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I accordance to the recent trend towards an interrogative epistemology, “To know is to know
the answer to a question” (Schaffer). But this begs the question: what is a question?

At a first approximation, an ‘exact’ propositional question (i.e. always having a proposition
as its unique correct answer) is a partition of the state space. This representation suffers
from three problems, none of which is addressed by its recent generalizations. I claim that a
topological theory can address all of them

First, an answer to a non-propositional question (of the form what, where, who, etc) is not a
set of worlds. Informationally, a non-propositional exact question can be encoded as a variable,
taking various values (“answers”) in different possible worlds. Reinterpreting the above quote
in this way, we are lead to a paraphrase of Quine: To know is to know the value of a variable.

Second, questions are never investigated in isolation: we answer questions by reducing them
to other questions. This means that the proper object of knowledge is uncovering correlations
between questions. To know is to know a functional dependence between variables.

Third, when talking about inexact (or empirical) questions/variables, the exact value/an-
swer might not be knowable, and instead only “feasible answers” can be known. It is reasonable
to assume that the conjunction of two (correct) feasible answers is a (correct) feasible answer:
this suggests modelling propositional questions as topological bases on the state space. I in-
vestigate this conception and show the importance of topological notions for understanding
propositional knowledge and questions.

Combining further the three issues, we arrive at a conception of an inexact (not necessarily
propositional) question as a map from the state space into a topological space. Here, the exact
value of the variable (exact answer) is represented by the output of the map, while the open
neighborhoods of this value represent the feasible answers (knowable approximations of the
exact answer). A question Q epistemically solves question Q’ if every feasible answer to Q’ can
be known if given some good enough feasible answer to Q. I argue that knowability in such an
empirical context amounts to the continuity of the functional correlation. To know is to know
a continuous dependence between variables.

I investigate a logic of epistemic dependency, that can express knowledge of functional
dependencies between (the values of) variables, as well as dynamic modalities for learning new
such dependencies. This dynamics captures the widespread view of knowledge acquisition as a
process of learning correlations (with the goal of eventually tracking causal relationships in the
actual world).



The frame of Scott continuous nuclei on a preframe

Mart́ın Escardó

University of Birmingham

The Scott continuous nuclei on a preframe form a frame. In the case of a spectral frame,
this gives the universal solution to the problem of adding boolean complements to the compact
elements, to get a Stone frame. In the case of a stably continuous frame, this gives the universal
solution to the problem of transforming the way-below relation into the well-inside relation, to
get a compact regular frame. In the case of the Lawson dual L∧ of a Hausdorff frame L (which
is merely a preframe in general), it produces the compactly-generated reflection of the frame
L. A Hausdorff frame L turns out to be compactly generated if and only if it is naturally
isomorphic to its second Lawson dual L∧∧. Hence for a compactly generated Hausdorff frame
L, the frame of Scott continuous nuclei on the first Lawson dual L∧ is isomorphic to L. The
above results happen to be constructive in the sense of topos type theory. The talk will discuss
this and a number of natural related open questions, in the language of locales, the objects of the
opposite of the category of frames. In particular, what more is needed to get, constructively,
a cartesian closed category of compactly generated locales? Non-constructively, this is not
problematic: with choice, the category of compactly generated Hausdorff locales is equivalent
to that of compactly generated Hausdorff spaces, and hence cartesian closed. For toposes that
don’t validate choice, I don’t know of any non-trivial cartesian closed category of compactly
generated locales. I will discuss the difficulties that arise in attempting to get such a category.



Stone duality in the theory of formal languages

Mai Gehrke

Université Paris Diderot

Formal languages are mathematical models of computing machines and have strong connec-
tions to logic and, in the setting of regular languages, to topological algebra a double connection
which is governed by Stone duality. In this talk we survey this connection and its potential
applications in Boolean circuit complexity and the semantic study of logics with binding of
variables, such as first order logic.



Introduction to Effectus Theory

Bart Jacobs
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An effectus is a special form of category that has been introduced recently by the speaker
and his research group. It is intended as a general categorical model for Boolean, probabilistic,
and quantum logic. This talk will introduce the notion of effectus, and will discuss its main
properties. Also it will briefly describe the EfProb tool for probabilistic computation that
has been developed on the basis of effectus-theoretic ideas: it works uniformly for discrete,
continuous and quantum probability.

Sources:

B. Jacobs. New Directions in Categorical Logic, for Classical, Probabilistic and Quantum
Logic. In: Logical Methods in Computer Science 11(3), pp. 1–76, Oct. 2015. http://arxiv.

org/pdf/1205.3940

K. Cho, B. Jacobs, Bas Westerbaan, Bram Westerbaan. An Introduction to Effectus Theory.
2015. http://arxiv.org/abs/1512.05813

EfProb library https://efprob.cs.ru.nl/



A Concrete Category of Classical Proofs
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I show that the cut-free proof terms defined in my paper Proof Terms for Classical Deriva-
tions form a well-behaved category. I show that this category is not cartesian—and that we’d
be wrong to expect it to be. (It has no products or coproducts, nor any intial or final objects.
Nonetheless, it is quite well behaved.) I show that the term category is star autonomous (so it
fits well within the family of categories for multiplicative linear logic), with internal monoids and
comonoids taking care of weakening and contraction. The category is enriched in the category
of semilattices, as proofs are closed under the blend rule (also called mix in the literature).



(Co)algebraic foundations of automata learning

Alexandra Silva

University College London

Automata learning is a technique that has many applications in verification and systems’
modeling. In this talk I will review one of the classical algorithms, Angluin’s algorithm using
algebraic and coalgebraic tools. This will provide a new perspective on the correctness of the
algorithm and, more interestingly, will unveil connections to testing and minimization. This
talk is based on joint work with Matteo Sammartino and Gerco van Heerdt.



Geometric aspects of MV-algebras

Luca Spada
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The fact that every semisimple MV-algebra is isomorphic to a separating subalgebra of the
algebra of continuous functions from X into [0, 1], for X a compact Hausdorff space, has long
been known. Considerable information on the structure of MV-algebras follow. E.g., every
compact Hausdorff space can be obtained as the maximal spectrum of a suitable MV-algebra.
Nonetheless, the result leaves at least two questions open:

1. Can the functions forming the aforementioned separating subalgebra be characterised in
an intrinsic way?

2. How can the above result be extended to the whole class of MV-algebras?

In this talk I will report on a series of works (some in collaboration with Leonardo Cabrer and
some in collaboration with Vincenzo Marra) that tackle the above questions.

The main point in Question 1 is that the topological structure alone is not sufficient to recon-
struct the MV-algebra. It seems inevitable to move from pure topological spaces to geometric
spaces, i.e., topological spaces equipped with a system of coordinates. The coordinatisation is
crucial to describe the separating functions, but it turns out to be useful also in the charac-
terisation of special classes of MV-algebras. E.g., finitely presented MV-algebras correspond to
rational polyhedra, and the latter concept cannot be formalised in pure topological terms.

To address Question 2, one needs to deal with non-semisimple MV-algebras, that is, the ones
containing infinitesimal elements. It turns out that infinitesimal elements correspond to regions
of the space in which not only the value of a function matters, but also the rate at which this
value is attained. We deal with this differential phenomenon considering the pro-completion
of the category of rational polyhedra. This leads to a duality between the whole category of
MV-algebras and a category whose objects are systems of rational polyhedra approximating a
compact Hausdorff space.



Sketches for arithmetic universes as generalized spaces

Steve Vickers

School of Computer Science, Birmingham

From topos theory comes the idea that continuity is a logical phenomenon, specifically
one of geometric logic: a map is continuous if its construction can be carried out within the
constructive constraints of geometric logic. This extends the notion of continuity far beyond
ordinary topological spaces, as it applies also to maps valued in generalized spaces (toposes)
such as the space of sets, and even to bundles as maps taking points to spaces (the fibres).

Categorically, geometric logic is interpreted in Grothendieck toposes. However, a problem
is that it has extrinsic infinities (specifically: infinitary disjunctions) supplied by a choice of
base topos. This would make it difficult to provide software support for geometric logic. In
1999 I conjectured that, by adding features of a finitary, intrinsic type theory, some infinite
disjunctions could be replaced by existential quantification over infinite types such as the natural
numbers. Categorically, Grothendieck toposes relative to a fixed base would be replaced by
Joyal’s arithmetic universes (AUs), base-independent.

I shall present my recent work on formalizing the AU-logic using finite sketches. These
are restricted to ”contexts”, defined with the property that every non-strict model is uniquely
isomorphic to a strict model. This allows us to reconcile the syntactic, dealt with strictly using
universal algebra, with the semantic, in which non-strict models must be considered.

For each context T, there is a classifying AU analogous to a classifying topos, but base-
independent, and I shall outline a purely finitary presentation of strict AU-functors and natural
transformations between the classifying AUs.

Draft paper at http://arxiv.org/abs/1608.01559.



Topologizing filters on a ring of frictions RS−1 and
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This paper introduce the notion of topologizing filters on rings of fractions RS−1 for a multi-
plicative subset S of a commutative ring R. It is shown that the mapping from IdR to IdRS−1

given by I 7→ IS−1 induces a map from FilR to FilRS−1. It is proved that for a multiplicative
subset S of a commutative ring R the map ϕ̂S : [FilR]du → [FilRS−1]du given by

ϕ̂S(F)
def
= {AS−1 : A ∈ F}

is an onto homomorphism of lattice ordered monoids. It is proved that for a multiplicative subset
S of a commutative ring R, if the monoid operation on FilR is commutative so is the monoid
operation on FilRS−1 and if every member of FilR is idempotent then the same is true of every
member of FilRS−1. Moreover, such a map ϕ̂S gives rise to a canonical congruence relation ≡ϕ̂S

on FilR defined by F ≡ϕ̂S
G⇔ ϕ̂S(F) = ϕ̂S(G). The above result tells us that the homomorphism

ϕ̂S : [FilR]du → [FilRS−1]du restricts to a homomorphism from the Jansian topologizing filters of
FilR onto the Jansian topologizing filters of FilRS−1.

It is proved that for a commutative ring R for which FilR is commutative, then
⋂{≡ϕ̂SP

: P ∈
SpecmR} is the identity congruence on FilR, that is, for all F, G ∈ FilR,

F = G⇔ F ≡ϕ̂SP
G ∀P ∈ SpecmR.

As one of the main results of this paper it is shown that if R is a commutative ring for which
FilR is commutative, then the previous result yields the following subdirect decomposition:

[FilR]du ∼= [FilR]du/
(⋂

P∈SpecmR ≡ϕ̂SP

)
↪→

∏

P∈SpecmR
([FilR]du/ ≡ϕ̂SP

) ∼=
∏

P∈SpecmR
[FilRP ]du.

For an arbitrary ring R for which [FilRR]du is two-sided residuated, it is shown that R satisfies
the DCC on left annihilator ideals, and the ACC on right annihilator ideals. It is well-known that a
commutative noetherian ring has finitely many minimal prime ideals and as an extension of this, it
is proved that if R is an arbitrary ring for which [Fil R]du is two-sided residuated, then R contains
finitely many minimal prime ideals. It is also shown that for a Prüfer domain R for which FilR
is commutative, RP is a (noetherian) rank 1 discrete valuation domain for every maximal ideal P
of R.

This paper is concluded by proving that for a Prüfer domain R, FilR is commutative if and
only if R is noetherian and thus a Dedekind domain which extends a known result which says that
a valuation domian for which FilR is commutative is noetherian and thus rank 1 discrete.
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Logics for extended distributive contact lattices
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The notion of contact algebra is one of the main tools in the region based theory of space. It
is an extension of Boolean algebra with an additional relation C called contact. The elements
of the algebra are called regions and are considered as analogs of physical bodies. Boolean
operations are considered as operations for constructing new regions from given ones. The
unit element 1 symbolizes the region containing as its parts all regions, and the zero region
0 symbolizes the empty region. There are some problems related to the motivation of the
operation of Boolean complementation. A question arises: if the region a in some universe
represents a physical body, then what kind of body represents a∗? - it depends on the universe.
Because of this in [1] this operation is dropped and the language of distributive lattices is
extended by considering as non-definable primitives the relations of contact, nontangential
inclusion� and dual contact Ĉ. It has been obtained an axiomatization of the theory consisting
of the universal formulas, true in all contact algebras. The structures, satisfying the axioms
in question, are called extended distributive contact lattices (EDC-lattices). The well known
RCC-8 system of mereotopological relations is definable in the language of EDC-lattices. In [1]
are considered also some axiomatic extensions of EDC-lattices yielding representations in T1
and T2 topological spaces. In this abstract we consider several logics, corresponding to EDCL.
We give completeness theorems with respect to both algebraic and topological semantics for
these logics. It turns out that they are decidable.

We consider the quantifier-free first-order language with equality L which includes:
• constants: 0, 1;
• function symbols: +, ·;
• predicate symbols: ≤, C, Ĉ, �.
Every EDCL is a structure for L.

We consider the logic L with rule MP and the following axioms:
• the axioms of the classical propositional logic;
• the axiom schemes of distributive lattice;
• the axioms for C, Ĉ, � and the mixed axioms of EDCL - considered as axiom schemes [1].

We consider the following additional rules and an axiom scheme:

(R Ext Ô) α→(a+p 6=1∨b+p=1) for all variables p
α→(a≤b) , where α is a formula, a, b are terms

(R U-rich �) α→(b+p 6=1∨aCp) for all variables p
α→(a�b) , where α is a formula, a, b are terms

(R U-rich Ĉ) α→(a+p 6=1∨b+q 6=1∨pCq) for all variables p, q

α→aĈb , where α is a formula, a, b are terms

(R Ext C) α→(p 6=0→aCp) for all variables p
α→(a=1) , where α is a formula, a is a term

(R Nor1) α→(p+q 6=1∨aCp∨bCq) for all variables p, q
α→aCb , where α is a formula, a, b are terms

(Con C) p 6= 0 ∧ q 6= 0 ∧ p+ q = 1→ pCq
To these rules correspond the additional axioms for EDC-lattices, considered in [1] - the

axioms (Ext Ô), (U-rich �), (U-rich Ĉ), (Ext C), (Nor1).
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Let L′ be for example the extension of L with the rule (R Ext Ô) and the axiom scheme (Con

C). Then we denote L′ by LConC,ExtÔ and call the axioms (Con C) and (Ext Ô) corresponding

to L′ additional axioms. In a similar way we denote any extension of L with some of the
considered additional rules and axiom scheme and in a similar way we define its corresponding
additional axioms.

Theorem 1 (Completeness theorem with respect to algebraic semantics). Let L′ be some
extension of L with zero or more of the considered additional rules and axiom scheme. The
following conditions are equivalent for any formula α:
(i) α is a theorem of L′;
(ii) α is true in all EDCL, satisfying the corresponding to L′ additional axioms.

We consider the following logics, corresponding to the EDC-lattices, considered in [1]:
1) L;
2) LExtÔ,U−rich�,U−richĈ ;

3) LExtÔ,U−rich�,U−richĈ,ExtC ;

4) LExtÔ,U−rich�,U−richĈ,ConC ;

5) LExtÔ,U−rich�,U−richĈ,Nor1;

6) LExtÔ,U−rich�,U−richĈ,ExtC,ConC ;

7) LExtÔ,U−rich�,U−richĈ,Nor1,ConC ;

8) LExtÔ,U−rich�,U−richĈ,ExtC,Nor1;

9) LExtÔ,U−rich�,U−richĈ,ExtC,ConC,Nor1.

To every of these logics we juxtapose a class of topological spaces:
1) the class of all T0, semiregular, compact topological spaces;
2) the class of all T0, semiregular, compact topological spaces;
3) the class of all T0, compact, weakly regular topological spaces;
4) the class of all T0, semiregular, compact, connected topological spaces;
5) the class of all T0, semiregular, compact, κ - normal topological spaces;
6) the class of all T0, compact, weakly regular, connected topological spaces;
7) the class of all T0, semiregular, compact, κ - normal, connected topological spaces;
8) the class of all T0, compact, weakly regular, κ - normal topological spaces;
9) the class of all T0, compact, weakly regular, connected, κ - normal topological spaces.

Theorem 2 (Completeness theorem with respect to topological semantics). Let L′ be any of
the considered logics. The following conditions are equivalent for any formula α:
(i) α is a theorem of L′;
(ii) α is true in all contact algebras over a topological space from the corresponding to L′ class.

Theorem 3. (i) The logics L, LExtÔ,U−rich�,U−richĈ ,
LExtÔ,U−rich�,U−richĈ,ExtC , LExtÔ,U−rich�,U−richĈ,Nor1,
LExtÔ,U−rich�,U−richĈ,ExtC,Nor1 have the same theorems and are decidable;

(ii) The logics LConC,U−rich�, LExtÔ,U−rich�,U−richĈ,ConC ,
LExtÔ,U−rich�,U−richĈ,ConC,Nor1, LExtÔ,U−rich�,U−richĈ,ExtC,ConC ,
LExtÔ,U−rich�,U−richĈ,ExtC,ConC,Nor1 have the same theorems and are decidable.

Thanks. Thanks to the anonymous referees for the suggestions. This paper is supported
by contract DN02/15/19.12.2016 ”Space, Time and Modality: Relational, Algebraic and Topo-
logical Models” with Bulgarian NSF.
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A projection algebra is a set A with an action of the monoid M = (N∞ = N∪{∞},min,∞),

where N is the set of natural numbers, and n ≤ ∞, for all n ∈ N. Computer scientists use

this notion as a convenient means for algebraic specification of process algebras. In this paper,

we study injectivity of ordered projection algebras. We characterize injective cyclic naturally

ordered projection algebras as complete posets, also we compare some kinds of weak injectivity

such as ideal injectivity and N-injectivity with regular injectivity.

1 Introduction

Algebraic and categorical properties of Projection algebras (or spaces) have been introduced

and studied as an algebraic version of ultrametric spaces as well as algebraic structures, for

example, in [5, 7, 8, 2]. Computer scientists use this notion as a convenient means for algebraic

specification of process algebras (see [6]).

A projection algebra is in fact a set A with an action of the monoid M = (N∞ = N ∪
{∞},min,∞), where N is the set of natural numbers, and n ≤ ∞, for all n ∈ N. By an ordered

projection algebra we mean a projection algebra A which is also a poset such that the order

is compatible with the action. A naturally ordered projection algebra is an ordered projection

algebra with the order a ≤ b if and only if a = nb, for some n ∈ N. We denote the category of

projection algebras by PRO, the category of ordered projection algebras by O-PRO, and the

subcategory of naturally ordered projection algebras by O-PROnat.

2 Regular injectivity and Ideal injectivity

In this section, we study injectivity of ordered projection algebras with respect to order emded-

ding projection maps, so called regular injectivity. Also, we compare it with injectivity with

respect to embedding of the form I → N∞ for an ideal I of N∞, so called I-injectivity, and

with ideal injective which is I-injectivity, for all ideals I of N∞.

Theorem 2.1. Every ordered projection algebras is ↓k-injective, for k ∈ N.

Corollary 2.2. For ordered projection algebras, ideal injectivity coincides with N-injectivity.

Theorem 2.3. For ordered projection algebras, the following are equivalent:

(1) Ideal injectivity in O-PRO.

(2) N-injectivity in O-PRO.

(3) N-injectivity in PRO.

(4) Injectivity in PRO.

∗Speaker



Theorem 2.4. A continuously complete naturally ordered projection algebra A is injective in

O-PROnat. But, the converse is not generally true.

Theorem 2.5. For a projection algebra A with natural order, the following are equivalent:

(1) A is a complete poset.

(2) A is a continuously complete ordered projection algebra.

(3) A is an infinite countable bounded chain.

(4) A is an infinite countable complete chain.

(5) A is a cyclic projection algebra.

Corollary 2.6. A naturally ordered projection algebra satisfying one of the equivalent condi-

tions of the above theorem is injective in PRO.

Proposition 2.7. There is no non trivial regular injective projection algebra with natural order

in O-PRO.

Theorem 2.8 (Baer). Let A be an ordered projection algebra.

(1) If A is injective as an object of PRO then A is injective with respect to ordered projection

algebras with natural order.

(2) If A is injective as an object of PRO with respect to one fixed projection algebras (with

natural order) then A is injective with respect to all projection algebras (with natural order).

(3) If A is regular injective with respect to embeddings into cyclic O-PRO then A is regular

injective with respect to all projection algebras with natural order.
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S-posets, Cah. Topol. Géom. Différ. Catég. 51(4) (2010), 272-281.

[5] Ehrig, H., Herrlich, H., The construct PRO of projection spaces: its Internal Structure, Lecture

Notes in Computer Science, 393 (1988), 286-293.

[6] Ehrig, H., Parisi-Presicce, F., Boehm, P., Rieckhoff, C., Dimitrovici, C., Grosse-Rhode, M., Alge-

braic Data Type and Process Specifications Based on Projection Spaces, Lecture Notes in Computer

Science 332 (1988), 23-43.

[7] Giuli, E., On m-Separated Projection Spaces, Appl. Cat. Struc. 2 (1994), 91-99.

[8] Mahmoudi, M. and M. Mehdi Ebrahimi, Purity and equational compactness of projection algebras,

Appl. Categ. Structures 9(4) (2001), 381-394.



Quasi injectivity of partially ordered acts

M.Mehdi Ebrahimi and Mahdieh Yavari∗

1 Department of Mathematics, Shahid Beheshti University, G.C., Tehran 19839, Iran.
m-ebrahimi@sbu.ac.ir

2 Department of Mathematics, Shahid Beheshti University, G.C., Tehran 19839, Iran.
m yavari@sbu.ac.ir

1 Introduction and Preliminaries

It is well-known that injective objects play a fundamental role in many branches of mathematics.
The question whether a given category has injective objects has been investigated for many
categories. As for posets, Banaschewski [1] proves that complete posets are exactly E-injective
posets (injective with respect to order-embeddings), and Sikorski [4] shows the same result for
injective Boolean algebras (see also [2, 3]).

In this paper, we study quasi injectivity in the category of (right) actions of a partially
ordered monoid on partially ordered sets (Pos-S) with respect to embeddings (E-quasi injec-
tivity). First, we study the relation between E-injectivity, E-quasi injectivity, and completeness
in Pos-S. Then, we show when a θ-extension of an E-quasi injective S-poset A (A ⊕ {θ},
which is obtained by adjoining a zero top element θ to A) is Kθ-quasi injective. Note that an
S-poset A⊕{θ} is called Kθ-quasi injective if for every sub S-poset B of A⊕{θ}, any S-poset

map f : B → A ⊕ {θ}, with f−1(θ) =
←−
f (θ) = {b ∈ B : f(b) = θ} 6= ∅, can be extended to

f̄ : A⊕{θ} → A⊕{θ}. Finally, we study the relation between E-injectivity, E-quasi injectivity,
and completeness in some useful subcategories of Pos-S.

Definition 1.1. Let M be a class of monomorphisms in a category C. An object A ∈ C is
called

1. M-injective if for each M-morphism m : B → C and any morphism f : B → A there
exists a morphism f̄ : C → A such that f̄m = f ,

2. M-quasi injective if for each M-morphism m : B → A and any morphism f : B → A
there exists a morphism f̄ : A→ A which extends f ,

3. M-absolute retract if it is a retract of each of its M-extensions; that is, for each M-
morphism m : A → C there exists a morphism f̄ : C → A such that f̄m = idA, in which case
f̄ is said to be a retraction.

2 Main Results

Remark 2.1. It is clear that every E-injective S-poset is E-quasi injective. But the converse
is not necessarily true. (In Theorem 2.4 (below) we give conditions under which the converse
is also true.)

Remark 2.2. 1. Every complete poset with identity action is E-quasi injective in the category
Pos-S.

2. The action on an E-quasi injective S-poset need not be identity.
3. An E-quasi injective S-poset is not necessarily complete as a poset.
4. There exists complete S-poset which is not E-quasi injective.
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Proposition 2.3. There exists no pomonoid S over which all S-posets are E-quasi injective.

Theorem 2.4. An E-quasi injective S-poset A is E-injective if and only if A has a zero element
and A× Ā(S) is E-quasi injective (Ā is the Dedekind-MacNeille completion of A).

Definition 2.5. Let A be an S-act. A subset B of A is called consistent if for each a ∈ A and
s ∈ S, as ∈ B implies a ∈ B. We call a consistent subact an S-filter.

Theorem 2.6. Let A be an E-quasi injective S-poset. Also, assume that f : B → A⊕{θ} is an

S-poset map, where B is a sub S-poset of A⊕ {θ} and
←−
f (θ) 6= ∅. Then there exists an S-filter

Ã of A⊕ {θ} which is upward closed in A⊕ {θ}, ←−f (θ) ⊆ Ã, and Ã ∩ {b ∈ B : f(b) 6= θ} = ∅ if
and only if there exists an S-poset map f̄ : A⊕ {θ} → A⊕ {θ} which extends f .

Corollary 2.7. Let A be an E-quasi injective S-poset. If for each S-poset map f : B → A⊕{θ},
where B is a sub S-poset of A⊕ {θ} and

←−
f (θ) 6= ∅, we have

Ã = {a ∈ A⊕ {θ} : ∃s ∈ S, as ∈↑ ←−f (θ)}

is an S-filter of A⊕ {θ}, then A⊕ {θ} is a Kθ-quasi injective S-poset.

Corollary 2.8. Suppose S is a pomonoid with any one of the following properties:
(1) ∀s ∈ S, ∃t ∈ S, st ≤ e (e is the identity element of S).
(2) ∀s ∈ S, s2 ≤ e.
(3) S is a pogroup.
(4) >S = e (S has the top element >S).
(5) S is a right zero semigroup with an adjoined identity.
If A is an E-quasi injective S-poset then A⊕ {θ} is Kθ-quasi injective in Pos-S.

Definition 2.9. An S-poset A is called strong reversible if for every s ∈ S there exists t ∈ S
such that ast = ats = a for all a ∈ A. Also, an S-poset A is square reversible if for every a ∈ A
and s ∈ S, we have as2 = a. So, we have the category SR-Pos-S (SQ-Pos-S) of all strong
(square) reversible S-posets and S-poset maps between them.

Theorem 2.10. A strong (square) reversible S-poset is E-quasi injective in SR-Pos-S
(SQ-Pos-S) if it is complete.

Theorem 2.11. Let A be a strong (square) reversible S-poset. Then the following are equiva-
lent:

(i) A is E-injective in SR-Pos-S (SQ-Pos-S).
(ii) A is E-absolute retract in SR-Pos-S (SQ-Pos-S).
(iii) A is complete.
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In order to reinforce the link between linear algebra, modal logic and many-valued logic we
present an extension of Basic Arrow Logic (BAL) based on the introduction of a new modal
operator of scalar multiplication and on a redefinition of the basic arrow operators. As we know
since the work of Venema [11] and Marx [6], the novelty of BAL lies on the introduction of three
modal operators, namely, identity (

∫
), converse (−), and composition (◦). Along with other

important extensions, like presented in [2], [8], [10], what results in this case is Many-valued
Arrow Logic with Scalar multiplication (MALS).

The motivations of presenting MALS as an extension of BAL comes from two different sides.
The first is due to van Benthem’s infinitary operator “M, x |= ϕ∗”, presented in [3]. This modal
operator is defined as a finite composition of a formula ϕ (“x can be C-decomposed into some
finite sequence of arrows satisfying ϕ in M” [3, p. 18]), we may think of this operator as a
kind of scalar multiplication but, the definition do not specify nothing about how to interpret
them like that. MALS make explicit the definition of scalar multiplication validating all vector
spaces’ axioms (some intuitions of our work are presents in [4, p. 289]). The second aspect is
related with many valued logics, in specific with the evident similarities with the logic FDE
[5], and its informational interpretation [9]. In this case our proposal is to define a kind of non-
classical vector algebra, invalidating some intuitive properties like consistency, and showing
that a non-classical vector algebra is still significant. In MALS this approach can be realized
defining the operators in a more general way, following the work of Priest [7].

The plan of the talk is as follows. First we may introduce Arrow Logic with Scalar multipli-
cation (ALS), later we may define Many-valued Arrow Logic (MAL). This two logics are also
extensions of BAL and if we join the two we have MALS, this will be done in a third place. As a
result, we may obtain MALS as a union of ALS and MAL, that means that, we may interpret –
with a 4-valued semantics– composition as vector addition, converse as subtraction, and scalar
multiplication (following van Benthem) as n-composition of ϕ where n ranges over the scalar
magnitude.
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László Pólos, and Michael Masuch (Eds.). Center for the Study of Language and Information,
Stanford, CA, USA 3-34, (1997).

2



Structure Theorem for a Class of Group-like Residuated

Chains à la Hahn
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Hahn’s structure theorem [2] states that totally ordered Abelian groups can be embedded
in the lexicographic product of real groups. Residuated lattices [7] are semigroups only, and
are algebraic counterparts of substructural logics [1]. Involutive commutative residuated chains
(aka. involutive FLe-chains) form an algebraic counterpart of the logic IUL [6]. The focus of
our investigation is a subclass of them, called commutative group-like residuated chains. Com-
mutative, group-like residuated chains are totally ordered, involutive commutative residuated
lattices such that the unit of the monoidal operation coincides with the constant that defines the
involution. The latest postulate forces the structure to resemble totally ordered Abelian groups
in many ways. Firstly, similar to lattice-ordered Abelian groups, for complete, densely ordered,
group-like FLe-chains the monoidal operation can be recovered from its restriction solely to
its positive cone (see [3, Theorem 1]). Secondly, group-like commutative residuated chains
can be characterized as generalizations of totally ordered Abelian groups by weakening the
strictly-increasing nature of the partial mappings of the group multiplication by nondecreasing
behaviour, see Theorem 1. Thirdly, in quest for establishing a structural description for com-
mutative group-like residuated chains à la Hahn, “partial-lexicographic product” constructions
will be introduced. Roughly, only a cancellative subalgebra of a commutative group-like resid-
uated chain is used as a first component of a lexicographic product, and the rest of the algebra
is left unchanged. This results in group-like FLe-algebras, see Theorem 2. The main theorem is
about the structure of order-dense group-like FLe-chains with a finite number of idempotents:
Each such algebra can be constructed by iteratively using the partial-lexicographic product
constructions using totally ordered Abelian groups as building blocks, see Theorem 3. This
result extends the famous structural description of totally ordered Abelian groups by Hahn [2],
to order-dense group-like commutative residuated chains with finitely many idempotents. The
result is quite surprising.

Theorem 1. For a group-like FLe-algebra (X,∧,∨, ∗◦,→∗◦, t, f) the following statements are
equivalent: (X,∧,∨, ∗◦, t) is a lattice-ordered Abelian group if and only if ∗◦ is cancellative if and
only if x→∗◦ x = t for all x ∈ X if and only if the only idempotent element in the positive cone
of X is t.

Definition 1. (Partial-lexicographic products) Let X = (X,∧X ,∨X , ∗,→∗, tX , fX) be a
group-like FLe-algebra and Y = (Y,∧Y ,∨Y , ?,→?, tY , fY ) be an involutive FLe-algebra, with
residual complement ′

∗
and ′

?

, respectively. Add a top element > to Y , and extend ? by
> ? y = y ? > = > for y ∈ Y ∪ {>}, then add a bottom element ⊥ to Y ∪ {>}, and extend
? by ⊥ ? y = y ? ⊥ = ⊥ for y ∈ Y ∪ {⊥,>}. Let X1 = (X1,∧X ,∨X , ∗,→∗, tX , fX) be
any cancellative subalgebra of X (by Theorem 1, X1 is a lattice ordered group). We define
XΓ(X1,Y⊥>) =

(
XΓ(X1,Y ⊥>),≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )

)
, where XΓ(X1,Y ⊥>) = (X1 × (Y ∪

{⊥,>}))∪((X \X1)× {⊥}) , ≤ is the restriction of the lexicographic order of ≤X and ≤Y ∪{⊥,>}
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to XΓ(X1,Y ⊥>), ∗◦ is defined coordinatewise, and the operation →∗◦ is given by (x1, y1) →∗◦
(x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′ where

(x, y)′ =

{
(x′
∗
, y′

?

) if x ∈ X1

(x′
∗
,⊥) if x 6∈ X1

.

Call XΓ(X1,Y⊥>) the (type-I) partial-lexicographic product of X,X1, and Y , respectively.

Let X = (X,≤X , ∗,→∗, tX , fX) be a group-like FLe-chain, Y = (Y,≤Y , ?,→?, tY , fY ) be an
involutive FLe-algebra, with residual complement ′

∗
and ′

?

, respectively. Add a top element > to
Y , and extend ? by >?y = y?> = > for y ∈ Y ∪{>}. Further, let X1 = (X1,∧,∨, ∗,→∗, tX , fX)
be a cancellative, discrete, prime1 subalgebra of X (by Theorem 1, X1 is a discrete lat-
tice ordered group). We define XΓ(X1,Y>) =

(
XΓ(X1,Y >),≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )

)
, where

XΓ(X1,Y >) = (X1 × (Y ∪ {>})) ∪ ((X \X1)× {>}) , ≤ is the restriction of the lexicographic
order of ≤X and ≤Y ∪{>} to XΓ(X1,Y ), ∗◦ is defined coordinatewise, and the operation →∗◦ is
given by (x1, y1)→∗◦ (x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′ where

(x, y)′ =





((x′
∗
),>) if x 6∈ X1 and y = >

(x′
∗
, y′

?

) if x ∈ X1 and y ∈ Y
((x′

∗
)↓,>) if x ∈ X1 and y = >

.

2 Call XΓ(X1,Y>) the (type-II) partial-lexicographic product of X,X1, and Y , respectively.

Theorem 2. XΓ(X1,Y⊥>) and XΓ(X1,Y>) are involutive FLe-algebras. If Y is group-like
then also XΓ(X1,Y⊥>) and XΓ(X1,Y>) are group-like.

Theorem 3. Any order-dense group-like FLe-chain which has only a finite number of
idempotents can be built by iterating finitely many times the partial-lexicographic product con-
structions using only totally ordered groups, as building blocks. More formally, let X be an
order-dense group-like FLe-chain which has n ∈ N idempotents in its positive cone. Denote
I = {⊥>,>}. For i ∈ {1, 2, . . . , n} there exist totally ordered Abelian groups Gi, H1 ≤ G1,
Hi ≤ Γ(Hi−1,Gi) (i ∈ {2, . . . , n− 1}), and a binary sequence ι ∈ I{2,...,n} such that X ' Xn,
where X1 := G1 and Xi := Xi−1Γ(Hi−1,Gi

ιi ) (i ∈ {2, . . . , n}).
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Dualities between algebras and representation spaces are a staple topic at the interface of
algebra and logic. While dualities are often produced with the aid of dualizing objects as
codomains for both algebra and space homomorphisms, other techniques are also useful. As
an addition to the palette of alternative techniques, diagrammatic duality is a method for
obtaining new dualities founded on existing ones. Whenever algebras of a certain class are
equivalent to diagrams in a category of known dualizable algebras, diagrammatic duality
furnishes representation spaces for the algebras in the class by examining dual diagrams in the
category of representation spaces for the known dualizable algebras. We present two examples:
Nelson algebras, and algebras from an arbitrary variety.

A diagram in a category C is a graph map F :D → C from a quiver (or directed graph) D
to (the underlying graph of) C. The diagram is proper if its domain D is small. For a quiver D
and category C, let

(
CD

)
0

be the class of diagrams F : D → C. For given diagrams F : D → C

and G: D → C, let
(
CD

)
(F, G) be the class of natural transformations τ : F → G. Then

CD forms a category. If D is a proper diagram, then categories of the form CD are known as
diagram categories.

Suppose that C and A are categories of algebras and homomorphisms. Suppose that there is
an equivalence C ∼= CA between C and a subcategory CA of a diagram category AV with given
domain diagram V . Then the objects of C are known as diagrammatic algebras (relative to A).
In this context it is often convenient to abuse notation and suppress the distinction between C
and CA, merely stating that a C-algebra C is equivalent to a diagram γ: V → A.

A duality denotes a dual equivalence D : A � X : E in which A is a category of algebras
(in the sense of modern universal algebra) and homomorphisms, while X is a concrete category
of objects known as spaces. For an algebra A, the image AD is called the representation space
of A. For a space X, the image XE is called the algebra represented by X. The functor D is
called the dual space functor. The functor E is called the represented algebra functor.

For Esakia duality [1], take A to be the category Heyt of Heyting algebras. Take X to
be the category Esakia of Esakia spaces, partially ordered Stone spaces where the downset
C≥ of each clopen subset C is clopen. For a Heyting algebra H, the representation space
HD = Heyt(H, 2) carries the induced order and subspace topology from the product 2H . An
Esakia space S represents the algebra SE = Esakia(S, 2), a Heyting subalgebra of 2S .

For Lindenbaum-Tarski duality [2, p. xiv], [8], take A to be the category Set of sets
(algebras without operations). Take X to be the category CABA of complete atomic Boolean
algebras and homomorphisms preserving all joins and meets. Consider the set 2 = {0, 1},
possibly endowed with Boolean algebra structure. For a set A, the representation space AD

is defined to be the set 2A or P(A) of (characteristic functions of) subsets of A, with the
singletons as atoms. For a complete atomic Boolean algebra B, the represented algebra BE :=
CABA(B, 2) is naturally isomorphic to the set of atoms of B.
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Nelson algebras

Nelson algebras [6], also known as “N-lattices” [4], provide algebraic semantics for Nelson’s
constructive logic with strong negation [3, 5]. Consider an algebra (B, ∨, ∧, →, ∼, 0, 1) equipped
with three binary operations ∨,∧, →, and with ∼ as a unary operation (strong negation).
Suppose that (B, ∨, ∧, 0, 1) is a bounded distributive lattice, with ≤ as the lattice ordering.
Then the algebra is a Nelson algebra if the following conditions are satisfied: the reduct
(B, ∨, ∧, ∼, 0, 1) is a De Morgan algebra; a reflexive, transitive relation ≼ is defined on B
by setting x ≼ y iff (x → y) → (x → y) = x → y; the lattice order relation x ≤ y on B is
equivalent to x ≼ y and ∼ x ≼ ∼ y; the equivalence relation χ, defined on B by x χ y iff x ≼ y
and y ≼ x, is a congruence on the reduct (B, ∨, ∧, →) such that the quotient (B, ∨, ∧, →, 0, 1)χ

is a Heyting algebra; and for all x, y ∈ B, one has (x∧ ∼ x, 0) ∈ χ and (∼ (x → y), x∧ ∼ y) ∈ χ.
Now a congruence α on a Heyting algebra H is Boolean if the quotient Hα is a Boolean algebra.
Then the category of Nelson algebras is equivalent to the category of pairs (H, α), where H
is a Heyting algebra and α is a Boolean congruence on H [6, Th. 4.1]. Thus Nelson algebras
are diagrammatic relative to (the category Heyt of) Heyting algebras: Consider the quiver V
given as a: h → b. Then a Nelson algebra B is equivalent to a diagram β: V → Heyt sending
the arrow a to the natural projection of the Boolean congruence αB from the Heyting algebra
Bχ. By this means, Nelson algebras have a diagrammatic duality based on Esakia duality for
Heyting algebras.

Classical universal algebras

Consider a type τ : Ω → N, with operator domain Ω. Then a τ -algebra (A, τ) is a set A with
an operation ω:Aωτ → A corresponding to each operator or element ω of Ω. Let τ denote the
category of τ -algebras and homomorphisms between them [7, §§IV1.1–2]. The Ω-cospan is a
quiver Ω∞ with edge set Ω. Its vertex set is the disjoint union Ω + ⊤ of Ω with a singleton
⊤ = {∞}. The tail map is the identity function on Ω, while the head map is the unique
function Ω → ⊤. A τ -algebra A is equivalent to a diagram α: Ω∞ → Set with edge map
α1: ω 7→ (ω: Aωτ → A). Thus the edge map sends each operator to the corresponding operation
on the set A. It follows that algebras from any variety are diagrammatic relative to sets, and
thus possess a diagrammatic duality based on Lindenbaum-Tarski duality for sets.
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The finitely valued propositional calculi, which have been described by  Lukasiewicz and
Tarski in [1], are extended to the corresponding predicate calculi. The predicate  Lukasiewicz
(infinitely valued) logic QL is defined in the following standard way. The existential (universal)
quantifier is interpreted as supremum (infimum) in a complete MV -algebra. Then the valid
formulas of predicate calculus are defined as all formulas having value 1 for any assignment.
The functional description of the predicate calculus is given by Rutledge in [2]. Scarpellini in
[3] has proved that the set of valid formulas is not recursively enumerable.

Let L and Lm denote a first-order language and propositional language, respectively, based
on ·,+,→,¬,∃. We fix a variable x in L, associate with each propositional letter p in Lm a
unique monadic predicate p∗(x) in L and define by induction a translation Ψ : Form(Lm) →
Form(L) by putting: i) Ψ(p) = p∗(x) if p is propositional variable, ii) Ψ(α ◦ β) = Ψ(α) ◦Ψ(β),
where ◦ = ·,+,→, iii) Ψ(∃α) = ∃xΨ(α).

Monadic MV -algebras were introduced and studied by Rutledge in [2] as an algebraic model
for the predicate calculus QL of  Lukasiewicz infinite-valued logic, in which only a single indi-
vidual variable occurs. Rutledge followed P.R. Halmos’ study of monadic Boolean algebras. In
view of the incompleteness of the predicate calculus the result of Rutledge in [2], showing the
completeness of the monadic predicate calculus, has been of great interest.

The characterization of monadic MV -algebras as pair of MV -algebras, where one of them
is a special kind of subalgebra (m-relatively complete subalgebra), is given in [4]. MV -algebras
were introduced by Chang in [5] as an algebraic model for infinitely valued  Lukasiewicz logic.
An MV -algebra is an algebra A = (A,⊕,�,∗ , 0, 1) where (A,⊕, 0) is an abelian monoid, and
the following identities hold for all x, y ∈ A : x ⊕ 1 = 1, x∗∗ = x, 0∗ = 1, x ⊕ x∗ = 1,
(x∗⊕ y)∗⊕ y = (y∗⊕ x)∗⊕ x, x� y = (x∗⊕ y∗)∗. An algebra A = (A,⊕,�,∗ ,∃, 0, 1) (for short
(A,∃)) is said to be a monadic MV -algebra (MMV -algebra for short) if A = (A,⊕,�,∗ , 0, 1) is
an MV -algebra and in addition ∃ satisfies the following identities: x ≤ ∃x, ∃(x∨ y) = ∃x∨ ∃y,
∃(∃x)∗ = (∃x)∗, ∃(∃x⊕ ∃y) = ∃x⊕ ∃y, ∃(x� x) = ∃x� ∃x, ∃(x⊕ x) = ∃x⊕ ∃x.

