value was 10 percent points. The "unstable" patients had lower rSO_2 values before haemodialysis (49.9 \pm 8.6 % vs. 56.1 \pm 7.3 %,

p = 0.01), during haemodialysis and at the end of haemodialysis session (56.9 \pm 6.6 % vs. 48.3 \pm 8.9 %; p = 0.001). – see **Table 3** for details. The "unstable" group had significantly higher RDW than the stable group (16.0 \pm 2.2 vs. 14.8 \pm 1.4; p = 0.04) and significantly higher BNP level (p = 0.002). There was no other significant difference in observed laboratory and haemodynamic parameters or ultrafiltration. Patients with known chronic heart failure were more likely to be in the unstable group (88 % vs. 50 %, p = 0.05).

Discussion:

This study confirmed low baseline cerebral rSO₂ values in one a large of the largest haemodialysis patients' cohorts. Of potential involved mechanisms, higher RDW values were the strongest determinant of lower baseline rSO₂; presence of congestive heart failure and higher values of BNP also predicted lower rSO₂. The values of rSO₂ decreased at the beginning of haemodialysis and then after the 3rd hour; the first rSO₂ decline was related to the decrease of leukocyte count. Patients with congestive heart failure, higher BNP values and higher RDW had more pronounced rSO₂ fluctuation during haemodialysis.

It is already known that decompensated heart failure leads to rSO₂ decrease in non-CKD patients (Madsen *et al.* 2000). Thus, patients with cardiorenal syndrome type 2 or 4 according to Ronco (Granata *et al.* 2009), characterized by the presence of both heart failure and CKD (Cruz *et al.* 2013), are prone to circulatory instability. Two mechanisms could explain lower rSO₂ values in these patients: cerebral blood flow decrease due to lower cardiac output and dysfunction of cerebral vascular autoregulation, especially in response to changes of carbon dioxide level (Havakuk *et al.* 2017). Described changes could prolong cerebral blood transition time, which may

be responsible for increased oxygen uptake by the brain tissue. NIRS combines arterial and venous blood haemoglobin saturation with the ratio 1:3, so rSO₂ was decreased mainly due to lower blood haemoglobin saturation in the venous blood due to slower blood flow and thus higher extraction of oxygen from haemoglobin.

Interestingly, rSO₂ values were lower in patients with higher red cell distribution width (RDW); higher RDW was also associated with bigger rSO₂ fluctuations during haemodialysis. Increase in RDW was previously reported in CKD patients (Ujszaszi et al. 2013; Docci et al. 1989). RDW describes the heterogeneity in erythrocytes size; high variability indicates dysfunctional erythropoiesis or shorter erythrocyte lifespan (Ujszaszi et al. 2013). RDW has been extensively studied recently: it was linked to malnutrition, inflammation, oxidative stress (Tekce et al. 2014) – all these states are present in ESRD patients on haemodialysis. Shorter erythrocyte lifespan has been documented in haemodialysis patients; it was linked to intradialytic hypoxemia resulting in lower erythrocyte resilience to oxidative stress (Meyring-Wösten et al. 2016). Higher RDW is a strong predictor of increased all-cause mortality, similar to albumin and even stronger than haemoglobin or ferritin in ESRD (Vashistha et al. 2016), coronary artery disease or other conditions. Nevertheless, no clear explanation of the detrimental effect of higher RDW is available – although some authors linked higher RDW to decreased red cell deformability and thus slower capillary flow (Patel et al. 2013), others did not confirm such association (Vaya et al. 2015). Therefore, higher RDW could be only an epiphenomenon instead of having direct causative role.

We observed a decrease of brain rSO₂ after the start of dialysis session, reaching its minimum in 15 minutes. These results confirm the observation made in our pilot study (Malik *et al.* 2017), although the decrease seems to occur sooner in the larger

group and is less steep. A decrease in arterial oxygen saturation (SaO₂) after the beginning of haemodialysis was described previously by Campos et al. (Campos et al. 2016); however, the SaO₂ value reached the minimum later in his study. In our study, the drop in rSO₂ value was significantly related only to the drop in leukocytes. Possible explanation is the activation of complement – its maximal activation develops 15 minutes after the start of haemodialysis (Yigla et al. 2006) and it is affected by the contact of blood with dialysis membrane. The transient leukopenia during haemodialysis is usually explained by transient sequestration of leukocytes in pulmonary circulation mediated by complement activation (Remuzzi et al. 2014). The activation of complement may result in pulmonary dysfunction in dialysis patients (Craddock et al. 1977); however, we do not have any record of respiration problems in our patient group. In this study, we observed a second and even more pronounced drop of rSO₂ values after 3 hours since haemodialysis initiation. As far as this is a new observation, not apparent in our pilot study, we did not have related laboratory data that could explain it. We did not observe any significant relation with changes of blood pressure either. Anyway, In a recently published study using position-emission tomography (Polinder-Bos et al. 2018), cerebral blood flow significantly decreases towards the end of haemodialysis session.