A topological space X is said to be an MV -space iff there exists an MV -algebra A such that
Spec(A) (= the set of prime filters of the MV -algebra A equipped with spectral topology) and X
are homeomorphic. Any MV -space is a Priestley space (X,R) such that R(x) (= {y ∈ X : xRy}
is a chain for any x ∈ X and a morphism between MV -spaces is a strongly isotone map (or
an MV -morphism), i. e. a continuous map ϕ : X → Y such that ϕ(R(x)) = R(ϕ(x)) for all
x ∈ X.

Define on A the binary relation ≡̃ by the following stipulation: x≡̃y iff supp∗(x) = supp∗(y),
where supp∗(x) is defined as the set of all prime filters of A containing the element x [6]. Then, ≡̃
is a congruence with respect to ⊗ and ∨. The resulting set β∗(A)(= A/≡̃) of equivalence classes
is a bounded distributive lattice (which we also call the Belluce lattice of A) (β∗(A),∨,∧, 0, 1),
where β∗(x)∧β∗(y) = β∗(x⊗ y), β∗(x)∨β∗(y) = β∗(x⊕ y) = β∗(x∨ y), β∗(1) = 1, β∗(0) = 0,
β∗(x) is the equivalence class containing the element x.

Q-distributive lattices were introduced by Cignoli in [7]. A Q-distributive lattice is an
algebra (A,∨,∧,∃, 0, 1) such that (A,∨,∧, 0, 1) is a bounded distributive lattice and ∃ is a
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quantifier on A, where: ∃0 = 0, a ∧ ∃a = a,∃(a ∧ ∃b) = ∃a ∧ ∃b,∃(a ∨ b) = ∃a ∨ ∃b.
A Q−space is a triplet (X,R,E) such that (X,R) is a Priestley space and E is an equivalence

relation on X which satisfies the following two conditions: 1) E(U) ∈ P(X) for each U ∈ P(X),
and 2) the equivalence classes for E are closed in X (recall that E(U) is the union of the
equivalence classes which intersect U and P(X) is the set of the clopen increasing subsets of
X).

Let (X,R,E) and (Y, S, F ) be Q-spaces. A Q −mapping from (X,R,E) into (Y, S, F ) is
a continuous and order-preserving function f : X → Y such that E(f−1(V )) = f−1(F (V )) for
each V ∈ P(Y ). Let QD and QD∗ be the category of Q-lattices and Q-spaces respectively.
There exist contravariant functors Q∗ : QD → QD∗ and Q : QD∗ → QD that define a dual
equivalence between QD and QD∗ [7].

We define a covariant functor γ from the category MMV of monadic MV -algebras into the
category of Q-distributive lattices QD in the following way. Let (A,∃) ∈MMV and define a
relative congruence relation ≡̃E with respect to �,∨ and ∃ on the (A,∃): for every x, y ∈ A
x≡̃Ey if and only if supp(x) = supp(y) and supp(∃x) = supp(∃y). Let γ : A → A/≡̃ be a
natural mapping. The resulting set γ(A)(= A/≡̃E) of equivalence classes is a Q-distributive
lattice. For each x ∈ A let us denote by γ(x) the equivalence class of x. Let f : A → B be
an MMV -homomorphism. Then γ(f) is a Q-mapping from γ(A) to γ(B) defined as follows:
γ(f)(γ(x)) = γ(f(x)).

Theorem 1. If (A,∃) ∈ MMV, then γ(A,∃) ∈ QD, and γ is a covariant functor from the
category MMV into the category of Q-distributive lattices QD.

(X,R,E) is named MQ-space if (X,R) is an MV -space, (X,R,E) is a Q-space and:
R(E(x)) = E(R(x)), E(R−1(x)) = R−1(E(x)), R−1(x) ∩ E(x) = R(x) ∩ E(x) = {x}.

Let MQ be the category the objects of which are MQ-spaces and morphisms strongly
isotone Q-mappings. Strongly isotone Q-mappings we name MQ-mappings.

Theorem 2. There exists a contravariant functor MQ∗ from MMV into MQ: MQ∗(A,∃) =
Q∗(γ(A,∃)) = (F(A), E(∃)), where F(A) is the prime spectrum of γ(A,∃) with the patch topol-
ogy and the inclusion relation and E(∃) = {(F,G) ∈ F(A)2|F ∩ ∃γ(A,∃) = G ∩ ∃γ(A,∃)}.
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Distinguishing between a “strong sense” and a “weak sense” of propositional connectives
when partially defined predicates are present in a language is an idea due to Kleene [12]. Each
of these meanings is made explicit by introducing 3-valued truth tables, which have become
widely known as strong Kleene tables and weak Kleene tables. By labelling the elements as
0, n, 1, the strong tables for conjunction, disjunction and negation are displayed below:

∧ 0 n 1

0 0 0 0

n 0 n n

1 0 n 1

∨ 0 n 1

0 0 n 1

n n n 1

1 1 1 1

¬
1 0

n n

0 1

The weak tables basically differ for the behavior of the third value n and are given by:

∧ 0 n 1

0 0 n 0

n n n n

1 0 n 1

∨ 0 n 1

0 0 n 1

n n n n

1 1 n 1

¬
1 0

n n

0 1

Each set of tables naturally gives rise to two options for building a three-valued logic,
according to the choice of 1 (only) as designated value, or 1 together with the third value n.
Therefore, four logics populate the Kleene family:1

• Strong Kleene logic [12, §64] and the Logic of Paradox, LP [13], obtained out of the strong
Kleene tables by choosing 1 and 1, n, respectively, as designated values;

• Bochvar’s logic [6] and Paraconsistent Weak Kleene logic, PWK [11, 14], given by the
weak Kleene tables choosing 1 and 1, n, respectively, as designated values.

In the present paper we focus on a family of paraconsistent logics including both the Logic
of Paradox [13] (LP) and Paraconsistent Weak Kleene logic, PWK [11, 14], which has been
recently studied under different perspectives [8, 7].
Different types of sequent calculi has been introduced for LP [1], [2], [3], [5]. On the other
hand, to the authors’ best knowledge, the only attempt to provide a sequent calculus for PWK
is [9]. All the existing sequent calculi for these paraconsistent three-valued logics present non-
standard features, for instance non standard axioms [4], logical rules introducing more than
one connective [4], [3] or logical rules that can be applied only in presence of certain linguistic
conditions (this is the case in [9]). In our approach a standard Gentzen calculus for a logic L is
a calculus (on multisets) having the following properties:

1Here we treat the expression “Kleene family” informally and we do not intend to be exhaustive. There are
other logics that could also be considered within the family of Kleene logics, defined by using two or more of
these matrices (see for instance [10]).
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1. Axioms shall be only of the form α⇒ α, for any propositional variable α.

2. The premises of logical rules must contain only subformulas of the conclusion and each
logical rule must introduce exactly one connective at time.

3. Logical rules must have no linguistic restrictions.

4. Sequents shall be interpreted in the object language, that is: Γ ⇒ ∆ means that the
formula

∨n
i=1 δi, with δi ∈ ∆ follows from the formula

∧m
j=1 γj , with γj ∈ Γ.

5. Only standard structural rules, i.e. contraction, weakening and cut are (possibly) allowed.

Furthermore, by quasi-standard we mean a calculus where condition 4 above is replaced by the
usual metalinguistic interpretation of the comma in the sequents.
The main result of this work consists of proving the impossibility of providing standard, as well
as quasi-standard sequent calculi for a family of logics including both LP and PWK.
PWK has been extensively studied with the tools of Abstract Algebraic Logic in [7]. We wonder
whether the above mentioned negative result might have an algebraic counterpart.
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1 Introduction

The aim of this paper is to introduce standard completeness results for substructural fuzzy
logics based on mianorms (binary monotonic identity aggregation operations on the real unit
interval [0, 1]) with n-contraction, n-mingle, and n-potency axioms. For this, we note that
Baldi [1] introduced Wang’s CnUL (Uninorm logic UL with n-potency) as UL with both
the n-contraction axiom and the n-mingle axiom. However, micanorm- and mianorm-based
logics with each of these axioms have not yet been investigated. Furthermore, we can divide
n-contraction, n-mingle, and n-potency axioms into right and left ones in the context of non-
commutative logic. Here, we introduce such logic systems and their standard completeness via
Yang’s construction in the style of Jenei–Montagna (see [3, 4]).

2 Logic systems, Algebras, and Standard completeness

Let ϕn and nϕ stand for ((...(ϕ&ϕ)& · · ·&ϕ)&ϕ, n ϕ’s, and ϕ&(ϕ& · · ·&(ϕ&ϕ)...)), n ϕ’s,
respectively. We introduce the following extensions of MIAL (Mianorm logic, = SL`).

Definition 1. Let 2 ≤ n. Cr
nMIAL is MIAL plus (right n-contraction, crn) ϕn−1 → ϕn;

Cl
nMIAL is MIAL plus (left n-contraction, cln) n−1ϕ → nϕ; Mr

nMIAL is MIAL plus
(right n-mingle, mr

n) ϕn → ϕn−1; Ml
nMIAL is MIAL plus (left n-mingle, ml

n) nϕ → n−1ϕ;
Pr
nMIAL is MIAL plus (right n-potency, prn) ϕn−1 ↔ ϕn; and Pl

nMIAL is MIAL plus (left
n-potency, pln) n−1ϕ↔ nϕ.

Definition 2. Ls = {Cr
nMIAL, Cl

nMIAL, Mr
nMIAL, Ml

nMIAL, Pr
nMIAL, Pl

nMIAL}}.
AnA-evaluation is a function v : Fm→ A satisfying: v(](ϕ1, . . . , ϕm)) = ]A(v(ϕ1), . . . , v(ϕm)),

where ] ∈ {→, ,∧,∨,&,>,⊥, 1, 0} and ]A ∈ {\, /, ∧, ∨, ∗, >,⊥, t, f}. A formula ϕ is valid
in A if v(ϕ) ≥ t for each A-evaluation v. An A-evaluation v is an A-model of T if v(ϕ) ≥ t for
each ϕ ∈ T .

Definition 3. For L an extension of MIAL, a MIAL-algebra A is an L-algebra if all axioms of
L are valid in A. Especially, for all x ∈ A and 2 ≤ n, A Cr

nMIAL-algebra is a MIAL-algebra
satisfying (crn

A) xn−1 ≤ xn; A Cl
nMIAL-algebra is a MIAL-algebra satisfying (cln

A) n−1x ≤
nx; An Mr

nMIAL-algebra is a MIAL-algebra satisfying (mr
n
A) xn ≤ xn−1; An Mr

nMIAL-
algebra is a MIAL-algebra satisfying (ml

n
A) nx ≤ n−1x; A Cr

nMIAL-algebra is a MIAL-
algebra satisfying (prn

A) xn−1 = xn; A Cl
nMIAL-algebra is a MIAL-algebra satisfying (pln

A)
n−1x = nx. For convenience, we call all these algebras L-algebras.

Theorem 4. (Strong completeness) Let T be a theory over L (∈ Ls) and ϕ a formula. T `L ϕ
iff for every linearly ordered L-algebra A and an A-evaluation v, if v is an A-model of T , then
v(ϕ) ≥ t.



Proposition 5. For every finite or countable, linearly ordered L-algebra A = (A,≤A
,>,⊥, t, f,∧,∨, ∗, \, /), there is a countable ordered set X, a binary operation ◦ on X, and
a map h from A into X such that (I) X is densely ordered and has a maximum Max, a min-
imum Min, and special elements e and ∂; (II) (X, ◦,�, e) is a linearly ordered, monotonic
groupoid with unit; (III) ◦ is conjunctive and left-continuous with respect to (w.r.t.) the or-
der topology on (X,�); (IV) h is an embedding of the structure (A,≤A,>,⊥, t, f,∧,∨, ∗) into
(X,�,Max, Min, e, ∂,min,max, ◦), and, for all m,n ∈ A, h(m\n) and h(n/m) are the resid-
uated pair of h(m) and h(n) in (X,�,Max, Min, e, ∂,max,min, ◦); and (V) ◦ satisfies right
and left n-contraction, n-mingle, and n-potency properties corresponding to ∗.

Theorem 6. (Strong standard completeness) For L ∈ Ls, T `L ϕ iff for every standard L-
algebra and evaluation v, if v(ψ) ≥ e for all ψ ∈ T , then v(ϕ) ≥ e.

Remark 7. [(i)]

1. For L ∈ Ls, Le is L plus (e, exchange) (ϕ&ψ)→ (ψ&ϕ). By almost the same construction,
we can prove standard completeness for Le. But this construction does not work for La,
L plus (a, associativity) (ϕ&ψ)&χ ↔ ϕ&(ψ&χ), since the operation ◦ for La does not
satisfy associativity (see Theorem 7 (v) in [3]).

2. The operation ◦ in Wang’s construction in the style of Jenei–Montagna satisfy associa-
tivity (see Theorem 4.3 in [2]). But this construction does not work for n-contraction and
n-potency, for given n = 2, since (m,x) 6� (m,x) ◦ (m,x) (see p. 212 in [2]).
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Orthomodular lattices were introduced as event structures of quantum mechanics. They ad-
mit the modeling of events which are not simultaneously observable. They are not distributive.
Therefore the computation in orthomodular lattices is much more advanced than in Boolean
algebras. The use of the lattice operations was mostly exhausted and there seems not to be
much space for breaking results concerning their properties. Therefore we considered other
operations in our previous work. We have shown that there are no other useful associative
operations. Among the non-associative ones, Sasaki projection (and its dual) satisfy the most
equations which are weakenings of associativity. We collected many of the known properties of
Sasaki projection, added new ones, and concentrated on the question of which elements of an
orthomodular lattice have a common complement. Here we extend these results.

An orthomodular lattice (abbr. OML) is a bounded lattice with an antitone involution ⊥

(orthocomplementation) satisfying x ∨ x⊥ = 1, x ∧ x⊥ = 0, and x ≤ y =⇒ y = x ∨ (x⊥ ∧ y)
(orthomodular law). A prototypical example of an orthomodular lattice is the lattice of all
closed linear subspaces of a Hilbert space with x⊥ being the closure of {u | u ⊥ v for all v ∈ x}.
Without the use of the inner product, only some properties of subspaces can be expressed in
algebraic terms of OMLs. Sasaki [11] showed that the orthogonal projection of a subspace y
to a subspace x can be expressed without the use of the inner product as the Sasaki projection
φx,

φx(y) = x ∧ (x⊥ ∨ y) .

Sasaki projections are also studied in [1, 2, 3, 9, 10] and generalized in the context of synaptic
algebras by D. Foulis and S. Pulmannová in [5].

Throughout this abstract, L denotes an orthomodular lattice and Φ(L) = {φx | x ∈ L}.
The fundamental observation [10] is that kernels of congruences in L are exactly the subsets I
satisfying φx(y) ∈ I whenever x ∈ I or y ∈ I. (The meet, x∧y, does not possess this property.)

Sasaki projections preserve the join [3, 4], i.e., φx(y ∨ z) = φx(y) ∨ φx(z), therefore they
are monotonic. Each monotonic mapping θ : L → L has a unique dual, which is a monotonic
mapping θ : L→ L defined by

θ(y) = (θ(y⊥))⊥ .

The composition of two Sasaki projections, φxφy, is a Sasaki projection iff x and y commute,
i.e., x = (x∧y)∨(x∧y′) . All finite compositions of Sasaki projections on L form a monoid S(L).

For x1, . . . , xn ∈ L, we study the compositions ξ = φxn · · ·φx2φx1 , ξ
∗ = φx1φx2 · · ·φxn ∈

S(L). They form an adjoint pair, i.e., ξ∗(y) = min{z ∈ L | ξ(z) ≥ y}, thus each of them
uniquely determines the other and the mapping ∗ : S(L)→ S(L) is correctly defined (although
the representations of ξ, ξ∗ as compositions of Sasaki projections are not unique).

Elements x and y of an OML L are said to be strongly perspective if they have a common
(relative) complement in the interval [0, x ∨ y]. Following [2], we ask when ξ(1), ξ∗(1) are



strongly perspective. For n = 2, this is always the case. We have found a constructive proof
for n = 3 and a counterexample for n = 4 [8]. Chevalier and Pulmannová [2] have given a
non-constructive proof for complete modular OMLs and arbitrary n; however, a constructive
proof for n > 3 is not known.

Let S be a semigroup with an absorbing element 0 and an involution ∗ : S → S such that for
any θ, η ∈ S, (θη)∗ = η∗θ∗. We call S a Baer *-semigroup if, for each θ ∈ S, there is a greatest
element, θ′, of the right ideal {η ∈ S | θη = 0} and π = θ′ is a projection, i.e., π = π2 = π∗

[2, 3, 4]. We denote by P (S) the set {θ′ | θ ∈ S}.
The theory of Baer *-semigroups can be directly applied to the monoid S(L). Projections

of S(L) are exactly the Sasaki projections, P (S(L)) = Φ(L). The order on Φ(L) is defined by
θ ≤ η ⇐⇒ θη = θ. For each θ ∈ S(L), we define θ′ := φθ∗(0). It is the unique element such

that for any η ∈ S(L)

θη = φ0 ⇐⇒ η(y) ≤ θ′(y) for all y ∈ L . (1)

The mapping ′ is an orthocomplementation which equips Φ(L) with the structure of an OML.
The mapping Φ: L → Φ(L), x 7→ φx, is an isomorphism. We derived many of the relevant
results using the tools of OML computations.

Chevalier and Pulmannová [2] proved that ξ∗ξ(1) = ξ∗(1). Their proof heavily used methods
of Baer *-semigroups, a direct proof using techniques of OMLs is still not known.

We bring arguments why Sasaki operations form a promissing alternative to lattice opera-
tions (join and meet) in the study of orthomodular lattices. Only the lattice operations “satisfy
more equations” than Sasaki operations. The potential of using Sasaki operations in the alge-
braic foundations of orthomodular lattices is still not sufficiently exhausted. Besides, they have
a natural physical interpretation.
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The logic WS5 plays an important role in extending Glivenko’s Theorem to MIPC (see [2]).
The algebraic models for WS5 are monadic Heyting algebras in which the open elements form a
Boolean algebra. We study the varietyM of such algebras from the standpoint of projectivity.
We give a description of FM(1), and we prove a criterion of projectivity of finitely-presented
algebra from any of subvarieties of M.

Free Single-Generated Algebra

An algebra ⟨A;∧,∨,→,0,1,◻⟩, where ⟨A;∧,∨,→,0,1⟩ is a Heyting algebra and ◻ satisfies the
following identities: (M0) ◻1 ≈ 1;(M1) ◻x→ x ≈ 1;(M2) ◻(x→ y) → (◻x→ ◻y) ≈ 1;(M3) ◻x→ ◻◻ x ≈ 1;(M4) ¬ ◻ ¬ ◻ x ≈ ◻x.
is called an m-algebra. It is clear that the set of all m-algebras forms a variety that we denote
by M. All necessary information about monadic Heyting algebras (including m-algebras) can
be found in [1]. An element a of an m-algebra is open, if a = ◻a. Recall that an m-algebra is
subdirectly irreducible (s.i. for short), if it has exactly two open elements: 0 and 1.

For any element a of any m-algebra A, we define the degrees of a as follows: a0 ∶= 0, a1 ∶=¬a, a2 ∶= a and for all k ≥ 0 a2k+3 ∶= a2k+1 → a2k, a2k+4 ∶= a2k+1 ∨ a2k+2, and we let aω ∶= 1.
For n > 1 we denote by Zn a single-generated s.i. m-algebra of cardinality n. The Heyting

reduct of Zn (H-reduct for short) is a single-generated Heyting algebra with n elements in which◻1 = 1 and ◻a = 0 for all a < 1. Every algebra Zn consists of degrees of its generator that we
denote by gn. Z2 is a two-element m-algebra with generator g2 = 0, while by Z1 we denote a
two-element m-algebra with generator g1 = 1.

Let

P =∏
i>0Zi and Z be a subalgebra of P generated by element g = (g1,g2, . . . ),

that is, by the element g such that πi(g) = gi, i > 0, where πi is a i-th projection.

Proposition 1. Z is isomorphic to FM(1).
An element a ∈ P is called leveled, if there are 0 < k < ω and 0 <m ≤ ω such that πj(a) = gmj

for all j ≥ k. Let L be a set of all leveled elements of P. The following theorem gives a
convenient intrinsic description of FM(1).
Theorem 2. L = Z, hence FM(1) is isomorphic to a subalgebra of P consisting of all leveled
elements.

As one can see from the following corollary, the structure of FM(1) is much more complex
than the structure of free single-generated Heyting algebra.
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Corollary 3. The following holds

(a) H-reduct of FM(1) is not finitely generated as Heyting algebra;(b) FM(1) contains infinite ascending and descending chains of open elements;(c) FM(1) is atomic and it has infinite set of atoms;(d) Z2 is the only s.i. subalgebra of FM(1).
Projective Algebras

In the following theorem we use the notations from [1]: ϕ(A) denotes the H-reduct of A,
ψ(A) denotes a relatively complete subalgebra of ϕ(A) defining modal operations, and ψ(V) ={ψ(A) ∣ A ∈ V}.
Theorem 4. (comp. [3, Corollary 5.5 ]) Let V ⊆ MHA be a variety of monadic Heyting
algebras. If A ∈ V is such an algebra that ϕ(A) = ψ(A) and algebra ψ(A) is projective in
ψ(V), then A is projective in V.

Corollary 5. If A is at most countable m-algebra and each element of A is open, then A is
projective in M.

Proposition 6. Each projective in MHA algebra has Z2 as a homomorphic image.

Let V be a variety of m-algebras and A ∈ V. Then A ∈ V is finitely presented in V if
A ≅ FV(n)/θ for some n, where θ is a principal congruence on FV(n).

The following theorem extends the criterion of projectivity [4, Theorem 5.2] from finite to
finitely-presented m-algebras.

Theorem 7. Let V be a variety of m-algebras and A ∈ V be finitely presented in V. Then A is
projective in V if and only if Z2 is a homomorphic image of A.

Corollary 8. Let V be a variety of m-algebras. Then every finitely presented subalgebra of
FV(ω) is projective in V. In particular, every finite subalgebra of FV(ω) is projective.

Corollary 9. Let V be a variety of m-algebras and A ∈ V be given by defining relation
t(x1, . . . , xn) = 1. Then A is projective in V if and only if the term t is satisfiable in Z2.

Corollary 10. Let V be a variety of m-algebras. Then the problem whether a given finite set
of equations defines in V a projective finitely presented algebra is decidable.

Corollary 11. Z2 is the only projective s.i. m-algebra.

Corollary 12. Let V be a variety of m-algebras. Then the problem whether a given finite set
of equations defines in V a projective finitely presented algebra is decidable.

Theorem 13. For every finitely generated m-algebra A the following is equivalent

(a) A has Z2 as a homomorphic image;(b) A does not contain an element a such that ◻ a = ◻¬a;(c) quasi-identity ρ ∶= (¬ ◻ x ∧ ¬ ◻ ¬x) ≈ 1⇒ 0 holds on A.

Corollary 14. The quasivariety Q defined by quasi-identity ρ is primitive and Q contains
every primitive quasivariety of m-algebras as a subquasivariety.

2
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A relational structure, or frame, X = (X, (Ri)I) is a set X with a family (Ri)I of relations
on X where we assume that Ri is ni + 1-ary. The complex algebra X+ = (P(X), (3i)I , (2i)I)
of this frame is the algebra consisting of the power set P(X) of X with ni-ary operations 3i

and 2i for each i ∈ I. We follow the Jónsson and Tarski method of defining 3i through the
relational image of Ri with 2i as its dual. When P(X) is viewed as 2X , these operations are
given by

3i(f1, . . . , fni)(x) =
∨
{f(x1) ∧ · · · ∧ f(xn) : (x1, . . . , xn, x) ∈ Ri}

2i(f1, . . . , fni
)(x) =

∧
{f(x1) ∨ · · · ∨ f(xn) : (x1, . . . , xn, x) ∈ Ri}

Replacing 2 with a complete lattice L leads to an obvious generalization of this construction
to what we call the convolution algebra LX. The name is given to reflect that the operations
(3i)I and (2i)I are obtained via a form of convolution.

We consider basic properties of this convolution algebra. Among our results, we show that
when L is a non-trivial complete Heyting algebra that the operations 3i are complete operators
and that LX and X+ satisfy the same equations in the signature ∧,∨, 0, 1, (3i)I . The dual result
holds when L is a non-trivial complete dual Heyting algebra. When L is non-trivial, complete,
and completely distributive, LX and X+ satisfy the same equations in ∧,∨, 0, 1, (3i)I , (2i)I .

Frames of a given type τ ′ = (ni + 1)I form a category Frmτ ′ with the morphisms being
p-morphisms. Then considering the category Lat of complete lattices with morphisms being
maps that preserve finite meets and arbitrary joins, and Algτ the category of algebras of type
τ = (ni)I , there is a bifunctor

Conv : Lat× Frmτ ′ −→ Algτ

that is covariant in the first argument and contravariant in the second. Here we are considering
the restriction to the (3i)I fragment. Modifications to the morphisms of Lat provide versions
for (2i)I fragment, and to the full language. Various results are shown related to the behavior
of this bifunctor with respect to one-one and onto maps, and with respect to products and
coproducts in its two components.

Several examples are considered. These include monadic Heyting algebras; versions of
intuitionistic relation algebras obtained from HG where H is a complete Heyting algebra and
G is a group; and the convolution algebra II where I is the real unit interval and the relational
structure I = (I,∧,∨, 0, 1,¬,4,5) consists of I with its max and min operations, bounds,
negation, and a t-norm 4 and co-norm 5. This algebra II is the truth value object used in
type-2 fuzzy sets.

A manuscript of the paper is at https://arxiv.org/abs/1702.02847
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Our presentation is devoted to two systems of geometry which are point-free, in the sense
that the notion of a point is absent from their basic notions.

The first system, created by the Polish mathematician Aleksander Śniatycki in [3], is based
on the notions of region, parthood and half-plane. Śniatycki describes structures of the form:

〈R,+, ·,−,H,0,1〉

such that R is a non-empty set whose elements are called regions, H ⊆ R is a set whose elements
are called half-planes, and:

〈R,+, ·,−,0,1〉 is a complete Boolean algebra. (H0)

The specific half-plane postulates (which we formulate here in an abbreviated form) are:

h ∈ H −→ −h ∈ H , (H1)

x1, x2, x3 ∈ R+ −→
(
∃h∈H∀i∈{1,2,3} (xi · h 6= 0 6= xi · −h ∨

∃h1,h2,h3∈H (∀i∈{1,2,3} xi · −hi = 0 ∧
((x1 + x2) · h3) + ((x1 + x3) · h2) + ((x2 + x3) · h1) = 0) ,

(H2)

∀h1,h2,h3∈H (h1 · (h2 + h3) = 0 −→ h2 · −h3 = 0 ∨ h3 · −h2 = 0) , (H3)

∀h1,h2,h3,h4∈H
(
h1 · h2 · ((h3 · −h4) + (h4 · −h3)) = 0 −→

(h3 = h4) ∨ (h1 · h2 · h3 = 0) ∨ (h1 · h2 · −h3 = 0)
)
.

(H4)

Śniatycki demonstrates that the standard notions of line, point, incidence relation between lines
and points and betweenness relation on points are definable in his structures, and that the set
of axioms he puts forward is sufficiently strong to prove all the axioms of a system of affine
geometry (by which, for the purpose of this talk, we may understand the part of geometry
which is expressed by incidence and betweenness only). In this sense, the theory with axioms
(H0)–(H4) may be considered as a system of point-free affine geometry.

The second system, which comes from [2], pursues the old idea of Alfred Whitehead’s [4]
of establishing geometry by combining the mereological notions of region and parthood with
that of oval as primitives. Indeed, taking the convex opens subsets of the Cartesian plane
as paradigms of oval regions we construct geometry in which the notion of oval (treated as
a point-free counterpart of the notion of convex set) is assumed as basic. Via this (and two
other notions, of region and parthood) we introduce lines and half-planes, and formulate the
following axioms which have very natural geometrical interpretation (O is the set of ovals, O+ is
the set of non-zero ovals):
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〈R,6〉 is a complete atomless Boolean lattice. (O0)
O is an algebraic closure system in 〈R,6〉 containing 0. (O1)

O
+ is dense in 〈R+,6〉 . (O2)

The sides of a line form a partition of 1 . (O3)

For any a, b, c ∈ O+ which are not aligned there is a line which
separates a from hull(b+ c). (O4)

If distinct lines L1 and L2 both cross an oval a, then they split a
into at least three parts. (O5)

No half-plane is part of any stripe or angle. (O6)

In the axioms above hull is the closure operator arising from O, alignment of regions may be
geometrically interpreted as being crossed by one line (which is a pair of maximal ovals), stripe
is the product of two «parallel» half-planes, and angle may be interpreted in the traditional
Euclidean way as the intersection of two half-planes which are not «parallel».

About the theory composed of axioms (O0)–(O6) we prove that its definitional extension
with the notion of half-plane is strong enough to prove all Śniatycki’s axioms, and therefore is
suitable for reconstruction of affine geometry. So this theory deserves the name of point-free
affine geometry as well.

In our talk we would like to:

(i) present geometrical interpretation of (cryptic at first sight) axioms of Śniatycki’s,

(ii) describe the steps in construction of our system from [2] and justify our choice of axioms
from point of view of pursuing affine geometry,

(iii) and sketch the proof of axioms of Śniatycki’s from (O0)–(O6).
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Many-valued modal logics extend the Kripke frame setting of classical modal logic with
a many-valued semantics at each world to model modal notions such as necessity, belief,
and spatio-temporal relations in the presence of uncertainty, possibility, or vagueness (see,
e.g., [1, 2, 4]). In [3] a many-valued modal logic defined over serial frames with connectives
interpreted locally as abelian group operations over the real numbers was introduced and the
completeness of an axiomatization established. In this work we extend this result to reflexive
frames, thereby taking a first step towards a more general theory of modal logics based on
abelian groups. This logic can be viewed as a modal extension of the multiplicative fragment of
abelian logic (see, e.g., [5]) and can be axiomatized by adding an axiom expressing reflexivity
to the axiom system provided for the logic in [3]. We give a sound and complete axiom system
for this logic, where we prove completeness using both a sequent calculus and a labelled tableau
system.

Let us denote by Fm the set of formulas defined inductively over a countably infinite set Var
of propositional variables using the binary connective → and modal connective 2. We define

0 := p0 → p0, ¬ϕ := ϕ→ 0, ϕ&ψ := ¬ϕ→ ψ, and 3ϕ := ¬2¬ϕ,

and let 0ϕ = 0 and (n+ 1)ϕ = ϕ&(nϕ) for all n ∈ N.
A frame is a pair F = 〈W,R〉 such that W is a non-empty set of worlds and R ⊆ W ×W

is an accessibility relation on W . F is called reflexive if the accessibility relation is reflexive,
that is, if for all x ∈ W , Rxx. A KT(R)-model is a triple M = 〈W,R, V 〉 such that 〈W,R〉 is
a reflexive frame and V : Var ×W → [−r, r] for some r ∈ R+ is a valuation that extends to
V : Fm×W → R via

V (ϕ→ ψ, x) = V (ψ, x)− V (ϕ, x)

V (2ϕ, x) =
∧{V (ϕ, y) : Rxy}.

A formula ϕ ∈ Fm will be called valid in a KT(R)-model M = 〈W,R, V 〉 if V (ϕ, x) ≥ 0 for all
x ∈W . If ϕ is valid in all KT(R)-models, then ϕ is said to be KT(R)-valid, written |=KT(R) ϕ.

The proposed axiom system KT(R) for this logic is given in Fig. 1.

(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

(I) ϕ→ ϕ

(A) ((ϕ→ ψ)→ ψ)→ ϕ

(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

(T) 2ϕ→ ϕ

(Dn) 2(nϕ)→ n2ϕ (n ≥ 2)

ϕ ϕ→ ψ

ψ
(mp)

ϕ
2ϕ (nec)

nϕ
ϕ (conn) (n ≥ 2)

Figure 1: The axiom system KT(R)



∆⇒ ∆
(id)

Γ⇒ ∆ Π⇒ Σ
Γ,Π⇒ Σ,∆

(mix) nΓ⇒ n∆
Γ⇒ ∆

(scn)
(n ≥ 2)

Γ, ψ ⇒ ϕ,∆

Γ, ϕ→ ψ ⇒ ∆
(→⇒)

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆
(⇒→)

Γ, ϕ⇒ ∆

Γ,2ϕ⇒ ∆
(2⇒)

Γ⇒ n[ϕ]

2Γ⇒ n[2ϕ]
(2n)

(n ≥ 0)

Figure 2: The sequent calculus GKT(R)

That any formula derivable in this system is KT(R)-valid is easily shown. To prove the
converse, we first introduce the sequent calculus in Fig. 2, where a sequent Γ⇒ ∆ is defined to
be an ordered pair of finite multisets of formulas, kΓ denotes Γ, . . . ,Γ (k times), and 2Γ denotes
the multiset of boxed formulas [2ϕ : ϕ ∈ Γ]. A sequent can be translated into a formula via
the interpretation (where ϕ1& . . .&ϕn = 0 for n = 0):

I(ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm) := (ϕ1& . . .&ϕn)→ (ψ1& . . .&ψm).

We then prove that Γ ⇒ ∆ is derivable in GKT(R) if and only if I(Γ ⇒ ∆) is derivable
in KT(R). Completeness is then established via an intermediate labelled tableau calculus in
which derivability is equivalent to KT(R)-validity. This tableau calculus reduces the problem
of proving completeness to solving linear inequations over R. We hence obtain the main result:

Theorem 1. The following are equivalent for any formula ϕ:

(1) ϕ is KT(R)-valid.

(2) ϕ is derivable in KT(R)

(3) ⇒ ϕ is derivable in GKT(R).
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logics. In WoLLIC 2013, volume 8701 of LNCS, pages 226–237. Springer, 2013.

[3] D.Diaconescu, G. Metcalfe, and L.Schnüriger. Axiomatizing a real-valued modal logic. In Proceed-
ings of AiML 2016, pages 236–251. King’s College Publications, 2016.

[4] G. Hansoul and B. Teheux. Extending  Lukasiewicz logics with a modality: Algebraic approach to
relational semantics. Studia Logica, 101(3):505–545, 2013.

[5] G. Metcalfe, N. Olivetti, and D. Gabbay. Sequent and hypersequent calculi for abelian and
 Lukasiewicz logics. ACM Trans. Comput. Log., 6(3):578–613, 2005.



A duality for involutive bisemilattices

Stefano Bonzio1, Andrea Loi2, and Luisa Peruzzi2

1 The Czech Academy of Sciences, Prague, Czech Republic
2 University of Cagliari, Italy

It is a common trend in mathematics to study (natural) dualities for general algebraic
structures and, in particular, for those arising from mathematical logic. The first step towards
this direction traces back to the pioneering work by Stone for Boolean algebras [12]. Later on,
Stone duality has been extended to the more general case of distributive lattices by Priestley
[8], [9]. The two above mentioned are the prototypical examples of natural dualities and will
be both recalled and constructively used in the present work.

A natural duality, in the sense of [2], is built using a schizophrenic object living in two differ-
ent categories and has an intrinsic value: it is a way of describing the very same mathematical
object from two different perspectives, the target category and its dual.

The starting point of our analysis is the duality established by Gierz and Romanowska
[4] between distributive bisemilattices and compact totally disconnected partially ordered left
normal bands with constants, which we refer to as GR spaces. Such duality is natural; however,
its relevance mainly lies in the use of the technique of P lonka sums [6], [7], as an essential tool
for proving the duality [11], [10].

Our aim is to provide a duality between the categories of involutive bisemilattices and
certain topological spaces, here christened as GR spaces with involution. The former consists
of a class of algebras introduced and extensively studied in [1] as algebraic semantics (although
not equivalent1) for paraconsistent weak Kleene logic. Involutive bisemilattices are strictly
connected to Boolean algebras as they are representable as P lonka sums of Boolean algebras.

The present work consists of two main results. On one hand, taking advantage of the P lonka
sums representation in terms of Boolean algebras and Stone duality, we are able to describe
the dual space of an involutive bisemilattice as a strongly inverse system of Stone spaces (the
use of this terminology is borrowed from [5]). On the other hand, we generalize Gierz and
Romanowska duality by considering GR spaces with involution as an additional operation: the
duality cannot be constructed using the usual techniques for natural dualities. As a byproduct
of our analysis we get a topological description of strongly inverse systems of Stone spaces.
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Abstract
We obtain a duality between the category of finite MTL-algebras and the category of finite Labeled

Trees. In addition we proof that the forest product of MTL-algebras is essentialy a sheaf of MTL-chains
over an Alexandrov space.

MTL-logic was introduced by Esteva and Godo in [5] as the basic fuzzy logic of left-
continuous t-norms. Furthermore, a new class of algebras was defined, the variety of MTL-
algebras. This variety constitutes an equivalent algebraic semantics for MTL-logic. MTL-
algebras are essentially integral commutative residuated lattices with bottom satisfying the
prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1

We call fMT L to the algebraic category of finite MTL-algebras.

A totally ordered MTL-algebra (MTL-chain) is archimedean if for every x ≤ y < 1, there
exists n ∈ N such that yn ≤ x.

A forest is a poset X such that for every a ∈ X the set

↓ a = {x ∈ X | x ≤ a}
is a totally ordered subset of X. A p-morphism is a morphism of posets f : X → Y satisfying
the following property: given x ∈ X and y ∈ Y such that y ≤ f(x) there exists z ∈ X such that
z ≤ x and f(z) = y. Let faMT L be the algebraic category of finite archimedean MTL-algebras
and faMT Lc the full subcategory of finite archimedean MTL-chains. Let C be its skeleton. A
labeled forest is a function l : F → C, where F is a forest. Consider two labeled forests l : F → C
and m : G→ C. A morphism l→ m is a pair (ϕ,F) such that ϕ : F → G is a p-morphism and
F = {fx}x∈F is a family of morphisms fx : mϕ(x) → l(x) of MTL algebras. We call fLF to
the category of labeled forests and their morphisms.

Definition 1. Let F = (F,≤) a forest and let {Mi}i∈F a collection of MTL-chains such that,
up to isomorphism, all they share the same neutral element 1 and the same minimum element
0. If (

⋃
i∈F)F denotes the set of functions h : F → ⋃

i∈FMi such that h(i) ∈Mi for all i ∈ F,
the forest product

⊗
i∈FAi is the algebra M defined as follows:

(1) The elements of M are the h ∈
(⋃

i∈FMi

)F such that, for all i ∈ F if h(i) 6= 0i then for
all j < i, h(j) = 1.

(2) The monoid operation and the lattice operations are defined pointwise.
(3) The residual is defined as follows:

(h→ g)(i) =





h(i)→i g(i), if for all j < i, h(j) ≤j g(j)

0i otherwise



where de subscript i denotes the realization of operations and of order in Mi.

In every poset P the collection D(P) of lower sets of P defines a topology over P called the
Alexandrov topology on P. Let Shv(D(P)) the category of sheaves over D(P).

Lemma 1. Let F a forest and {Mi}i∈F a collection of MTL-chains as in Definition 1. Then,
the assignment P : D(F)op → Set, P(U) =

⊗
i∈UAi is a sheaf of MTL-algebras in Shv(D(P)).

Moreover, P is a sheaf of MTL-chains in Shv(D(P)).

Let M be a finite MTL-algebra. A submultiplicative monoid F of M is called a filter if is
an upset respect to the order of M . A filter F of M is prime if 0 /∈ F and x ∨ y ∈ F entails
x ∈ F or y ∈ F , for every x, y ∈ M . The set of prime filters of a MTL-algebra M ordered
by the inclusion will be noted as Spec(M). Let I(M) be the poset of idempotent elements of
M ; J (I(M))∗ the subposet of non zero join irreducible elements of I(M) and m(M) the set of
minimal elements of J (I(M))∗. Let e ∈ J (I(M))∗ and ae the smallest a ∈ m(M) such that
a ≤ e.

Lemma 2. For every finite MTL-algebra M the following holds:

i) J (I(M))∗ is a finite forest.

ii) For every e ∈ J (I(M))∗, M/ ↑ ae is a finite archimedean MTL-chain, so the function
lM : J (I(M))∗ → C defined as lM (e) = M/ ↑ ae becomes a finite labeled forest.

In this work we pretend to transform the results obtained in Lemmas 1 and 2 in functorial as-
signments in order to obtain a categorical equivalence between the categories fLF and fMT L.

It is worth to mention that from the well known equivalence between the topos of sheaves
over a topological space X and the topos of local homeos over X the Lemma 1 can be stated as:
The forest product of MTL algebras is isomorphic to the algebra of global sections of a bundle
over an Alexandrov space.
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Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia
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This contribution is based on the joint work with David J. Foulis and Anna Jenčová [6].
Generalized Hermitian (GH-) algebras, which were introduced in [9] incorporate several

important algebraic and order theoretic structures including effect algebras [8], MV-algebras
[4], orthomodular lattices [10], Boolean algebras [14], and Jordan algebras [12]. Apart from their
intrinsic interest, all of the latter structures host mathematical models for quantum-mechanical
notions such as observables, states, properties, and experimentally testable propositions [5, 15]
and thus are pertinent in regard to the quantum-mechanical theory of measurement [2].

It turns out that GH-algebras are special cases of the more general synaptic algebras intro-
duced in [7]. Thus, in this paper, it will be convenient for us to treat GH-algebras as special
kinds of synaptic algebras . In most of the paper, we focus on commutative GH-algebras. A
commutative GH-algebra A can be shown to be isomorphic to a lattice ordered Banach algebra
C(X,R), under pointwise operations and partial order, of all continuous real-valued functions
on a basically disconnected compact Hausdorff space X.

As indicated by the title, one of our purposes in this paper is to formulate and prove an
analogue for commutative GH-algebras of the classical Loomis-Sikorski representation theorem
for Boolean σ-algebras [11, 14], and its extension for σ MV-algebras and Dedekind σ-complete
`-groups [1, 3, 13].

A real observable ξ for a physical system S is understood to be a quantity that can be
experimentally measured, and that when measured yields a result in a specified set Rξ of real
numbers. A state ρ for S assigns to ξ an expectation, i.e., the long-run average value of a
sequence of independent measurements of ξ in state ρ. If f is a function defined on Rξ, then
f(ξ) is defined to be the observable that is measured by measuring ξ to obtain, say, the result
λ ∈ Rξ, and then regarding the result of this measurement of f(ξ) to be f(λ).