Blood pressure dropped significantly after the start of haemodialysis and further decreased till its end, as is typical. Statistically, we did not find any relation between blood pressure (changes) and rSO₂. This finding suggests that even in this multimorbid elderly population, the cerebral autoregulation mechanisms are able to maintain stable cerebral blood flow in the wide range of blood pressure values, as in physiological conditions (Lassen 1959).

We are aware that the study has some limitations. Mainly it is its cross-sectional character that does not allow us to evaluate the changes of rSO₂ in longer time period. Nevertheless, up to now there is very limited data about rSO₂ in haemodialysis population and thus cross-sectional studies are important first steps.

Acknowledgements:

This study was supported by grant n. 1178218 of the Charles University Grant Agency and by the grant of the Agency of Health Research of the Czech Republic 17-31796A.

References:

BICKLER P, FEINER J, ROLLINS M, MENG L: Tissue Oximetry and Clinical Outcomes. *Anesth Analg* 2017 **124(1)**: 72-82, 2017.

CAMPOS I, CHAN L, ZHANG H, DEZIEL S, VAUGHN C, MEYRING-WÖSTEN A, KOTANKO P: Intradialytic Hypoxemia in Chronic Hemodialysis Patients. *Blood Purif* **41(1-3)**: 177-87, 2016.

CRADDOCK PR, FEHR J, BRIGHAM KL, KRONENBERG RS, JACOB HS:

Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. *N Engl J Med* **296(14)**: 769-74, 1977.

CRUZ DN, SCHMIDT-OTT KM, VESCOVO G, HOUSE AA, KELLUM JA, RONCO C, MCCULLOUGH PA: Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). *Contrib Nephrol* **182**: 117-36, 2013. DOCCI D, DELVECCHIO C, GOLLINI C, TURCI F, BALDRATI L, GILLI P: Red blood cell volume distribution width (RDW) in uraemic patients on chronic haemodialysis. *Int J Artif Organs* **12(3)**: 170-4, 1989.

DOUCHET MP, COUPPIE P, CHANTREL F, KUNTZ C, HANNEDOUCHE T: [Diastolic dysfunction in chronic renal failure patients under hemodialysis]. *Ann Cardiol Angeiol (Paris)* **45(10)**: 589-92, 1996.

GRANATA A, ANDRULLI S, FIORINI F, LOGIAS F, FIGUERA M, MIGNANI R, BASILE A, FIORE CE: Persistent left superior vena cava: what the interventional nephrologist needs to know. *J Vasc Access* **10(3)**: 207-11, 2009.

HAVAKUK O, KING KS, GRAZETTE L, YOON AJ, FONG M, BREGMAN N, ELKAYAM U, KLONER RA: Heart Failure-Induced Brain Injury. *J Am Coll Cardiol* **69(12)**: 1609-1616, 2017.

HOSHINO T, OOKAWARA S, GOTO S, MIYAZAWA H, ITO K, UEDA Y, KAKU Y, HIRAI K, NABATA A, MORI H, YOSHIDA I, TABEI K: Evaluation of cerebral oxygenation in patients undergoing long-term hemodialysis. *Nephron Clin Pract* **126(1)**: 57-61, 2014.

IBRAHIM AW, TRAMMEL AR, AUSTIN H, BARBOUR K, ONUORAH E, HOUSE D, MILLER HL, TUTT C, COMBS D, PHILLIPS R, DICKERT NW, ZAFARI AM: Cerebral Oximetry as a Real-Time Monitoring Tool to Assess Quality of In-Hospital Cardiopulmonary Resuscitation and Post Cardiac Arrest Care. *J Am Heart Assoc* **4(8)**: e001859, 2015.