We use our Loomis-Sikorski theorem to show that each element a in a GH-algebra A corre-
sponds to a real observable ξa. Moreover, we obtain an integral formula for the expectation of
the observable ξa in state ρ,and we provide a continuous functional calculus for A.
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Let X be a compact Hausdorff space. It is well known that X can be characterized by
its ring of real continuous functions, by its set of regular open subsets or more simply by its
set of open subsets. These characterizations lead to dualities between the category KHaus,
of compact Hausdorff space and respectively the categories C?-alg (or equivalently ubal), of
commutative C?-algebras, DeV of de Vries algebras and KRFrm of compact regular frames.
We thus get a square of dualities. (see [1], [2] and [6]).

Later, G.Bezhanishvili and J.Harding extended in [1] a part square to dualities between
the categories StKSp of stably compact spaces, RPrFrm of regular proximity frames and
StKFrm of stably compact frames.

We thus get the square of dualities extended this way.

StKSp RPrFrm

KHaus DeV

C?-alg KRFrm

StKFrm

Our aim is to complete the outside triangle, looking for a category generalizing the C?-
algebras.

Using the equivalences between StKSp and the category KPSp of compact po-spaces (see
[4]), an essential fact, due to G.Hansoul in [5] leads us to consider a category of ordered semi-
ring. Indeed, we can see that the Nachbin-Stone-Cech compactification of a completely regular
ordered po-space X can be realized through its semi-ring of increasing, continuous and real,
positive functions, denoted I(X,R+).

Following the definitions of G.Bezhanishvili, P.Morandi and B.Olberding in [2], we define
the bounded Archimedean `-semi-algebras this way.

Definition 1. 1. An `-semi-ring is an algebra (A,+, ., 0, 1,≤) with the following axioms :

(a) (A,+, 0) and (A, ., 1) are commutative monoids.

(b) (A,+, .) is distributive.

(c) a ≤ b⇔ a+ c ≤ b+ c.

(d) a ≥ 0 and a ≤ b⇒ a.c ≤ b.c
(e) (A,≤) is a lattice.

2. An `-semi-ring A is bounded if for all a ∈ A, there is n ∈ N such that a ≤ n.1.

3. An `-semi-ring A is Archimedean if for all a, b, c, d ∈ A, whenever n.a+ b ≤ n.c+ d, then
a ≤ c.
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4. An `-semi-ring A is an `-semi-algebra if it is an R+-algebra such that for all a, b ∈ A and
r ∈ R+, r.a ≤ r.b.

5. (a ∨ b) + c = (a+ c) ∨ (b+ c) and (a ∧ b) + c = (a+ c) ∧ (b+ c).

We now denote sbal the category of bounded Archimedean `-semi-algebras, and defining
the morphisms in the natural way.

In order to get the missing duality, we define the ∼-relation on A×A, with A an sbal, such
as

(a, b) ∼ (c, d)⇔ a+ d = b+ c,

allowing us to construct the functor ·b : sbal −→ bal which sends A to A×A/ ∼. In particular,
this functor enable us to easily transfer structures from rings to semi-rings.

With all these tools, we propose the following functors between KPSp and sbal : the first
functor, denoted I, sends a compact po-space X to the set I(X,R+) and a continuous increasing
function f : X −→ Y between compact po-spaces to

f? : I(Y,R+) −→ I(X,R+) : g 7−→ g ◦ f.

On the other side, the second functor, denoted χ, maps a sbal A to its set of `-congruences,
denoted XA and a morphism α : A −→ B between sbals to

α? : XB −→ XA

such that, if θ ∈ XB , (a, b) ∈ α?(θ) if and only if (α(a), α(b)) ∈ θ.

Definition 2. An `-semi-ring A admits difference with constants if for all a ∈ A and r ∈ R+

a ≤ r.1 implies there is b ∈ A such that a = b+r.1. It is uniformly complete if it is complete for
the norm ||a|| = inf{λ ∈ R : a ≤ λ.1}. We then denote usbal the full subcategory of sbal whose
objects are the uniformly complete bounded Archimedean `-semi-algebras with difference with
constants.

Theorem 3. The functors χ and I establish a dual equivalence between usbal and KPSp

References

[1] Guram Bezhanishvili and John Harding. Proximity frames and regularization. Appl. Categ. Struct.,
22(1):43–78, 2014.

[2] Guram Bezhanishvili, Patrick J. Morandi, and Bruce Olberding. Bounded Archimedean `-algebras
and Gelfand-Neumark-Stone duality. Theory Appl. Categ., 28:435–475, 2013.

[3] Israel Gelfand and Mark Neumark. On the imbedding of normed rings into the ring of operators
in Hilbert space. Mat. Sb., Nov. Ser., 12:197–213, 1943.

[4] Gerhard Gierz, Karl Hofmann, Klaus Keimel, Jimmie Lawson, Michael Mislove, and Dana S. Scott.
Continuous lattices and domains. Cambridge: Cambridge University Press, 2003.

[5] Georges Hansoul. The Stone-Čech compactification of a pospace. Universal algebra, Colloq.,
Szeged/Hung. 1983, Colloq. Math. Soc. János Bolyai 43, 161-176 (1986)., 1986.

[6] Peter T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, 1982.

[7] Marshall H. Stone. A general theory of spectra. I. Proc. Natl. Acad. Sci. USA, 26:280–283, 1940.

2



Algorithmic Correspondence, Canonicity and Completeness

for Possibility Semantics

Kentaro Yamamoto1 and Zhiguang Zhao2

1 University of California, Berkeley USA
ykentaro@math.berkeley.edu

2 Delft University of Technology, the Netherlands
zhaozhiguang23@gmail.com

Possibility semantics. Possibility semantics for modal logic is a generalization of standard
Kripke semantics. In this semantics, a possibility frame has a refinement relation which is a
partial order between states, in addition to the accessibility relation for modalities. From an
algebraic perspective, full possibility frames are dually equivalent to complete Boolean algebras
with complete operators which are not necessarily atomic, while filter-descriptive possibility
frames are dually equivalent to Boolean algebras with operators.

In recent years, the theoretic study of possibility semantics has received more attention.
In [23], Yamamoto investigates the correspondence theory in possibility semantics in a frame-
theoretic way and prove a Sahlqvist-type correspondence theorem over full possibility frames,
which are the possibility semantic counterpart of Kripke frames, using insights from the algebra-
ic understanding of possibility semantics. In [15, Theorem 7.20], it is shown that all inductive
formulas are filter-canonical and hence every normal modal logic axiomatized by inductive for-
mulas is sound and complete with respect to its canonical full possibility frame. However, the
correspondence result for inductive formulas is still missing, as well as the correspondence result
over filter-descriptive possibility frames (see [15, page 103]) and soundness and completeness
with respect to the corresponding elementary class of full possibility frames. The present paper
aims at giving a closer look at the aforementioned unsolved problems using the algebraic and
order-theoretic insights from a current ongoing research project, namely unified correspondence.

Unified correspondence. Correspondence and completeness theory have a long history in
modal logic, and they are referred to as the “three pillars of wisdom supporting the edifice of
modal logic” [22, page 331] together with duality theory. Dating back to [20, 21], the Sahlqvist
theorem gives a syntactic definition of a class of modal formulas, the Sahlqvist class, each
member of which defines an elementary (i.e. first-order definable) class of Kripke frames and is
canonical.

Recently, a uniform and modular theory which subsumes the above results and extends
them to logics with a non-classical propositional base has emerged, and has been dubbed
unified correspondence [5]. It is built on duality-theoretic insights [9] and uniformly exports
the state-of-the-art in Sahlqvist theory from normal modal logic to a wide range of logics which
include, among others, intuitionistic and distributive and general (non-distributive) lattice-
based (modal) logics [6, 8], non-normal (regular) modal logics based on distributive lattices of
arbitrary modal signature [19], hybrid logics [12], many valued logics [16] and bi-intuitionistic
and lattice-based modal mu-calculus [1, 3, 2].

The breadth of this work has stimulated many and varied applications. Some are closely
related to the core concerns of the theory itself, such as understanding the relationship between
different methodologies for obtaining canonicity results [18, 7], the phenomenon of pseudocor-
respondence [10], and the investigation of the extent to which the Sahlqvist theory of classes of
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normal distributive lattice expansions can be reduced to the Sahlqvist theory of normal Boolean
algebra expansions, by means of Gödel-type translations [11]. Other, possibly surprising ap-
plications include the dual characterizations of classes of finite lattices [13], the identification
of the syntactic shape of axioms which can be translated into structural rules of a proper dis-
play calculus [14] and of internal Gentzen calculi for the logics of strict implication [17], and
the epistemic interpretation of lattice-based modal logic in terms of categorization theory in
management science [4]. These and other results (cf. [9]) form the body of a theory called
unified correspondence [5], a framework within which correspondence results can be formulated
and proved abstracting away from specific logical signatures, using only the order-theoretic
properties of the algebraic interpretations of logical connectives.

Methodology. Our contribution is methodological: we analyze the correspondence phe-
nomenon in possibility semantics using the dual algebraic structures, namely complete (not
necessarily atomic) Boolean algebras with complete operators, where the atoms are not always
available. For the correspondence over full possibility frames, our strategy is to identify two
different Boolean algebras with operators as the dual algebraic structures of the possibility
frame, namely the Boolean algebra of regular open subsets BRO (when viewing the possibility
frame as a possibility frame itself) and the Boolean algebra of arbitrary subsets BFull (when
viewing the possibility frame as a bimodal Kripke frame), where a canonical order-embedding
map e : BRO → BFull can be defined. The embedding e preserves arbitrary meets, therefore a
left adjoint c : BFull → BRO of e can be defined, which sends a subset X of the domain W of
possibilities to the smallest regular open subset containing X. This left adjoint c plays an im-
portant role in the dual characterization of the interpretations of the expanded language, which
form the ground of the regular open translation, i.e. the counterpart of standard translation
in possibility semantics. When it comes to canonicity, we use the fact that filter-canonicity is
equivalent to constructive canonicity [15, Theorem 5.46, 7.20], and prove a topological Acker-
mann lemma, which justifies the soundness of propositional variable elimination rules and forms
the basis of the correspondence result with respect to the class of filter-descriptive frames as
well as the canonicity and completeness result with respect to the corresponding class of full
possibility frames.
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There are two categorical approaches to the unification of the dualities between various kinds
of algebraic structures and of topological structures. The present study investigates how these
essentially different approaches are related, and applies the presented results to the categories
of certain types of universal algebras (including infinitary operations).

1 Introduction

Duality of algebraic structures (e.g., Boolean algebras, distributive lattices and Heyting al-
gebras) with topological structures (e.g., Stone spaces, Priestly spaces and Heyting spaces)
has been a major issue in topology, algebra and logic [1, 2, 6, 8]. There are two general and
categorical approaches [2, 8] to the duality issue: The first approach operates with concrete
categories C and D over the category Set of sets and functions. Schizophrenic object is the

key concept of this approach [8] defined as a triple
(
C̃, s, D̃

)
provided that C̃ is a C-object, D̃

is a D-object, s is a bijective function from the underlying set of C̃ to the underlying set of D̃,
and two additional conditions are satisfied. Such a schizophrenic object determines an adjoint
situation

(γ, α) : S a T : Cop → D. (1)

If we consider the full subcategory Fix (α) of C with those C-objects A for which the Ath
component αA of α is an isomorphism in Cop, and similarly, the full subcategory Fix (γ) of
D with respect to γ, then the adjoint situation (1) restricts to a duality between Fix (α) and
Fix (γ), which is the main result of the first approach describing many existing dualities, e.g.,
Stone, Priestley and localic dualities.

In the second approach [2], C is taken as an abstract category, which is not necessarily
a concrete category over Set. As a formulation of fixed-basis fuzzy topological spaces in the
category C with set-indexed products, C-M-L-spaces are defined in this approach to be pairs(
X, τ

m→ LX
)

consisting of a setX and anM-morphism τ
m→ LX ∈M, where L is an arbitrarily

fixed object of C, LX is an Xth power of L and M is a class of C-monomorphisms.
C-M-L-spaces and C-M-L-continuous functions form a category C-M-L-Top, which, un-

der the assumption of C being essentially (E ,M)-structured, relates to C with the adjoint
situation

(η, ε) : LΩM a LPtM : Cop → C-M-L-Top.

This adjoint situation gives rise to a duality between the full subcategory SPA(C) of C with
L-spatial objects and the full subcategory SOBTop(C) of C-M-L-Top with L-sober objects,
where L-spatiality of a C-object A means εA ∈ Iso (Cop) and L-sobriety of a C-M-L-space W
refers to ηW ∈ Iso (C-M-L-Top). The equivalence SPA(C)

op ∼SOBTop(C) is the central
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result of the second approach, named as “Fundamental Categorical Duality Theorem”, and
produces many existing and new dualities [2, 3, 4, 5].

2 Relations Between Two Approaches

As a comparison of the two approaches, the former one is more familiar, and has been utilized
by several authors [1, 6, 7], while the latter one has been used only by this author. Although
the two approaches are primarily different from each other, we aim in this study to ascertain
how they are interrelated. We will particularly show that for categories C and D with the
properties fulfilling the requirements in both approaches, there exists an adjunction

S∗ a T ∗ : SOBTop (C)→ D,

and be interested in the situation whenever this adjunction turns into an equivalence. We also
wish to give applications of the presented results to the categories of certain types of universal
algebras (possibly with infinitary operations), e.g., the category of sup-lattices with morphisms
all sup-preserving maps [9].
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The topic of sets with fuzzy order relations valuated in complete lattices with additional
structure has been quite active in the recent decade, and a number of papers have been published
(see [3, 5, 6] among many others).

Based on a quantale-valued order relation and subset membership, counterparts to common
order-theoretic notions can be defined, like monotone mappings, adjunctions, joins and meets,
complete lattices, or join-preserving mappings, and one can consider a category formed from
the latter two concepts. An attempt for systematic study of such categories of fuzzy complete
lattices with quantale valuation (“Q-sup-lattices”) with fuzzy join-preserving mappings has
been made by the second author in his recent paper [8].

With some theory of Q-sup-lattices available, new concepts of algebraic structures in this
category can easily be built. In this paper, we shall deal with general algebras with finitary
operations, building on existing results obtained for algebras based on crisp sup-lattices (‘sup
algebras’ as in [1, 7]). We can see [9] that our fuzzy structures behave in strong analogy to
their crisp counterparts.

We also highlight an important fact: that concepts based on a fuzzy order relation (in the
sense of the quantale valuation as studied in this work) should not be treated as generalizations
of their crisp variants – they are rather standard crisp concepts of order theory, satisfying
certain additional properties. This fact also reduces the work needed to carry out proofs. Thus,
even with the additional properties imposed, the theory of fuzzy-ordered structures develops
consistently with its crisp counterpart.

The connection between fuzzy and crisp order concepts has also been justified by I. Stubbe
in a general categorial setting of modules over quantaloids [4], and in the recent work of
S. A. Solovyov in the quantale-fuzzy setting [3] where categories of quantale-valued sup-lattices
are proved to be isomorphic to well-investigated categories of quantale modules. This iso-
morphism will enable us to make direct transfer of some of the fundamental constructions and
properties known for quantale modules, to our framework. The bridge between these two worlds
allows us to open a space for surprising interpretations.

With this paper we hope to contribute to the theory of quantales and quantale-like struc-
tures. It considers the notion of Q-sup-algebra and shows a representation theorem for such
structures generalizing the well-known representation theorems for quantales, sup-algebras and
quantale algebras [2].

Theorem 1. If (A,
⊔
A,Ω) is a Q-sup-algebra, then

1. QA can be equipped with a structure of a Q-sup-algebra.

2. There is a nucleus j on QA such that A ∼= QAj .

∗The research was supported by the bilateral project “New Perspectives on Residuated Posets” financed by
the Austrian Science Fund: project I 1923-N25 and the Czech Science Foundation: project 15-34697L
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In addition, we present some important properties of the category of Q-sup-algebras.

Theorem 2. The category of Q-sup-algebras is a monadic construct.

Corollary 3. The category of Q-sup-algebras is complete, cocomplete, wellpowered, extremally
co-wellpowered, and has regular factorizations. Moreover, monomorphisms are precisely those
morphisms that are injective functions.
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First-order categorical logic (FOCL for short) originated as a categorical foundation for
model theory (in Makkai & Reyes [6]). Some classical model-theoretic phenomena can be
efficiently described in terms of FOCL. However, most concepts in modern model theory remain
to be under categorical consideration. Our present aim is to set up a framework suitable for
comprehensive categorical analysis of model theory. In this talk, we work on the notion of
“category of theories,” whose importance will be discussed below.

From the viewpoint of FOCL, classical first-order theories give rise to Boolean pretoposes,
i.e. categories equipped with logical operations and quotients of equivalence relations. They are
called classifying pretoposes of theories. As Harnik [5] pointed out, a construction of classifying
pretoposes can be given via Shelah’s eq-construction. Moreover, any Boolean pretopos arises
(up to categorical equivalence) as a classifying pretopos of some classical theory.

Since mathematical objects often constitute a category, it is natural to ask what morphisms
between theories are. It has been observed that interpretations between theories (in the model-
theoretic sense) induce pretopos functors, i.e. functors preserving pretopos structures, between
corresponding classifying pretoposes. So, among categorical logicians, there exists a common
sense that

the (2-)category BPretop∗ of Boolean pretoposes, pretopos functors
and natural isomorphisms can be regarded as a “category of theories,”

while no purely syntactic definition of “category of theories” is widely accepted.
Our approach is as follows: once we have defined homotopies between interpretations, we

obtain a bicategory Th which consists of theories, interpretations and homotopies. We show
that the construction of classifying pretoposes gives a pseudofunctor Th→ BPretop∗. In fact,
it is a biequivalence, and hence our definition of Th is consistent with the above consensus.

We also make a close observation on (internal) equivalences in Th. In the model-theoretic
context, these equivalences are called bi-interpretations. Via the biequivalence above, existence
of a bi-interpretation between two theories coincides with Morita equivalence, i.e. categorical
equivalence between corresponding classifying pretoposes. We give another characterization of
bi-interpretability (and Morita equivalence) by using the notion of Morita extension, recently
introduced by Barrett & Halvorson [2], which is a slight generalization of definitional extension
admitting sort definitions. We also give a simple proof for Tsementzis’ syntactic characterization
of Morita equivalence [7].

Future directions. We believe that this framework will promote more extensive uses of
categories in modern model theory. We indicate the following lines of research:

• Using preceding works on dualities in first-order logic (e.g. Caramello’s [3] and Forssell’s
[4, 1]), we will consider relationships between various mathematical objects associated
with theories. Examples of such mathematical objects include classifying (pre)toposes,
categories of models and topological groupoids of models and isomorphisms.

• Certain model-theoretic constructions of theories, e.g. elementary diagrams and nonfork-
ing extensions of types, can be interpreted as categorical constructions in the bicategory
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Th of theories or other related 2-categories. Moreover, we also expect that category theory
will give new constructions of theories.
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1 Introduction

For a theory of algebras with two operations + and ·, we have an interesting method, derivations,
to develop the structure theory, as an analogy of derivations of analysis. The notion of derivation
of algebras was firstly applied to the theory of ring ([4]), and after that it was also applied to
other algebras, such as lattices ([2, 6]) and MV-algebras ([1, 7]). We here aplied the derivation
theory to the (commutative) residuated lattices which are very basic algebtras corresponding
to fuzzy logic. For a residuated lattice L, a map d : L → L is called a derivation in [3] if it
satisfies the condition: For all x, y ∈ L,

d(x ⊙ y) = (dx ⊙ y) ∨ (x ⊙ dy).

Let L be a commutative residuated lattice and d be a good ideal derivation and F a d-filter
of L, which are defined later. We show that

(1) The set Fixd(L) of all fixed points of d forms a residuated lattice and L/ker d ∼=
Fixd(L).

(2) A map d/F : L/F → L/F defined by (d/F )(x/F ) = dx/F is also a good ideal
derivation of L/F .

(3) The quotient residuated lattices Fixd/F(L/F ) and Fixd(L)/d(F ) are isomorphic,
namely,

Fixd/F(L/F ) ∼= Fixd(L)/d(F ).

2 Derivations of residuated lattices

Let L = (L, ∧, vee, → 0, 1) be a (commutative) residuated lattice and B(L) be the set of all
complemented elements of L. We define derivations of residuated lattices according to [3]. A
map d : L → L is called a multiplicative derivation (or simply derivation) of L if it satisfies the
condition

d(x ∧ y) = (dx ⊙ y) ∨ (x ⊙ dy) (∀x, y ∈ L)

A derivation d is called ideal if x ≤ y then dx ≤ dy and dx ≤ x for all x, y ∈ L. Moreover, a
derivation d is said to be good if d1 ∈ B(L).

Theorem 1 ([3]). Let d be a derivation of L and d1 ∈ B(L). Then the following are equivalent:
for all x, y ∈ L,
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(1) d is an ideal derivation;

(2) dx ≤ d1;

(3) dx = x ⊙ d1;

(4) d(x ∧ y) = dx ∧ dy;

(5) d(x ∨ y) = dx ∨ dy;

(6) d(x ⊙ y) = dx ⊙ dy.

For a derivation d of L, we consider a subset Fixd(L) = {x ∈ L | dx = x} of the set of all
fixed elements of L for d.

Proposition 1. For a good ideal derivation d, we have Fixd(L) = d(L).

We have

Theorem 2. Fixd(L) = (Fixd(L), ∧, ∨, ⊙, 7→, 0, d1) is a residuated lattice, where operations on
Fixd(L) are defined as follows:

dx ∧ dy = d(x ∧ y) dx ∨ dy = d(x ∨ y)

dx ⊙ dy = d(x ⊙ y) dx 7→ dy = d(dx → dy).

A filter F is called a d-filter if x ∈ F implies dx ∈ F for all x ∈ L. It is easy to show
that a quotient structure L/F is also a residuated lattice for a filter F . Moreover, we have the
following.

Proposition 2. Let d be a good ideal derivation and F be a d-filter of L. A map d/F : L/F →
L/F defined by (d/F )(x/F ) = dx/F for all x/F ∈ L/F is a good ideal derivation of L/F .

Therefore, the quotient structure (d/F )(L/F ) = Fixd/F(L/F ) is a residuated lattice. Since
F is a d-filter of L, d(F ) is also a filter of d(L) and thus d(L)/d(F ) forms a residuated lattice. It
is natural to ask what the relation between two residuated lattices (d/F )(L/F ) and d(L)/d(F )
is. Next result is an answer.

Theorem 3. Let d be a good ideal derivation and F be a d-filter of L. Then we have
(d/F )(L/F ) = Fixd/F(L/F ) is isomorphic to d(L)/d(F ), that is,

(d/F )(L/F ) = Fixd/F(L/F ) ∼= d(L)/d(F ).
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Ordering conditions for groups provide useful tools for the study of various relationships
between group theory, universal algebra, and topology (see, e.g., [2, 4, 3, 1]). In this work,
we establish a new “algorithmic” ordering condition for extending partial orders on groups to
total orders. We then use this condition to show that the problem of extending a finite subset
of a free group to a total order corresponds to the problem of checking validity of a certain
inequation in the variety of representable lattice-ordered groups (or, equivalently, the class of
totally ordered groups). As a direct consequence, we obtain a new proof that free groups are
orderable.

Let us fix a group G = 〈G, ·,−1, e〉. Recall that a partial order of G is a partial order ≤ on
G satisfying also for a, b, c, d ∈ G,

a ≤ b =⇒ cad ≤ cbd.

Its positive cone P≤ = {a ∈ G : e < a} is a normal subsemigroup of G (a subset of G
closed under · and conjugation by elements of G) that omits e. Conversely, if P is a normal
subsemigroup of G omitting e, then G is partially ordered by

a ≤P b ⇐⇒ ba−1 ∈ P ∪ {e}.

Hence partial orders of G can be identified with normal subsemigroups of G not containing e.
For S ⊆ G, the normal subsemigroup of G generated by S, denoted by 〈〈S〉〉, is a partial order
of G if and only if e 6∈ 〈〈S〉〉. A partial order ≤ of G is a (total) order if G = P≤ ∪P≤

−1 ∪ {e}.
Now, for finite subsets S ⊆ G, we define a relation `G S inductively by the clauses

(i) `G S ∪ {a, a−1};

(ii) `G S ∪ {ab}, whenever `G S ∪ {a} and `G S ∪ {b};

(iii) `G S ∪ {ab}, whenever `G S ∪ {ba}.

The following theorem describes our new condition for extending a finite subset of G to an
order, noting that the equivalence of (1) and (2) is a reformulation of an ordering theorem for
groups due to Fuchs [2].

Theorem 1. The following are equivalent for a finite S ⊆ G:

(1) S does not extend to a total order of G.

(2) There exist a1, . . . , am ∈ G \{e} such that for all δ1, . . . , δm ∈ {−1, 1},

e ∈ 〈〈S ∪ {aδ11 , . . . , aδmm }〉〉.

(3) `G S.
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We now consider a non-trivial free group F, which may be viewed as an algebra of reduced
group terms obtained by cancelling all the occurrences of xx−1 and x−1x. For convenience,
we deliberately confuse group terms t with their counterparts in F. We consider also the
variety RG of representable lattice-ordered groups (in an algebraic language with operations
∧,∨, ·,−1, e) generated by the class of totally ordered groups. Using Theorem 1, we then obtain
the following correspondence between extending a finite subset of F to an order and the validity
of a corresponding inequation in RG.

Theorem 2. The following are equivalent for any t1, . . . , tn ∈ F :

(1) {t1, . . . , tn} does not extend to a total order of F.

(2) `F {t1, . . . , tn}.

(3) RG |= e ≤ t1 ∨ . . . ∨ tn.

This result is then used to obtain a new proof of the orderability of free groups, first proved
in [5]. In fact, it is sufficient to observe that RG 6|= e ≤ x for any generator x, and hence, by
Theorem 2, there exists an order of F where x is positive.
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Unified correspondence. In recent years, Sahlqvist theory has significantly broadened its
scope, extending the benefits it originally imparted to modal logic to a wide range of logics which
includes, among others, intuitionistic and distributive and general (non-distributive) lattice-
based (modal) logics [6, 8], non-normal (regular) modal logics based on distributive lattices of
arbitrary modal signature [18], hybrid logics [12], many valued logics [15] and bi-intuitionistic
and lattice-based modal mu-calculus [1, 3, 2].

The breadth of this work has stimulated many and varied applications. Some are closely
related to the core concerns of the theory itself, such as understanding the relationship between
different methodologies for obtaining canonicity results [17, 7], and the phenomenon of pseudo-
correspondence [10]. Other, possibly surprising applications include the dual characterizations
of classes of finite lattices [13], the identification of the syntactic shape of axioms which can be
translated into structural rules of a proper display calculus [14] and of internal Gentzen calculi
for the logics of strict implication [16], and the epistemic interpretation of lattice-based modal
logic in terms of categorization theory in management science [4]. These and other results (cf.
[9]) form the body of a theory called unified correspondence [5], a framework within which
correspondence results can be formulated and proved abstracting away from specific logical
signatures, using only the order-theoretic properties of the algebraic interpretations of logical
connectives.

Focus of the present talk. Notwithstanding the new insights and the connections with
various areas of logic brought about by these developments, a natural question to ask is whether,
just for the sake of Sahlqvist theory, it is possible to obtain Sahlqvist-type results for nonclassical
logics by means of a reduction to a setting of normal modal logic via some suitable translations,
such as the Gödel-Tarski. The present talk reports on the results of [11], in which this question is
investigated for logics algebraically captured by normal distributive lattice expansions (DLEs).
Our conclusions are that, while the most general Sahlqvist-type correspondence result for DLE-
inequalities can indeed be obtained straightforwardly via translation, the proof of canonicity
can be obtained as straightforwardly only in the special setting of normal bi-Heyting algebra
expansions.
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The present contribution lies at the crossroads of at least three active lines of research in
nonclassical logics: the one investigating the semantic and proof-theoretic environment of fixed
point expansions of logics algebraically captured by varieties of (distributive) lattice expansions
[1, 19, 24, 2, 16]; the one investigating constructive canonicity for intuitionistic and substructural
logics [17, 25]; the one uniformly extending the state-of-the-art in Sahlqvist theory to families
of nonclassical logics, and applying it to issues both semantic and proof-theoretic [7], known as
‘unified correspondence’.

We prove the algorithmic canonicity of two classes of µ-inequalities in a constructive meta-
theory of normal lattice expansions. This result simultaneously generalizes Conradie and Craig’s
canonicity results for µ-inequalities based on a bi-intuitionistic bi-modal language [3], and Con-
radie and Palmigiano’s constructive canonicity for inductive inequalities [4] (restricted to normal
lattice expansions). Besides the greater generality, the unification of these strands smoothes the
existing proofs for the canonicity of µ-formulas and inequalities. Specifically, the two canonicity
results proven in [3], namely, the tame and proper canonicity, fully generalize to the construc-
tive setting and normal LEs. Remarkably, the rules of the algorithm ALBA used for this result
have exactly the same formulation as those of [4], with no additional rule added specifically to
handle the fixed point binders. Rather, fixed points are accounted for by certain restrictions
on the application of the rules, concerning the order-theoretic properties of the term functions
associated with the formulas to which the rules are applied.

The contributions reported on in the proposed talk pertain to unified correspondence theory
[7], a line of research which applies duality-theoretic insights to Sahlqvist theory (cf. [11]), with
the aim of uniformly extending the benefits of Sahlqvist theory from modal logic to a wide
range of logics which include, among others, intuitionistic and distributive and general (non-
distributive) lattice-based (modal) logics [8, 10], non-normal (regular) modal logics based on
distributive lattices of arbitrary modal signature [23], hybrid logics [14], many valued logics [20]
and bi-intuitionistic and lattice-based modal mu-calculus [3, 5].

The breadth of this work has stimulated many and varied applications. Some are close-
ly related to the core concerns of the theory itself, such as understanding the relationship
between different methodologies for obtaining canonicity results [22, 9], the phenomenon of
pseudo-correspondence [12], and the investigation of the extent to which the Sahlqvist theory
of classes of normal distributive lattice expansions can be reduced to the Sahlqvist theory of
normal Boolean algebra expansions, by means of Gödel-type translations [13]. Other, possibly
surprising applications include the dual characterizations of classes of finite lattices [15], the
identification of the syntactic shape of axioms which can be translated into structural rules of
a proper display calculus [18] and of internal Gentzen calculi for the logics of strict implication
[21], and the epistemic interpretation of lattice-based modal logic in terms of categorization
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theory in management science [6]. These and other results (cf. [11]) form the body of a the-
ory called unified correspondence [7], a framework within which correspondence results can
be formulated and proved abstracting away from specific logical signatures, using only the
order-theoretic properties of the algebraic interpretations of logical connectives.
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Large scale topology is the study of the large scale (asymptotic) behaviour of various spaces.
It is well-known that there are many analogies between small scale topology and large scale
topology. Our contribution is to study these analogies in the light of nonstandard analysis.

Let U be a transitive universe that satisfies sufficiently many axioms of ZFC and has all
standard objects we need. We fix an enlargement ∗ : U ↪→ ∗U of U. A formula is said to be
Πst

1 if it is of the form ∀x ∈ U.ϕ (x,~a), where ϕ is a ∈-formula and ~a is parameters from U. A
formula is said to be Σst

1 if it is of the form ∃x ∈ U.ϕ (x,~a), where ϕ and ~a are the same as
above.

Let X be a topological space with a topology OX . The monad of x ∈ X is the Πst
1 -set

µX (x) :=
⋂
x∈U∈OX

∗U . The monad map µX : X → P (∗X) uniquely determines the topology
OX . Next, let X be a uniform space with a uniformity UX . The infinite closeness relation
on ∗X is the Πst

1 -equivalence relation defined by ≈X :=
⋂
E∈UX

∗E. Like topological spaces,
the infinite closeness relation ≈X uniquely determines the uniformity UX ([1]). Thus we can
consider small scale topology as the study of Πst

1 -sets.
Let X be a bornological space with a bornology BX . In our setting, a bornology on X is

defined to be a nonempty cover of X that is closed under taking subsets and finite nondisjoint
unions. Bornology is a minimal framework in which we can discuss boundedness. For more de-
tails, see Hogbe-Nlend [2]. The galaxy of x ∈ X is defined as the Σst

1 -setGX (x) :=
⋃
x∈B∈BX

∗B.
We show that the galaxy map GX : X → P (∗X) uniquely determines the bornology BX . Next,
let X be a coarse space with a coarse structure EX . The finite closeness relation on ∗X is
defined as the Σst

1 -equivalence relation ∼X :=
⋃
E∈EX

∗E. We show that the finite closeness
relation ∼X uniquely determines the coarse structure EX . Similarly to small scale, we can think
of large scale topology as the study of Σst

1 -sets. In this sense, large scale topology is the logical
dual of small scale topology.

Many small scale concepts topology have nonstandard characterisations in terms of monad
and infinite closeness (see Robinson [3] and Stroyan and Luxemburg [4]). For example,

• a map f : X → Y between topological spaces is continuous at x ∈ X if and only if
∗f (µX (x)) ⊆ µY (f (x));

• a map f : X → Y between uniform spaces is uniformly continuous if and only if for every
x, y ∈ ∗X, if x ≈X y, then ∗f (x) ≈Y ∗f (y);

• a family F of maps between uniform spaces X,Y is uniformly equicontinuous if and only
if for any f ∈ ∗F and x, y ∈ ∗X, if x ≈X y, then f (x) ≈Y f (y).

As the large scale analogues, we obtain the following nonstandard characterisations of large
scale concepts in terms of galaxy and finite closeness:

• a map f : X → Y between bornological spaces is bornological at x ∈ X if and only if
∗f (GX (x)) ⊆ GY (f (x));



• a map f : X → Y between coarse spaces is bornologous if and only if for every x, y ∈ ∗X,
if x ∼X y, then ∗f (x) ∼Y ∗f (y);

• a family F of maps between coarse spaces X,Y is uniformly equibounded if and only if
for any f ∈ ∗F and x, y ∈ ∗X, if x ∼X y, then f (x) ∼Y f (y).
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A strictly positive term (or SP-term) is a modal formula constructed from propositional
variables p0, p1, . . . , constants > and ⊥, conjunction ∧, and the unary diamond operator 3.
An SP-implication takes the form σ → τ , where σ, τ are SP-terms, and an SP-logic is a
set of SP-implications. (An SP-implication σ → τ can be regarded as an algebraic equation
σ ∧ τ ≡ σ, while σ ≡ τ as a shorthand for ‘σ → τ and τ → σ’.) In various contexts, SP-logics
were investigated in [3, 7, 2, 1, 8, 6, 5, 4].

We consider two consequence relations. For an SP-logic L and SP-implication ϕ, we write
L |=Kr ϕ if ϕ is valid in all Kripke frames for L, and we write L |=SLO ϕ if ϕ is valid in
all bounded meet-semilattices with normal monotone operators (or SLOs) that validate L. We
call L (Kripke) complete in case L |=Kr ϕ iff L |=SLO ϕ, for all ϕ. Since SP-implications
are Sahlqvist formulas, L |=Kr ϕ iff L |=BAO ϕ, where BAO stands for Boolean algebras with
operators. Thus, completeness is equivalent to (purely algebraic) conservativity of |=BAO over
|=SLO. Completeness of an SP-logic L also means that its SP-implications axiomatise the SP-
fragment of L regarded as a standard modal logic. A simple example of an incomplete SP-logic
is L = {3p→ p}; indeed, for ϕ = (p ∧3> → 3p), we have L |=Kr ϕ and L 6|=SLO ϕ.

A classical method of showing completeness of a modal logic L is to prove its canonicity,
which can be done by establishing that every BAO for L is embeddable into the full complex
BAO F+ of some Kripke frame F for L. We call an SP-theory L complex if every SLO for
L is embeddable into the SLO-type reduct of F+ of some Kripke frame F for L. Examples of
complex, and so complete SP-logics include {p→ 3p} (reflexivity), {33p→ 3p} (transitivity),
{q ∧3p→ 3(p ∧3q)} (symmetry), {3p∧3q → 3(p∧q)} (functionality), and their unions. By
Sahlqvist’s theorem, all SP-logics have first-order correspondents. A number of general results
linking complexity of SP-logics to the form of their correspondents have been obtained in [4].

On the other hand, there are many SP-logics that define standard frame properties, but are
not complex. In this note, we aim to develop a new method for proving completeness of such
logics. First, we axiomatise the SP-fragment of the (Kripke complete) modal logic Altn whose
Kripke frames are n-functional , i.e., satisfy ∀x, y0, . . . , yn

(∧
i≤nR(x, yi)→

∨
i 6=j(yi = yj)

)
. We

set Alt+n = {ϕnfun}, where P = {p0, . . . , pn} and

ϕnfun =
( ∧

Q⊆P, |Q|=n
3
∧
Q → 3

∧
P
)
.

Note that Kripke frames for ϕnfun are exactly n-functional frames. Here we sketch the proof of

Theorem 1. For any n ≥ 1, the SP-logic Alt+n is complete, though not complex if n ≥ 2.

To prove that Alt+n (n ≥ 2) is not complex, one can show that the SLO on
the right (where 3> = >, 3⊥ = ⊥, and the arrows define 3 in other cases)
validates ϕnfun but is not embeddable into F+, for any n-functional F. 0 n

To show completeness, we require n-terms that are defined by induction: (i) all propositional
variables, ⊥ and > are n-terms; (ii) if τ1, . . . , τn are n-terms, then so is 3(τ1 ∧ · · · ∧ τn).

Lemma 2. For any SP-term %, there is conjunction %′ of n-terms with Alt+n |=SLO (% ≡ %′).

The proof is by induction on the modal depth d of %. The basis d = 0 is trivial. Suppose
now that % is of depth d > 0. Then % =

∧
P% ∧ 3%1 ∧ · · · ∧ 3%k, where P% is a set of



Altn in a Strictly Positive Context Kikot, Kurucz, Wolter and Zakharyaschev

propositional variables, ⊥ and>, and each %i is of depth≤ d−1. By IH, Alt+n |=SLO (%i ≡
∧
Ai),

for some set Ai of n-terms. Then Alt+n |=SLO

(
% ≡ (

∧
P% ∧

∧k
i=1 3

∧
Ai)
)
. If |Ai| ≤ n,

then we are done. So fix some i and suppose that |Ai| = k > n. Then we always have
|=SLO

(
(3
∧
Ai)→ (

∧
Q⊆Ai, |Q|=n3

∧
Q)
)
. We show that

Alt+n |=SLO

( ∧

Q⊆Ai,|Q|=n
3
∧
Q → 3

∧
Ai
)
. (1)

Indeed, by a syntactic argument, we have Alt+n |=SLO ϕmfun, for every m > n, from which we

obtain (1) as a substitution instance of ϕkfun.

Lemma 3. For any SP-term σ and any n-term τ , Alt+n |=Kr σ → τ implies |=Kr σ → τ .

The proof is by induction on the modal depth d of τ . The basis is again trivial. Now assume
inductively that the lemma holds for d and the depth of τ is d+1. Let σ =

∧
Pσ∧3σ1∧. . .∧3σk,

where Pσ is some set of propositional variables, ⊥, >, and each σi is an SP-term. Suppose
τ = 3(τ1 ∧ . . . ∧ τn), where each τi is either a variable, >, ⊥, or of the form 3(τ i1 ∧ · · · ∧ τ in).

Suppose 6|=Kr σ → τ . Then, for every j (1 ≤ j ≤ k), there is i (1 ≤ i ≤ n) such that
6|=Kr σj → τi, and so

⋃n
i=1Ki = {1, . . . , k}, for Ki = {1 ≤ j ≤ k | 6|=SLO σj → τi}. It is not hard

to see that, for any i with Ki 6= ∅, we have 6|=Kr (
∧
j∈Ki

σj)→ τi. By IH, for any such i, there
is a Kripke model Mi based on an n-functional frame with root ri where

∧
j∈Ki

σj holds, but
τi does not. Now take a fresh node r, make

∧
Pσ true in r, and connect r to ri of each Mi.

The constructed model is based on an n-functional frame and refutes σ → τ at r, showing that
Alt+n 6|=Kr σ → τ as required. That Alt+n is complete follows now from Lemmas 2, 3 and the
completeness of the empty SP-logic [7].

Using a similar (but more involved) technique, we can also show (see [4] for details) that the
SP-logic S4.3+ = {p → 3p,33p → 3p,3(p ∧ q) ∧ 3(p ∧ r) → 3(p ∧ 3q ∧ 3r)} is complete,
has exactly the same frames as S4.3, and is decidable in polynomial time. However, this does
not generalise to K4.3 whose class of Kripke frames is not SP-definable [4]. Svyatlovski has
recently shown that the SP-logic Ls = {33p→ 3p, 3(p∧3q)∧3(p∧3r)→ 3(p∧3q∧3r)}
is complete, tractable, and, for any SP-implication ϕ, we have Ls |= ϕ iff ϕ is valid in all frames
for K4.3 (although Ls has non-K4.3 frames).

References

[1] L. Beklemishev. Positive provability logic for uniform reflection principles. Ann. Pure Appl. Logic,
165:82–105, 2014.

[2] E. Dashkov. On the positive fragment of the polymodal provability logic GLP. Mathematical
Notes, 91:318–333, 2012.

[3] M. Jackson. Semilattices with closure. Algebra Universalis, 52:1–37, 2004.

[4] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev. Kripke completeness of strictly
positive modal logics over meet-semilattices with operators. Submitted, 2017.

[5] A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev. Conservativity of boolean algebras with
operators over semilattices with operators. In Proceeding of TACL 2011. Marseille, 2011.

[6] A. Kurucz, F. Wolter, and M. Zakharyaschev. Islands of tractability for relational constraints:
towards dichotomy results for the description logic EL. In AiML 8. College Publications, 2010.

[7] V. Sofronie-Stokkermans. Locality and subsumption testing in EL and some of its extensions. In
AiML 7. College Publications, 2008.

[8] M. Svyatlovski. Positive fragments of modal logics. BSc Thesis (in Russian), 2014.

2



A Duality for Boolean Contact Algebras

Georges Hansoul1 and Julien Raskin2

1 University of Liege, Liege, Belgium
g.hansoul@ulg.ac.be

2 University of Liege, Liege, Belgium
j.raskin@ulg.ac.be

1 Introduction

The well-known de Vries duality, established by H. de Vries in 1962, states that the category
of compact Hausdorff spaces is dually equivalent to that of de Vries algebras [4]. The notion
of Boolean contact algebra (BCA) was developed independently in the context of region-based
theory of space. Düntsch and Winter established in [5] a representation theorem for BCAs,
showing that every BCA is isomorphic to a dense subalgebra of the regular closed sets of a T1
weakly regular space. It appears that BCAs are a direct generalization of de Vries algebras,
and that the representation theorem for complete BCAs generalizes de Vries duality for objects.
During a conference, Vakarelov raised the question of dualizing morphisms. We answer this
question using concepts similar to those of modal logic’s neighborhood semantics.

2 de Vries Duality and the Representation Theorem

A de Vries algebra (DVA), is a complete Boolean algebra B endowed with a binary relation ≺
satisfying the following axioms:

DV1 0 ≺ 0 ;

DV2 a ≺ b⇒ a ≤ b ;

DV3 a ≤ b ≺ c⇒ a ≺ c ;

DV4 a ≺ b, c ≺ d⇒ a ∧ c ≺ b ∧ d ;

DV5 a ≺ b⇒ −b ≺ −a ;

DV6 a ≺ b 6= 0⇒ ∃c 6= 0 such that a ≺ c ≺ b,

where −a denotes the Boolean complement of a. A filter x of B is a round filter if for each
b ∈ x there is some a ∈ x such that a ≺ b; maximal round filters are called ends. Then the set
E(B) of all ends, equipped with the topology having the sets rB(a) = {x ∈ E(B) : x 3 a} as a
basis, is a compact Hausdorff space. This leads to a dual equivalence between the category of
compact Hausdorff spaces and the category of de Vries algebras with suitable morphisms [4].

Boolean contact algebras were studied independently as a formalization of Whiteheadean
vision of space. A Boolean contact algebra (BCA) is a Boolean algebra B endowed with a binary
relation C satisfying the following axioms:

C1 a C b⇒ a 6= 0 ;

C2 a 6= 0⇒ a C a ;
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C3 a C b⇒ b C a ;

C4 a C b, b ≤ c⇒ a C c ;

C5 a C (b ∨ c)⇒ a C b or a C c ;

C6 a � b⇒ ∃c ∈ B such that a C c and c ⊥ b,

where ⊥ denotes the complement of the relation C.
The relations ≺ and ⊥ are linked by a ≺ b ⇔ a ⊥ −b. The axioms DV1-DV5 are then

equivalent to C1-C5. However, the axiom C6 is weaker than DV6.

Due to the lack of the axiom DV6, round filters and ends do not work anymore. Those
have to be replaced by the notions of clan and cluster. A non-empty subset Γ of B is a
clan if its complement is an ideal and if a, b ∈ Γ ⇒ a C b. A maximal clan is called a
cluster. The set clust(B) of clusters of B is then equipped with the topology having the sets
ηB(a) = {Γ ∈ clust(B) : Γ 3 a} as a basis for closed sets. This topological space appears to be
T1 and weakly regular.

The representation theorem for BCAs, due to Düntsch and Winter [5], states that ηB is a
dense embedding from B to the algebra RC(clust(B)) of regular closed sets of clust(B) endowed
with the contact relation F C G⇔ F ∩G 6= ∅.

3 A Duality for Morphisms

Let β : B → B′ be a map between two complete BCAs satisfying

CM1 β(a ∨ b) = β(a) ∨ β(b) ;

CM2 β(1) = 1 ;

CM3 a ⊥ b⇒ β(a) ⊥ β(b).

In the presence of the axiom DV6, it is not difficult to define a dual morphism between clust(B′)
and clust(B), as the inverse image of any cluster is a clan, which is contained in a unique cluster.
If β additionally satisfies

CM4 β(a) =
∧{β(b) : a ⊥ −b},

one easily recovers de Vries duality. However, in general, a clan may be contained in several
clusters. We then define a morphism from clust(B′) to clust(B) to be a map N from clust(B′)
to clan(RC(clust(B))), defined as follows

N(Γ′) = {F ∈ RC(clust(B)) : β(η−1B (F )) ∈ Γ′}.

While this definition may seem unnatural, it is quite similar to the accessibility relation in
neighborhood semantics.

This leads to two dualities: one involving the category of BCAs with their natural morphisms
(satisfying CM1-CM3) and another one extending de Vries duality.
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Matthew effect. Introduced by Merton [5], the term Matthew effect was used in reference to the self-
reinforcing process whereby reputationally rich academics tend to get richer over time. The author defined
this phenomenon as ‘the accruing of large increments of peer recognition to scientists of great repute for
particular contributions in contrast to the minimizing or withholding of such recognition for scientists who
have not yet made their mark’. Its recurring appearance in social life led to its recognition as a powerful
engine of social, economic, and cultural inequality, to the extent that it can be considered a social law.

There is an extensive literature on the Matthew effect in the fields of sociology, economics, and manage-
ment [1]. Yet, the effect is not precisely and unequivocally defined in the literature: as a result, researchers
are hardly able to compare or integrate theoretical models and empirical findings. This motivates our present
attempt to formalize the Matthew effect through mathematical logic.

Dependence and independence logic. The logical framework that we propose for the formalization
is the framework of Dependence and independence logic introduced by Väänänen [6] and by Grädel and
Väänänen [2]. This framework aims at characterizing the notions of dependence and independence found in
social and natural sciences, such as the dependencies involved in Matthew effects. The logics extend first-
order logic with new atomic formulas, called dependence and independence atoms, that specify explicitly
the dependence and independence relations between variables. To evaluate formulas concerning dependency
statements the logics adopt an innovative new semantics introduced by Hodges [3, 4]. This new semantics,
called team semantics, defines the satisfaction relation with respect to sets of assignments (called teams),
instead of single assignments as in the standard Tarskian semantics of first-order logic. Teams can be easily
conceived as tables or data sets. The flexible and multidisciplinary interpretations of teams results in a rapid
development of applications of the logics in recent years.

Formalization of Matthew effects. In this work, we describe three distinct types of Matthew effect,
namely direct Matthew effect, mediated Matthew effect and complete Matthew effect, and we give formal
definitions for them via independence logic. Consider the signature L that contains the equality symbol =,
the constant symbols r for each real number r ∈ R, the function symbols +,−, ⋅,÷, (⋅)r for each r ∈ R, relation
symbols ≤,≥,<,> and other relevant non-logical symbols. We assume that the context of the Matthew effects
in question is captured by a first-order L -model M . The domain of an intended model M of a Matthew
effect scenario consists of the set of all possible values of all data sets (e.g. real numbers, names of products,
names of artists, etc.).

Given a data set and a system of equations that corresponds to a statistical analysis of the data set. We
use x, y,w, . . . to denote the variables in the data set, and we reserve the letter t for the time variable. We
write x(t) for the value of the variable x at time t. For the formal definitions, following [7], we view the
properties being defined as new atomic formulas and only give their corresponding team semantics.

• y is (positively) dependent on x, denoted x ¤ y ∣tw⃗, if there exists an equation in the system such
that for some threshold γ ∈ R, x(t−1) ≥ γ Ô⇒ y(t) = β0 + δx(t−1) + β1w1(t−1) + ⋅ ⋅ ⋅ + βmwm(t−1) + ε, where
δ > 0 is a constant, w1, . . . ,wm are dependent variables, β0, β1, . . . , βm are nonzero parameters and ε is
an error term. In other words, if x ¤ y ∣tw⃗, then, after x reaches the threshold γ, when all the other



relevant variables w⃗ are held constant, we have y(t)−y(t−1) = δ ⋅(x(t−1)−x(t−2)) for some δ > 0. Formally,
we introduce a new atomic formula x¤ y ∣tβ,γ,w⃗, and define x¤ y ∣tw⃗ ∶= ∃1β∃1γ(β > 0 ∧ x¤ y ∣tβ,γ,w⃗).

• y is subject to a (positive) direct Matthew effect, denoted MEy ∣tw⃗, if y is positively dependent on
itself. Formally, we define MEy ∣tw⃗ ∶= ∃1δ∃1γ(δ > 0 ∧ y ¤ y ∣tδ,γ,w⃗).

• y is subject to a (positive) x-mediated Matthew effect, denoted MMEy(x) ∣tw⃗, if after some
threshold γ, x is positively dependent on y, and y is positively dependent on x. Formally, define
MMEy(x) ∣tw⃗ ∶= ∃1δ1∃1δ2∃1γ1∃1γ2(δ1 > 0 ∧ δ2 > 0 ∧ (y ¤ x ∣tδ1,γ1,w⃗) ∧ (x¤ y ∣tδ2,γ2,w⃗)).

• x and y are subjects to a (positive) complete Matthew effect, denoted CME(x, y) ∣tw⃗, if y is subject
to a positive x-mediated Matthew effect, y is subject to a positive direct Matthew effect, and x is subject
to a positive direct Matthew effect. Formally, define CME(x, y) ∣tw⃗ ∶=MMEx(y) ∣tw⃗ ∧MEx ∣tw⃗ ∧MEy ∣tw⃗.

Results. It is clear from its defining clause of team semantics that the auxiliary new atomic formula
x ¤ y ∣tβ,γ,w⃗ we introduced is a Π1 atom in the sense of [7], and therefore both definable and negatable inI. Since first-order atomic formulas are negatable in I and the class of negatable formulas of I is closed
under ∧ and ∃1 [7], we conclude that the formula x ¤ y ∣tw⃗= ∃1δ∃1γ(δ > 0 ∧ x ¤ y ∣tδ,γ,w⃗) is negatable and

definable in I. Similarly, the defining formulas MEy ∣tw⃗, MMEy(x) ∣tw⃗ and CME(x, y) ∣tw⃗ of the different
types of Matthew effects are all definable and negatable in I. This means that the completeness theorem of
independence logic applies to the formulas defining different Matthew effects, and therefore many properties
of Matthew effects can be derived formally in the system of [7]. Simple examples of such properties include:
MMEy(x) ∣tw⃗ ⊢MMEx(y) ∣tw⃗ (mediated Matthew effects are always reciprocal for the two variables involved)
and MEy ∣tw⃗ ⊢MMEy(y) ∣tw⃗ (a direct Matthew effect is a special case of the mediated Matthew effect). More
interesting properties will be explored in our future work.

Further research. Future research will be directed at formalizing the Matthew effect in a real-world
context [1]. The authors analyze differentials in the recognition received by U.S. biomedical scientists who
are awarded the prestigious Howard Hughes Medical Institute (HHMI) appointment, relative to scientists of
comparable quality who are not awarded the HHMI affiliation. The empirical analysis reveals that HHMI-
appointed scientists tend to earn greater recognition, especially if there is greater uncertainty about the
quality of their output. This suggests important boundary conditions to the Matthew effect, which will be
taken into account in our formal approach.
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Twist products were originally introduced by Kalman in [6] in the context of lattices en-
riched with an involution, and have subsequently been employed in different guises by numerous
authors (see, e.g., [1, 7, 8] for a sample of the rapidly-growing literature on twist products).
Different versions of the twist product construction have often been employed to provide rep-
resentations of various classes of algebras. In the best cases, twist product constructions par-
ticipate as one functor witnessing an equivalence between two categories of algebras. On the
other hand, such categories sometimes admit topological dualities, such as the Esakia duality
for Heyting algebras or Urquhart’s duality for algebras associated with relevance logics [9]. De-
spite its proliferation in algebraic studies, the manner in which the twist product construction
manifests on the duals of algebras remains relatively unexplored.

In the present work, we provide a case study illustrating the twist product of dual structures
by examining two dualities for the class of bounded Sugihara monoids. These algebras are
involutive, idempotent, distributive, bounded commutative residuated lattices, and were shown
in [4, 5] to be equivalent to a category of enriched Gödel algebras. One of the functors witnessing
this equivalence is a variant of the twist product, and we render this variant as a construction
on the topological duals of bounded Sugihara monoids. We call a structure (X,≤, X0, T ) a
Sugihara space if

1. (X,≤, T ) is an Esakia space,

2. (X,≤) is a forest (i.e., for all x ∈ X, the up-set of x is a chain), and

3. X0 ⊆ X is a clopen collection of ≤-minimal elements.

The category of bounded Sugihara monoids is dually equivalent to the category of Sugihara
spaces as defined with the appropriate morphisms, and this duality is anchored in the Davey-
Werner duality for Kleene algebras [2]. On the other hand, as the equivalent algebraic semantics
for the relevance logic R-mingle with sentential constant t, the bounded Sugihara monoids also
admit a duality in terms of Urquhart’s relevant spaces [9]. We call the relevant spaces corre-
sponding to bounded Sugihara monoids Sugihara relevant spaces, and illustrate a construction
that, given a Sugihara space X, produces a Sugihara relevant space X./. This construction
has a much more pictorial character than its analogue on the algebraic side of the duality.
Given a Sugihara space X = (X,≤, X0, T ), the construction proceeds by producing a copy
−X = {−x : x ∈ X \X0} of those elements outside the designated subset X0, and defining a
new ordering relation ≤./ on X ∪ −X by

1. If x, y ∈ X, then x ≤./ y if and only if x ≤ y,

2. If −x,−y ∈ −X, then −x ≤./ −y if and only if y ≤ x,

3. If −x ∈ −X and y ∈ X, then −x ≤./ y if and only if x is ≤-comparable to y.

In other words, the underlying poset of X./ is constructed from X by doubling the elements
X \X0 and reflecting them accross the designated subset X0.
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Having their basis in the Routley-Meyer semantics, Sugihara relevant spaces incorporate
a ternary accessibility relation in their signature. This ternary relation realizes the monoid
operation of a given bounded Sugihara monoid on its dual space. Capturing the behavior
of this relation using only the information encoded in a Sugihara space is a key difficulty in
obtaining a dual space analogue of the twist product. It turns out that the appropriate ternary
relation R on X ∪ −X may be defined in terms of simple conditions on meets and joins of
elements of X ∪−X, and gives a much simpler presentation of the monoid multiplication than
on the algebraic side of the duality. In more detail, define the absolute value of an element of
X ∪ −X by |x| = x if x ∈ X and | − x| = x if −x ∈ −X. Further, define a partial binary
operation · on X ∪ −X by

x · y =





x ∨ y if x, y ∈ X or x ‖ y, provided the join exists

z if x ⊥ y, x /∈ X or y /∈ X, and |x| 6= |y|, where

z is whichever of x, y has greater absolute value

x ∧ y if x ⊥ y, and either x, y /∈ X or |x| = |y|
undefined otherwise

where ⊥ denotes the relation of comparability. The appropriate ternary relation R on X ∪−X
is defined by Rxyz if and only if x · y exists and x · y ≤ z. With this construction, we obtain
the following representation theorem.

Theorem 1. Up to isomorphism, every Sugihara relevant space is of the form X./ for some
Sugihara space X.

Among other things, the above representation theorem explicates the connection between
Dunn’s Kripke-style semantics for R-mingle using a binary accessibility relation [3], and the
more usual Routley-Meyer semantics for R-mingle using a ternary accessibility relation.
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Regular theories consist of sequents ϕ `x ψ, where ϕ, ψ are built from atomic
formulae by ∧ and ∃. Their algebraic counterpart is the notion of regular cat-
egory, i.e one with finite limits and regular epi - mono factorizations (sufficient
for expressing ∃) that are stable under pullback (∃ is compatible with substi-
tution of terms). The effectivization Cef of a regular category C is the process
of universally turning it into an effective (=Barr-exact) one, i.e making every
equivalence relation the kernel pair of its coequalizer. It was described in [4] as
a full subcategory of the category of sheaves for the subcanonical Grothendieck
topology on C whose coverings are singleton families consisting of regular epis.
Cef has as objects quotients in Sh(C, J) of equivalence relations coming from
C. Regular functors F : C → D between regular categories preserve finite limits
and regular epis. Such a functor is covering if for every object D ∈ D there is
C ∈ C and a regular epi FC → D. Regular categories with regular functors are
organized in a 2-category REG. ζC : C → Cef is the obvious inclusion (restriction
of the Yoneda embedding) and we omit it from our notation when it acts on
morphisms coming from C. The action of effectivization on a regular functor
F : C → D is F ∗ = Fef : Cef → Def (so that F ∗ · ζC ∼= ζD · F ). Abusively we
may write composites such as F ∗q · Fu, relying on the latter isomorphism and
consistently omitting ζC . Our main technical result is the following

Lemma 1. If F : C → D is a full on subobjects regular functor then F ∗ =
Fef : Cef → Def is also full on subobjects.

Proof: For a subobject σ:S → F ∗X the presentation FC1
Fc1

//
Fc0 //

FC0
F∗e // F ∗X

of F ∗X, arises from the obvious presentation of X in Cef . We pull back the sub-
object S along F ∗e obtaining by our assumption a subobject Fi:FR0 → FC0,
for a subobject i:R0 → C0, and a regular epimorphism s:FR0 → S.

Let the equivalence relation (r0, r1):R1 → R0 × R0 arise as the intersection
of (c0, c1):C1 → C0×C0 with the subobject R0×R0 → C0×C0. Its coequalizer

ζCR1
r1

//
r0 //

ζCR0
q // Q in Cef gives S ∼= F ∗Q. Indeed we find that s ·Fr0 =

s · Fr1, hence a regular epi r:F ∗Q→ S with r · F ∗q = s. It is also a mono:



2 Definability and conceptual completeness for regular logic

Consider arrows u0 u1: ζDD → F ∗Q, such that r · u0 = r · u1. Since F ∗q is
a regular epi the generalized elements u0, u1 are locally in ζDDi, i.e there is a
covering d′:D′ → D, i = 0, 1 and factorizations of ui · d′ = F ∗q · vi.

D′
d′ //

v1

''PPPPPPPPPPPPPP v0

''PPPPPPPPPPPPPP D
u1

//
u0 //

F ∗Q

r

��
FR1

Fr1

//
Fr0 //

Fj

��

FR0

F∗q

;;wwwwwwww
s //

Fi

��

S

σ

��
FC1

Fc1

//
Fc0 //

FC0
F∗e // F ∗X

Diagram chasing gives F ∗e · Fi · v0 = F ∗e · Fi · v1. The universal properties of
(Fc0, F c1) as kernel pair of its coequalizer and of the pullback diagram arising by
applying F to the intersection defining (r0, r1) give a factorization γ:D′ → FC1

such that Fi · vi = Fci · γ, i = 0, 1 and, respectively, an α:D′ → FR1 such that
(v0, v1) = (Fr0, F r1) · α. Hence u0 · d′ = u1 · d′ and d′ is an epi, so u0 = u1. �

Regular functors that are full on subobjects and covering correspond to ex-
tensions of theories (of their domain categories) by adding new axioms but no
new symbols. Regular functors that are covering, faithful and full on subobjects
are full as well. By Lemma 1 and results in [1], such a functor induces a functor
with the same properties at the level of effectivizations. By [5], 1.4.9, the induced
functor between effectivizations is an equivalence. Hence we have the following
strengthening of [6] 2.4.4

Proposition 1. A regular functor F : C → D to an effective category is the
effectivization of C iff it is covering, faithfull and full on subobjects.

Combining these with results from [2], [3] D3.5.12, we get

Theorem 1. For F : C → D in REG, the induced functor between the categories
of models − · F : REG(D,Set) → REG(C,Set) is fully faithful iff F is full on
subobjects and covering.
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It is well-known that congruences on a Heyting algebra are in one-to-one correspondence
with filters of the underlying lattice. If an algebra A has a Heyting algebra reduct, it is of natural
interest to characterise which filters correspond to congruences on A. Such a characterisation
was given by Hasimoto [1]. When the filters can be sufficiently described by a single unary term,
many useful properties are uncovered. The traditional example arises from boolean algebras
with operators. In this setting, an algebra B = 〈B;∨,∧,¬, {fi | i ∈ I}, 0, 1〉 is a boolean algebra
with (dual) operators (BAO for short) if 〈B;∨,∧,¬, 0, 1〉 is a boolean algebra, and for each
i ∈ I, the operation fi is a unary map satisfying fi1 = 1 and fi(x ∧ y) = fix ∧ fiy. If B is of
finite type, then congruences on B are determined by filters closed under the map d, defined by

dx =
∧
{fix | i ∈ I}.

This is easily generalised to the case that each fi is of any finite arity. The reader is warned
that, conventionally, the definition of an operator is dual to the definition given here. However,
when the algebra of interest is a Heyting algebra, it turns out that meet-preserving operations
are more natural than join-preserving operations. Hasimoto gave a construction which gener-
alises the term above to Heyting algebras equipped with an arbitrary set of arbitrarily many
operations (note that Hasimoto uses the word “operator” for an arbitrary unary operation).
The construction does not apply in all cases, and even when it does, it does not guarantee that
the result is a term function on the algebra. Having said that, natural constraints exist which
guarantee both that the construction applies, and produces a term function. As is the case for
BAOs, we will restrict our attention to unary operations here and observe that everything is
easily generalised to operations of arbitrary arity. In this talk we provide some general con-
ditions which guarantee such a term function. Moreover, provided that the Heyting algebra
also includes a dual pseudocomplement operation, we prove that a variety of these algebras is
a discriminator variety if and only if it is semisimple, alongside an equational characterisation.

Definition 1.1. We will say that an algebra A = 〈A;M,∨,∧,→, 0, 1〉 is an expanded Heyting
algebra (EHA for short) if 〈A;∨,∧,→, 0, 1〉 is a Heyting algebra, and M is an arbitrary set of
unary operations on A. Let x ↔ y = (x → y) ∧ (y → x). We say that a filter F ⊆ A is a
normal filter (of A) provided that, for every f ∈ M , if x ↔ y ∈ F then fx ↔ fy ∈ F . It is
easily verified that the set of normal filters of A forms a complete lattice, and so we will let
Fil(A) denote the lattice of normal filters of A. For all F ∈ Fil(A), let θ(F ) be the equivalence
relation defined by

θ(F ) = {(x, y) | x↔ y ∈ F}.

Theorem 1.2 (Hasimoto [1]). Let A be an EHA, let F be a normal filter on A, and let α be a
congruence on A. Then θ(F ) is a congruence on A. Moreover, the map θ : Fil(A)→ Con(A),
defined by F 7→ θ(F ), is an isomorphism with its inverse given by α 7→ 1/α.

Definition 1.3. Let A be an EHA and let t be a unary term in the language of A. We say
that t is a normal filter term (on A) if tA is order-preserving, and, whenever F is a filter of A,
then F is a normal filter of A if and only if F is closed under tA.



Henceforth we will not be careful to distinguish between terms and term functions. The map
d for BAOs seen before is an example of a normal filter term. An easy description of congruences
via a normal filter term allows for a deeper investigation of congruence-related properties. In
particular, we can characterise equationally definable principal congruences (EDPC) in a very
straightforward manner.

Theorem 1.4. Let V be a variety of EHAs and assume that t is a normal filter term on V. Let
dx = x ∧ tx. Then V has EDPC if and only if there exists n ∈ ω such that V |= dn+1x = dnx.

Our main result involves dually pseudocomplemented Heyting algebras. A dual pseudocom-
plement operation is an operation ∼ such that x ∨ y = 1 if and only if y ≥ ∼x. If A is an EHA
and there exists ∼ ∈ M such that ∼ is a dual pseudocomplement operation, we say that A is
a dually pseudocomplemented EHA, and if M = {∼} then A is a dually pseudocomplemented
Heyting algebra. Sankappanavar [5] characterised congruences for dually pseudocomplemented
Heyting algebras, which is expressed in our terminology by saying that the term ¬∼ is a normal
filter term (where ¬x = x→ 0). Our main result is as follows.

Theorem 1.5 (T., [8]). Let V be a variety of dually pseudocomplemented EHAs and assume V
has a normal filter term t. Let dx = x ∧ tx. Then the following are equivalent:

1. V is semisimple.

2. There exists n ∈ ω such that V |= dn+1x = dnx and V |= x ≤ d∼dn¬x.

3. V is a discriminator variety.

Note that the second condition implies EDPC by Theorem 1.4. The argument is based
on an argument by Kowalski & Kracht [4] proving the same characterisation for BAOs, which
now follows as a corollary of the above theorem. The present author also proved the same
characterisation for double-Heyting algebras [7], which also follows. We will also see some new
cases for which the characterisation applies to. On the other hand, certain classes of residuated
lattices have a suspiciously similar characterisation (Kowalski [2], Kowalski & Ferreirim [3],
Takamura [6]), using a similar proof technique, but this theorem does not apply to them. It is
believed that this is no coincidence, and further research will attempt to unite these results.
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1 Introduction

The rudiments for the development of the model theory of predicate core fuzzy logics were laid
down in [5] with follow up work in places like [3, 2, 4]. A great deal still remains to be done,
though. The aim of this talk is to explore the construction of models realizing many and few
types in the setting of these logics as well as applications. This kind of problems are well-known
from the classical case (cf.[1, 6]).

2 Quick preliminaries

We more or less follow the notation of [3] below. In particular, recall that we write models
for our (function symbol-free) predicate language L as structures of the form (B,M) where B
is an algebra belonging to some variety (which is an extension of the variety of the so called
MTL-algebras) corresponding to the logic under consideration and M is a structure with a
domain M and appropriate assignments of truth values to the predicates of the language and
of individuals of M to its constants. We write (B,M) |= φ when ||φ||BM = 1.

Moreover, we are only interested in models where: ||∃xφ(x)||BM = 1 means that ||φ[d]||BM = 1
for some element d of its domain of individuals (call them ∃-Henkin models). Henceforth, by a
model we will always mean one such model.

A tableau is going to be a pair (T,U) such that T and U are theories. A tableau is satisfied
by a model (B,M), if we have that both (B,M) |= T and, for all φ ∈ U , (B,M) 6|= φ. We may
define the expression (T,U) |= φ as meaning that for any model that satisfies (T,U), the model
must make φ true as well. A tableau (T,U) is said to be consistent if T ` ∨

U0 for no finite
U0 ⊆ U . In particular,

∨ ∅ we define as ⊥ (semantically, of course, ⊥ is the l. u. b. of ∅).
The following result is what we need for our purposes here instead of Theorem 4 from [5].

Theorem 1. (Model Existence Theorem) Let (T,U) be a consistent tableau. Then there is a
model satisfying (T,U).

Corollary 1. (Tableaux Compactness) Let (T,U) be a tableau. If every (T0, U0), with |T0|, |U0|
finite and T0 ⊆ T and U0 ⊆ U , has a model satisfying it, then (T,U) is satisfied in some model.

3 Models realizing many types

Let (B,M) be a model. If (p, p′) is a tableau in some variable x and parameters in some
A ⊆M , we will call p a type of (B,M) in A if the tableaux (ThA(B,M) ∪ p,ThA(B,M) ∪ p′)
is satisfiable −where ThA(B,M) is the collection of formulas with constants for the elements
in A that hold in (B,M). We will denote the set of all such types by S(B,M)(A). A model



(B,M) is κ-saturated if for any A ⊆ M suh that |A| < κ, all (p, p′) ∈ S(B,M)(A) are realized
in (B,M).

Theorem 2. For any (B,M) there is a κ+-saturated L-elementary extension (in the sense of
[5, 3]) (C,N) of (B,M).

4 Models realizing few types

A pair of sets of formulas (p, p′) is a type of a tableau (T,U) if the tableau (T ∪ p, U ∪ p′) is
satisfiable.

A type (p, p′) of (T,U) is non-isolated if for any formulas φ, φ′ such that (T ∪{φ}, U ∪{φ′})
is satisfiable, there are ψ ∈ p, ψ′ ∈ p′ such that (T ∪{φ}, U ∪{φ′}) 2 ψ or (T ∪{φ, ψ′}, U ∪{φ′})
is satisfiable.

Theorem 3. (Omitting types) Let (T,U) be a tableau realized by some model and (p, p′) a
non-isolated n-type of (T,U). Then there is model satisfying (T,U) which omits (p, p′).

Theorem 4. (Omitting countably many types) Let (T,U) be a tableau realized by some model
and (pi, p

′
i)(i < ω) a sequence of non-isolated n-types of (T,U). Then there is model satisfying

(T,U) which omits (pi, p
′
i)(i < ω).

These omitting types results differ from those in [7] since we are working with tableaux
rather than simply theories.

5 Applications

Now we finish with an example of an application of the countable omitting types theorem.

Proposition 1. Suppose we have binary symbols in our language < and R. Let (B,M) be a
countable model of the theory (Γ,∆) where

Γ = {∀x, y(x < y ∨R(x, y) ∨ y < x)} ∪ {∀x, y, z(R(x, y) ∧R(yz)→ R(x, z))} ∪ {∀z(∀x∃y >
x∃v < z(ψ(v, y))→ ∃v < z∀x∃y > x(ψ(v, y)))} ∪ {∀x0, . . . xn∃y(

∧
i≤n xi < y) : n < ω}

and

∆ = ∅

Then there is an L-elementary extension (A,N) of (B,M), such that if b ∈ N \M is such that
R(b, c) does not hold in (A,N) for any c ∈ M , then, given a ∈ M , a < b must hold in (A,N)
(this model might be called an end extension of (B,M) relative to R).
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In algebraic logic some attention has been paid to the class of existentially closed struc-
tures in varieties coming from the algebraization of common propositional logics. In fact, there
are relevant cases where such classes are elementary: this includes, besides the easy case of
Boolean algebras, also Heyting algebras [GZ02], diagonalizable algebras [GZ02] and some uni-
versal classes related to temporal logics [GvG16]. This is also true for the variety of Brouwerian
semilattices, i.e. the algebraic structures corresponding to the implication-conjunction frag-
ment of intuitionistic logic. Said variety is amalgamable and locally finite, hence by well-known
results [Whe76], it has a model completion (whose models are the existentially closed struc-
tures). However, very little is known about the related axiomatizations, with the remarkable
exception of the case of the locally finite amalgamable varieties of Heyting algebras recently
investigated in [DJ10] and the simpler cases of posets and semilattices studied in [AB86]. We
use a methodology similar to [DJ10] (relying on classifications of minimal extensions) in order
to investigate the case of Brouwerian semilattices. We obtain the finite axiomatization reported
below, which is similar in spirit to the axiomatizations from [DJ10] (in the sense that we also
have kinds of ‘density’ and ‘splitting’ conditions). The main technical problem we must face
for this result (making axioms formulation slightly more complex and proofs much more in-
volved) is the lack of joins in the language of Brouwerian semilattices. This investigation also
revealed some properties of existentially closed Brouwerian semilattices, namely the nonexis-
tence of meet-irreducible elements, of the minimum and of the joins of incomparable elements,
which are suggested and in fact implied by the ‘density’ and ‘splitting’ conditions.

Statement of the main result

A Brouwerian semilattice is a poset (P,≤) having a greatest element, inf’s of pairs and relative
pseudo-complements. We denote the greatest element with 1, the inf of {a, b} is called ‘meet’
of a and b and denoted with a ∧ b. The relative pseudo-complement of a and b is denoted with
a→ b. We recall that a→ b is characterized by the the following property: for every c ∈ P we
have

c ≤ a→ b iff c ∧ a ≤ b
Brouwerian semilattices can also be defined in an alternative way as algebras over the

signature 1,∧,→, subject to the following equations

• a ∧ a = a

• a ∧ b = b ∧ a

• a ∧ (b ∧ c) = (a ∧ b) ∧ c

• a ∧ 1 = a

• a ∧ (a→ b) = a ∧ b

• b ∧ (a→ b) = b
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• a→ (b ∧ c) = (a→ b) ∧ (a→ c)

• a→ a = 1

In case this equational axiomatization is adopted, the partial order ≤ is recovered via the defi-
nition a ≤ b iff a ∧ b = a. See [Köh81] for relevant information on Brouwerian semilattices.
By a result due to Diego-McKay, Brouwerian semilattices are locally finite (meaning that all
finitely generated Brouwerian semilattices are finite); since they are also amalgamable, it fol-
lows [Whe76] that the theory of Brouwerian semilattices has a model completion. We prove
that such a model completion is given by the above set of axioms for the theory of Brouwerian
semilattices together with the three additional axioms (Density1, Density2, Splitting) below.

We use the abbreviation a� b for a ≤ b and b→ a = a.

[Density 1] For every c there exists an element b different from 1 such that b� c.

[Density 2] For every c, a1, a2, d such that a1, a2 6= 1, a1 � c, a2 � c and d → a1 = a1,
d→ a2 = a2 there exists an element b different from 1 such that:

a1 � b

a2 � b

b� c

d→ b = b

[Splitting] For every a, b1, b2 such that 1 6= a� b1∧ b2 there exist elements a1 and a2 different
from 1 such that:

b1 ≥ a1 = a2 → a

b2 ≥ a2 = a1 → a

a2 → b1 = b2 → b1

a1 → b2 = b1 → b2

Proofs of this and other results can be found in the preliminary manuscript at the following
link: http://arxiv.org/abs/1702.08352
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A logic L is locally tabular if, for any finite l, there exist only finitely many pairwise nonequiv-
alent formulas in L built from the variables p1, ..., pl. Equivalently, a logic L is locally tabular if
the variety of its algebras is locally finite, i.e., every finitely generated L-algebra is finite. This
is a very strong property: if a logic is locally tabular, then it has the finite model property
(thus it is Kripke complete); every extension of a locally tabular logic is locally tabular (thus it
has the finite model property); every finitely axiomatizable extension of a locally tabular logic
is decidable.

According to the classical results by Segerberg and Maksimova [4, 3], a unimodal logic
containing K4 is locally tabular iff it is of finite height. The notion of finite height can also be
defined for logics, in which the master modality is expressible (‘pretransitive’ logics). Recently
[5], it was shown that every locally tabular unimodal logic is a pretransitive logic of finite height.
Also, in [5], two semantic criteria of local tabularly for unimodal logics were proved. In this
note we formulate the analogs of these facts for the polymodal case and discuss some of their
corollaries.

Fix some n > 0 and the n-modal language with the modalities 30, . . . ,3n−1.

Necessary condition. For a Kripke frame F = (W, (Ri)i<n), put RF = ∪i<nRi. Let ∼F be
the equivalence relation R∗

F ∩ R∗
F
−1, where R∗

F denotes the transitive reflexive closure of RF.
A cluster in F is an equivalence class under ∼F. For clusters C, D, put C ≤F D iff xR∗

Fy for
some x ∈ C, y ∈ D. The poset (W/∼F,≤F) is called the skeleton of F.

A poset is of finite height ≤ h if every of its chains contains at most h elements. The height
of a frame F, in symbols, ht(F), is the height of its skeleton.

For a binary relation R put R≤m = ∪i≤mRi. R is called m-transitive, if Rm+1 ⊆ R≤m. A
frame F is m-transitive if RF is m-transitive.

Put 30ϕ = ϕ, 3i+1ϕ = 3i(30ϕ ∨ . . . ∨3n−1ϕ), 3≤mϕ = ∨i≤m3iϕ, 2≤mϕ = ¬3≤m¬ϕ.

Proposition 1. A frame F is m-transitive iff F � 3m+1p→ 3≤mp.

Put B
[m]
1 = p1 → 2≤m3≤mp1, B

[m]
i+1 = pi+1 → 2≤m(3≤mpi+1 ∨B[m]

i ).

Proposition 2. For an m-transitive frame F, F � B[m]
h iff ht(F) ≤ h.

A logic L is called m-transitive if L ` 3m+1p→ 3≤mp. L is pretransitive if it is m-transitive

for some m ≥ 0. An m-transitive logic L is of finite height ≤ h if L ` B[m]
h .

Theorem 1. Every locally tabular logic is a pretransitive logic of finite height.

Being a pretransitive logic of finite height is not sufficient for local tabularity. For example,
products of transitive logics are pretransitive, in particular, the logic S5×S5 is a pretransitive
logic of height 1. It is known to be not locally tabular (still, it is pre-locally tabular [1]).
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First criterion. As usual, a partition A of a set W is a set of non-empty pairwise disjoint
sets such that W = ∪A. A partition B refines A, if each element of A is the union of some
elements of B.

Definition 1. Let F = (W, (Ri)i<n) be a Kripke frame. A partition A of W is F-tuned, if for
every U, V ∈ A, and every i < n

∃u ∈ U ∃v ∈ V uRiv ⇒ ∀u ∈ U ∃v ∈ V uRiv.

A class of frames F is ripe, if there exists f : N→ N such that for every F ∈ F and every finite
partition A of F there exists an F-tuned refinement B of A with |B| ≤ f(|A|).
Theorem 2. A logic L is locally tabular iff L is the logic of a ripe class of frames.

Let Lu be the extension of L with the universal modality. Trivially, if a partition is tuned
for a frame (W, (Ri)i<n), then it is tuned for the frame (W, (Ri)i<n,W ×W ).

Corollary 1. If L is locally tabular, then Lu is locally tabular.

Let Lt be the tense counterpart of L. From Theorem 2 and the filtration technique proposed
in [2, Theorem 2.4], we have

Corollary 2. If L is locally tabular, then Lt has the finite model property.

Second criterion. For a class F of frames let clF be the class of restrictions on clusters
occurring in frames from F : clF = {F�C | F ∈ F and C is a cluster in F}. F has the ripe
cluster property if clF is ripe. A class F of frames is of finite height if there exists h ∈ N such
that ht(F) ≤ h for all F ∈ F .

Theorem 3. F is ripe iff F is of finite height and has the ripe cluster property.

A logic has the ripe cluster property if the class of all its frames has. Note that if a pretran-
sitive logic is canonical, then its extensions with formulas of finite height are canonical, thus
are Kripke complete. From Theorems 2 and 3, we obtain

Corollary 3. Suppose L0 is a canonical pretransitive logic with the ripe cluster property. Then
for any logic L ⊇ L0, L is locally tabular iff L is of finite height.

It is known that a unimodal logic L ⊇ K4 is locally tabular iff its 1-generated free algebra
AL(1) is finite [3]. It allows us to formulate another corollary of Theorem 3:

Corollary 4. Suppose L0 is a canonical pretransitive logic with the ripe cluster property. Then
for any logic L ⊇ L0, L is locally tabular iff AL(1) is finite.

Problem. Does this equivalence hold for every modal logic?
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Most topological concepts can be presented in a predicative and constructive framework,
such as that of basic pairs (see [6]). A basic pair (X,
, S) consists of a set X, a set S and
a relation 
 from X to S. X represents points, while S is a set of indexes for a basis of
neighbourhoods of a topology on X. Elements of S are shortly called observables. An observable
a in S is read as an index for the subset ext a of X of those x for which x 
 a. The presence of
S makes the structure of a basic pair symmetric. Adding the two axioms

B1) ext a ∩ ext b =
⋃{ext c | ext c ⊆ ext a ∩ ext b}

B2) (∀x ∈ X)(∃a ∈ S)(x 
 a)

one obtains a predicative and constructive account of topological spaces.
We here add the idea that basic topological concepts, such as closure, interior and continuity,

can be characterized as those which can be communicated faithfully between the side of points
and the side of observables. This interpretation introduces a new intuitive point of view on
topology which can shed light on unexpected links. The foundational framework assumed here
is in the common core between the most relevant classical and constructive, predicative and
impredicative, foundations, as in [4, 3].

Communication

Suppose an individual A wants to communicate with another individual B, but suppose A
and B do not share the same language. However A and B both have their own collection of
messages MA and MB which they use to represent information. Some messages in MA are
equivalent in the sense that they have the same meaning, and the same for messages in MB .
Hence A is equipped with a pair (MA,∼A) and B with a pair (MB ,∼B). If we want A and B
to communicate, then

1. B needs a decoding procedure ∆ to transform every message in MA into one of its own
messages in MB . This decoding procedure is good if it translates equivalent messages in
MA into equivalent messages in MB .

2. Conversely A needs a decoding procedure ∇ to transform every message in MB into a
message in MA. This decoding procedure is good if it translates equivalent messages in
MB into equivalent messages in MA.

We can say that a message m in MA is (faithfully) communicable if it satisfies the following
requirement: if A communicates m to B, B translates it obtaining ∆(m) and then sends
∆(m) back to A, then the translation ∇(∆(m)) by A of ∆(m) is equivalent to m, that is
∇(∆(m)) ∼A m.



Communication of subsets: interior and closure

Let (X,
, S) be a basic pair. For all a ∈ S and x ∈ X, we put x ∈ ext a if and only a ∈ 3x if
and only if x 
 a. For all subsets D of X, we put a ∈ 3D if and only if ext a G D and a ∈ 2D
if and only if ext a ⊆ D. For all subsets U of S, we put x ∈ extU if and only if 3x G U and
x ∈ restU if and only if 3x ⊆ U .

Considering X and S as individuals with (P(X),=) and (P(S),=) as collections of messages
respectively, we prove that for a subset D of X

1. D is open if and only if D is (2, ext)-communicable;

2. D is closed if and only if D is (3, rest)-communicable.

Communication of relations: continuity

It is natural (see e. g. [1], [2], [5]) to define a continuous relation from a basic pair (X,
, S) to
another one (Y,
, T ) as a relation r from X to Y such that for all b ∈ T and x ∈ X

x ∈ r−extb→ (∃a ∈ S)(x 
 a ∧ exta ⊆ r−extb).

One can take (X,Y ) and (S, T ) as individuals. Their collections of messages are Rel(X,Y )
and Rel(S, T ) equipped with suitable equivalence relations. In this context we prove that there
exist natural decoding procedures σ and ρ such that a relation r is continuous if and only if r
is (σ, ρ)-communicable.

Communication of elements and functions: convergence

We will finally discuss the notions of convergent subset and convergent relation (see [6]) as
notions of communicable element and communicable function respectively.
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The category of Cuntz Semigroups, denoted Cu, is a category of ordered commutative
monoids with a rich ordered structure. Its introduction and main motivation arises from the
Classification program of separable, nuclear C∗-algebras, since a certain invariant for an algebra
A, namely the Cuntz semigroup of A which is denoted Cu(A), has the structure of an object in
this category.

After its introduction back in 1978 by J. Cuntz [Cun78], this semigroup received more
attention when its non trivial ordered structure was used as a counterexample to existing
conjectures regarding classification of C∗-algebras (see [Tom08]). Shortly after, and with the aim
of using Cu(A) as a classification invariant, Coward, Elliott and Ivanescu [CEI08] proved that
Cu(A) had the structure of an ω-domain (with further compatibility properties) and introduced
the category Cu as the target for the functor Cu(−), proving in particular that the category
has sequential limits and the functor Cu(−) is sequentially continuous. This is important since
many examples of C∗-algebras are built as inductive limits of this kind.