ITO K, OOKAWARA S, UEDA Y, GOTO S, MIYAZAWA H, YAMADA H, KITANO T, SHINDO M, KAKU Y, HIRAI K, YOSHIDA M, HOSHINO T, NABATA A, MORI H, YOSHIDA I, KAKEI M, TABEI K: Factors affecting cerebral oxygenation in hemodialysis patients: cerebral oxygenation associates with pH, hemodialysis duration, serum albumin concentration, and diabetes mellitus. *PLoS One* **10(2)**: e0117474, 2015.

ITO N, NISHIYAMA K, CALLAWAY CW, ORITA T, HAYASHIDA K, ARIMOTO H, ABE M, ENDO T, MURAI A, ISHIKURA K, YAMADA N, MIZOBUCHI M, ANAN H, OKUCHI K, YASUDA H, MOCHIZUKI T, TSUJIMURA Y, NAKAYAMA T, HATANAKA T, NAGAO K, J-POP REGISTRY INVESTIGATORS: Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. *Resuscitation* **85(6)**: 778-84, 2014.

JONSSON M, LINDSTRÖM D, WANHAINEN A, DJAVANI GIDLUND K, GILLGREN P: Near Infrared Spectroscopy as a Predictor for Shunt Requirement During Carotid Endarterectomy. *Eur J Vasc Endovasc Surg* **53(6)**: 783-791, 2017.

KOVAROVA L, VALERIANOVA A, KMENTOVA T, LACHMANOVA J, HLADINOVA Z, MALIK J: Low Cerebral Oxygenation Is Associated with Cognitive Impairment in Chronic Hemodialysis Patients. *Nephron* **139(2)**: 113-119, 2018.

LASSEN NA: Cerebral blood flow and oxygen consumption in man. *Physiol Rev* **39(2)**: 183-238, 1959.

MADSEN PL, NIELSEN HB and CHRISTIANSEN P: Well-being and cerebral oxygen saturation during acute heart failure in humans. *Clin Physiol* **20(2)**: 158-64, 2000.

MALIK J, KUDLICKA J, LACHMANOVA J, VALERIANOVA A, ROCINOVA K,

BARTKOVA M, TESAR V: Tissue ischemia worsens during hemodialysis in endstage renal disease patients. *J Vasc Access* **18(1)**: 47-51, 2017.

MATSUKAWA S, HAMADA M and MIZOTA T: Low preoperative regional cerebral oxygen saturation in hemodialysis patients. *JA Clin Rep* **3(1)**: 13, 2017.

MCCORMICK PW, STEWART M, GOETTING MG, BALAKRISHNAN G: Regional Cerebrovascular Oxygen Saturation Measured by Optical Spectroscopy in Humans. *Stroke* **22(5)**: 596-602, 1991.

MEYRING-WÖSTEN A, ZHANG H, YE X, FUERTINGER DH, CHAN L, KAPPEL F, ARTEMYEV M, GINSBERG N, WANG Y, THIJSSEN S, KOTANKO P: Intradialytic Hypoxemia and Clinical Outcomes in Patients on Hemodialysis. *Clin J Am Soc Nephrol* **11(4)**: 616-25, 2016.

PAPADOPOULOS G, DOUNOUSI E, PAPATHANASIOU A, PAPATHANAKOS G, TZIMAS P: Cerebral oximetry values in dialyzed surgical patients: a comparison between hemodialysis and peritoneal dialysis. *Ren Fail* **35(6)**: 855-9, 2013.

PATEL KV, MOHANTY JG, KANAPURU B, HESDORFFER C, ERSHLER WB, RIFKIND JM: Association of the red cell distribution width with red blood cell deformability. *Adv Exp Med Biol* **765**: 211-6, 2013.

POLINDER-BOS HA, GARCIA DV, KUIPERS J, ELTING JWJ, ARIES MHJ, KRIJNEN WP, GROEN H, WILLEMSEN ATM, VAN LAAR PJ, STRIJKERT F, LUURTSEMA G, SLART RHJA, WESTERHUIS R, GANSEWOORT RT, GAILLARD CAJM, FRANSSEN CFM: Hemodialysis Induces an Acute Decline in Cerebral Blood Flow in Elderly Patients. *J Am Soc Nephrol* **29(4)**: 1317-1325, 2018.

REMUZZI A, MANINI S: Computational model for prediction of fistula outcome. *J Vasc Access* **15 Suppl 7**: S64-9, 2014.

SLATER JP, GUARINO T, STACK J, VINOD K, BUSTAMI RT, BROWN JM 3rd, RODRIGUEZ AL, MAGOVERN CJ, ZAUBLER T, FREUNDLICH K, PARR GV: Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. *Ann Thorac Surg* **87(1)**: 36-44, 2009.

TEKCE H, KIN TEKCE B, AKTAS G, TANRISEV M, SIT M: The evaluation of red cell distribution width in chronic hemodialysis patients. *Int J Nephrol* **2014**: 754370, 2014. UJSAZASZI A, MOLNAR MZ, CZIRA ME, NOVAK M, MUCSI I: Renal function is independently associated with red cell distribution width in kidney transplant recipients: a potential new auxiliary parameter for the clinical evaluation of patients with chronic kidney disease. *Br J Haematol* **161(5)**: 715-25, 2013.

VASHISTHA T, STREJA E, MOLNAR MZ, RHEE C, MORADI H, SOOHOO M, KOVESDY CP, KALANTAR-ZADEH K: Red Cell Distribution Width and Mortality in Hemodialysis Patients. *Am J Kidney Dis* **68(1)**: 110-21, 2016.

VAYA A, RIVERA L, DE LA ESPIRELLA R, SANCHEZ F, SUESCUN M,
HERNANDEZ JL, FACILA L: Red blood cell distribution width and erythrocyte

deformability in patients with acute myocardial infarction. *Clin Hemorheol Microcirc* **59(2)**: 107-14, 2015.

YAO FS, TSENG CC, HO CY, LEVIN SK, ILLNER P: Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. *J Cardiothorac Vasc Anesth* **18(5)**: 552-8, 2004.

YIGLA M, ABASSI Z, REISNER SA, NAKHOUL F: Pulmonary hypertension in hemodialysis patients: an unrecognized threat. *Semin Dial* **19(5)**: 353-7, 2006.

Figure 1. Cerebral oxygenation course during haemodialysis

The graph depicts the averaged rSO₂ values. Individual courses of rSO₂ values during haemodialysis vary.

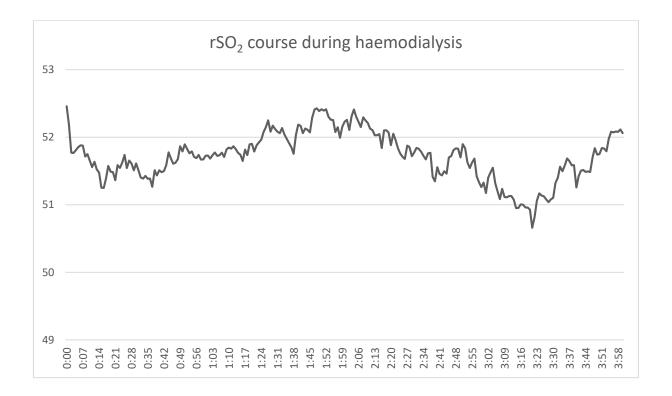


Table 1: Baseline data and their relation to rSO_2 changes.

Parameter	Baseline value	Correlation	Correlation with rSO ₂		
	mean ± SD	r	p		
Age (years)	63 ± 16	-0.27	0.07		
Dialysis vintage (months)	46.8 ± 54.4	-0.19	0.20		
Qva (mL/min)	1076 ± 548	0.12	0.46		
Residual diuresis (mL/day)	464 ± 507	0.32	0.03		
White blood count (x10 ³ /μL)	6.5 ± 2.5	0.20	0.18		
Red blood count (x10 ⁶ /µL)	3.2 ± 0.6	0.27	0.07		
Haematocrit (%)	31 ± 4	0.21	0.17		
Haemoglobin (g/L)	98.7 ± 14.8	0.18	0.24		
Red cell distribution width (%)	15.5 ± 1.9	- 0.53	< 0.001		
Platelet count (x10 ³ /µL)	196 ± 67	0.03	0.84		
рН	7.35 ± 0.04	- 0.36	0.04		
pCO ₂ (kPa)	5.1 ± 0.6	0.31	0.08		
pO ₂ (kPa)	10.8 ± 3.1	- 0.08	0.68		
Haemoglobin saturation by O ₂	90.2 ± 14.3	- 0.08	0.67		
Lactate (mmol/L)	1.1 ± 0.5	- 0.18	0.35		
Serum protein (g/L)	63.3 ± 6.6	0.17	0.26		
Albumin (g/L)	38 ± 5.8	0.30	0.04		
Brain natriuretic peptide* (ng/L)	573 (1165)	- 0.45	0.01		
Systolic BP (mmHg)	148 ± 24	0.13	0.38		
Diastolic BP (mmHg)	77 ± 16	0.27	0.07		
Mean BP (mmHg)	89 ± 16	0.23	0.12		