In this note, we improve this result by proving that the category Cu is both complete and
cocomplete. As for the functor Cu(−), not all (co)limits are preserved, but there are some
positive results, including a construction of ultraproducts in Cu.

Our approach is to to develop the constructions in some structurally simpler categories, and
then use either a reflection or a coreflection functor to define them in Cu. This approach has
already been carried out with success in the category Cu for the construction of tensor products
(see [APT14]), and resembles the way the tensor product of C∗-algebras A,B is carried out:
one first develops the algebraic tensor product A⊗̂B, then defines there a pseudo-norm, and
finally makes the completion.

In our case, our simpler categories will be categories of ordered semigroups with an auxiliary
relation. In these, the constructions (products, limits, etc..) will extend the set theoretic
constructions, and only the appropriate auxiliary relation will have to be chosen. Let us make
this concrete:

In [APT14] we introduced a category of ordered semigroups with an auxiliary relation, and
satisfying certain axioms, which we termed PreW. The category Cu is then, in a natural way,
a full subcategory of PreW when the way below relation is chosen as the auxiliary relation.
Moreover it was proved ([APT14, Theorem 3.1.10]) that Cu is a reflexive full subcategory
of PreW by providing a reflector functor γ : Prew → Cu, that is based on the round ideal
completion (see [Law97]).

Hence, we obtain a category whose objects are structurally simpler, and from which Cu-
semigroups can be obtained though a completion process. It is interesting to note, as observed



by K. Keimel in [Kei16], that similar notions had already been around in the field of Domain
Theory with different names.

In a similar way, we introduced in [APT17] a different category of ordered semigroups with
an auxiliary relation, and again certain properties, which we termed Q. Whereas in PreW we
mainly relaxed continuity notions, now certain interpolation notions are relaxed. Again Cu can
naturally be viewed as a full subcategory of Q, and it turns out that a functor τ : Q → Cu
can be defined which is now a coreflector, and we have ([APT14, Theorem 3.1.10]) that Cu is
a coreflective full subcategory of Q. In this case, we are not aware of a similar or equivalent
notion in Domain Theory for the functor τ .

This categories, PreW and Q can be viewed in a larger category P (not as full subcategories
though), and the constructions γ and τ are naturally equivalent when restricted to the inter-
section. Moreover, the functor τ , exactly as it is defined, can be extended to P and then, its
restriction to PreW is naturally equivalent to γ. This is clarified in the following diagram.

As mentioned above, doing the necessary constructions in either PreW or Q, and using the
fact that Cu is respectively a reflexive or coreflexive full subcategory, we obtain:

The Category of Cuntz semigroups is both complete and cocomplete.

With respect to the question of which of these (co)limit constructions are preserved by the
functor, one can not expect a general affirmative answer. There examples of certain pullbacks
and certain inverse limits which are not preserved. Nevertheless our techniques allow us to give
a positive answer under certain hypothesis. For instance, using the reflector γ above, we prove
that Cu(−) preserves arbitrary inductive limits (see [APT14]).

As a dual example, we can use the coreflector τ to prove that Cu preserves products.
Moreover, given an ultrafilter ω in a set I, a notion of ultraproduct can be defined in Cu (as
well as for C∗-algebras), and prove that, if (Ai)i∈I is a family of C∗-algebras then

Cu(
∏

ω

Ai) ∼=
∏

ω

Cu(Ai).
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The Cuntz semigroup of a C∗-algebra is an important invariant in the structure and classification theory
of C∗-algebras. There has been a huge effort towards the classification of these objects over the last 30 years
or so, using invariants of K-Theoretical nature. In general, this semigroup captures more information than
K-theory but is often more delicate to handle. The aim of this talk is to introduce it and discuss various
examples as well as its connections with domain theory ([6]).

Very briefly, if H is a (complex) Hilbert space, let us denote by B(H) the algebra of bounded, linear
operators on H. A C∗-algebra A is any norm-closed, involutive subalgebra of B(H). These objects can also
be described abstractly, as follows:

Definition. A C∗-algebra is a complex Banach algebra A, equipped with an involution ∗ such that ‖a∗a‖ =
‖a‖2 for any a ∈ A. Homomorphisms between C∗-algebras are complex algebra maps that respect the
involution. (They are automatically continuous.)

The classical definition of the Cuntz semigroup goes back to 1978, and is based on the notion of comparison
for positive elements in C∗-algebras, as introduced by Cuntz himself ([5]). We review this construction below

Definition (The Cuntz semigroup). Let A be a C∗-algebra. For positive elements a, b ∈ A, say that a is
Cuntz subequivalent to b (and write a - b) provided there is a sequence (xn) in A such that a = lim

n→∞
xnbx

∗
n.

We say that a and b are Cuntz equivalent provided a - b and b - a. In symbols, we write a ∼ b.
Denote by M∞(A) = ∪∞n=1Mn(A), a directed union of all matrix algebras, and put W (A) := M∞(A)+/∼.

We denote the class of an element in W (A) by [a], and we define

[a] + [b] = [( a 0
0 b )], [a] ≤ [b] if and only if a - b

With these operations, W (A) becomes a partially ordered, abelian semigroup, termed the classical Cuntz
semigroup. The complete Cuntz semigroup is constructed in a similar fashion, by replacing A by its tensor
product with the compact operators. Namely, it is defined as Cu(A) := W (A⊗K(H)).

In its classical formulation, the Cuntz semigroup may be equipped with an auxiliary relation that
makes it into a predomain, in the sense of [7]. This is defined as follows: [a] ≺ [b] if and only if a -
(b− ε)+ for some ε > 0. In the case of the complete Cuntz semigroup, this relation agrees with the sequen-
tial way-below relation as in domain theory. In fact, Cu(A) is an ω-domain, a result that was established by
Coward, Elliott, and Ivanescu (see [4]). More concretely, they introduced a category of semigroups, termed
Cu and showed the following:

Theorem. For any C∗-algebra A, the Cuntz semigroup Cu(A) is an object in Cu. Moreover, the assignment
A 7→ Cu(A) is a sequentially continuous functor from the category of C∗-algebras to the category Cu.
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The continuity of this functor is very important as many examples in the theory arise as inductive limits.
Hence, any valuable invariant must be continuous. That was not the case with the functor A 7→ W (A).
However, this fact can be remedied by looking at the right domain and codomain categories where all the
objects belong to. We briefly explain how the category Cu is constructed:

Definition. A Cu-semigroup, also called abstract Cuntz semigroup, is a positively ordered semigroup S that
satisfies the following axioms (O1)-(O4):

(O1) Every increasing sequence (an)n in S has a supremum supn an in S.

(O2) For every element a ∈ S there exists a sequence (an)n in S with an � an+1 for all n ∈ N, and such
that a = supn an.

(O3) If a′ � a and b′ � b for a′, b′, a, b ∈ S, then a′ + b′ � a+ b.

(O4) If (an)n and (bn)n are increasing sequences in S, then supn(an + bn) = supn an + supn bn.

Morphisms in the category are called Cu-morphisms, that is, maps that preserve addition, order, the zero
element, the way-below relation and suprema of increasing sequences. Other maps of interest are the so-called
generalized Cu-morphism, that is, maps as above that do not necessarily preserve the way-below relation.

One of our main results (further developed in [2] and [3]) is the following:

Theorem ([1]). The following conditions hold true:

(i) There exists a category W that admits arbitrary inductive limits and such that the assignment A 7→
W (A) defines a continuous functor from the category C∗loc of local C∗-algebras to the category W.

(ii) The category Cu is a full, reflective subcategory of W. Therefore, Cu admits arbitrary inductive limits.

(iii) There is a diagram, that commutes up to natural isomorphisms:

C∗loc
γ
��

W // W

γ
��

C∗
?�

OO

Cu // Cu
?�

OO

where γ : W→ Cu is the reflection functor and γ : C∗loc → C∗ is the completion functor that assigns to
a local C∗-algebra its completion (which is a C∗-algebra). In particular, the assignment A 7→ Cu(A) is
also a continuous functor from the category of C∗-algebras to the category Cu (with respect to arbitrary
limits, thus extending the results in [4]).

(iv) The category Cu is symmetric monoidal.
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A proper Multi-type display calculus for Semi De Morgan

Logic

Giuseppe Greco, Fei Liang, Andrew Moshier, and Alessandra Palmigiano ∗

Semi De Morgan algebras form a variety of normal distributive lattice expansions [7] in-
troduced by H.P. Sankappanavar [16] as a common abstraction of De Morgan algebras and
distributive pseudocomplemented lattices. A fully selfextensional logic SDM naturally arises
from semi De Morgan algebras, which has been studied from a duality-theoretic perspective
[13], from the perspective of canonical extensions [15], and from a proof-theoretic perspective
[14]. Related to the proof theoretic perspective, the G3-style sequent calculus introduced in [14]
is shown to be cut-free. However, the proof of cut elimination is quite involved, due to the fact
that, along with the standard introduction rules for conjunction and disjunction, this calculus
includes also introduction rules under the scope of structural connectives. These difficulties can
be explained by the fact that the axiomatization of SDM is not analytic inductive in the sense
of [10, Definition 55], due to the presence of the following axioms

(a ∧ b)′′ = a′′ ∧ b′′ a′ = a′′′.

In order to address these difficulties, an analytic calculus for SDM is introduced in [9], which
is sound, complete, conservative, and enjoys cut elimination and subformula property proved
by means of a general Belnap-style method.

This calculus is a proper multi-type display calculus according to the definition of [12,
Definition A.1]. The methodology of multi-type calculi has been introduced in [8, 3], motivated
by proof-theoretic semantic considerations [5], and further developed in [6, 4, 1, 11].

Our main insights come from algebra. Specifically, we introduce an equivalent representa-
tion of semi De Morgan algebras as the following heterogeneous algebras (in the sense of [2]):
structures H = (L,D, f, h) such that:
L is a bounded distributive lattice,
D is a De Morgan algebra,
h : L→ D is a surjective lattice homomorphism,
f : D→ L is a finitely meet-preserving order embedding which preserves the bottom element,
h(f(α)) = α for every α ∈ D.
We show that any semi De Morgan algebra A gives rise to one such heterogeneous algebra A+,
and conversely any heterogeneous algebra H as above gives rise to one semi De Morgan algebra
H+, so that

A ∼= (A+)+ H ∼= (H+)+.

This equivalence motivates a reformulation of the logic SDM into the multi-type language
canonically interpreted in the heterogeneous algebras defined above. In this reformulation, all
the axioms are analytic inductive. This makes it possible to obtain a proper multi-type display
calculus for SDM by suitably generalizing the method introduced in [10].
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Effect algebras [1] are positive, cancellative, unital partial abelian monoids. The category
of effect algebras is denoted by EA.

Let us denote the initial segment of natural numbers {1, . . . , n} by [n]. Note that [0] = ∅.
Let FinBool be the full subcategory of the category FinBool of Boolean algebras spanned by
the set of objects {2[n] : n ∈ N}. FinBool is a small, full subcategory of the category of effect
algebras.

It was proved by Staton and Uijlen in [6] that every effect algebra A can be faithfully
represented by a presheaf P (A) on the category FinBool. Explicitely, for an effect algebra
A the presheaf P (A) : FinBool → Set maps every object 2[n] to the homset EA(2[n], A)
and every arrow f : 2[n] → 2[m] the mapping P (A)(f) : P (2[m]) → P (2[n]) defined as the
precomposition by f . This determines a functor P : EA→ [FinBoolop,Set].

The category of tests of an effect algebra A is the category of elements of the presheaf
P (A), in symbols el(P (A)). We note that every object of el(P (A)) is just a morphism of effect
algebras g : 2[n] → A (a finite observable) and these are in a one-to-one correspondence with
finite sequences (ai)i∈[n] ⊆ A with Σi∈[n]ai = 1, that are called tests [2, 3]. The morphisms
then correspond to refinements of tests.

It is clear that for every effect algebra A, there is a functor DA : el(P (A))→ EA that maps
every g : 2[n] → A to its domain 2[n]. As proved in [6], FinBool is a dense subcategory of
EA. This implies that every effect algebra A is a colimit of its DA. Moreover, since EA is
cocomplete [4], we may apply a general argument [5, Theorem I.5.2] to prove that there is a
reflection [FinBoolop,Set]→ EA left adjoint to P .

Recall, that an effect algebra satisfies the Riesz decomposition property (abbreviated by
RDP) if and only if, for all u, v1, v2 such that u ≤ v1 +v2 there are u1, u2 such that u = u1 +u2,
u1 ≤ v1, u2 ≤ v2. Every Boolean algebra and every effect algebra arising from an MV-algebra
satisfies the RDP.

Theorem 1. An effect algebra A satisfies the RDP if and only if every span in el(P (A)) can
be extended to a commutative square.

Recall, that an effect algebra is an orthoalgebra if and only if, for every element a, the
existence of a+ a implies that a = 0.

Theorem 2. An effect algebra is an orthoalgebra if and only if for every parallel pair of mor-
phisms in f1, f2 : g → g′ in el(P (A)) there is a coequalizing morphism q : g′ → h such that
q ◦ f1 = q ◦ f2.

Theorem 3. An effect algebra A is a Boolean algebra if and only if el(P (A)) is filtered.

Let A be an effect algebra. For every Boolean algebra B, a morphism f : B → A gives rise
to a morphism el(P (f)) : el(P (B)) → el(P (A)) in Cat. Since el(P (B)) is filtered, every such
f gives rise to an ind-object of the category el(P (A)).
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A recent trend in proof theory of non-classical logics is to develop systematic and effective
procedures to obtain well-behaved proof calculi for uniformly defined classes of non-classical
logics. Such procedures will, given a certain kind of specifying data for a logic L, produce an
analytic proof calculi with respect to which L is sound and complete. Many procedures fitting
this general template already exist, e.g., in the context of sequent calculi for substructural logics
[7]; hypersequent calculi for substructural logics [6, 8]; hypersequent calculi for modal logics
[11, 12]; labelled sequent calculi for modal and intermediate logics [13, 10] and display calculi
for extensions of bi-intuitionistic logic [9].

So far less attention has be given to obtaining negative results demarcating the classes of
logics for which such procedures may succeed. See, however, [6, 7, 8] for examples of such
negative results. Ideally we would like, given a uniform procedure for obtaining proof calculi of
a certain type, a complete classification of the logics for which this procedure may successfully
be applied.

We focus on the case of intermediate logics, i.e., consistent extensions of propositional in-
tuitionistic logic IPC. For these logics Ciabattoni et al. [6, 8] have isolated a class of axioms,
called P3, which may effectively be translated into so-called structural hypersequent calculi
with the property that adding them to the hypersequent calculus HLJ for IPC preserves cut-
admissibility.1 However, since the class P3 is not closed under provable equivalence, semantic
notions must be introduced in order to determine the class of intermediate logics which can be
axiomatised by P3-formulas and therefore be given cut-free structural hypersequent calculi.

Our contribution consists in introducing criteria for when a given intermediate logic admits a
structural hypersequent calculi for which the cut-rule is admissible. These criteria are presented
in terms of the algebraic semantics as well as the Kripke semantics. Concretely, we provide
the following algebraic characterisation of intermediate logics for which a structural cut-free
hypersequent calculus may be provided.

Theorem 1. An intermediate logic L admits a cut-free structural hypersequent calculus pre-
cisely when the corresponding variety of Heyting algebras V(L) is closed under taking bounded
meet-semilattices of its subdirectly irreducible members.

We note that the requirement that A ∈ V(L), whenever A is a bounded meet-semilattice
of some subdirectly irreducible B ∈ V(L) is a strengthening of the stability condition explored
by Bezhanishvili et al. [2, 3, 4, 1]. Our findings may thus be seen as further corroborating the
connection between proof-theory and stable logics [5].

1In fact, this result by Ciabattoni et al. holds in the more general setting of substructural logics.



Furthermore, we show that any intermediate logic with a structural hypersequent calculus
is necessarily sound and complete with respect to an elementary class of Kripke frames. In fact
the first-order frame conditions determining such intermediate logics may be classified. These
are certain positive Π2-sentence in the language of Kripke frames, the modal analogue of which
are found in the work of Lahav [11] where they are used to construct analytic hypersequent
calculi for modal logics.

Finally, our criteria also allow us to show that certain well-known intermediate logics, such
as BDn, for n ≥ 2, cannot be axiomatised over HLJ by structural hypersequent rules.
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In this talk we focus on some aspects of the algebraic approach to infinitary propositional
logics (for a related development of fuzzy logics and abstract algebraic logic see e.g. [2, 5]). By
finitarity, we mean the property of a logic saying that any deduction from a set of premises can
be carried out in finitely many steps; infinitary logics are, thus, logics in which some derivations
need infinitely many steps (or, equivalently, logics that need some inference rules with infinitely-
many premises in their Hilbert-style presentation). Although the majority of logics studied in
the literature are finitary, there are prominent natural examples of infinitary ones like the
infinitary  Lukasiewicz logic of the standard [0, 1] chain or, analogously, the infinitary product
logic. For the purpose of this talk, we will refer to them as main examples of infinitary logics.

In [6] we proposed a new hierarchy of infinitary logics based on their completeness properties.
Every finitary logic is well-known (see e.g. [5]) to be complete w.r.t. the class of all its rela-
tively subdirectly irreducible models (RSI-completeness) and hence also w.r.t. finitely relatively
subdirectly irreducible models (RFSI-completeness). However, not even the later is true for
infinitary logics in general. We studied an intermediate (syntactical) notion between finitarity
and RFSI-completeness, namely the property that every theory of the logic is the intersection
of finitely ∩-irreducible theory, i.e. finitely ∩-irreducible theories form a basis for all theories.
This property is called the intersection prime extension property (IPEP) and had already been
important in the study of generalized implication and disjunctive connectives (see [1, 4, 3]).
The hierarchy also includes a natural stronger extension property that refers to ∩-irreducible
theories. Their relations are depicted in the figure below. For example both infinitary product
and  Lukasiewicz logic are shown to have the CIPEP.

A natural matricial semantics for a propositional logic is that given by its reduced models
(which happen to be based on the expected algebras in prominent cases, that is, Boolean
algebras for classical logic, Heyting algebras for intuitionistic logic, etc.). For finitary logics
such semantics has a powerful property: If L is finitary, then each member of the class of its
reduced models MOD∗(L) can be represented as a subdirect product of reduced subdirectly
irreducible models, i.e. MOD∗(L) = PSD(MOD∗(L)RSI). This property can be seen as a
generalization to matrices of the well-known Birkhoff’s representation theorem.

We will discuss the following transferred versions of the syntactical properties: L has the
τ -IPEP whenever for each matrix model 〈A, F 〉 the filter F is the intersection of a collection
of (finitely) ∩-irreducible L-filters on the algebra A, and analogously for τ -CIPEP with ∩-
irreducible L-filters. Then we can prove the following characterization theorem:



Theorem 1. For any logic L the following are equivalent

1. L is protoalgebraic and has the τ -CIPEP.

2. L is protoalgebraic and the CIPEP holds on any free algebra FmL(κ).

3. Each member of MOD∗(L) is a subdirect product of subdirectly irreducible members.

An analogous theorem can be proved for τ -IPEP using finitely subdirectly irreducible mod-
els. Also the characterization can written in algebraic terms: κ-generalized quasivarieties are
those classes of algebras axiomatized by quasirules with less than κ premises and they are
subdirectly representable if and only if an algebraic analog of τ -(C)IPEP holds: The identity
congruence on any algebra in the generalized quasivariety can be written as the intersection of
a family of ∩-irreducible congruences.

We will prove the following about the two mentioned examples of infinitary logics:

1. The infinitary product logic has the CIPEP, but not the τ -IPEP.

2. The infinitary  Lukasiewicz logic enjoys the subdirect representation property.

From the first one (which is proved using the fact the each Archimedean product algebras is
embeddable into the standard product algebra), we conclude that neither CIPEP nor IPEP
imply in general their transferred counterparts. For the proof of the second claim the essential
step is to show that any natural extension (variant of the logic with a larger set of variables) is
still strongly complete w.r.t. the standard semantics; this involves a topological argument, which
is only possible because the connectives of  Lukasiewicz logic are continuous w.r.t. the standard
interval topology. Observe that the second claim implies that, unlike the other example, the
infinitary  Lukasiewicz logic has the τ -CIPEP.

Moreover, we will build a variant with rational constants of the infinitary  Lukasiewicz logic
and show that it has τ -IPEP, i.e. its models are subdirect products of chains, but it is not
RSI-complete. Putting all these facts together we will conclude that τ -CIPEP and τ -IPEP are
distinct properties and are also different from all the remaining properties seen in the figure,
and hence we will obtain a finer hierarchy for infinitary propositional logics.
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1 Introduction

Sussman and Subrahmayam proved in [8] and [7] that a certain kind of reduced ring (called
m-domain ring in [7]) can be decomposed into a collection of disjoint subsets which are closed
with respect to multiplication. In [6] it is shown that reduced Rickart rings and m-domain
rings are the same thing. This talk is about the order structure of a reduced Rickart ring’s
decomposition into disjoint semigroups.

C̄ırulis proved in [3] that every right normal skew nearlattice can be regarded as a structure
called strong semilattice of semigroups, and in [5] he shows that any reduced Rickart ring
admits a structure of right normal skew nearlattice. It turns out that this strong semilattice of
semigroups arises from the semigroup decomposition of [7].

1.1 Reduced Rickart rings

A ring is called reduced if it has no nonzero nilpotent elements. It can be easily checked that
for all elements x, y of a reduced ring R, xy = 0 if and only if yx = 0.

The Abian partial order on a reduced ring is defined as x ≤ y if and only if xy = xx. It was
proved in [2] that this relation on an arbitrary ring is a partial order if and only if the ring is
reduced.

Definition 1.1. [1] A unitary ring R is called a right Rickart ring iff for every a ∈ R there is
an idempotent e ∈ R such that, for all x ∈ R,

ax = 0 iff ex = x.

Dually, it is called left Rickart iff for every a ∈ R there is an idempotent f ∈ R such that, for
all x ∈ R, xa = 0 iff xf = x. A Rickart ring is a ring wich is both right and left Rickart.

In a reduced (right or left) Rickart ring R the idempotents e and f from Definition 1.1 are
unique and coincide.

1.2 Skew nearlattices

A meet-semilattice is called nearlattice if it is finitely bounded complete (i.e., whenever a
finite subset has an upper bound, it also has a least upper bound). Skew nearlattices are
a generalization of nearlattices. Instead of a meet operation they have an associative and
idempotent operation that might not be commutative.

Definition 1.2 ([4, 5]). Let S be a finitely bounded complete poset and let ∨ denote its join
operation. If ∗ is an associative operation on S such that, for all x, y ∈ S, x∨ y = y if and only
if x ∗ y = x, then the partial algebra 〈S, ∗,∨〉 is called a (right) skew nearlattice (see [4]).



For any skew nearlattice 〈S, ∗,∨〉, the reduct 〈S, ∗〉 obviously is a band (i.e., an idempotent
semigroup). A band 〈S, ∗〉 is called singular iff x∗y = y for all x, y ∈ S ([3]). A skew nearlattice
is called singular if the underlying band is singular.

Example 1.3. It was proved in [5] that, given a reduced Rickart ring R equipped with an

operation a
←−∧ b := a′′b, the partial algebra

〈
R,∨,←−∧

〉
is a skew nearlattice (∨ denotes the join

with respect to the natural order of the semigroup
〈
R,
←−∧

〉
, which coincides with the Abian

order). The operation
←−∧ is therefore called skew meet.

Definition 1.4 ([4]). Let T be a meet-semilattice and let {As | s ∈ T} be a family of disjoint
semigroups such that, for all s, t ∈ T , the inequality s ≤ t implies that there is a semigroup
homomorphism f ts : At → As such that the homomorphisms f tt are the identity maps, and for
all r, s, t ∈ T , if r ≤ s ≤ t, then f tsf

s
r = f tr .

On the union A =
⋃
s∈T As of all the semigroups we define an operation

←−∩ : If x ∈ As and

y ∈ At, and · denotes the multiplication of the semigroup As∧t, then x
←−∩ y := fss∧t (x) · f ts∧t (y) .

Then we call the algebra
〈
A,
←−∩

〉
a strong semilattice of the semigroups {As}s∈T .

2 Skew nearlattices in a reduced Rickart ring

Let U be the set of non-zero-divisors of a reduced Rickart ring R. As shown in [6], we can
apply the results on m-domain rings from [7] to R. Therefore we know that the ring R can be
decomposed into semigroups of the form Ue (with the usual ring multiplication), where e is an
idempotent. Then the set Ue equipped with the skew meet operation

←−∧ , the corresponding
partial join operation ∨ and the ring multiplication · forms a multiplicative singular skew

nearlattice
〈
Ue,∨,←−∧ , ·

〉
(i.e.,

〈
Ue,∨,←−∧

〉
is a singular skew nearlattice and 〈Ue, ·〉 is a monoid).

If the semigroups of a strong semilattice of semigroups happen to be multiplicative skew
nearlattices and the corresponding semigroup homomorphisms are actually homomorphisms of
multiplicative skew nearlattices, then we call this a strong semilattice of multiplicative skew
nearlattices. Now the whole ring admits such a structure:

Theorem 2.1. If R is a reduced Rickart ring whose skew meet operation is denoted by
←−∧ ,

and · is the ring multiplication, then
〈
R,
←−∧ , ·

〉
is a strong semilattice of the multiplicative skew

nearlattices
〈
Ue,∨,←−∧ , ·

〉
.

There arises the question how much of the structure of a reduced Rickart ring can be
”reconstructed” from its strong semilattice of multiplicative skew nearlattices. Given a strong
semilattice of multiplicative skew nearlattices that satisfies some additional conditions, we can
define a binary operation and constants 0 and 1 on the union of the skew nearlattices such that
the resulting algebra is a reduced Baer semigroup, i.e., a reduced semigroup with zero such
that, for every a ∈ S, there are idempotents e, f ∈ S such that ax = 0 if and only if ex = x,
and xa = 0 if and only if xf = x. A Baer semigroup is what is left of a Rickart ring if we
“forget” about the addition.

Furthermore, the skew nearlattice of Example 1.3 can be shown to be isomorphic to a skew
nearlattice of partial functions.
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In his monograph [6], Hájek established theoretical basis for a wide family of fuzzy (thus, many-
valued) logics which, since then, has been significantly developed and further generalized, giving rise
to a discipline that has been named as Mathematical Fuzzy logic (MFL). Hájek’s approach consists in
fixing the real unit interval as standard domain to evaluate atomic formulas, while the evaluation of com-
pound sentences only depends on the chosen operation which provides the semantics for the so called
strong conjunction connective. His general approach to fuzzy logics is grounded on the observation that,
if strong conjunction is interpreted by a continuous t-norm [7], then any other connective of a logic has
a natural standard interpretation.

Among continuous t-norms, the so called Łukasiewicz, Gödel and product t-norms play a funda-
mental role. Indeed, Mostert-Shields’ Theorem [7] shows that a t-norm is continuous if and only if it
can be built from the previous three ones by the construction of ordinal sum. In other words, a t-norm
is continuous if and only if it is an ordinal sum of Łukasiewicz, Gödel and product t-norms. These
three operations determine three different algebraizable propositional logics (bringing the same names
as their associated t-norms), whose equivalent algebraic semantics are the varieties of MV, Gödel and
product algebras respectively.

Within the setting of MFL, states were first introduced by Mundici [8] as maps averaging the truth-
value in Łukasiewicz logic. In his work, states are functions mapping any MV-algebra A in the real
unit interval [0,1], satisfying a normalization condition and the additivity law. Such functions suitably
generalize the classical notion of finitely additive probability measures on Boolean algebras, besides
corresponding to convex combinations of valuations in Łukasiewicz propositional logic.

One of the most important results of MV-algebraic state theory is Kroupa-Panti theorem [9, §10], a
representation theorem showing that every state of an MV-algebra is the Lebesgue integral with respect
to a regular Borel probability measure. Moreover, the correspondence between states and regular Borel
probability measures is one-to-one.

Many attempts of defining states in different structures have been made (see for instance [5, §8] for
a short survey). In particular, in [2], the authors provide a definition of state for the Lindenbaum algebra
of Gödel logic that results in corresponding to the integration of the truth value functions induced by
Gödel formulas, with respect to Borel probability measures on the real unit cube [0,1]n. Moreover, such
states correspond to convex combinations of finitely many truth-value assignments.

The aim of this contribution is to introduce and study states for the Lindenbaum algebra of product
logic, the remaining fundamental many-valued logic for which such a notion is still lacking.

Recall that up to isomorphism (see [1, Theorem 3.2.5]) every element of the free n-generated product
algebra FP(n) is a product logic function, i.e. [0,1]-valued function defined on [0,1]n associated to a



product logic formula built over n propositional variables.

Definition 1. A state of FP(n) will be a map s : FP(n)→ [0,1] satisfying the following conditions:

S1. s(1) = 1 and s(0) = 0,

S2. s( f ∧g)+ s( f ∨g) = s( f )+ s(g),

S3. If f ≤ g, then s( f )≤ s(g),

S4. If f 6= 0, then s( f ) = 0 implies s(¬¬ f ) = 0.

By the previous definition, it follows that states of a free product algebra are lattice valuations
(axioms S1–S3) as introduced by Birkhoff in [3].

It is worth noticing that product logic functions in FP(n) are not continuous, unlike the case of
free MV-algebras, and the free n-generated product algebra is not finite, unlike the case of free Gödel
algebras. However, there is a finite partition of their domain in σ -locally compact subsets, depending on
the Boolean skeleton of FP(n), upon which the restriction of each product function is continuous. By
exploiting this fact, we are able to prove the following integral representation theorem, where we show
that our states interestingly represent an axiomatization of the Lebesgue integral as an operator acting
on product logic formulas.

Theorem 2 (Integral representation). For a [0,1]-valued map s on FP(n), the following are equivalent:

(i) s is a state,

(ii) there is a unique regular Borel probability measure µ such that, for every f ∈FP(n),

s( f ) =
∫

[0,1]n
f dµ.

Moreover, and quite surprisingly since in the axiomatization of states the product t-norm operation is
only indirectly involved via a condition concerning double negation, we prove that every state belongs
to the convex closure of product logic valuations. Indeed, in particular, extremal states will result to
correspond to the homomorphisms of FP(n) into [0,1], that is to say, to the valuations of the logic.
Indeed, let δ : S (n)→M (n) be the map that associates to every state its corresponding measure via
Theorem 2.

Theorem 3. The following are equivalent for a state s : FP(n)→ [0,1]

1. s is extremal;

2. δ (s) is a Dirac measure;

3. s is a product homomorphism.

Thus, since the state space S (n) is a convex subset of [0,1]FP(n), via Krein-Milman Theorem we
obtain the following:

Corollary 4. For every n ∈ N, the state space S (n) is the convex closure of the set of product homo-
morphisms from FP(n) into [0,1].
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This work is a contribution to the constructive theory of Lawson topology, which plays
a fundamental role in the theory of topological semilattices [4]. A constructive construction
of Lawson topologies (and more generally patch topologies) in the setting of point-free locale
theory has already been given by Escardó [3] using the frames of perfect nuclei. There is also
a predicative construction by Coquand and Zhang [2] based on entailment relations. However,
a geometric notion behind those constructions has not been articulated.

The aim of this work is to clarify the spatial (or geometric) notion behind the Lawson
topology on a continuous lattice from a constructive point of view. Our main observation is
that the Lawson topology on a continuous lattice has a clear geometric meaning that is of
fundamental importance in constructive mathematics, which can be roughly put as follows:

Theorem 1. The Lawson topology on a continuous lattice is the space of its located subsets.

In the rest of this abstract, we make the statement of the above theorem precise.
A predicative notion of continuous lattice, continuous cover, is given by a triple (S,C,wb) of

a set S, a covering relation C ⊆S ×P(S), and a base of the way-below relation wb : S → P(S)
such that

1. a ∈ U =⇒ a C U ;

2. a C U & (∀b ∈ U) b C V =⇒ a C V ;

3. a C wb(a);

4. a C U =⇒ (∀b ∈ wb(a)) (∃ {a0, . . . , an−1} ⊆ U) a C {a0, . . . , an−1}.

Then, define a subset V ⊆ S to be located if

1. a C {a0, . . . , an−1} & a ∈ V =⇒ (∃i < n) ai ∈ V ;

2. a ∈ V =⇒ (∃b� a) b ∈ V ;

3. a� b =⇒ a /∈ V ∨ b ∈ V ,

where � is the way-below relation:

a� b
def⇐⇒ (∃ {a0, . . . , an−1} ⊆ wb(b)) a C {a0, . . . , an−1} .

Classically the third condition is superfluous; constructively however, it is non-trivial and of
significant importance as the following examples of located subsets suggest; decidable subsets
of any set, spreads on the binary tree, Dedekind reals, semi-located subsets of a locally compact
metric spaces. See Troelstra and van Dalen [6] and Bishop [1] for details about those examples.

In the setting of continuous cover, one can define an analogue of the notion of Dedekind
cut. A pair (L,U) of subsets of S is a cut if

1. a C {a0, . . . , an−1} & a ∈ U =⇒ (∃i < n) ai ∈ U ;
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2. a ∈ U =⇒ (∃b� a) b ∈ U ;

3. a C {a0, . . . , an−1} ⊆ L =⇒ a ∈ L;

4. a ∈ L =⇒ (∃ {a0, . . . , an−1} � a) {a0, . . . , an−1} ⊆ L;

5. a� b =⇒ a ∈ L ∨ b ∈ U ;

6. L ∩ U = ∅.
Proposition 2. There is a bijection between located subsets and cuts.

The notion of cut is geometric in the sense of propositional geometric theory [7, Chapter 2].
This leads us to the following definition of Lawson topology as a formal space [5].

Definition 3. The Lawson topology of a continuous cover S is the formal space L(S) presented
by the geometric theory TL whose models are cuts of S.

A perfect map between continuous covers (S,C,wb) and (S′,C′,wb′) is a relation r ⊆ S×S′
such that

1. a C′ U =⇒ r− {a} C r−U ;

2. a�′ b =⇒ r− {a} � r− {b}.
Let CCov be the category of continuous covers and perfect maps, and let KReg be the

category of compact regular formal spaces. Then, the universal property of Lawson topology is
recovered in the setting of continuous covers.

Theorem 4. The construction L(S) extends to a functor L : CCov → KReg which is right
adjoint to the forgetful functor U : KReg→ CCov.

The above adjunction induces a monad KL on KReg.

Theorem 5. The monad KL induced by the adjunction is naturally isomorphic to the Vietoris
monad on KReg.

References

[1] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

[2] T. Coquand and G.-Q. Zhang. A representation of stably compact spaces, and patch topol-
ogy. Theoret. Comput. Sci., 305(1-3):77–84, 2003.
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We develop category-theoretic framework for the theory of limits of weak Fräıssé classes. Fräıssé
theory now belongs to the folklore of model theory, however it actually can easily be formulated
in pure category theory, see [3]. The crucial point is the notion of amalgamation, saying that two
embeddings of a fixed object can be joined by further embeddings into a single one. More precisely,
for every two arrows f, g with the same domain there should exist compatible arrows f ′, g′ with
the same codomain, such that f ′ ◦ f = g′ ◦ g. A significant relaxing of the amalgamation property,
called the weak amalgamation property has been discovered by Ivanov [1] and independently by
Kechris and Rosendal [2] during their study of generic automorphisms in model theory. It turns
out that the weak amalgamation property is sufficient for constructing special objects satisfying
certain variant of homogeneity.

Let K be a fixed category. We say that K has the weak amalgamation property (briefly: WAP)
if for every z ∈ Obj(K) there exists a K-arrow e : z → z′ such that for every K-arrows f : z′ → x,
g : z′ → y there are K-arrows f ′ : x→ w, g′ : y → w satisfying f ′ ◦ f ◦ e = g′ ◦ g ◦ e. In other words,
the square in the diagram

y w

z′ x

z

g′

f

g f ′

e

may not be commutative.

We work within the following setup. Namely, K is a fixed category, L ⊇ K is a bigger category
such that K is full in L and the following conditions are satisfied:

(L0) All L-arrows are monic.

(L1) Every L-object is the co-limit of a sequence in K.

(L2) Every K-object is ω-small in L.

We say that K is directed if for every x, y ∈ Obj(K) there are v ∈ Obj(K) and K-arrows i : x → v,
j : y → v. In model theory, this is usually called the joint embedding property. We say that K is
weakly dominated by a subcategory S if the following conditions are satisfied.

(D1) For every x ∈ Obj(K) there is f ∈ K such that dom(f) = x and cod(f) ∈ Obj(S).

(D2) For every y ∈ Obj(S) there exists j : y → y′ in S such that for every K-arrow f : y′ → z
there is a K-arrow g : z → u satisfying g ◦ f ◦ j ∈ S.

We say that V ∈ Obj(L) is K-universal if for every K-object x there is an L-arrow from x to V .
Finally, we say that K is a weak Fräıssé category if it is directed, has the WAP, and is weakly
dominated by a countable subcategory. An L-object V is weakly K-homogeneous if for every K-
object a there is a K-arrow e : a→ b such that for every L-arrows i : b→ U , j : b→ U there exists
an automorphism h : U → U satisfying h ◦ i ◦ e = j ◦ e. This is illustrated in the following diagram
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in which the triangle is not necessarily commutative.

U

a b

U

e

j

i

h

Below is the main result.

Theorem 1. Let K ⊆ L be as above. The following conditions are equivalent.

(a) K is a weak Fräıssé category.

(b) There exists a K-universal weakly K-homogeneous object in L.

Furthermore, a weakly K-homogeneous object is unique up to isomorphisms, as long as it exists.
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Abstract Cuntz semigroups, also called Cu-semigroups, are domains with a compatible semi-
group structure. They naturally arise as invariants of C∗-algebras. (A C∗-algebra is a norm-
closed ∗-algebra of operators on a Hilbert space - it can be thought of as a noncommutative
topological space.) Given a C∗-algebra A, its (concrete) Cuntz semigroup Cu(A) is constructed
from positive elements in matrix algebras over A (and in fact, from the stabilization A⊗K) in a
similar way that the K-theory group K0(A) is constructed from projections in matrix algebras
over A.

The Cuntz semigroup plays an important role in the ongoing program to classify simple,
amenable C∗-algebras. This classification program was initiated by George Elliott in the 80s
in order to parallel the successful classification of amenable von Neumann algebras. (A von
Neumann algebra, or W ∗-algebra, is weak*-closed ∗-algebra of operators on a Hilbert space
- it can be thought of as a noncommutative measure space.) The classification of amenable
von Neumann algebras, accomplished by Connes, Haagerup and others in the 70s and 80s, is
considered one of the greatest accomplishments in operator algebra theory.

The category of Cu-semigroups was introduced in 2008 by Coward, Elliott and Ivancescu,
[CEI08]. The morphisms in this category, called Cu-morphisms, are Scott continuous semigroup
maps that preserve the way-below relation. From the perspective of domain theory it might
seem unusual to insist that morphisms preserve the way-below relation. However, one can show
that every ∗-homomorphism between C∗-algebras, A → B, naturally induces a map between
their Cuntz semigroups, Cu(A) → Cu(B), which preserves the way-below relation. Moreover,
by considering such morphisms, the category Cu has many desirable properties. For instance,
it admits inductive limits (even arbitrary colimits) - a result that is no longer true without
requiring that morphisms preserve the way-below relation. Similarly, the category of domains
(with Scott continuous maps) does not admit inductive limits, unless one requires the involved
maps to preserve the way-below relation.

In [APT14], together with Ramon Antoine and Francesc Perera, we initiated a systematic
study of the category Cu. We showed that Cu admits tensor products. The concept of a
tensor product is based on the notion of bimorphisms. Given Cu-semigroups S, T and P , a Cu-
bimorphism ϕ : S×T → P is a map that is additive and Scott continuous in each variable, and
that preserves the joint way-below relation: If s′ � s and t′ � t, then ϕ(s′, t′) � ϕ(s, t). The
tensor product of Cu-semigroups S and T is a Cu-semigroup S ⊗ T together with a universal
Cu-bimorphism S × T → S ⊗ T that linearizes all Cu-bimorphisms from S × T .

∗Co-author of the paper
†Co-author of the paper
‡Co-author of the paper and speaker



It follows that Cu has the structure of a symmetric, monoidal category: The tensorial unit
is N := {0, 1, 2, . . . ,∞}, with the obious addition and partial order. Note that N is the Cuntz
semigroup of the complex numbers C. Moreover, we have natural isomorphisms

(S ⊗ T )⊗ P ∼= S ⊗ (T ⊗ P ), and S ⊗ T ∼= T ⊗ S.

Given C∗-algebras A and B, there is a natural Cu-morphism

Cu(A)⊗ Cu(B)→ Cu(A⊗B).

In some cases (but not always) this map is an isomorphism.
Recently, together with Antoine and Perera, [APT17], we showed that Cu is even a closed

monoidal category. This means that for Cu-semigroups S and T , there is a Cu-semigroup JS, T K
playing the role of morphisms from S to T , such that for any other Cu-semigroup P there is a
natural bijection

Hom
(
S ⊗ T, P

) ∼= Hom
(
S, JT, P K

)
.

The Cu-semigroup JS, T K is a bivariant Cu-semigroup. These bivariant Cu-semigroups be-
have very reasonable and provide many new examples of Cu-semigroups. For instance, com-
pact elements in JS, T K naturally correspond to Cu-morphisms S → T . (An element a in a
Cu-semigroup is called compact if a� a.)

The step from Cu-semigroups to bivariant Cu-semigroups is similar to the step from K-
theory to Kasparov’s KK-theory (which is a bivariant version of K-theory). Since KK-theory
plays an important role in topology, in index theory, and in the structure theory of C∗-algebras,
we expect that bivariant Cuntz semigroups will turn out as a powerful tool in analysis and
related areas as well.
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1 Introduction

Duality theory for locally compact abelian groups was initially studied by Pontryagin [3]. This
duality lies at the core of Fourier transform techniques in abstract harmonic analysis. We can
describe Pontryagin’s approach in the following way: Take first the circle group of the complex
plane T endowed with its natural topology, as dualizing object. Then assign to a group X
in the class of locally compact abelian groups the group X∧ := CHom(X;T) of continuous
homomorphisms, and endow it with the compact open topology. This is precisely the dual group
of X. After observing that the dual of a discrete group is compact and conversely, Pontryagin
proved that the dual of a locally compact abelian group X is again a locally compact abelian
group. This operation can be done a second time and then we obtain the second dual group
X∧∧ which, as it is known today, is topologically isomorphic to the initial locally compact group
X.

In this context the notion of annihilator of a subgroup plays an important role. If G ⊂ X is
a subgroup of X, its annihilator is defined as the subgroup G⊥ := {ϕ ∈ X∧ : ϕ(G) = {1}}. If
L is a subgroup of X∧, the inverse annihilator is defined by ⊥L := {g ∈ X : ϕ(g) = 1,∀ϕ ∈ L}.
One important reason to study annihilators is the following: If G is a closed subgroup of a
locally compact abelian group then ⊥(G⊥) = G [2].

2 Results

We introduce an extension of the notion of annihilator of a subgroup to the more general
framework of fuzzy subgroups. Observe that constant functions λ are elementary examples of
fuzzy subgroups. This shows that the class of fuzzy subgroups of a group is much larger than
the class of subgroups.

As it can be noted, the definition of annihilator and inverse annihilator depends only of the
group of continuous characters of the group X. In case of discrete subgroups, since CHom(X;T)
coincides exactly with Hom(X;T) it is a purely algebraic notion. We develop a notion of
annihilator of a fuzzy subgroup in this context. Our definition relies on the use of the α-levels
of the fuzzy subgroup [1].

We will show that the formula ⊥(G⊥) = G is also true in the fuzzy framework. Then we
will present another properties of the annihilator related with unions and intersections and we
will conclude with some non trivial examples [4] were our definition can be applied .
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The interplay between order and topology has attracted a great deal of attention of re-
searchers working in these fields. Of particular inspiration to us is the work [7] of Nachbin
about topological spaces equipped with an additional partial order relation, subject to certain
compatibility conditions. A particular class of such spaces, the compact ones, can be equiva-
lently described in purely topological terms: the category of partially ordered compact spaces
and monotone continuous maps is equivalent to the category of stably compact spaces and
spectral maps (see [2] for details). As a consequence, the scope of various important notions
and results in topology can be substantially extended, we mention here the concept of order-
normality and the Urysohn Lemma. Turning the emphasis “up-side down”, one might also
ask what properties of the partial order are guaranteed by the existence of a compatible com-
pact topology? One quick answer to this question is implied by [5, Lemma II.1.9]: since every
partially ordered compact space corresponds to a stably compact space which is in particular
sober, every partially ordered compact space has directed suprema.

Another important source of inspiration for our research over the past years has been Law-
vere’s ground-breaking paper [6] presenting generalised metric spaces as “order relations en-
riched in the quantale [0,∞]”, or better: as enriched categories. Undoubtedly, topology is
omnipresent in the study of metric spaces; however, there does not seem to exist a systematic
account in the literature connecting both lines of research.

The principal aim of this talk is to investigate compact quantale-enriched categories, encom-
passing this way ordered, metric, and probabilistic metric compact spaces. We place this study
in the general framework of topological theories [3] and monad-quantale-enriched categories
(see [4]).

Accordingly, in this talk we consider an (almost) strict topological theory U = (U,V, ξ) in
the sense of [3] based on the ultrafilter monad U, on a quantale V and on a convergence relation
ξ : UV → V that makes V a compact Hausdorff topological space. The term “almost strict”
refers to the fact that we do not require continuity of ⊗ but only lax continuity. Based on this
data, one obtains a natural extension of the ultrafilter monad on Set to a monad (U,m, e) on
V-Cat [8] such that eX : X → UX and mX : UUX → UX become V-functors, for each V-
category (X, a0). The objects of the Eilenberg-Moore category for this monad, V-CatU, can be
described as triples (X, a0, α) where (X, a0) is a V-category and α : UX → X is the convergence
of a compact Hausdorff topology on X. For V being the two-element lattice with the discrete
topology, compact V-categories coincide with Nachbin’s ordered compact Hausdorff spaces;
correspondingly, for V being Lawvere’s quantale [0,∞] with the canonical compact Hausdorff
topology, we call compact V-categories metric compact Hausdorff spaces.

We recall that ordered compact Hausdorff spaces can be considered as special topological
spaces, via a comparison functor

OrdU //

""

Top

��
Ord
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commuting with the forgetful functors to the category Ord. To bring this construction into our
setting, we consider the category U-Cat of U-categories and U-functors. A U-category is a pair
(X, a) were a is a U-relation, meaning that it is a V -relation of the type UX −→7 X, subject
to reflexivity and transitivity. Furthermore, U-relations compose through Kleisli convolution,
◦; unfortunately, associativity of this operation depends on the continuity of ⊗. Due to this
fact, extreme care is needed when handling notions and results transferred from the framework
of V-categories. In this talk we revise and expand results regarding “Lawvere completeness in
topology” (see [1]). For instance, since in general U-distributors do not compose, the notion
of Lawvere-complete U-category is defined with respect to the set of those adjunctions ϕ a ψ
where the composites ϕ ◦ ψ and ψ ◦ ϕ are U-distributors.

Finally, there are suitable functors (−)0 : U-Cat → V-Cat and K : (V-Cat)U → U-Cat that
make the diagram

(V-Cat)U
K //

GU %%

U-Cat

(−)0

��
V-Cat

commutative. In particular, under some conditions that also include the continuity of the
tensor ⊗, we have proven that compact Hausdorff V-categories are Lawvere-complete since
compact Hausdorff V-categories correspond to Lawvere-complete U-categories and the functor
(−)0 preserves Lawvere-completeness.

This is joint work with Dirk Hofmann.
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The natural join and inner union of tables in relational databases can be algebraically
modeled as the meet and the join operations in a class of lattices, the class of relational lattices.
The connection between these lattices and databases is well illustrated in previous work on the
subject, see [8, 3]. We recall here only the mathematical definition of these lattices and discuss
some recent advances on their quasiequational and equational theories.

The set of functions from A to D—noted here DA—can be endowed with the structure of a
generalized ultrametric space where the distance takes values in the powerset algebra P (A), see
[5, 1]. Namely, define the distance between f, g ∈ DA by δ(f, g) := { a ∈ A | f(a) 6= f(g) }. A
subset X ⊆ DA is α-closed if δ(f, g) ⊆ α and g ∈ X implies f ∈ X; a pair (α,X) ∈ P (A)×DA

is closed if X is α-closed; the closed pairs form a Moore family on P (A)×P (DA). The relational
lattice R(D,A) is, up to isomorphism, the lattice of closed pairs of P (A)× P (DA).

It was proved in [3] that the quasiequantional theory of relational lattices, over the signature
which contains the lattices operations ∧,∨ as well as an additional constant H (the header
constant), is undecidable. We recently refined this result and proved that the quasiequational
theory of relational lattices, over the pure lattice signature, is undecidable, [6, 7]. We actually
proved there a stronger statement:

Theorem 1. It is undecidable whether a finite subdirectly irreducible lattice can be embedded
into a relational lattice.

The proof is a reduction from the coverability problem for S5 universal product frames, see
[2]. It also allows us to find a quasiequation that holds in all the finite R(E,A), but failing in
some infinite R(D,A), with A finite. A universal product frame is a special dependent product,
thus of the form

∏
a∈ADa; with the same definition as above, we can give to dependent products

the structure of a generalized ultrametric space. The reduction crucially relies on the following
statement, whose proof appears in [6].

Theorem 2. The spaces (
∏
a∈ADa, δ) are, up to isomorphism, the pairwise-complete and

spherically complete generalized ultrametric spaces.

Using a result from [1] these spaces are, up to isomorphism, the injective objects in the
category of generalized ultrametric spaces over P (A).

Coming back to the theories of relational lattices, a natural aim is to move from quasiequa-
tions to equations and to relate equational theories of infinite relational lattices to the equational
theories of the finite ones. Many informations can be deduced by analysing the functorial prop-
erties of the construction R( , ). For ψ : E −→ D, π : A −→ B, and (α,X) ∈ R(D,A), put

R(D,π)(α,X) := (∀π(α), π∗−1(X)) , R(ψ,A)(α,X) := (α,ψ−1∗ (X)) .

Here, for f ∈ DA, we have π∗(f) = f ◦ψ, ψ∗(f) = ψ ◦ f , and ∀π is right adjoint to π−1. Notice
that R(D,π) ◦ R(ψ,A) = R(ψ,A) ◦ R(D,π), so we can define R(ψ, π) := R(D,π) ◦ R(ψ,A).

∗Partially supported by the Project TICAMORE ANR-16-CE91-0002-01.
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Proposition 3. The construction R( , ) is a functor from Setop× Set to cSL∧, the category of
complete meet-semilattices and maps preserving all meets.

For ψ and π as above, let `ψ : R(E,A) −→ R(D,A) be left adjoint to R(ψ,A) : R(D,A) →
R(E,A); let `π : R(D,B) −→ R(D,A) be left adjoint to R(D,π) : R(D,A) −→ R(D,B). The
following two observations are crucial.

Proposition 4. If E 6= ∅ and ψ : E −→ D is injective, then `ψ is injective and preserves all the
meets. If ψ : A −→ B is surjective, then `π is injective and preserves all the meets.

In particular, R(E,B) belongs to the variety generated by R(D,A) whenever E ⊆ D and
A ⊆ B. When all these sets are finite, it is possible to look at the combinatorial proprieties
the OD-graphs to assert that the two varieties are not equal, see [4]. Using Proposition 2, we
derive the following theorem, showing that, for equations, the situation is quite different from
the one of quasiequations.

Theorem 5. If A is finite, then R(D,A) belongs to the variety generated by all the finite
R(E,A).

Indeed, R(D,A) is an algebraic lattice, thus it is isomorphic to the ideal completion of the
join-semilattice of its compact elements. Yet, this join-semilattice is the colimit of the diagram
`ψE0,E1

where E0 ⊆ E1 ⊆ D, E0, E1 are non-empty and finite, and ψE0,E1
is the inclusion of

E0 into E1. In particular this colimit is a lattice in the variety generated by the finite R(E,A).
It is well known that the ideal completion of a lattice and the lattice satisfy same the same
identities.

If A is infinite, then R(D,A) is not an algebraic lattice, yet something can be said when D
is finite.

Theorem 6. If D is finite, then R(D,A) lies in the variety generated by all the finite R(D,B).

Let Partf(A) be the set of finite partitions of A, and consider the canonical maps πQ : A −→ Q
with Q ∈ Partf(A), as well as the maps πQ,P : Q −→ P , for Q,P ∈ Partf(A) such that Q refines
P , sending a block of Q to the block of P that contains it. The maps R(D,πQ) induce a canonical
map π : R(D,A) −→ limQ∈Partf(A) R(D,Q) in the category cSL∧, where limQ∈Partf(A) R(D,Q)
is the inverse limit of the maps R(D,πQ,P ). We argue that if D is finite, then π is injective
and preserves finite joins. Now, limQ∈Partf(A) R(D,Q) is an algebraic lattice, and the poset of
its compact element can be identified with the colimit (in the category of join-semilattices) of
the diagram `πQ,P

: R(D,P ) −→ R(D,Q), for Q,P ∈ Partf(A) and Q refines P . As before,
limQ∈Partf(A) R(D,Q) belongs to the variety generated by the R(D,Q), that are finite. As
R(D,A) embeds into limQ∈Partf(A) R(D,Q), then the same holds of R(D,A).

If bothD andA are infinite, then the canonical map π is not an embedding. The tools used to
prove Theorems 3 and 4 allow us to identify a complete lattice Rω—the limit limQ∈Partf(A) R(D,Q)—
which is a unique generator for the variety generated by the finite R(E,B). The quest for a
characterization of the equational theory of relational lattices might involve recognizing Rω as
a sublattice of R(D,A) and how equational properties extend from the smaller lattice to its
envelope.
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Riesz Spaces are lattice-ordered linear spaces over the field of real numbers R. They have had a
predominant rôle in the development of functional analysis over ordered structures, due to the
simple remark that most of the spaces of functions one can think of are indeed Riesz Spaces.

Not very known is the rôle that vector lattices play in logic. Given any positive element u of
a Riesz Space V , the interval [0, u] can be endowed with a stucture of Riesz MV-algebra. These
structures have been defined in the setting of  Lukasiewicz logic, as expansion of MV-algebras –
the standard semantics of the infinite valued  Lukasiewicz logic – and in [1] is proved that Riesz
MV-algebras are categorical equivalent to Riesz Spaces with a strong unit. Henceforth, vector
lattices and logic are closely related.

Our aim is to exploit the connection between Riesz Spaces and MV-algebras to deepen the
link between functional analysis and  Lukasiewicz logic.

The first step is to introduce a notion of limit of formulas and use it to characterize the
(uniform) norm convergence in Riesz Spaces. Consider the logic RL that has Riesz MV-algebras
as models (and it is a conservative expansion of  Lukasiewicz logic) and let ηr denote the formula
∆r> of RL, where {∆r} is the family of connectives that models the scalar operation and > is
defined as usual. Thus, ∆r> is evaluated into r by any [0, 1]-evaluation.

Definition 1. We say that ϕ is the limit of the sequence {ϕn}n∈N, and we write ϕ = limn ϕn
if for any r ∈ [0, 1) there exists k such that ` ηr → (ϕ↔ ϕn) for any n ≥ k.

This notion of logical limit is strictly connected to the one of convergence. Indeed, it is well
known that the Lindenbaum-Tarski algebra of  Lukasiewicz logic is isomorphic with the algebra
of piecewise linear functions with integer coefficients. The same holds for the Lindenbaum-
Tarski algebra of RL, which is isomorphic with the algebra of piecewise linear functions with
real coefficients. If we denote by fϕ the function that correspond to the equivalence class of ϕ
in the Lindenbaum-Tarski algebra of RL, we have the following result.

Theorem 1. The following are equivalent
(1) limn ϕn = ϕ,
(2) limn fϕn

= fϕ (uniform convergence in the Lindenbaum-Tarski algebra of RL),
(3) fϕn

→ fϕ (order convergence in the Lindenbaum-Tarski algebra of RL).

The above-mentioned result allows us to explore the possibility of studying the norm-
completion of the Lindenbaum-Tarski algebra of RL by its Dedekind σ-completion.

If RLn denotes the Lindenbaum-Tarski algebra of RL (where formulas have at most n
variables), we characterize two different norm-completions of it. To do so, we consider the
following notations:

(i) ‖[ϕ]‖u = sup{fϕ(x)|x ∈ [0, 1]n}, where [ϕ] ∈ RLn,
(ii) ‖f‖∞ = sup{f(x)|x ∈ [0, 1]n}, where f ∈ C([0, 1]n),



(iii) I([ϕ]) =
∫
fϕ(x)dx, where [ϕ] ∈ RLn.

All of the above defined operator are norms in the corresponding spaces and the following
theorem holds.

Theorem 2. (1) The norm-completion of the normed space (RLn, ‖ · ‖u) is isometrically iso-
morphic with (C([0, 1]n), ‖ · ‖∞),

(2) The norm-completion of the normed space (RLn, I) is isometrically isomorphic with
(L1(µ)u, sµ), where

(i) µ be the Lebesgue measure associated to I,
(ii) L1(µ)u is the algebra of [0, 1]-valued integrable functions on [0, 1]n,

(iii) sµ(f̂) = I(f) and f̂ is the class of f , provided we identify two functions that are equal
µ-almost everywhere.

With the goal of capturing the unit norm ‖ · ‖u in a purely syntactic way, we now define the
logical system IRL, which stands for Infinitary Riesz Logic, by adding an infinitary disjunction
to the systems RL (as well as appropriate axioms and a deduction rule). The system has
Dedekind σ-complete Riesz MV-algebras as models and the following results hold.

Theorem 3. (1) IRL, the Lindenbaum-Tarski algebra of IRL is a Dedekind σ-complete Riesz
MV-algebra;

(2) IRL is complete with respect to to all algebras in RMVdcσ, the class of Dedekind
σ-complete Riesz MV-algebras;

Moreover, we can characterize the models of IRL by means of particular compact Hausdorff
spaces.

Theorem 4. (1) All Dedekind σ-complete Riesz MV-algebras are norm-complete w.r.t. ‖·‖u.
(2) Let A be a Dedekind σ-complete Riesz MV-algebra. There exists a quasi-Stonean compact

Hausdorff space (i.e. it has a base of open Fσ sets) X such that A ' C(X)u, the unit interval
of C(X).

We conclude this abstract by recalling how all the different completions of RLn we have
defined are linked to each other.

(1) If one consider the sup-norm, the norm completion of RLn is C([0, 1]n, ‖·‖∞), which is
not Dedekind complete and it is contained in IRLn.

(2) IRL is a norm-complete Riesz MV-algebra and IRLn contains C([0, 1]n), as the latter
is the norm-completion of RLn.

(3) If one consider the integral norm, the norm completion of RLn is L1(µ)u, i.e. the unit
interval of the space of µ-integrable functions in n variables. This space is Dedekind complete
as it is an abstract L-space and hence contains IRLn.
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[2] Di Nola A., Lapenta S., Leuştean I., An analysis of the logic of Riesz Spaces with strong unit, under
review.
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1 Introduction

A residuated Boolean algebra is an algebra (A,∧,∨,′ ,>,⊥, •, \, /) where (A,∧,∨,′ ,>,⊥) is a
Boolean algebra, and •, \ and / are binary operators on A satisfying the following residuation
property: for any a, b, c ∈ A,

a • b ≤ c iff b ≤ a\c iff a ≤ c/b

The operators \ and / are called right and left residuals of the fusion • respectively.
Residuated boolean algebras are introduced by Jónsson and Tsinakis [3] as generalizations

of relation algebras. Jispen [2] proved that the equational theory of residuated boolean algebras
with unit, and that of many relative classes of algebras are decidable. Buszkowski [1] showed
the finite embeddability property for residuated boolean algebras, which yields the decidability
of the universal theory of residuated boolean algebras. The complexity of the equational theory
of residuated boolean algebras is solved in [4], where the main result is that the equational
theory of residuated boolean algebras is PSPACE-complete.

Generalized residuated Boolean algebras are introduced in [1]. The generalization is from
binary to arbitrary n ≥ 2 ary residuals. Instead of a single binary operator •, generalized
residuated algebras admit a finite number of finitary operations o. With each n-ary operation
oi (1 ≤ i ≤ m) there are associated n residual operations o/j (1 ≤ j ≤ n) which satisfy the
following generalized residuation law:

oi(a1, . . . , an) ≤ b iff aj ≤ (oi/j)(a1, . . . , aj−1, b, aj+1, . . . , an)

A generalized residuated Boolean algebra is a Boolean algebra with generalized residual opera-
tions. The aim of this paper is to show that the complexity of the equational theory of such
algebras is still PSAPCE-complete. Our proof is by reducing the decidability of the equational
theory into the decidability of a sequent calculus for generalized Boolean residuated algebra.

2 Generalized BFNL

The sequent calculus for Boolean residuated algebras, namely Boolean full nonassociative Lam-
bek calculus (BFNL), is introduced in [1]. Here we shall introduce the sequent calculus GBFNL
for generalized residuated Boolean algebras. The formulae are defined as usual (cf. [4]). Struc-
tures are defined inductively as follows:

(1) All formulae are structures.

(2) For n-ary operator oi (n ≥ 2) and structures Γ1, . . . ,Γn, (Γ1, . . . ,Γn)oi is a structure.

By Γ[ ] we mean a structure with a single position which can be filled with a structure.



Definition 2.1. The sequent calculus GBFNL for generalized residuated Boolean algebras con-
sists of the following axioms and rules:

(1) Axioms:
(Id) A⇒ A (D) A ∧ (B ∨ C)⇒ (A ∧B) ∨ (A ∧ C)

(>) Γ⇒ > (⊥) Γ[⊥]⇒ A (¬1) A ∧ ¬A⇒ ⊥ (¬2) > ⇒ A ∨ ¬A

(2) Rules:

Γ[(A1, . . . , An)oi ]⇒ A
(oiL)

Γ[oi(A1, . . . , An)]⇒ A

Γ1 ⇒ A1; . . . ; Γn ⇒ An
(oiR)

(Γ1, . . . ,Γn)oi ⇒ oi(A1, . . . , An)

∆[Aj ]⇒ B; Γ1 ⇒ A1; . . . ; Γn ⇒ An
(oi/jL)

∆[(Γ1, . . . , (oi/j)(A1, . . . , An), . . . ,Γn)oi ]⇒ B

(A1, . . . ,Γ, . . . , An)oi ⇒ Aj
(oi/jR)

Γ⇒ oi/j(A1, . . . , An)

Γ[Ai]⇒ B

Γ[A1 ∧A2]
(∧L)

Γ⇒ A Γ⇒ B

Γ⇒ A ∧B (∧R)

Γ[A1]⇒ B Γ[A2]⇒ B

Γ[A1 ∨A2]⇒ B
(∨L)

Γ⇒ Ai
Γ⇒ A1 ∨A2

(∨R)
∆⇒ A Γ[A]⇒ B

Γ[∆]⇒ B
(Cut)

The sequent calculus GBFNL can be simulated by a multi-sorted Boolean nonassociative
Lambek calculus which is denoted by MBFNL. This means that n-ary residuals can be trans-
lated into binary ones. A translation ‡ from GBFNL to MBFNL can be defined inductively as
usual. In particular, we have the following translation of residuals:

(1) ((A1, . . . , An)oi)
‡ = (· · · ((A1 •i A2) · · · ) •i An).

(2) (oi/j)(A1, . . . , An)‡ = (· · · (A1 •i A2) · · · ) •i Aj−1)\i(· · · (Aj/iAn) · · · )/iAj+1).

(3) (Γ1, . . . ,Γn)‡oi = (· · · ((Γ1 ◦i Γ2) · · · ) ◦i Γn).

This translation is faithful. We may easily obtain the following theorem of simulation:

Theorem 2.2. `GBNFL Γ⇒ A iff `MBFNL Γ† ⇒ A†.

3 Complexity of GBFNL

The second step to solve the complexity problem is to simulate MBFNL by a multi-sorted tense
logic MKt which is the multi-modal version of basic tense logic Kt. The translation # defined in
[4], which embeds BFNL into two-sorted tense logic Kt

1,2, can be extended to simulate MBFNL.
Each n-ary product operator oi is translated via n pairs of tense operators. The following results
can be obtained as in [4].

Theorem 3.1. `MBFNL Γ⇒ A iff `MKt (f(Γ))# ⊃ A#.

Moreover, using the technique in [4], one can simulate MKt by the basic tense logic Kt via
a similar translation ∗ as in [4].

Theorem 3.2. `MKt A iff `Kt A
∗.



Since the complexity of Kt is PSPACE-complete, it follows that GBFNL is in PSPACE. On
the other hand, we may define a translation † from the modal logic K to GBNFL as in [4] such
that (3A)† = o(m1, . . . ,mn−1, A). Then we obtain the following simulation result:

Theorem 3.3. For any modal formula A, `K A iff `GBNFL > ⇒ A†.

Since the modal logic K is PSAPCE-complete, it follows that GBFNL is PSPACE-hard.
Therefore we get the following theorem:

Theorem 3.4. GBFNL is PSPACE-complete.

As a consequence, the equational theory of generalized Boolean residuated algebras is
PSPACE-complete.

4 More complexity results

If we change the Boolean basis of a generalized Boolean residuated algebra into distributive
lattices, we get generalized distributive residuated lattices. We also obtain the generalized
distributive full nonassociative Lambek calculus (GDFNL) for such algebras.

Theorem 4.1. GBFNL is a conservative extension of GDFNL.

It follows that GDFNL is in PSPACE. We reduce the satisfiability of a QBF to the validity
of consequence relation of distributive lattice with bi-tense operators. The equational theory of
distributive lattices with bi-tense operators is PSPACE-hard. Then GDFNL is PSPACE-hard.

Theorem 4.2. GDFNL is PSPACE-complete. Hence DFNL is PSPACE-complete.

References

[1] W. Buszkowski. Interpolation and FEP for logics of residuated algebras. Logic Journal of IGPL
19(3), 437–454, 2011.

[2] P. Jipsen. Computer Aided Investigations of Relation Algebras. Ph.D. Dissertation, Vanderbilt
University, 1992.

[3] B. Jónsson and C. Tsinakis. Relation algebras as residuated Boolean algebras. Algebra Universalis
30(4), 469–478, 1993.

[4] Zhe Lin and Minghui Ma. On the complexity of the equational theory of residuated Boolean
algebras. J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 265–278. Springer, 2016.



A Constructive Four-Valued Logic

Yuanlei Lin and Minghui Ma

Institute of Logic and Cognition, Sun Yat-Sen University, Guangzhou, China
linyuanlei@126.com,mamh6@mail.sysu.edu.cn

1 Introduction

The Belnap-Dunn four-valued logic is the logic of De Morgan lattices. A De Morgan lattice is
an algebra (A,∧,∨,¬, 0, 1) where (A,∧,∨, 0, 1) is a bounded distributive lattice and ¬ is the
De Morgan negation, namely ¬ is an unary operation on A satisfying the following conditions:

(1) ¬(a ∧ b) = ¬a ∨ ¬b;
(2) ¬(a ∨ b) = ¬a ∧ ¬b;
(3) ¬¬a = a;

(4) ¬0 = 1 and ¬1 = 0.

It is well-known that every De Morgan lattice can be embedded in a (subdirect) product of the
lattice 4. Belnap’s four-valued logic [1] is the logic of the following lattice 4:

•

• •

•

F

N B

T

Belnap’s Lattice 4

Dunn’s logic of De Morgan lattices [4, 5] is the same as Belnap’s four-valued logic due to the
representation theorem. Dunn [2] developed a theory of negation which is adapted with the
theory of information. For a comprehensive survey on negation, see Dunn [4].

In the present paper, we shall present a constructive four-valued logic C4L. Dunn’s four-
valued semantics for De Morgan logic introduces two semantics consequence relations ϕ |=1 ψ
and ϕ |=0 ψ which can be interpreted via Belnap’s concepts of acceptance and rejection. A
formula ϕ is accepted if 1 belongs to the value of ϕ, and it is rejected if 0 belongs to the value of
ϕ. Our idea is to generalize Belnap-Dunn four-valued logic to a weak logic which is constructive
in the following sense: if a formula is accepted, then it is accepted at any future state, and if it
is rejected, it is rejected at any future state. The underling temporal structure is assumed to
be a linear order. We call this logic as a constructive four-valued logic because it is a sublogic
of Belnap-Dunn four-valued logic in which the law of double negation elimination is refuted.
The logic C4L can be viewed the weakening of Belnap-Dunn logic in the way that intuitionistic
logic is the weakening of classical propositional logic. We shall introduce the Kripke semantics
for C4L. Consequently, Belnap-Dunn four-valued logic can be represented as the logic of a
single reflexive point which is an extension of C4L.

The negation in C4L is a new one to Dunn’s kite of negations [4]. Intuitively it is a modal
negation which is interpreted on linearly ordered sets.



2 Language and Semantics

The language L of the constructive four-valued logic C4L consists of a denumerable set of
propositional variables Var = {pi | i ∈ N}, and propositional connectives >,⊥,¬,∧ and ∨.
The set of all formulae is defined by the following inductive rule:

ϕ ::= p | > | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ, where p ∈ Var.

A sequent is an expression of the form ϕ ` ψ where ϕ and ψ are formulae.

Definition 2.1. A frame is a pair F = (W,≤) where W is a non-empty set of states, and ≤ is
a linear order on W . A subset A ⊆W is called an upset in F if A is closed under ≤, namely, if
w ∈ A and w ≤ w′, then w′ ∈ A. Let Up(W ) be the set of all upsets in F .

A model is a tupleM = (W,≤, V ), where (W,≤) is a frame, and V : Var→ Up(W )×Up(W )
is valuation. When V (p) = (A+, A−), we say that A+ is the set of states which accept p, and
A− is the set of states which reject p. We also write V +(p) = A+ and V −(p) = A−.

Obviously for any frame F = (W,≤), we have ∅,W ∈ Up(W ). Moreover, in any model
M = (W,≤, V ), each propositional variable p is assigned with a pair (V +(p), V −(p)) of upsets.
There is no need to require that V +(p)∪V −(p) = W because there may be states which neither
accept nor reject a propositional variable.

Definition 2.2. For any formula ϕ, model M = (W,≤, V ) and w ∈ W , the acceptance and
rejection relations M, w |=+ ϕ and M, w |=− ϕ are defined inductively as follows:

(1) M, w |=+ > and M, w 6|=− >; M, w 6|=+ ⊥ and M, w |=− ⊥.

(2) M, w |=+ p iff w ∈ V +(p); M, w |=− p iff w ∈ V −(p).

(3) M, w |=+ ϕ ∧ ψ iff M, w |=+ ϕ and M, w |=+ ϕ.

(4) M, w |=− ϕ ∧ ψ iff M, w |=− ϕ or M, w |=− ψ.

(5) M, w |=+ ϕ ∨ ψ iff M, w |=+ ϕ or M, w |=+ ψ.

(6) M, w |=− ϕ ∨ ψ iff M, w |=− ϕ and M, w |=− ψ.

(7) M, w |=+ ¬ϕ iff for any w′ ∈W , if w ≤ w′, then M, w′ |=− ϕ.

(8) M, w |=− ¬ϕ iff there is w′ ∈W such that w ≤ w′ and M, w′ |=+ ϕ.

A formula ϕ is accepted in M, notation M |=+ ϕ, if for any w ∈ W , M, w |=+ ϕ. A
formula ψ is a positive consequence of ϕ, notation ϕ |=+ ψ, if for any modelM and w inM, if
M, w |=+ ϕ, thenM, w |=+ ψ. We say that ψ is a negative consequence of ϕ, notation ϕ |=− ψ,
if for any model M and w in M, if M, w |=− ϕ, then M, w |=− ψ.

Lemma 2.3. For any model M = (W,≤, V ) and w,w′ ∈W , the following hold:

(1) If w ≤ w′ and M, w |=+ ϕ then M, w′ |=+ ϕ.

(2) If w ≤ w′ and M, w |=− ϕ then M, w′ |=− ϕ.

(3) M, w |=− ϕ iff M, w |=+ ¬ϕ.

(4) M |=− ϕ iff M |=+ ¬ϕ.



Corollary 2.4. For any formulae ϕ and ψ, ϕ |=− ψ iff ¬ϕ |=+ ¬ψ.

We say that a sequent ϕ ` ψ is valid if ϕ |=+ ψ and ψ |=− ϕ. A sequent rule of the form

ϕ1 ` ψ1, . . . , ϕn ` ψn
ϕ0 ` ψ0

(ρ)

is valid, if the premisses ϕi ` ψi for 1 ≤ i ≤ n are valid, then ϕ0 ` ψ0 is valid.

Proposition 2.5. The following sequents and rule are valid:

(1) ¬¬¬¬ϕ ` ¬¬ϕ.

(2) ¬(ϕ ∧ ψ) ` ¬ϕ ∨ ¬ψ and ¬ϕ ∨ ¬ψ ` ¬(ϕ ∧ ψ).

(3) ¬(ϕ ∨ ψ) ` ¬ϕ ∧ ¬ψ and ¬ϕ ∧ ¬ψ ` ¬(ϕ ∨ ψ).

(4) ϕ ∧ ¬¬ψ ` ¬¬ϕ ∨ ψ.

(5) The contraposition rule:
ϕ ` ψ
¬ψ ` ¬ϕ (CP )

One can easily show that the sequents ¬¬ϕ ` ϕ and ¬¬¬ϕ ` ¬ϕ are not valid.

3 The Logic C4L

The set of all valid sequents under the Kripke semantics can be axiomatized as a sequent system.
We have the following definition of the constructive logic C4L:

Definition 3.1. The logic C4L consists of the following axioms and rules:

(1) Axioms:

(Id) ϕ ` ϕ (⊥) ⊥ ` ϕ (>) ϕ ` > (D) ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

(¬⊥) ϕ ` ¬⊥ (¬>) ¬> ` ϕ (N1) ¬ϕ ` ¬¬¬ϕ (N2) ϕ ∧ ¬¬ψ ` ¬¬ϕ ∨ ψ
(DM1) ¬(ϕ ∨ ψ) ` ¬ϕ ∧ ¬ψ (DM2) ¬ϕ ∧ ¬ψ ` ¬(ϕ ∨ ψ)

(2) Rules for lattice operations:

ϕi ` ψ
(∧L)(i = 1, 2)

ϕ1 ∧ ϕ2 ` ψ
ϕ ` ψ ϕ ` χ

(∧R)
ϕ ` ψ ∧ χ

ϕ ` χ ψ ` χ
(∨L)

ϕ ∨ ψ ` χ
ϕ ` ψi

(∨R)(i = 1, 2)
ϕ ` ψ1 ∨ ψ2

(3) Cut rule and contraposition rule:

ϕ ` ψ ψ ` χ
(Cut)

ϕ ` χ
ϕ ` ψ

(CP)¬ψ ` ¬ϕ

A sequent ϕ ` ψ is derivable in C4L if there is a derivation of the sequent.

Theorem 3.2. A sequent ϕ ` ψ is derivable in C4L if and only if ϕ ` ψ is valid.

The logic C4L is a sublogic of Belnap-Dunn four-valued logic. From the semantic perspec-
tive, if one considers the special model which has only one single reflexive state ◦, then the set
of all valid sequents in this frame is exactly the Belnap-Dunn four-valued logic.



4 Weak De Morgan Algebras

From algebraic perspective, there is a class of algebras for C4L. We call them weak De Morgan
algebras. We shall prove the algebraic completeness of C4L, and develop a cut-free sequent
calculus for C4L by which we get the decidability of the derivation of a sequent in the system.

Definition 4.1. A weak De Morgan algebra is an algebra (A,∧,∨,¬, 0, 1) where (A,∧,∨, 0, 1)
is a bounded distributive lattice and ¬ is an operation on A satisfying the following conditions:

(1) ¬(a ∧ b) = ¬a ∨ ¬b.
(2) ¬(a ∨ b) = ¬a ∧ ¬b.
(3) ¬a ≤ ¬¬¬a.

(4) a ∧ ¬¬¬b ≤ ¬¬a ∨ ¬b.
(5) ¬0 = 1 and ¬1 = 0.

The class of all weak De Morgan algebras is denoted by WDM.

Theorem 4.2. A sequent ϕ ` ψ is derivable in C4L iff ϕ ` ψ is valid in WDM.

Obviously the class of all De Morgan algebras is a subvariety of WDM. Note that the
difference between De Morgan algebras and weak De Morgan algebras is about number of
negations. Semi-De Morgan algebras proposed in [6] are weakened from De Morgan algebras
by dropping the double negation law and one De Morgan law. However, the logic of semi-De
Morgan algebras (SDM) is incomparable with C4L. The following map of logics show their
relationships with classical and intuitionistic logic:

•

•

•••

CL

DM

IntSDMCL4

Gentzen sequent calculus for C4L shall be presented in the full version of this abstract.
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The decidability of the equational and quasi-equational theories for commutative residuated
lattices (CRL) axiomatized by {·, 1,≤}-inequalities have been fully classified. It has been
shown that quasi-equational theories axiomatized by knotted inequations (kmn ), i.e. universally
quantified inequations of the form xn ≤ xm for n 6= m, are not only decidable, but also have
the finite embedability property (FEP) [5]. In fact, CRL + (kmn ) + Γ has the FEP for any
set Γ of {·, 1,≤}-equations [2]. Viewed proof-theoretically, these results show that the Full
Lambek calculus with exchange (FLe) axiomatized by knotted inference rules have decidable
consequence relations.

In [1], it is shown that FLc is undecidable, which algebraically corresponds to RL + (k2
1)

having undecidable quasi-equational and equational theories. In fact, for 1 ≤ n ≤ m, [1] shows
that there exists a residuated lattice R in the variety RL+ (kmn ) such that, for any variety V,

R ∈ V =⇒ V has undecidable quasi-equational and equational theories.

As a consequence of this, certain non-commutative varieties satisfying equations in the signature
{·, 1,∨} are also shown to be undecidable.

However, in the commutative case, little is known about the decidability of CRL’s axioma-
tized by equations in the signature {·, 1,∨}, e.g. the effect of inequations such as x ≤ x2 ∨ 1 or
xy ≤ x2y ∨ x3y2 on decidabilty in CRL is unknown.

The present work defines a class D of {·, 1,∨}-equations such that the following theorem is
obtained:

Theorem 1. If (d) ∈ D, then there exists Rd in CRL+ (d) such that for every variety V,

Rd ∈ V =⇒ V has an undecidable quasi-equational theory.

Furthermore, as a consequence of the above theorem, there is a subclass D′ ⊂ D such that

Corollary 2. If (d) ∈ D′, then there exists Rd in CRL+ (d) such that for every variety V,

Rd ∈ V =⇒ V has an undecidable equational theory.

As in [1], [3], and [4], we use counter machines (CM), a variant of Turing Machines, for our
undecidable problem. From a given a CM M and rule (d) ∈ D, we construct a new machine
Md and a commutative idempotent semi-ring AMd

. We interpret machine instructions of Md

as relations on AMd
, and define a new relation <M on AN such that

M halts on input C ⇐⇒ θ(C) <M qf ,

where qf is a designated element AMd
and θ is a certain function on the configurations of M

into the set AMd
.
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We then simulate the rule (d) in AMd
by a new relation <d extending <M that, on the one

hand, satisfies certain restricted consequences of the rule (d), and on the other hand, maintains
the property that

M halts on input C ⇐⇒ θ(C) <d qf .

Lastly, following the methods utilized in [1], we use the theory of residuated frames [2] to
construct a residuated lattice W+ in CRL+(d) from 〈AMd

, <d, ·〉 that has the halting problem
from the machine M encoded into the order of W+, effectively interpreting a halting problem
into any variety that contains W+. Membership in D is equivalent to whether certain systems
of linear equations admit positive solutions. Let

∀(x1, ..., xn) x1x2 · · ·xn ≤
∨

(c1,...,cn)∈C
xc11 x

c2
2 · · ·xcnn

be the linearization of some {·, 1,∨}-equation (r), where C ⊂ Nn is finite. Then (r) 6∈ D if and
only if there exists a positive solution to the system of linear equations

{
n∑

i=1

cixi =

n∑

i=1

dixi : (c1, ..., cn), (d1, ..., dn) ∈ CX
}
,

where
CX := {(c1, ..., cn) ∈ C : (∃i ∈ X) ci > 0},

for some X ⊆ {1, ..., n}.
The members of D′ are those equations (r) in D such that (r) has, as a consequence, an

inequation of the form:

(∀x) xn ≤
m∨

i=1

xn+ci ,

where n, c1, ..., cm > 0, and as a consequence of membership in D, m ≥ 2.
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In algebraic logic, one is accustomed to considering, for example, the inherent order on
a distributive lattice as capturing entailment between propositions within a particular logic.
Generalizing this to morphisms between algebras, one thinks about binary relations that capture
a notion of entailment between logics. At a mimimum, these relations should respect the
algebraic structure under consideration, and should in some sense still capture a notion of
entailment (that is, order). Respect for the algebraic structure means, essentially, that the
relations ought to be relations in the category of the algebras. Capturing entailment means that
the relations should be closed under strengthening of premises and weakening of conclusions.
Putting these ideas together leads to a natural relational setting for algebraic logic.

Natural duality has its most familiar instances in categories of algebras and spaces that are
relevant to (positive) algebraic logic by virtue of being concrete over posets. The objects come
equipped with partial order with respect to which the morphisms and operations are monotonic.
For example, Priestley duality, Stone duality, Banaschewski duality (between partially ordered
sets and Stone distributive lattices), and Hofmann-Mislove-Stralka duality (between semilattices
and Stone semilattices) all are concrete over posets. Note that while a Stone space has a
trivial order, that fact is precisely the feature that distinguishes a Stone space from a Priestley
space. So even Stone duality fits the general ordered scheme, when one takes the duals to be
complemented distributive lattices.

We study how one extends a duality between ordered algebras and ordered spaces to rela-
tions. The motivation is to understand the general setting in which relation lifting carries over
to these dualities.

For this abstract, we restrict our attention only to DL, the category of bounded distributive
lattices, and Pri, the category of Priestley spaces. In the full paper we consider a more general
setting to include other varieties of algebras and their dual spaces.

In a category A with pullbacks, one defines Span(A) as the category of isomorphism classes
of spans A← R→ B with composition being defined by pullbacks. So in particular Span(DL)
and Span(Pri) make sense because both categories have pullbacks.

The categories DL and Pri are both equipped with suitable factorization systems (E ,M) for
spans (factoring a span into an epimorphism e followed by a jointly monic span m), so that
categories Rel(DL) and Rel(Pri) arise by taking morphisms to be the monomorphic spans. In
DL, these are essentially sublattices of A×B. In Pri, they are merelty compact subspaces (with
the induced order) of the X × Y . Composition is defined by pullback and renormalizing via
the factorization system. Again in both Rel(DL) and Rel(Pri), this means that composition is
concretely the usual relational composition.

Looking toward duality, we are faced immediately with a problem. The dual of a span
A ← R → B in distributive lattices is a cospan 2A → 2R ← 2B in Priestley spaces, and
vice versa. Nevertheless, Rel(DL) provides precisely those relations that respect the algebraic
structure of the objects. And Rel(Pri) provides a similar service for topological structure of
Priestley spaces.

To obtain relations that also respect entailment (closure under strengthening of premises and
weakening of conclusions), we consider weakening relations, i.e., those binary relations between
posets that are closed under the following rule: a ≤ a′, a′Rb′ and b′ ≤ b implies aRb. Because
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DL and Pri are both concrete over Pos, we can define weakening relations between objects to
be morphisms in Rel(DL) or Rel(Pri) that are closed under the weakening rule.

Putting things together, DL and Pri have suitable structure for defining relations gener-
ally, and have forgetful functors into Pos so that weakening relations make (forgetful) sense.
Moreover, the composition of relations in DL and Pri coincides concretely with composition of
weakening relations in Pos. So we define categories DL and Pri as the subcategories of Rel(DL)
and Rel(Pri) consisting of relations which forgetfully are weakening relations.

Specifically, in DL, a morphism corresponds exactly to a relation closed under the familar
proof calculus rules for positive logic. In Pri, a morphism is simply a compact upper set in
Xop × Y . Notice that these categories are both order-enriched, by taking relations orered by
inclusion.

The main problem now is to understand how the natural duality of DL and Pri lifts to DL and
Pri. Our main additional tool is the weighted limits of cospans and weighted colimits of spans.

Call a cospan P
j← C

k→ Q in Pos bipartite if k and j are embeddings and for every p ∈ P ,
every q ∈ Q, kq � jp. We show that the duals of weakening relations in DL are exactly the
bipartite cospans in Pri, and that commas of bipartite cospans in Pri are exact and determine
weakening spans in Pri. Thus we have the main theorem.