Heart rate (bpm)	78 ± 13	- 0.02	0.87	Ī

BP = blood pressure, pO2 = partial pressure of oxygen, pCO2 = partial pressure of carbon dioxide, rSO2 = regional oxygen saturation

Significant results are in bold.

^{*} Brain natriuretic peptide results are presented as median (quartile range).

Table 2. Changes of cerebral oxygenation, laboratory and haemodynamic parameters. during haemodialysis

Parameter	Time				
	Baseline	10 minutes	20 minutes	30 minutes	End
rSO ₂ (%)	52.6 ± 8.4	51.8 ± 8.8*	51.5 ± 8.8*	51.7 ± 8.8	52.1 ± 8.9
White blood count (x10 ³ /µL)	6.2 ± 2.0	$5.2 \pm 2.0^{\dagger}$	5.4 ± 1.9 [†]	$5.8 \pm 2.0^{\dagger}$	6.0 ± 2.2
Red blood count (x10 ⁶ /µL)	3.2 ± 0.4	3.2 ± 0.4	3.2 ± 0.4	3.3 ± 0.5	$3.6 \pm 0.6^{\dagger}$
Haemoglobin (g/L)	98.6 ± 12.7	97.8 ± 12.0	98.8 ± 11.5	101.4 ± 15.1	110.2 ± 16.1 [†]
Haematocrit (%)	31 ± 5	30 ± 4*	31 ± 4	31 ± 5	34 ± 5 [†]
рН	7.35 ± 0.03	7.34 ± 0.04	7.35 ± 0.04	7.37 ± 0.04**	7.46 ± 0.05 [†]
pCO ₂ (kPa)	5.0 ± 0.6	$5.4 \pm 0.5^{\dagger}$	$5.5 \pm 0.6^{\dagger}$	$5.4 \pm 0.5^{\dagger}$	5.0 ± 0.5
pO ₂	11.6 ± 2.5	12.2 ± 2.8	11.9 ± 2.6	11.7 ± 2.3	11.5 ± 2.6
Systolic BP (mmHg)	149 ± 22	134 ± 17 [†]	136 ± 17 [†]	139 ± 20 [†]	127 ± 23 [†]
Diastolic BP (mmHg)	78 ± 13	73 ± 13**	72 ± 11 [†]	72 ± 13 [†]	70 ± 15 [†]
Mean BP (mmHg)	102 ± 14	94 ± 12 [†]	93 ± 11 [†]	95 ± 13 [†]	89 ± 16 [†]

Heart rate (bpm)	76 ± 13	$70 \pm 12^{\dagger}$	70 ± 12**	72 ± 11	76 ± 14

Continuous variables are shown as mean ± SD.

 * p<0.05 for the comparison with baseline

** p<0.01 for the comparison with baseline

 $^{\dagger}\,\text{p}{<}0.001$ for the comparison with baseline

Table 3. Differences in cerebral rSO₂ value during haemodialysis in "stable" and "unstable" group of patients.

Time of			
haemodialysis	rSO ₂ (%)		P value
	"Stable" group	"Unstable" group	
Baseline	56.1 ± 7.3	49.9 ± 8.6	0.01
10 minutes	55.9 ± 7.1	48.5 ± 9.0	0.005
20 minutes	55.8 ± 6.5	48.0 ± 9.2	0.003
30 minutes	56.1 ± 6.5	48.3 ± 9.1	0.002
1 hour	56.3 ± 6.7	48.3 ± 9.2	0.002
2 hours	56.4 ± 6.0	49.1 ± 9.4	0.004
3 hours	55.8 ± 7.3	48.1 ± 9.4	0.005
End	56.9 ± 6.6	48.3 ± 8.9	0.001

Unpaired t-test was used for comparison

"Stable" patients had rSO2 variation <10%, unstable >10%; see the text for further explanation