Theorem 1. The order enriched categories DL and Pri are dually equivalent on 1-cells and
equivalent on 2-cells.

Now from this duality, we recover the original duality of DL and Pri by noting that is
both settings, adjoint pairs of weakening relations determine and are determined by functions.
That is, im DL, define Map(DL) to consist of pairs of relations (R,S) so that 1A ≤ S ◦ R and
R ◦ S ≤ 1B . Define Map(Pri) likewise.

Lemma 1. The category Map(DL) is equivalent (actually isomorphic) to DL.

Now since the duality for relations preserves order on hom-sets, it also follows that Map(Pri)
is dually equivalent to Map(DL).

Although we have paid attention to Priestley duality here, many of the technical results
depend only more general structure of DL and Pri. In the full paper, we discuss sufficient
conditions for a natural duality between categories A and X that are conrete over Pos to lift to
A and X .
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The celebrated Rasiowa-Sikorski Lemma [6] states that for any Boolean algebra B, any
countable set Q of subsets of B, and any non-zero a ∈ B, there exists an ultrafilter U over B
such that a ∈ U and U preserves all existing meets in Q. Rasiowa and Sikorski [5] famously
applied the lemma to the Lindenbaum-Tarski algebra of Classical Predicate Logic in order to
prove its completeness with respect to Tarskian semantics. However, their proof of the lemma
was an application of the Stone representation theorem [7], which relies on the non-constructive
Boolean Prime Ideal Theorem (BPI). In fact, Goldblatt [1] observes that the Rasiowa-Sikorski
Lemma is equivalent over ZF to the conjunction of BPI and Tarski’s Lemma, a weaker propo-
sition that states that for any Boolean algebra B, any countable set Q of subsets of B, and
any a ∈ B, there exists an filter F over B such that a ∈ F and for any X ∈ Q such that∧
X exists in B,

∧
X ∈ F or there is x ∈ X such that ¬x ∈ F . Goldblatt also proves that

Tarski’s Lemma is semi-constructive, in the sense that it is equivalent over ZF to the Axiom
of Dependent Choices (DC).

In this talk, we provide a generalization of Tarski’s Lemma to the variety of distributive
lattices (DL), the Q-Lemma, that states that for any distributive lattice L, any countable sets
QM and QJ of subsets of L, and any two elements a, b ∈ L, if a � b, then there exists a pair
(F, I) such that:

• F and I are a filter and an ideal over L respectively;

• F ∩ I = ∅, a ∈ F and b ∈ I;

• for any X ∈ QM , if
∧
X exists in L and distributes over all joins, then

∧
X ∈ F or there

is x ∈ X ∩ I;

• for any Y ∈ QJ , if
∨
Y exists in L and distributes over all meets, then

∨
Y ∈ I or there

is y ∈ Y ∩ F .

We show that the Q-Lemma is a semi-constructive version of the Rasiowa-Sikorski Lemma
for DL as stated in [2], in the sense that it is equivalent over ZF to Tarski’s Lemma, and
that the Rasiowa-Sikorski Lemma for DL is equivalent to the conjunction of the Prime Filter
Theorem and the Q-Lemma.

Moreover, we generalize some of the ideas behind possibility semantics for classical logic,
developed in Holliday [3] and Humberstone [4], to intuitionistic logic. We show in particular
how to provide a choice-free bitopological representation of distributive lattices and Heyting
algebras based on pairs of filters and ideals, and how this framework combined with the Q-
Lemma yields an alternative semantics for Intuitionistic Predicate Logic with the Axiom of
Constant Domains.
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Most of monomodal logics are characterized by classes of frames (see e.g. [1],[2]). It is even
possible to use single connected frames for some logics. The additional modalities make the
problem of seeking one connected frame more demanding.

Consider a propositional n-modal language L1 with modal operators 21, . . . ,2n and a propo-
sitional m-modal language L2 with modal operators 2n+1, . . . ,2n+m. Let us denote by L1,2 the
propositional n+m-modal language with operators 21, . . . ,2n,2n+1, . . . ,2n+m. The smallest
n + m-modal logic in the language L1,2 containing L1 ∪ L2 is called a fusion of L1 ⊂ L1 and
L2 ⊂ L2. We write L1 ⊕ L2 for the fusion of L1 and L2.

A Kripke n-frame B = 〈V,H1, . . . ,Hn〉 is called a subframe of a frame F = 〈W,R1, . . . , Rn〉
if V ⊆ W and Hi is the restriction of Ri to V (i.e. Hi = Ri ∩ (V × V )), for all i ∈ {1, . . . , n}.
A subframe B of F is called a generated subframe of F if for each y ∈ W , y ∈ V if xRiy for
some x ∈ V and some i ∈ {1, . . . , n}. The subframe of the frame F generated by the set U ⊆W
will be denoted by [U ]F. If U = {x}, we write [x]F instead of [{x}]F. For a given class C of
n-frames, let PGS(C) be the class of all subframes of the frames from the class C generated by
a single point. In symbols

PGS(C) = {[x]F : F = 〈W,R1, . . . , Rn〉 ∈ C, x ∈W}.

A Kripke n-frame F = 〈W,R1, . . . , Rn〉 is rooted if F = [x]F for some x ∈ W i.e. if there
exists x ∈W such that for each y ∈W \ {x} there exists a sequence (x1, . . . , xk−1) of elements
from W such that

xRi1x1, x1Ri2x2, . . . , xk−2Rik−2
xk−1, xk−1Rik−1

y,

where ij ∈ {1, . . . , n}. The point x is called a root of the frame F.

Let L1 be an n-modal logic and L2 be an m-modal logic. Assume that L1 and L2 are
characterized by classes of rooted frames C1 and C2, respectively. It is already known that there
exists a class of n+m-frames that characterizes n+m-modal logic L1 ⊕ L2 (see e.g. [3],[4]).

Consider a class C of rooted frames. Let F be a frame with a root x. We say that the point
x is a C-root if for each G ∈ C and a root y of G there exists a p-morphism from F to G sending
x to y.

Let us consider the class CGrz.3 = {FnGrz.3 = 〈{1, . . . , n},≥〉 : n ∈ N} of all finite chains. A
frame with a CGrz.3-root is FrGrz.3 = 〈W ′,≤〉, where

W ′ =

{
1

n
: n ∈ N

}
∪ {0}.

Let us consider the chain F6
Grz.3. Point 6 is a root of the frame F6

Grz.3, therefore f(0) = 6. It
is necessary to preserve order. In next steps f(1) = 1, f( 1

2 ) = 2, f( 1
3 ) = 3, f( 1

5 ) = 5, f( 1
k ) =

6 for k ≥ 6.



Rooted frames for fusions of multimodal logics Kost

1

0

1
3

1
2

1
4

1
5 6

5

4

3

2

1

}

Figure 1: FrGrz.3 → F6
Grz.3

Let L1 be an n-modal logic and L2 be an m-modal logic. Assume that L1 and L2 are charac-
terized by classes of rooted frames C1 and C2, respectively. Classes C′1 and C′2 are closures of C1
and C2, respectively, under the formation of disjoint unions and isomorphic copies. Moreover,
let F1 = 〈W1, R1, . . . , Rn〉 be an L1-frame with PGS(C1)-root and F2 = 〈W2, Rn+1, . . . , Rn+m〉
be an L2-frame with PGS(C2)-root.

In the talk we will show how to construct a rooted frame Fr = 〈W r, S1, . . . , Sn+m〉 which
characterizes the n+m-modal logic L1 ⊕ L2 and has the following properties

(a) Fr is countable if F1 and F2 are countable;

(b) each S1, . . . , Sn-connected component of the frame Fr is isomorphic to the frame F1;

(c) each Sn+1, . . . , Sn+m-connected component of the frame Fr is isomorphic to the frame F2;

(d) Fr is a frame with a PGS(C′1 ⊕ C′2)-root;

(e) for each n + m-formula ϕ, Fr |= ϕ if and only if ϕ is valid in a PGS(C′1 ⊕ C′2)-root of the
frame Fr.
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Abstract algebraic logic is a field that studies uniformly propositional logics [2, 3, 4]. One
of its main achievements is the development of the so-called Leibniz hierarchy (see Figure 1),
which provides a taxonomy that classifies propositional systems accordingly to the way their
notions of logical equivalence and of truth can be defined.

A fundamental question, that arose in the study of the Leibniz hierarchy, is whether there is
an algorithm that allows to classify logics in the Leibniz hierarchy. The answer to this question
depends on the way in which these logics are presented. More precisely, in [7] it is shown that
the problem of classifying logics presented syntactically, i.e. by means of finite Hilbert calculi,
in the Leibniz hierarchy is in general undecidable. On the other hand, it is not difficult to
see that logics presented semantically, i.e. by means of finite sets of finite (logical) matrices of
finite type, can be classified mechanically in the Leibniz hierarchy. It is therefore natural to
ask which is the computational complexity of the problem of classifying semantically presented
logics in the Leibniz hierarchy. More precisely, in this contribution we will present a solution
to the following problems:

• Let K be a level of the Leibniz hierarchy. Which is the computational complexity of the
problem Class-K of determining whether a semantically presented logic belongs to K?

Elementary considerations show that the naive algorithms, that solve Class-K, run in ex-
ponential time. The interesting part of our proof consists in establishing a hardness result,
according to which these algorithms cannot be substantially improved. In [1] it was established
that the following problem, which we denote by Gen-Clo12, is complete for EXPTIME:

• Let A be a finite algebra of finite type, whose basic operations are at most binary, and a h
be a unary function on A. Does h belong to the clone of A?

We will construct a polynomial-time reduction of Gen-Clo12 to Class-K.
To this end, consider a non-trivial algebra A whose basic operations F are at most binary,

and a unary function h on A. For sake of simplicity, we assume that F contains no constant
symbols. Our goal is to define a new algebra A\, related to A and h. The construction of the A\

is partially reniniscent of ideas exploited in [6] and [5] to prove some hardness results related to
type sets and Maltsev conditions. The universe of A\ is given by eight disjoint copies A1, . . . , A8

of A. Given an element a ∈ A, we will denote by ai its copy in Ai. The basic operation of
A\ are the ones in F plus a new ternary operation ♥ and a new unary operation 2. Their
interpretation is defined as follows. Given an n-ary operation f ∈ F and am1

1 . . . , amn
n ∈ A\, we

set
f(am1

1 . . . , amn
n ) := fA(a1, . . . , an)5.

Observe that all the operations fA
\

with f ∈ F give values in A7. Given am, bn, ck ∈ A\, we
set

♥(am, bn, ck) :=





a1 if am = ck and h(a)5 = bn and m ∈ {1, 3, 4}
a2 if am = ck and h(a)5 = bn and m ∈ {2, 5, 6, 7, 8}
a4 if m, k ∈ {1, 3, 4} and (either am 6= ck or h(a)5 6= bn)
a7 if {m, k} ∩ {2, 5, 6, 7, 8} 6= ∅ and

(either am 6= ck or h(a)5 6= bn).
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Figure 1: The main classes in the Leibniz hierarchy.

Given am ∈ A\, we set

2(am) :=





am if m = 1 or m = 2
am−1 if m is even and m ≥ 3
am+1 if m is odd and m ≥ 3.

Now, consider the matrix 〈A\, F \〉, where F \ := A1 ∪ A2. Observe that the matrix 〈A\, F \〉
can be constructed out of A in polynomial time, since the arity of the basic operations of A is
bounded by 2. The hearth of our proof consists in showing that if ` is the logic determined by
the matrix 〈A\, F \〉, then the following conditions are equivalent:

1. ` is algebraizable.

2. ` is protoalgebraic.

3. h belongs to the clone of A.

As a consequence, there is a polynomial time reduction of the Gen-Clo12 to the problem Class-K
for every level K of the Leibniz hierarchy. Hence we obtain the following:

Theorem 1. Let K be a level of the Leibniz hierarchy. Class-K is complete for EXPTIME.
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Universal algebra and abstract algebraic logics are two theories that study, respectively, arbi-
trary algebraic structures and arbitrary substitution-invariant consequence relations (sometimes
called deductive systems). The interplay between the two theories can be hardly overestimated.
On the one hand, techniques from universal algebra have been fruitfully applied to the study
of propositional logics in the framework of abstract algebraic logic. On the other hand, any
class of algebras K is naturally associated with a substitution-invariant equational consequence
�K (representing the validity of generalized quasi-equations in K), which is amenable to the
techniques of abstract algebraic logic. The fact that universal algebra and abstract algebraic
logic pursue two tightly connected paths is nicely reflected in the fact that one of the main
achievements of both theories is a taxonomy in which, respectively, varieties and deductive
systems are classified. In universal algebra, this taxonomy is called Maltsev hierarchy, while in
abstract algebraic logic it is known as Leibniz hierarchy.

The goal of this contribution is to show that this analogy between the Maltsev and Leibniz
hierarchies can be made mathematically precise, in a such way that the traditional Maltsev
hierarchy coincides with the restriction of a suitable finite companion of the Leibniz hierarchy
formulated for two-deductive systems. To this end, we need to solve a fundamental asymmetry
between the theories of the Maltsev and Leibniz hierarchy: while there is a precise definition
of what the Maltsev hierarchy is [3, 4, 5], no such agreement exists for the case of the Leibniz
hierarchy.

For the sake of simplicity, we will introduce the main new definitions for logics, i.e.
substitution-invariant consequence relations formulated over the set of formulas (built up with
an arbitrarily large infinite set of variables) of an algebraic language. Recall that each logic `
is naturally associated with a class of matrices ModSu(`), called the Suszko models of ` [1]. An
interpretation of a logic ` into a logic `′ is a map τ assigning an n-ary term τ (f) of `′ to every
n-ary connective f of ` in such a way that

if 〈A, F 〉 ∈ ModSu(`′), then 〈Aτ , F 〉 ∈ ModSu(`)

where Aτ is the algebra in the language of `, whose universe is A and in which the connective
f is interpreted as the term-function τ (f)A of A. We write `≤`′ to denote the fact that ` is
interpretable into `′. The interpretability relation ≤ is a preorder on the class of all logics. We
denote by Log the poset obtained identifying equi-interpretable logics.

Theorem 1. Log is a complete meet-semilattice, meaning that infima of all its subsets ex-
ist. Moreover, Log is not a join-semilattice. Finally, Log has no minimum element, it has a
maximum and a coatom (that under Vopěnka’s Principle is unique).

A Leibniz condition is a sequence Φ := {`α: α ∈ Ord} of logics indexed by all ordinals Ord,
satisfying the following additional condition: if α ≤ β, then `β≤`α. The class of models of
Φ is Mod(Φ) := {` :`α≤` for some α ∈ Ord}. A Leibniz class is a class of logics M for which
there is a Leibniz condition Φ such that M = Mod(Φ). It is not difficult to see that all classes of
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logics traditionally included into the Leibniz hierarchy are in fact Leibniz classes in this general
sense. For this reason, we propose to identify the Leibniz hierarchy with the poset of all Leibniz
classes. Leibniz classes can be characterized in terms of closure under certain constructions,
that we call Taylorian products and compatible expansions, as follows (cf. [4, 5]):

Theorem 2. Let M be a class of logics. The following conditions are equivalent:

1. M is a Leibniz class.

2. M is closed under term-equivalence, compatible expansions and Taylorian products.

3. M is a complete filter of Log.

The fact that Leibniz classes can be identified with complete filters of Log rises the question
of understanding which of the classical Leibniz classes determine a meet-irreducible or prime
filter (cf. [2]). This is a completely new direction of research. Nevertheless, we were able to
obtain some promising results: for example, it turns out that, in the setting of logics with
theorems, the class of equivalential logics is meet-reducible, while (under the assumption of
Vopěnka’s Principle) the classes of truth-equational and assertional logics are prime.

As we mentioned, it is possible to associate a finite companion to the Leibniz hierarchy,
understood as the poset of all Leibniz classes. Roughly speaking, this is the collection of
Leibniz classes determined by Leibniz conditions of the form Φ = {`n: α ∈ ω}, where `n is a
finitely presentable and finitely equivalential logic. We call finitely presentable Leibniz classes
the classes of logics in the finite companion of the Leibniz hierarchy. The Maltsev hierarchy is
then the restriction of the finite companion of the Leibniz hierarchy of two-deductive system to
equational consequences. More precisely, we have the following:

Theorem 3. Let K be a class of varieties. K is a Maltsev class iff there is a finitely presentable
Leibniz class M of two-deductive systems such that K = {V : V is a variety and �V∈ M}.

The above result shows that the logical theory of the Leibniz hierarchy may be seen as a gener-
alization of the algebraic theory of Maltsev classes. Moreover, in our opinion, this perspective
shows that the conceptual taxonomies, which lie at the heart of modern abstract algebraic logic
and universal algebra, have a common root.
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The notions of admissibility and structural completeness for logics and consequence relations
has received considerable attention for many years. Recently a study of these concepts has been
undertaken by Rosalie Iemhoff [1]. It appears that admissibility may be considered in various
nonequivalent ways. This leads to variants of structural completeness. Here we investigate
this topic from an algebraic perspective. We provide algebraic characterizations of variants
of structural completeness for universal classes (which are algebraic counterparts of multi-
conclusion consequence relations). Then we study the preservation of these properties by the
Blok-Esakia isomorphism.

A (multi-conclusion) rule is an ordered pair, written as Γ/∆, of finite sets of formulas in a
given propositional language. When |∆| = 1 we talk about a single-conclusion rule. A set of
rules, written as a relation `, is a multi-conclusion consequence relation (mcr) if for all finite
sets Γ,Γ′,∆,∆′ of formulas, for every formula ϕ and for every substitution s the following holds

• ϕ ` ϕ; • if Γ ` ∆, then Γ,Γ′ ` ∆,∆′;
• if Γ ` ∆, ϕ and Γ, ϕ ` ∆, then Γ ` ∆; • if Γ ` ∆, then s(Γ) ` s(∆).

(We omit the curly brackets for sets, write commas for unions and omit the empty set.)
Informally speaking, admissible rules are rules that may be added to a mcr in order to

improve the search of (multi)theorems. A formal definition of admissible rules for the basic and
narrow variants was given by Rosalie Iemhoff in [1] (called there full and strict). The weak
variant is taken from [3]. For simplicity, we consider the admissibility for single-conclusion rules.

Definition 1. For a rule r = Γ/δ and a mcr ` let `r be a least mcr extending ` and containing r.
Then r is

• admissible for ` provided ` ∆ iff `r ∆ for every finite set ∆ of formulas;

• weakly admissible for ` provided ` ϕ iff `r ϕ for formula ϕ;

• narrowly admissible for ` provided for every substitution s (∀γ ∈ Γ `s(γ)) yields `s(δ).

And ` is (strongly, widely) structurally complete if every (weakly, narrowly) admissible for `
single-conclusion rule belongs to `.

Fact 2. For a single-conclusion rule r and a mcr ` we have the implications:

r is admissible for ` ⇒ r is weakly admissible for ` ⇒ r is narrowly admissible for `,
` is widely struct. complete ⇒ ` is strongly struct. complete ⇒ ` is struct. complete.

Algebraic counterparts of single conclusion consequence relations are quasivarieties of al-
gebras. A main tool to deal with the admissibility is then the notion of free algebras for
quasivarieties: the admissibility corresponds exactly to the validity on free algebras.

∗The work was supported by the Polish National Science Centre grant no. DEC- 2011/01/D/ST1/06136.
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Algebraic counterparts of mcrs are universal classes of algebras1. Clearly, for every universal
clas U free algebras exist. But they do not have to belong to U . We overcome this obstacle by
introducing the notion of a free family. It consists of quotients of a term algebra chosen in a
certain minimal way [4]. Thus this object is indeed similar to a free algebra.

Recall that a counterpart of a single-conclusion rule is a quasi-identity. We skip definitions
of the variants of the admissibility for quasi-identities. Let us just note that they are direct
translations of Definition 1 [4]. In order to formulate our theorem let us introduce a bit of
notation: For a universal class U let F be its free algebra and F be its free family, both of
denumerable rank. For a class K of algebras let Q(K) be a least quasivariety containing K.
Theorem 3. Let q be a quasi-identity and U be a universal class. Then

• q is admissible for U iff F |= q;

• q is weakly admissible for U iff F ∈ Q({A ∈ U | A |= q});
• q is narrowly admissible for U iff F |= q.

Consequently,

• U is structurally complete iff Q(F) = Q(U);

• U is strongly structurally complete iff F ∈ Q(U∩Q) yields U ⊆ Q for every quasivariety Q;
• U is widely structurally complete iff Q(F) = Q(U).

The classical Blok-Esakia theorem states that there is one to one correspondence between
extensions of intuitionistic logic and normal extensions of modal Grzegorczyk logic. In [2] Emil
Jeřábek extended this fact to mcrs. Algebraically it says that there is an isomorphism σ from
the lattice of universal classes of Heyting algebras onto the lattice of universal classes of modal
Grzegorczyk algebras (see [3] for an algebraic treatment of this topic). In [3, 4] we obtained the
following preservation and reflection facts.

Theorem 4. Let U be a universal class of Heyting algeras. Then

• U is structurally complete iff σ(U) is structurally complete;

• U is strongly structurally complete iff σ(U) is strongly structurally complete;

• U is widely structurally complete iff σ(U) is widely structurally complete.

Let us finish with the remark that the admissibility and the weak admissibility properties
may be directly defined also for multi-conclusion rules. Then the analogs of the presented
results may be proved. However there is a problem with the narrow variant of the admissibility.
It may be defined in at least two different ways. The connection to the strong and the basic
variants is more complex.
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The system InqBQ ([1], [4], [3]) generalizes FOL (first order classical logic) to study dependencies
between FOL structures in a similar fashion to Dependence Logic ([5]) and other logics based
on team semantics ([2], [6]). In this paper we introduce several model theoretic constructions
useful to study the entailment relation of InqBQ , and prove the disjunction and existence for
the classical fragment of the logic (presented in [3]).

GENERALIZING FOL SEMANTICS
In the rest of the paper with Σ = {f, . . . ;R, . . . } we indicate a fixed FOL signature.
Definition (Skeleton of a model). Given M =

〈
DM ; fM , . . . ;RM , . . . ;∼M

〉
a FOL structure

(note that we introduce here an extensional equality ∼M , i.e. a congruence wrt fM and RM)
we define its skeleton as the tuple Sk(M) =

〈
DM ; fM , . . .

〉
consisting of the domain and the

interpretation of the function symbols.
Definition (Information model). An information model is a tuple M =

〈
Mw|w ∈WM〉

where the Mw are FOL structures sharing the same skeleton: ∀w,w′.Sk(Mw) = Sk(Mw′).
Conceptually, an information model represents a collection of possible states of affairs and we
can represent a body of information by selecting the structures compatible with it.
Definition (Info state). Given a model M we call a subset of the structures that compose it
an info state: s ⊆ W (modulo a natural identification). We call a model Ms = 〈Mw|w ∈ s〉
for s ⊆WM a submodel of M.

M, s �g⊥ ⇐⇒ s = ∅
M, s �g [t1 = t2] ⇐⇒ ∀w ∈ s.Mw �FOLg [t1 = t2]

M, s �g R
(
t
)
⇐⇒ ∀w ∈ s.Mw �FOLg R

(
t
)

M, s �g φ ∧ ψ ⇐⇒ M, s �g φ and M, s �g ψ
M, s �g φ→ ψ ⇐⇒ ∀t ⊆ s. if M, t �g φ

then M, t �g ψ
M, s �g ∀x.φ ⇐⇒ ∀d ∈ DM.M, s �g[x7→d] φ

Definition (Support semantics). Let M
be a model, s an info state of M and
g : Var→ DM a valuation. Let α be a
FOL formula. We define the support re-
lation by the following inductive clauses.
As a notational convention, we will omit
s if s = WM.

We say that a theory Γ entails a for-
mula α (notation Γ � α) if and only if for
every tuple 〈M, s, g〉 that supports Γ, this
supports also α.
Lemma (Properties of the support semantics for FOL formulas).
Flatness: M, s �g α ⇐⇒ ∀w ∈ s.M, {w} �g α.
Classical World Support: M, {w} �g α ⇐⇒ Mw �FOLg α.
Classical Validity Preservation: Γ � α ⇐⇒ Γ �FOL α.

ADDING NEW OPERATORS TO THE LOGIC

M, s �g φ

>

ψ ⇐⇒ M, s �g φ or M, s �g ψ
(a disjunct holds at the whole state)

M, s �g ∃x.φ ⇐⇒ ∃d ∈ DM.M, s �g[x7→d] φ

(an element is a uniform witness of φ at s)

Defined this generalized semantics, we can now
introduce new logical operators to describe con-
nections and relations between models sharing
the same skeleton. We consider here the logic
InqBQ obtained by adding the operator

>

and the quantifier ∃, and their associated se-
mantical clauses.
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Lemma (Downward Closure). M, s �g φ and t ⊆ s, then M, t �g φ.
Note that flatness holds exactly for those formulas φ which are semantically equivalent to a FOL

formula ([3]).

DISJUNCTION AND EXISTENCE PROPERTIES
Theorem. Let Γ be a FOL theory and α a FOL formula. Then:
Disjunction Property: If Γ � φ > ψ, then Γ � φ or Γ � ψ.
Existence Property: If Γ � ∃x.φ(x), then Γ � φ(t) for some term t.

The proof of this theorem is based on the introduction of some relevant model-theoretic
constructions.
The ⊕ operator: We can define an operator ⊕ such that, given a set of models {Mi|i ∈ I},
it produces a model ⊕i∈IMi with the following properties

Mi 6� φ =⇒ ⊕i∈IMi 6� φ ∀i ∈ I.Mi � α ⇐⇒ ⊕i∈IMi � α for α classical

This construction strongly relies on downward closure and flatness for classical formulas.
Characteristic model of Γ: Consider a classical theory Γ. For every non entailment Γ 6� φ
we can select a model Mφ that is a witness of it, meaning Mφ �gφ Γ and Mφ 6�gφ φ. If we
define now MΓ = ⊕Γ6�φMφ, by the property of ⊕ we obtain MΓ � ψ ⇐⇒ Γ � ψ.
Note that this model can be used to easily prove the disjunction property:

Γ � φ > ψ ⇐⇒ MΓ � φ
>

ψ ⇐⇒ MΓ � φ or MΓ � ψ ⇐⇒ Γ � φ or Γ � ψ

Blow-up model: given a model M we can define an elementarily equivalent model BM (the
blow-up ofM) whose domain is T Σ(DM), the free algebra of terms in the extended signature
Σ(DM) obtained by adding to Σ a fresh constant symbol for every element of DM. In this
step, the intensional equality plays a fundamental role.
Permutation models: given a modelM and a permutation of its elements σ ∈ S

(
DM)

, we

can naturally extend such permutation to T Σ
(
DM)

. Using this, we can define a model BσM
by permuting the names of the elements of BM according to σ.
Note that this operation preserves skeletons (Sk(BM) = Sk(BσM)) and that a closed term t
of Σ

(
DM)

is fixed under every permutation σ iff t is a closed term of Σ. These two properties
(of great importance for the proof of the existence property) wouldn’t hold if the permutation
was applied directly to M, thus the necessity of defining the model BM.
Lemma. BσM � φ(σ(d1), . . . , σ(dn)) ⇐⇒ BM � φ(d1, . . . , dn) ⇐⇒ M � φ(d1, . . . , dn)
The full permutation model: Consider now the modelMΓ. As the action of a permutation
σ ∈ S

(
DMΓ

)
preserves the skeleton of B(MΓ), we can consider the new model S (MΓ) =

{M |∃σ. M ∈ Bσ (MΓ)}. By building MΓ in a suitable way, we can obtain the following two
properties:
SMΓ � φ ⇐⇒ Γ � φ: since S (MΓ) � Γ can be tested on single worlds by flatness, and
B (MΓ) is a submodel of S (MΓ).
SMΓ � ∃x.φ(x)⇒ SMΓ � φ(t) for some closed t: the intuitive reason being that the role of
two elements can be swapped in the model S (MΓ) as long as they are not fixed by every
permutation σ. From this we obtain that, if there exists an element without the property
φ, then every element that is not the interpretation of a closed term of Σ does not have the
property.
Note that this model can be used to easily prove the existence property:

Γ � ∃x.φ(x) ⇐⇒ S (MΓ) � ∃x.φ(x) ⇐⇒ ∃t closed. S (MΓ) � φ(t) ⇐⇒ ∃t closed.Γ � φ(t)

2
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States of MV-algebras [6] are [0, 1]-valued functions, which generalise finitely-additive prob-
ability measures on boolean algebras, and whose domains are MV-algebras [2]. Flaminio and
Montagna [3] introduced an internal state as an additional unary operation σ : M → M satis-
fying certain equational laws on an MV-algebra M . Internal states capture the basic properties
of states in a setting amenable to universal-algebraic techniques.

In our note [5] we made first steps towards a general two-sorted algebraic model for ex-
pressing the notion of state between two MV-algebras M and N , making thus a fundamental
distinction between events (captured by elements of the domain M) and probability degrees
(represented by the co-domain N). A generalised state of M with values in N is a mapping
s : M → N such that for every a, b ∈ M the following hold: s(a ⊕ b) = s(a) ⊕ s(b ∧ ¬a),
s(¬a) = ¬s(a), and s(>) = >. A state algebra is a two-sorted algebra (M,N, s), where the
operations of M and N are in the single sorts given by M and N , respectively, and the only
operation between the two sorts is the generalised state s. The class of all state algebras con-
stitutes a two-sorted algebraic variety. Most universal-algebraic constructions and results have
analogous correspondents in the multi-sorted setting [1].

In this contribution we will characterise the free state algebra F(S1, S2) generated by a two-
sorted set of generators (S1, S2). The free state algebra can be expressed as

F(S1, S2) = F(S1, ∅)q F(∅, S2),

where F(S1, ∅) and F(∅, S2) are the free state algebras over (S1, ∅) and (∅, S2), respectively,
and q denotes the coproduct operation in the multi-sorted algebraic category of state algebras.

First, the algebra F(S1, ∅) is isomorphic to the state algebra (F (S1), 〈 ̂F (S1)〉, α), where F (S1) is

the free MV-algebra over S1, 〈 ̂F (S1)〉 is the affine representation of F (S1) (see [4]), and α is the

evaluation map F (S1)→ 〈 ̂F (S1)〉 sending elements of F (S1) to [0, 1]-valued affine functions over
the state space of F (S1). Second, the free state algebra over (∅, S2) is F(∅, S2) = (2, F (S2), s0),
where 2 is the two-element MV-algebra, F (S2) is the free MV-algebra generated by S2, and s0
is the only possible generalised state 2→ F (S2). We will show that

F(S1, ∅)q F(∅, S2) = (F (S1), 〈 ̂F (S1)〉 qMV F (S2), β1 ◦ α),

where
〈 ̂F (S1)〉 qMV F (S2)

is the coproduct (free product [7]) of MV-algebras 〈 ̂F (S1)〉 and F (S2), and the map

β1 : 〈 ̂F (S1)〉 → 〈 ̂F (S1)〉 qMV F (S2) is the coproduct injection.

∗The first author was supported by the GAČR project n. 17-04630S.
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This talk is about sublocales, the natural subobjects in the category of locales (which one
may think about as generalized topological spaces), that is, in the dual category of the category
of frames ([3]).

Sublocales of a frame L are well defined subsets of L, and constitute, in the natural inclusion
order, a coframe S(L). Hence sublocale lattices are more complicated than their topological
counterparts (complete and atomic Boolean algebras). One of the main differences is that only
complemented sublocales (and most sublocales are not complemented) distribute over all joins
of sublocales. But, as J. Isbell emphasized, a locale has enough complemented sublocales to
compensate for this shortcoming: one has open and closed sublocales (precisely corresponding
to classical open and closed subspaces), complementing each other.

A separation axiom called subfitness (making sense for classical spaces as well, slightly
weaker than T1) is characterized by the property that every open sublocale is a join of closed
ones, and another, stronger, called fitness (akin to regularity) is characterized by the fact that
every closed sublocale is an intersection of open ones. These properties sound dual to each
other, but is not quite so: in fact in a fit frame every sublocale whatsoever is an intersection of
open ones which has no counterpart in the subfit case. Now what does the property that every
sublocale whatsoever is a join of closed ones mean? In [1] it was shown that it characterizes
the so called scattered frames (quite analogous to scattered topological spaces), formally the L
with Boolean S(L). The main goal of our talk will be to discuss the system Sc(L) of all the
sublocales of a general L that are joins of closed ones.

We will start the talk by presenting the basics about Sc(L) ([5]). First, Sc(L) is always a
frame. Since it is a join-sublattice, is it not also a coframe, or even a subcolocale of S(L)? We
give a complete answer for subfit frames L. There, indeed, Sc(L) is a subcolocale (and in fact
this is another characterization of subfitness). Moreover, it is a Boolean algebra and in fact
precisely the Booleanization of S(L). Further, we have here a Boolean extension L→ Sc(L) by
open sublocales; this is compared with the well known frame extension L → S(L)op by closed
sublocales (the embedding into the frame of congruences), and the relation is analysed.

Subspaces of a space can be viewed as sublocales (more precisely, sublocales of the associated
frame of open sets Ω(X)). But in general there are more sublocales than subspaces (a space has
typically generalized subspaces that are not classical induced ones). In case of a T1-space X, it
turns out that the classical ones constitute precisely the Sc(Ω(X)), and hence the Booleanization
of S(Ω(X)).

Point-free modeling of real-valued functions on a frame L that are not necessarily continuous
has been so far based on the extension of L to its frame of sublocales S(L)op, mimicking the
replacement of a topological space by its discretization ([2]). If time permits, we will explain
why the smaller Sc(L) can replace S(L)op with advantages in the case of a subfit L ([4]).

∗A part of the talk is joint work with Anna Tozzi [5].
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Canonical extensions of Boolean algebras with operators were introduced in the seminal
paper of Jónsson and Tarski [7]. They were generalized to distributive lattices with operators
[4, 5], lattices with operators [2], and further to posets [6, 3].

Stone duality provides motivation for the definition of the canonical extension. For example,
the canonical extension B of a Boolean algebra A is isomorphic to the powerset of the Stone
space X of A, and the embedding e : A→ B is realized as the inclusion of the Boolean algebra
Clop(X) of clopen subsets of X into the powerset ℘(X). The inclusion Clop(X) ↪→ ℘(X) is
dense and compact, and these are the defining properties of the canonical extension:

Definition 1. The canonical extension of a Boolean algebra A is a pair Aσ = (B, e), where B
is a complete Boolean algebra and e : A→ B is a Boolean monomorphism satisfying:

1. (Density) Each x ∈ B is a join of meets and a meet of joins of elements of e[A].

2. (Compactness) For S, T ⊆ A, from
∧
e[S] ≤ ∨

e[T ] it follows that
∧
e[S′] ≤ ∨

e[T ′] for
some finite S′ ⊆ S and T ′ ⊆ T .

A similar situation arises for archimedean vector lattices with strong order unit. Let A
be an archimedean vector lattice with strong order unit. By Yosida representation [8], A is
represented as a uniformly dense vector sublattice of the vector lattice C(Y ) of all continuous
real-valued functions on the Yosida space Y of A. Moreover, if A is uniformly complete, then
A is isomorphic to C(Y ). Since Y is compact, every continuous real-valued function on Y
is bounded. Therefore, C(Y ) is a vector sublattice of the vector lattice B(Y ) of all bounded
real-valued functions on Y .

The inclusion C(Y ) ↪→ B(Y ) has many similarities with the inclusion Clop(X) ↪→ ℘(X). In
particular, C(Y ) is dense in B(Y ). However, it is never compact in the sense of Definition 1.
Indeed, if Y is a singleton, then both C(Y ) and B(Y ) are isomorphic to R. Now, if S = {β ∈
R : 1/2 < β ≤ 1} and T = {α ∈ R : 0 ≤ α < 1/2}, then

∧
S ≤ ∨

T as both are 1/2, but there
are not finite subsets S′ ⊆ S and T ′ ⊆ T with

∧
S′ ≤ ∨

T ′.
Our goal is to tweak the definition of compactness appropriately, so that coupled with

density, it captures algebraically the behavior of the inclusion C(Y ) ↪→ B(Y ).
Let A be an archimedean vector lattice and let u ∈ A be the strong order unit of A. We

identify R with a subalgebra of A by identifying α ∈ R with αu ∈ A.

Definition 2. The canonical extension of an archimedean vector lattice with strong order unit
A is a pair Aσ = (B, e), where B is a Dedekind complete (archimedean) vector lattice with
strong order unit and e : A→ B is a unital vector lattice monomorphism satisfying:

1. (Density) Each x ∈ B is a join of meets and a meet of joins of elements of e[A].

2. (Compactness) For S, T ⊆ A and 0 < ε ∈ R, from
∧
e[S] + ε ≤ ∨

e[T ] it follows that∧
e[S′] ≤ ∨

e[T ′] for some finite S′ ⊆ S and T ′ ⊆ T .



Theorem 3. Let X be a completely regular space, and let C∗(X) be the vector lattice of bounded
continuous real-valued functions on X. Then B(X) is the canonical extension of C∗(X) if and
only if X is compact.

Regardless of whether X is compact, the vector lattice C∗(X) is dense in B(X) in the sense
of Definition 2. Thus, the theorem shows that the compactness axiom of Definition 2 when
applied to C∗(X) and B(X) gives an algebraic formulation of topological compactness.

Theorem 4. Let A be an archimedean vector lattice with strong order unit, Y the Yosida space
of A, and e : A→ C(Y ) the Yosida embedding. Then the pair (B(Y ), e) is up to isomorphism
the canonical extension of A. Thus, canonical extensions of archimedean vector lattices with
strong order unit always exist and are unique up to isomorphism.

In fact, the correspondence A 7→ Aσ is functorial. This functoriality of canonical extensions
contrasts with the lack of it for Dedekind completions [1].

It is well known that a Boolean algebra can be realized as the canonical extension of some
other Boolean algebra if and only if it is complete and atomic. We give a similar characterization
in our setting. Suppose that B is an archimedean vector lattice with strong order unit. If B is
Dedekind complete, then it has a unique multiplication which makes it a lattice-ordered ring
(see, e.g., [1, Sec. 8]). Viewing B as a ring, since B is Dedekind complete, the idempotents
Id(B) of B form a complete Boolean algebra. Then B is a canonical extension of some vector
lattice A with strong order unit if and only Id(B) is atomic. We also give a purely ring-theoretic
characterization of B as a Baer ring with essential socle.
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In this contribution, we shall investigate the notion of an antistructural completion αL of a
propositional logic L, which is in a natural sense dual to the well-known notion of a structural
completion of a logic, and provide several equivalent characterizations of such completions under
some mild conditions on the logic in question.

Recall that the structural completion of a logic L is the largest logic σL which has the same
theorems as L (see [2]). A logic L is then called structurally complete if σL = L. The logic
σL exists for each L and it has a simple description: Γ `σL ϕ if and only if the rule Γ ` ϕ is
admissible, that is, for each substitution σ we have ∅ `L σϕ whenever ∅ `L σγ for each γ ∈ Γ.

Antistructural completions involve the same notions, but with respect to antitheorems rather
than theorems. Here some clarification is in order: an antitheorem of L is a set of formulas
Γ such that no valuation into a model of L designates each γ ∈ Γ. Equivalently, Γ is an
antitheorem of L (symbolically, Γ `L ∅) if σΓ `L FmL for each substitution σ, where FmL is
the set of all formulas of L. A set of formulas Γ is an antitheorem of L if Γ `L Fm provided
that L has an antitheorem (or provided that Γ is finite). It may happen, however, that a logic
has no antitheorems, e.g. the positive fragment of classical or intuitionistic logic.

The antistructural completion of a logic L is defined as the largest logic αL (whenever it
exists) which has the same antitheorems as L. Naturally, a logic L is then antistructurally
complete if αL = L. As a first example, consider intuitionistic logic IL. Its antistructural
completion may be computed using Glivenko’s theorem. We have:

Γ `IL ∅ ⇔ ∅ `IL ∼
∧

Γ ⇔ ∅ `CL ∼
∧

Γ ⇔ Γ `CL ∅

for finite Γ, hence IL and CL have the same antitheorems. Therefore classical logic CL is the
antistructural completion of IL by virtue of being its largest non-trivial extension. Our aim
will be to generalize this Glivenko-like connection between IL and CL to a wider setting.

For this purpose, the following notion is the natural counterpart of admissibility. A rule
Γ ` ϕ will be called antiadmissible in L if for each substitution σ and each ∆ we have:

σΓ,∆ `L ∅ whenever σϕ,∆ `L ∅

Lemma. The antiadmissible rules of each logic form a reflexive monotone structural relation
which is closed under finitary cuts (but not necessarily under arbitrary cuts).

However, unlike the admissible rules, the antiadmissible rules in general need not define a
logic and the antistructural completion of a logic need not exist.

Example. Consider the standard Gödel chain [0, 1]G expanded by a constant cq for each rational
q ∈ Q ∩ [0, 1]. The logic defined semantically by all the principal filters on this chain does not
have an antistructural completion.

The existence of antistructural completions is therefore a rather more delicate matter than in
the case of structural completions. Our main result now provides a widely applicable sufficient
condition for the existence of αL and several equivalent descriptions of this logic.



It involves a technical property which we call the maximal consistency property (MCP)
which states that each consistent theory, i.e. a theory Γ such that Γ 0 ∅, may be extended to a
maximal consistent theory. In particular, each finitary logic enjoys this property.

Theorem. Let L be a logic with a finite antitheorem which enjoys the MCP. (For example, let
L be a finitary logic with an antitheorem.) Then αL exists and the following are equivalent:

(i) Γ `αL ϕ.

(ii) Γ ` ϕ is antiadmissible in L.

(iii) Γ ` ϕ is valid in all L-models 〈Fm,Γ〉 where Γ is a maximal consistent theory.

If L is moreover protoalgebraic, then these are equivalent to:

(iv) σϕ,∆ `L ∅ implies σΓ,∆ `L ∅ for each ∆ and each invertible substitution σ.

(v) Γ ` ϕ is valid in all (reduced) κ-generated L-simple matrices for κ = |VarL |.
If L enjoys the local deduction theorem (LDDT) and finitarity, then these are equivalent to:

(vi) ϕ,∆ `L ∅ implies Γ,∆ `L ∅ for each ∆.

(vii) Γ ` ϕ is valid in all (reduced) L-simple matrices.

Proposition. A finitary logic with an antitheorem L which enjoys the LDDT is antistructurally
complete if and only if ModL is semisimple (each subdirectly irreducible L-model is L-simple).

Item (iv) above may in fact be replaced by item (vi) whenever Γ is finite, or more generally
whenever there are at least κ variables which do not occur in Γ for κ = |VarL |.

Let us now provide some examples of antistructural completions of known logics to illustrate
this notion. The following two claims are essentially reformulations of the results of [1] and [3].

Example. The antistructural completion of Hájek’s Basic Fuzzy Logic is the (infinitary)
 Lukasiewicz logic. Each axiomatic extension of the Full Lambek calculus with exchange and
weakening which validates the axiom p ∨ ¬(pn) for some n ∈ ω is antistructurally complete.

Our main result has some use even outside the realm of protoalgebraic logics.

Example. The antistructural completion of the four-valued Belnap–Dunn logic B is Priest’s
three-valued Logic of Paradox. The antistructural completion of the extension of B by the rule
p,¬p ` q is the Exactly True Logic, i.e. the extension of B by the rule p,¬p ∨ q ` q.

Observe also that the same notions can be considered for algebras rather than logics. For
example, the variety of De Morgan algebras is antistructurally complete, while the antistructural
completion of the variety of De Morgan lattices is the variety of Kleene lattices.
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1 Introduction
Region Connection Calculus is a formalism for reasoning about the relation of contact between regions
in topological spaces [5]. Its role in artificial intelligence and computer science stems from the impor-
tance of spatial informations in systems for natural language understanding, robotic navigation, etc [2].
After the introduction of Region Connection Calculus, Contact Logic and its different variants have
been proposed [1, 4, 6]. Most of them are based on the binary predicate of ordinary contact which holds
between regular closed subsets A and B iff A ∩ B 6= ∅ (“regions A and B are in contact”). Recently,
a ternary predicate of extended contact has been introduced which holds between regular closed subsets
A, B and C iff A ∩ B ⊆ C (“regions A and B are jointly bounded by region C”). Remark that two
regions are in ordinary contact iff they are not jointly bounded by the empty region. Moreover, the in-
terest to consider the new ternary relation of extended contact lies in the possibility it gives to define the
unary predicate of internal connectedness. See [3, Chapter 2] for details. In this note, we introduce the
syntax and the semantics of Extended Contact Logic. Then, we give an axiomatization of the set of all
valid formulas this semantics gives rise to. Finally, we prove the decidability of the set of all theorems
this axiomatization gives rise to.

2 Syntax and semantics
Let V AR be a countable set of variables (p, q, etc). The set TER of all terms (α, β, etc) is defined by

• α ::= p | 0 | α? | (α+ β).

Reading terms as regions, the constructs 0, ? and + should be regarded as the empty region, the com-
plement operation and the union operation. The set FOR of all formulas (ϕ, ψ, etc) is defined by

• ϕ ::= α ≤ β | (α, β) . γ | ⊥ | ¬ϕ | (ϕ ∨ ψ).

For ≤ and ., we propose the following readings: α ≤ β can be read “region α is contained in region
β”, (α, β) . γ can be read “regions α and β are jointly bounded by region γ”. We will write α ≡ β for
(α ≤ β ∧ β ≤ α). Terms and formulas are interpreted in topological models, i.e. structures of the form
(X, τ, V ) where (X, τ) is a topological space and V is a valuation on (X, τ), i.e. a map associating
with every term α a regular closed subset V (α) of (X, τ) such that

• V (0) = ∅,

• V (α?) = Clτ (X \ V (α)) where Clτ denotes the closure operator in (X, τ),

• V (α+ β) = V (α) ∪ V (β).

The connectives ⊥, ¬ and ∨ being classically interpreted, the satisfiability of a formula ϕ in (X, τ, V )
(in symbols (X, τ, V ) |= ϕ) is defined as follows:

• (X, τ, V ) |= α ≤ β iff V (α) ⊆ V (β),



• (X, τ, V ) |= (α, β) . γ iff V (α) ∩ V (β) ⊆ V (γ).

We will say that the formula ϕ is valid (in symbols |= ϕ) iff for all topological models (X, τ, V ),
(X, τ, V ) |= ϕ.

3 Axiomatization and decidability
Let Lmin be the Hilbert-style axiomatic system consisting of the inference rule of modus ponens and
the following axioms:

sentential axioms: instances of tautologies of propositional classical logic,

identity axioms: α ≡ α, α ≡ β → β ≡ α, α ≡ β ∧ β ≡ γ → α ≡ γ,

congruence axioms: α ≡ β → α? ≡ β?, α ≡ β ∧ γ ≡ δ → α+ γ ≡ β + δ,

Boolean axioms: (α+ β) + γ ≡ α+ (β + γ), α+ β = β + α, etc,

nondegenerate axiom: 0 6≡ 1,

extended contact axioms: (i) (α, β).γ → (β, α).γ, (ii) α ≤ γ → (α, β).γ, (iii) (α, β).γ∧(α, β).
δ∧ (γ, δ). ε→ (α, β). ε, (iv) (α, β).γ → α ·β ≤ γ, (v) (α, γ).δ∧ (β, γ).δ → (α+β, γ).δ.

The notion of proof in Lmin is the standard one. All provable formulas will be called theorems of Lmin.

Proposition 1. For all formulas ϕ, |= ϕ iff ϕ is a theorem of Lmin.

Proof. For the soundness, it suffices to check that the inference rule of modus ponens preserve validity
and that all axioms of Lmin are valid. For the completeness, a detour through a semantical interpretation
of terms and formulas in extended contact algebras as the ones studied in [3, Chapter 2] can be done.

Proposition 2. The set of all theorems of Lmin is decidable.

Proof. A detour through a semantical interpretation of terms and formulas in relational structures as the
ones studied in [1] and an associated finite model property can be done.

Nevertheless, the exact complexity of the set of all theorems of Lmin is not known.
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In this article, we define and study prime injectivity which is a generalization of M-
injectivity and investigate Skornjakov criterion respect to prime injectivity of acts. We
charecterize the behaviour of the property considered under well-known constructions such
as product, coproduct and direct sum. Ultimately, among the following results it is proved that
an S-act is prime injective if and only if it is a prime-absolute retract if and only if it has no
prime-essential extension.

1 Prime injective acts

In this section we define a generalization of injectivity of S-acts and we are going to study some
behaviour of it.

Definition 1.1. (1) An act A is said to be prime injective, if for any prime monomorphism
g : B → C, any homomorphism f : B → A can be lifted to a homomorphism f̄ : C → A, such
that f̄g = f .
(2) An act A is said to be weakly prime injective, if it is injective relative to embeddings of all
prime ideals into S.
(3) An S-act A is called to be f-g prime injective (cyclic prime injective), whenever for each
prime homomorhism g : F → C from finitely generated (cyclic) act F to an act C, and for any
homomorphism f : F → A there exists a homomorphism h : C → A such that hg = f .

It is clear every injective act is prime injective act and all prime injective acts are weakly
prime injective and each M-injective act is a (weakly) prime injective act.

Proposition 1.2. An act A is weakly prime injective if and only if for any homomorphism
f : IS → A, where I ⊆ S is a prime right ideal. there exists an element a ∈ A such that
f(s) = as for every s ∈ I.

Lemma 1.3. The following statements are equivalent for monoid S.

(1) Every prime ideal of S is a retract of S.

(2) Every prime ideal of S is weakly prime injective.

Recall that every cofree act is injective. Now we can say every cofree act is prime injective
with the similary proof of theorem 3.1.5 of [4]. It is implies that every act can be embedded
into a prime injective act. It means that the category of S-act has enough prime injective acts.

Lemma 1.4. Every prime injective act contains a zero.

Note that the category S-act is complete and cocomplete and has all products, coproducts,
pushouts, pullbacks.
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Proposition 1.5. Let {Ai : i ∈ I} be a family of S-acts. Then

(1)
∏
i∈I Ai is prime injective (f-g prime injective, cyclic prime injective) if and only if Ai’s

are prime injective (f-g prime injective, cyclic prime injective) for all i ∈ I.

(2) If the coproduct
∐
i∈I Ai is prime injective (f-g prime injective, cyclic prime injective),

then each Ai is prime injective (f-g prime injective, cyclic prime injective) act.

Proposition 1.6. Each direct sum of f-g prime injective (cyclic prime injective) acts is f-g
prime injective (cyclic prime injective) .

The converse of part (2) of Proposition 1.5, is not necessarily true in general. But we will
show in Proposition 1.9, its converse is true for special S.

Theorem 1.7. Assume an act A contain a zero θ. A is prime injective if and only if it is
injective relative to all inclusions prime subact of cyclic acts.

Definition 1.8. A monoid S is called left prime reversible if I ∩ J 6= ∅ for any prime right
ideals I and J of S.

Proposition 1.9. The following statements are equivalent for any monoid S

(1) All coproducts of prime injective right acts are prime injective.

(2) {x, y} is prime injective where x, y are fixed elements.

(3) S is left prime reversible.

Theorem 1.10. Pushouts transfer prime monomorphisms.

Next theorem is one of the most interesting theorems about injectivity of S-acts with re-
spect to any subclass of prime monomorphisms. This was proved by P. Berthiaume in [3], for
injective acts and B. Banaschewski [2] has proved it for M-injective acts when M is subclass
of monomorhisms.

Theorem 1.11. Let S be a semigroup. The following are equivalent for an S-act A:

(1) A is prime injective.

(2) A is a prime-absolute retract.

(3) A has no prime-essential extension.

Theorem 1.11 immediately implies

Corollary 1.12. For every right S-act there exists an prime injective hull.

We are going to show that absolutely pure acts are absolutely prime-retract and then by
Theorem 1.11, they are prime injective acts.

Theorem 1.13. Every absolutely pure acts are prime injective.
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Following the ground breaking results of Maksimova [6] many families of propositional logics
have been classified w.r.t. the interpolation property. However, on first-order level, the knowl-
edge about interpolation is restricted. Moreover, it is not known which of the seven interpolating
intermediary propositional logics [5] admit first-order interpolation (first-order infinitely-valued
Gödel logic G[0,1] is the most notable example).

This lecture develops a general methodology to connect propositional and first-order inter-
polation. The construction of the first-order interpolant follows this procedure:

existence of suitable Skolemizations +
existence of Herbrand expansions +

propositional interpolant



→

first-order
interpolation.

This methodology is realized for lattice-based finitely-valued logics, the top element representing
true and can be extended to (fragments of) infinitely-valued logics.

The construction of the first-order interpolant from the propositional interpolant follows
this procedure:

1. Develop a validity equivalent Skolemization replacing all strong quantifiers (negative ex-
istential or positive universal quantifiers) in the valid formula A ⊃ B to obtain the valid
formula A1 ⊃ B1.

2. Construct a valid Herbrand expansion A2 ⊃ B2 for A1 ⊃ B1. Occurrences of ∃xB(x)
and ∀xA(x) are replaced by suitable finite disjunctions

∨
B(ti) and conjunctions

∧
B(ti),

respectively.

3. Interpolate the propositionally valid formula A2 ⊃ B2 with the propositional interpolant
I∗: A2 ⊃ I∗ and I∗ ⊃ B2 are propositionally valid.

4. Reintroduce weak quantifiers to obtain valid formulas A1 ⊃ I∗ and I∗ ⊃ B1.

5. Eliminate all function symbols and constants not in the common language of A1 and
B1 by introducing suitable quantifiers in I∗ (note that no Skolem functions are in the
common language, therefore they are eliminated). Let I be the result.

∗The first author discussed the problem of deciding the admissibility of interpolation in first-order logics on
the basis of the admissibility interpolation in propositional logics with Petr Hájek who suggested that proof-
theoretic approaches might help to overcome the lack of algebraization of first-order logics.
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6. I is an interpolant for A1 ⊃ B1. A1 ⊃ I and I ⊃ B1 are Skolemizations of A ⊃ I and
I ⊃ B. Therefore I is an interpolant of A ⊃ B.

This methodology is realized for lattice-based finitely-valued logics and can be extended
to (fragments of) infinitely-valued logics (more precisely to fragments of first-order infinitely-
valued Gödel logic).

Consider Gödel logic G[0,1], the logic of all linearly ordered Kripke frames with constant
domains. Its connectives can be interpreted as functions over the real interval [0, 1] as follows:
⊥ is the logical constant for 0, ∨,∧,∃,∀ are defined as maximum, minimum, supremum, infimum,
respectively. ¬A is an abbreviation for A→ ⊥ and → is defined as

u→ v =

{
1 u ≤ v
v else

The weak quantifier fragment of G[0,1] admits Herbrand expansions. This follows from cut-
free proofs in hypersequent calculi [1, 2, 3]. This can be easily shown by proof transformation
steps in the hypersequent calculus. Indeed, we can transform proofs by eliminating weak
quantifier inferences:

i If there is an occurrence of an ∃ introduction, we select all formulas Ai that correspond
to this inference and eliminate the ∃ introduction by the use of

∨
iAi.

ii If there is an occurrence of a ∀ introduction, we select all formulas Bi that correspond to
this inference and eliminate the ∀ introduction by the use of

∧
iBi.

With this procedure we do not infer weak quantifiers and combine the disjunctions/conjunctions
to accommodate contractions. Propositional Gödel logic interpolates and therefore the weak
quantifier fragment of G[0,1] interpolates, too.

The fragment A ⊃ B, A,B prenex also interpolates: Skolemize as in classical logic, construct
a Herbrand expansion, interpolate, go back to the Skolem form and use an immediate analogy
of the 2nd ε-theorem [4] to go back to the original formulas.
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1 Introduction

The purpose of this work is to present results on the existence of “function spaces” in cate-
gories of quantale-enriched categories, with particular emphasis on generalized metric spaces
and generalized probabilistic metric spaces and their corresponding non-expansive maps (see
[7] and [6]), that is, V -categories and V -functors when V is respectively the quantale of the
complete half-real line equipped with addition and the quantale of distribution functions, but
focusing also on categories enriched in the unit interval equipped with a continuous t-norm.

Most of the material presented is part of joint work with Dirk Hofmann that is published in [2]
and [3] (see also [4]).

2 Exponentiable quantale-enriched categories

Given a quantale (V,⊗, k), it is well-known that the category V -Cat of enriched V -categories
and V -functors is closed, that is, for each V -category X the functor − ⊗X : V -Cat → V -Cat
induced in V -Cat by the tensor ⊗ in V has a right adjoint (see [7]). Here we concentrate on
cartesian closedness of V -Cat, that is, on the existence of a right adjoint ( )X : V -Cat→ V -Cat
to the functor − × X : V -Cat → V -Cat for each V -category X. This is not always the case,
and in fact this ends up on the existence of a convenient V -category structure on the set Y X

of V -functors from X to Y (= exponential of Y with exponent X), for every V -category Y .

We will also pose this problem more generally, studying instead the existence of exponen-
tials in the comma categories (V -Cat) ↓ Y . Inspired by known results on exponentiability for
continuous maps between topological spaces (see [5] and [1]), we prove in particular that every
proper and every étale V -functor is exponentiable in V -Cat.

3 Final remarks

This study leads also to some interesting open problems on the properties of the quantales
involved, namely on the quantale of distribution functions.

References

[1] F. Cagliari, S. Mantovani, Local homeomorphisms as the exponentiable morphisms in compact
Hausdorff spaces, Topology Appl. 41 (1991) 263–272.

[2] M.M. Clementino, D. Hofmann, Exponentiation in V -categories, Topol. Appl. 153 (2006) 3113–
3128.

[3] M.M. Clementino, D. Hofmann, The rise and fall of V -functors, Fuzzy Sets Syst. (published online).



[4] M.M. Clementino, D. Hofmann, I. Stubbe, Exponentiable functors between quantaloid-enriched
categories, Appl. Categ. Struct. 17 (2009) 91–101.

[5] M.M. Clementino, D. Hofmann, W. Tholen, The convergence approach to exponentiable maps,
Port. Math. 60 (2003) 139–160.

[6] D. Hofmann, C.D. Reis, Probabilistic metric spaces as enriched categories, Fuzzy Sets Syst. 210
(2013) 1–21.

[7] F. William Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Semin. Mat.
Fis. Milano 43 (1973) 135–166, republished in: Reprints in Theory and Applications of Categories,
vol.1, 2002, pp.1–37.



A Vietoris functor for bispaces and d-frames
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Vietoris topology [12], hyperspace, powerlocale or powerdomain are many names for the same phe-
nomenon. The scope of its applications ranges from semantics of programming languages [1, 10],
coalgebraic logic [7, 8] to modal logic [2, 7, 11, 9]. Also, in Abramsky’s “Domain theory in logical
form” [1], a Vietoris construction has been an important tool for establishing a connection between
syntax and semantics. An example of another such situation is the Jónsson-Tarski duality [5]. In
modern parlance, we have an endofunctor V on Stone spaces and an endofunctor on Boolean
algebras M:

Stone Bool

Clp

spec

V M

Moreover, the duality of Stone spaces and Boolean algebras extends to a duality of V-coalgebras
and M-algebras. The category of V-coalgebras is isomorphic to the category of descriptive general
Kripke frames and the category of M-algebras is isomorphic to the category of modal Boolean
algebras.

Jónnson-Tarski duality is an instance of a more general picture where we can substitute Stone
by a suitable category of spaces (modelling semantics) and Bool by a suitable category of algebras
(modelling syntax) such that those categories are dually equivalent and some interconnected power-
constructions V and M still exist. Other examples, where we can replace the base categories,
include Priestley spaces and distributive lattices, or compact Hausdorff spaces and compact regular
frames.

It was a beautiful insight by Jung and Moshier that all the dualities mentioned in the previ-
ous paragraph, and many more, sit in the duality between compact regular bitopological spaces
biKReg and compact regular d-frames d-KReg [6]. Here d-frames are algebraic duals of bitopo-
logical spaces in the same way as frames1 are algebraic duals of (ordinary) spaces. We give Vietoris
endofunctors W and Md which are generalisations of the corresponding Vietoris constructions for
Stone, Priestley and frame dualities mentioned above.

biKReg d-KReg

Ω

Σ

W Md

The construction

On the semantic side, we have the endofunctor W : biKReg→ biKReg. Similarly to the Vietoris
endofunctor for spaces or domains, the points of W(X; τ+, τ−) are compact convex subsets of X

1Frames are complete lattices satisfying the equation: a ∧ (
∨

i bi) =
∨

i(a ∧ bi).
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and subbases of the topologies of W(X) are sets {×2U+, +3U+ : U+ ∈ τ+} and {×2U−, +3U− : U− ∈
τ−} where

K ∈ ×2U iff K ⊆ U and K ∈ +3U iff K ∩ U 6= ∅.
On the algebraic side we have d-frames, i.e. structures of the form (L+, L−; con, tot) where

L+ and L− are frames corresponding to the two topologies and con ⊆ L+×L− is a relation which
captures when two abstract opens are disjoint from each other and, similarly, tot ⊆ L+×L−
representing when two abstract opens cover the whole space. The endofunctor Md : d-Frm →
d-Frm is computed as follows

Md : (L+, L−; con, tot) 7−→ (MFrmL+, MFrmL−; conM, totM).

Here, MFrm is the Johnstone’s powerlocale construction for frames [4]. To describe the consistency
and totality relations we need to develop a free construction of a d-frame and then conM and totM

can be given by a set of generators. Similarly as in frames, Md is comonadic and we also have the
following familiar result:

Theorem. Let L be a d-frame. If L is regular, zero-dimensional or compact regular then also
MdL is.

Thanks to this, we can restrict Md to an endofunctor Md : d-KReg→ d-KReg and formalise
the connection between W and Md. The first step is to investigate the spectrum bispace ΣMd(L).
It turns out that its points have a very natural description. Namely, they are in bijection with the
set of α ∈ L+×L− such that

(A+) ∀u+ ∈ L+: if (α+ ∨ u+, α−) ∈ tot then (u+, α−) ∈ tot

(A−) ∀u− ∈ L−: if (α+, α− ∨ u−) ∈ tot then (α+, u−) ∈ tot

We can now prove the main result:

Theorem. Let L be a compact regular d-frame. Then, WΣ(L) ∼= ΣMd(L). Moreover, this bi-
homeomorphism is natural in L.

Thanks to this, we can lift the dual equivalence of categories biKReg and d-KReg to a dual
equivalence of the category of W-coalgebras and the category of Md-algebras.

As mentioned above, W is a generalisation of the corresponding Vietoris constructions for
Stone spaces, Priestley spaces or compact regular spaces. Similarly, Md is a generalisation of the
constructions for Boolean algebras, distributive lattices and compact regular frames.

Another duality that embeds into the duality biKRegop ∼= d-KReg is the duality between
the category of stably compact spaces (i.e. compact Hausdorff ordered spaces) and the category
of strong proximity lattices. In fact, those categories are equivalent to biKReg and d-KReg,
respectively. Although a Vietoris construction is known for stably compact spaces [3], Md is (to
our knowledge) the first algebraic counterpart for it. Moreover, the free construction we developed
for d-frame Vietoris functor is the first free construction of a d-frame.
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We show how previous work on modal extensions of Łn-valued logics fits naturally into the coalgebraic
framework and indicate some of the ensuing generalisations.

Modal extensions of Łn-valued logics. We study logics with a modal operator � and built from a
countable set of propositional variables Prop using the connectors ¬,→,�, 1 in the usual way. To interpret
formulas on structures, we use a (crisp) many-valued generalization of the Kripke models. We fix a positive
integer n and we denote by Łn the subalgebra Łn = {0, 1

n , . . . ,
n−1
n , 1} of the standard MV-algebra 〈[0, 1],¬,→

, 1〉. A frame is a couple 〈W,R〉 where W is a nonempty set and R is an binary relation. We denote by FR
the class of frames.

Definition 0.1 ([2, 4, 5, 9]). An  Ln-valued model, or a model for short, is a couple M = 〈F,Val〉 where
F = 〈W,R〉 is a frame and Val : W ×Prop→ Łn. The valuation map Val is extended inductively to W ×Form
using  Lukasiewicz’ interpretation of the connectors 0, ¬ and → in [0, 1] and the rule

Val(u,�φ) = min{Val(w, φ) | w ∈ Ru}. (1)

A formula φ is true in an Łn-valued model M = 〈F,Val〉, in notation M |= φ, if Val(u, φ) = 1 for every
world u of F. If Φ is a set of formulas that are true in every Łn-valued model based on an frame F, we write

F |=n Φ

and say that Φ is Łn-valid in F.

Apart from the signature of frames, there is another first-order signature that can be used to interpret
formulas. We denote by � the dual order of divisibility on N, that is, for every `, k ∈ N we write ` � k if `
is a divisor of k, and ` ≺ k if ` is a proper divisor of k.

Definition 0.2 (n-frames, [5, 9]). An n-frame is a tuple 〈W, (rm)m�n, R〉 where 〈W,R〉 is a frame, rm ⊆W
for every m � n, and

1. rn = W and rm ∩ rq = rgcd(m,q) for any m, q � n,

2. Ru ⊆ rm for any m � n and u ∈ rm.

FRn is the class of n-frames. For F ∈ FRn, a model M = 〈F,Val〉 is based on F if Val(u,Prop) ⊆ Łm for
every m � n and u ∈ rm. We write

F |= Φ

if Φ holds in all models based on F.

It is apparent from [4, 8, 5, 9] that |= is better behaved then |=n because there is a nice duality between
n-frames and modal MVn-algebras, very much analogous to the classical duality between Kripke frames
and Boolean algebras with operators. For example, the Goldblatt-Thomason theorem for modal Łn-valued
logic in [9] is first proved for n-frames and |=. The Goldblatt-Thomason theorem for frames and |=n then
appears as a corollary. Morevoer, the canonical extension of a modal MVn-algebra A can be obtained as

∗bilkova@cs.cas.cz
†ak155@leicester.ac.uk
‡bruno.teheux@uni.lu



the complex algebra of a canonical n-frame associated with A. This construction leads to completeness-
through-canonicity results [5] with regards to classes of n-frames.

Modal extensions of Łn-valued logics, coalgebraically. We account for |=n by following well-
established coalgebraic methodology, summarised in

SetT

-- P ,,
MVn

S

kk L

jj
(2)

where T = P is the powerset functor and LA is the free MVn algebra generated by {�a | a ∈ A} modulo
the axioms of modal MVn-algebras. P and S are the contravariant functors given by homming into Łn.
(1) allows us to extend P to a functor P̃ from T -coalgebras to L-algebras, assigning to a T -coalgebra its

‘complex algebra’. Similarly, the functor S can be extended to a functor S̃ from L-algebras to T -coalgebras
assigning to an L-algebra its ‘canonical structure’.

A Kripke frame F = 〈W,R〉 is exactly a T -coalgebra (for T = P). The Lindenbaum algebras (over a set
of atomic propositions) are free L-algebras. We have F |= φ iff all morphisms from the free L-algebra (over

the atomic propositions of φ) to P̃F map φ to W .
To account for |=, we replace, in (2), Set by the category SetVn defined as follows. Let Vn = {1, . . . , n}

be the lattice of all divisors of n ordered by n ≤ m if m divides n (so that n is bottom and 1 is top). Then
SetVn has as objects pairs (X, v) with v : X → V and arrows are maps f : (X, v) → (X ′, v′) such that
v′fx ≥ vx. Note that this definition makes sense for any complete lattice V and that SetV coincides with
Goguen’s category of fuzzy sets [3].1

In order to extend functors T : Set→ Set as in (2) to functors SetVn → SetVn we notice that SetV can be
described equivalently as a category of ‘continuous presheaves’. A continuous presheaf is a collection of sets
(X, (Xi)i∈V) such that (i) i ≤ j only if Xj ⊆ Xi (ii) X∨

I =
⋂
i∈I Xi (iii) X0 = X. Under mild conditions,

this allows us to extend T pointwise by mapping (X, (Xi)i∈V) to (TX, (TXi)i∈V).
In case of V = Vn and T = P, a T -coalgebra is precisely an n-frame, and capture the situation for |=:

SetVnT
== P ,,

MVn

S
ll L

jj
(3)

The adjunction (3) has better properties than (2). In particular, (3) restricts to a dual equivalence on finite
structures. This shows that (3) falls into the framework of [7] and allows us to obtain the Goldblatt-Thomason
theorems of [9] from the coalgebraic Goldblatt-Thomason theorem of [6]. In particular, this generalises the
theorems of [9] to other functors T .
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Following Fréchet [1], a metric space (X, d) is a set X together with a real-valued function
d on X ×X such that the following axioms hold:

[M0] d(x, y) ≥ 0,
[M1] d(x, y) + d(y, z) ≥ d(x, z),
[M2] d(x, x) = 0,
[M3] if d(x, y) = 0 = d(y, x) then x = y,
[M4] d(x, y) = d(y, x),
[M5] d(x, y) 6= +∞.

The categorical content of this definition, as first observed by Lawvere [6], is that the extended
real interval [0,∞] underlies a commutative quantale ([0,∞],

∧
,+, 0), so that a “generalised

metric space” (i.e. a structure as above, minus the axioms M3-M4-M5) is exactly a category
enriched in that quantale. It was furthermore shown in [4] that to any category enriched in
a commutative quantale one can associate a closure operator on its collection of objects. For
a metric space (X, d), viewed as an [0,∞]-enriched category, that “categorical closure” on X
coincides precisely with the metric (topological) closure defined by d. And Lawvere [6] famously
reformulated the Cauchy completeness of a metric space in terms of adjoint distributors.

More recently, see e.g. [7], the notion of a partial metric space (X, p) has been proposed to
mean a set X together with a real-valued function p on X ×X satisfying the following axioms:

[P0] p(x, y) ≥ 0,
[P1] p(x, y) + p(y, z)− p(y, y) ≥ p(x, z),
[P2] p(x, y) ≥ p(x, x),
[P3] if p(x, y) = p(x, x) = p(y, y) = p(y, x) then x = y,
[P4] p(x, y) = p(y, x),
[P5] p(x, y) 6= +∞.

The categorical content of this definition was discovered in two steps: first, Höhle and Kubiak
[5] showed that there is a particular quantaloid of positive real numbers, such that categories
enriched in that quantaloid correspond to (“generalised”) partial metric spaces; and second,
we realised in [8] that Höhle and Kubiak’s quantaloid of real numbers is actually a universal
construction on Lawvere’s quantale of real numbers: namely, the quantaloidD[0,∞] of diagonals
in [0,∞].

In this talk we shall show how every small quantaloid-enriched category has a canonical clo-
sure operator on its set of objects: this makes for a functor from quantaloid-enriched categories
to closure spaces. Under mild necessary-and-sufficient conditions on the base quantaloid, this
functor lands in the category of topological spaces; and an involutive quantaloid is Cauchy-
bilateral (a property discovered earlier in the context of distributive laws [2]) if and only if
the closure on any enriched category is identical to the closure on its symmetrisation. As this
now applies to metric spaces and partial metric spaces alike, we demonstrate how these general
categorical constructions produce the “correct” definitions of convergence and Cauchyness of
sequences in generalised partial metric spaces. Finally we describe the Cauchy-completion (and,
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if time premits, also the Hausdorff contruction and exponentiability) of a partial metric space,
again by application of general quantaloid-enriched category theory.

This talk is based on a joint paper with Dirk Hofmann [3].
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Several publications in the literature address the study of modal expansions of many-valued
logics (see eg. [3, 2] [1], [4], [5]), and it is the aim of the current work to contribute to the
better understanding of this topic. In particular, the framework developed in [1], which focused
on modal logics defined from classes of Kripke models evaluated over finite residuated lattices,
proposed several interesting open problems, and along the following lines we solve some of them.

In [1] we can find an standard definition of the Kripke models of a finite integral bounded
commutative residuated lattice A (simply called finite residuated lattices in the rest of the
abstract). There, the authors provide an axiomatic system for the local consequence relation
arising from the models of Ac (the algebra A expanded with canonical constants1), while it
is left as open problem the formulation of the corresponding system for the analogous global
consequence relation.2 On the other hand, the modal logics studied in [1] consider only the 2

modal operator, interpreted in a world of the model, as usual, by e(v,2ϕ) =
∧

w∈W Rvw →
e(w,ϕ). It is well known that, over residuated lattices the dual 3 operator, for e(v,3ϕ) =∧

w∈W Rvw� e(w,ϕ), is in general no longer definable from 2, since the negation needs not to
be involutive.

We wish to address the previous topics towards the full characterization, and subsequent
understanding, applicability and possible generalisation of modal many-valued logics.

For B a finite residuated lattice (with or without canonical constants) consider the following
logics, all of them defined from classes of Kripke models as usual:
• 
l

2B and 
l
32B: the local consequence relation over the Kripke models of B, with only

2 and with both 2 and 3 operators,

• 
g
2B and 
g

32B: the global consequence relation over the Kripke models of B, with only
2 and with both 2 and 3 operators.

Let `l
2Ac denote the axiomatic system for 
l

2Ac provided in [1, Th. 4.11 ] (called there
Λ(l,Fr,Ac)). As far as we know, all the other logics from the previous list have not been
axiomatized in the literature, for arbitrary B. We can first exhibit recursively enumerable
axiomatic systems for 
l

32Ac and for both global logics arising from algebras with constants.
1. Let `l

32Ac be the axiomatic system `l
2Ac extended with 2(ϕ → c) ↔ (3ϕ → c) for each

c ∈ A. Then for any set of formulas Γ, ϕ it holds that

Γ `l
32Ac ϕ ⇐⇒ Γ 
l

32Ac ϕ

2. Let `g
2Ac be the axiomatic system `l

2Ac expanded with the rule (Mon) : ϕ→ ψ�2ϕ→ 2ψ.
Similarly, let `g

32Ac be the axiomatic system `l
32Ac expanded with the rule (Mon). Then

for any set of formulas Γ, ϕ

Γ `g
2Ac ϕ ⇐⇒ Γ 
g

2Ac ϕ and Γ `g
32Ac ϕ ⇐⇒ Γ 
g

32Ac ϕ

1That is, with one additional constant symbol for each one of its elements, interpreted in the natural way.
2We are interested here in the models where the accessibility relation is evaluated in A. In [1] it is presented

an axiomatization of the global consequence of the smaller class of models with {0, 1}-valued accessibility relation.
It is worth to remark that the usual K axiom holds in this restricted class of models, while it does not in the
general framework.
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In order to prove the previous completeness results, finitarity of the propositional logic (due
to finiteness of the algebra) and presence of constants are crucial. Nevertheless, resorting to
those properties it is not hard to prove the Truth Lemma for the usual Canonical Models (both
for the local and global logics). We remark here for the interested reader a cornerstone property
from which the Truth Lemma follows easily, provable for all the previous canonical models:3

For any formula ψ and any h ∈W c, if Rchg ≤ g(ψ) for all g ∈W c then h(2ψ) = 1.

The relation between the local and global modal logics of the class of frames over an algebra
A (and over its corresponding Ac) is now easy to understand. First, from the previous com-
pleteness result is immediate that the logic 
g

2Ac (
g
32Ac) is the smallest consequence relation

containing 
l
2Ac (respectively, 
l

32Ac) and closed under (Mon). On the other hand, by the
definition of the modal logics arising from a class of models, is clear that for any set of formulas
Γ, ϕ without (non-trivial) constant symbols it holds that

Γ 
∗MA ϕ ⇐⇒ Γ 
∗MAc ϕ

for ∗ ∈ {l, g} and M ∈ {2,32}.
Even if we do not have a syntactical characterization of the modal logics arising from Kripke

models over residuated lattices without canonical constants, the previous relation provides
interesting information about these logics. A first immediate observation is that the logics 
∗MA
are finitary, since so are their corresponding versions over Ac. Finitarity of both, the logic and
the rule (Mon), provide (via eg. Zorn’s Lemma) a very simple characterization of [
l

MA](Mon), the
minimum consequence relation expanding 
l

MA closed under (Mon). From there, it is easy to
prove that for any Γ, ϕ without non-trivial constant symbols

Γ[
l
MA](Mon)ϕ ⇐⇒ Γ[
l

MAc ](Mon)ϕ

After the previous observations and using the completeness results stated above for logics over
lattices with canonical constants, we can prove the following chain of equivalences:

Γ 
g
MA ϕ ⇐⇒ Γ 
g

MAc ϕ ⇐⇒ Γ[
l
MAc ](Mon)ϕ ⇐⇒ Γ[
l

MA](Mon)ϕ.

This answers positively the open question (4) from [1], on whether the global deduction is
the minimum closure operator containing the local deduction one and closed under the (Mon),
both for finite residuated lattices with and without canonical constants.
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A De Morgan monoid A = 〈A; ·,∧,∨,¬, e〉 comprises a distributive lattice 〈A;∧,∨〉, a
commutative monoid 〈A; ·, e〉 satisfying x 6 x2 := x · x, and a function ¬ : A −→ A, called
an involution, such that A satisfies ¬¬x = x and x · y 6 z ⇐⇒ x · ¬z 6 ¬y. (The derived
operations x→ y := ¬(x ·¬y) and f := ¬e turn A into an involutive residuated lattice in the
sense of [3].)

The class DMM of all De Morgan monoids is a variety that algebraizes the relevance logic Rt

of [1]. Its lattice of subvarieties ΛDMM is dually isomorphic to the lattice of axiomatic extensions
of Rt. A Sugihara monoid is a De Morgan monoid that is idempotent, i.e., it satisfies x2 = x.
Sugihara monoids are subdirect products of chains. They are locally finite and well-understood
(see Dunn’s contributions to [1]).

In contrast, relatively little is known about the structure of (i) arbitrary De Morgan monoids
and (ii) the lattice ΛDMM. This situation is lamented in [8, p. 263] and [2, Sec. 3.5], which pre-
date many recent papers on residuated lattices. But the latter have concentrated mainly on
varieties incomparable with DMM (e.g., Heyting and MV-algebras), larger than DMM (e.g.,
full Lambek algebras) or smaller (e.g., Sugihara monoids). On the positive side, Slaney [5, 6]
showed that the free 0–generated De Morgan monoid is finite, and that there are only seven
non-isomorphic subdirectly irreducible 0–generated De Morgan monoids. No finiteness result of
this kind holds in the 1–generated case, however. This talk and its sequel report on an attempt
to enlarge our knowledge of DMM and its subvariety lattice.

Like any commutative residuated lattice, a De Morgan monoid A is finitely subdirectly
irreducible iff its neutral element e is join-irreducible. In this case, however, the extra features
of De Morgan monoids imply additional properties, e.g., A consists only of upper bounds of e
and lower bounds of f , i.e., A = [e) ∪ (f ]. To this description, we can add a new result:

Theorem 1. Every finitely subdirectly irreducible De Morgan monoid A consists of an interval
subalgebra [¬a, a] and two chains of idempotent elements, (¬a] and [a), where a is e or f2.

In the former case, [¬a, a] has at most two elements, and A is a Sugihara monoid. The case
a = f2 6= e is more challenging, as it involves non-idempotent elements and an order that need
not be linear. In both cases, e and f belong to the interval [¬a, a].

To describe the atoms of ΛDMM, we need to refer to the De Morgan monoids depicted below.
(If b is the least element of a De Morgan monoid, then a · b = b for all elements a.) Note that 2
is a Boolean algebra, and S3 is a Sugihara monoid. In what follows, V(A) [resp. Q(A)] denotes
the smallest variety [resp. quasivariety] containing an algebra A.

∗presenter
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Lemma 2. Up to isomorphism, 2, C4 and D4 are the only simple 0–generated De Morgan
monoids.

Theorem 3. The distinct classes V(2), V(S3), V(C4) and V(D4) are precisely the minimal
varieties of De Morgan monoids.

Lemma 2 is implicit in Slaney’s identification of the 0–generated subdirectly irreducible De
Morgan monoids, but it is easier to prove it directly. Theorem 3 (which uses Lemma 2) does
not seem to have been stated explicitly in the relevance logic literature.

It can also be shown that a subquasivariety of DMM is minimal (i.e., it contains no nontrivial
proper subquasivariety) iff it is V(S3) or Q(A) for some nontrivial 0–generated De Morgan
monoid A. Combining this observation with Slaney’s description of the free 0–generated De
Morgan monoid in [5], we obtain:

Theorem 4. The variety of De Morgan monoids has just 68 minimal subquasivarieties.

For philosophical reasons, the relevance logic literature also emphasizes a system called R,
which differs from Rt in that it lacks the so-called Ackermann truth constant t (corresponding
to the neutral element e of a De Morgan monoid). The logic R is algebraized by the variety
RA of relevant algebras. Świrydowicz [7] showed that the subvariety lattice of RA has a unique
atom, with just three covers. We remark that this result can be derived more easily from
Theorem 3 and the following finding of Slaney [6]: if h : A −→ B is a homomorphism from
a finitely subdirectly irreducible De Morgan monoid into a nontrivial 0–generated De Morgan
monoid, then h is an isomorphism or B ∼= C4.

Świrydowicz’s theorem has been applied recently to show that no consistent axiomatic ex-
tension of R is structurally complete, except for classical propositional logic [4]. The situation
for Rt is very different and is the subject of ongoing algebraic investigation by the present
authors.
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This is the second half of a two-part talk on the lattice ΛDMM of subvarieties of the variety
DMM of all De Morgan monoids. The investigation is motivated by an anti-isomorphism be-
tween ΛDMM and the lattice of axiomatic extensions of the relevance logic Rt of [1]. Recall that
a De Morgan monoid A = 〈A; ·,∧,∨,¬, e〉 is the expansion of a commutative monoid 〈A; ·, e〉
by a residuated distributive lattice order and a compatible antitone involution ¬, where a 6 a2
for all elements a, and that f := ¬e.

The first talk established that the atoms of ΛDMM (i.e., the minimal varieties of De Morgan
monoids) are just the four varieties generated, respectively, by the De Morgan monoids depicted
below. They include the two-element Boolean algebra 2, and the three-element Sugihara monoid
S3. In the present talk, we aim to say as much as possible about the covers of these four atoms
in ΛDMM, since these define the ‘pre-maximal’ consistent axiomatic extensions of Rt.
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In ΛDMM, a cover K of one of the atoms (V(A), say) will be called interesting if K is not the
varietal join of V(A) and one of the other three minimal varieties. We can show:

Theorem 1. (i) V(2) has no interesting cover within DMM.

(ii) The only interesting cover of V(S3) within DMM is the variety V(S5) generated by the
five-element (totally ordered) Sugihara monoid.

(iii) Every interesting cover of V(D4) within DMM has the form V(A) for some simple 1–
generated De Morgan monoid A, where D4 embeds into A but is not isomorphic to A.

The situation with V(C4) is more complex, as can be guessed from the following result of
Slaney [2]: if h : A −→ B is a homomorphism from a finitely subdirectly irreducible De Morgan
monoid into a nontrivial 0–generated De Morgan monoid, then h is an isomorphism or B ∼= C4.
This motivates study of the class W of all De Morgan monoids that map homomorphically onto
C4 or are trivial, as well as its subclass N, consisting of De Morgan monoids that have C4 as a
retract or are trivial. It can be shown that W and N are quasivarieties, but neither is a variety.

Theorem 2. W has a largest subvariety, denoted here by U. Also, N has a largest subvariety,
denoted here by M. The varieties U and M are finitely axiomatized, and M consists of the De
Morgan monoids in U that satisfy e 6 f .
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Varieties of De Morgan Monoids II Moraschini, Raftery and Wannenburg

Theorem 3. If K is an interesting cover of V(C4) within DMM, then exactly one of the
following holds.

(i) K ⊆ M.

(ii) K = V(A) for some finite 0–generated subdirectly irreducible De Morgan monoid A ∈
U \M.

(iii) K = V(A) for some simple 1–generated De Morgan monoid A, such that C4 embeds into
A but is not isomorphic to A.

As V(C4) is the only minimal subvariety of U, all covers of V(C4) within U are interesting
(i.e., they are not joins of atoms in ΛDMM). Only four De Morgan monoids A satisfy the
demand in Theorem 3(ii); they are depicted in Slaney [2], where they are labeled C5,C6,C7,C8.
Infinitely many covers of V(C4) exemplify Theorem 3(iii). Not all of them are finitely generated
varieties, and it appears to be difficult to classify them structurally.

Here, however, we are able to describe completely the covers of V(C4) within M, i.e., the
witnesses of Theorem 3(i). In particular:

Theorem 4. There are exactly six covers of V(C4) within M. Consequently, there are just
ten covers of V(C4) within U. All ten of these covers are finitely generated varieties.

A Dunn monoid is a distributive commutative residuated lattice, satisfying x 6 x2, so De
Morgan monoids are just Dunn monoids with a compatible involution. Slaney [3] discusses ways
of constructing De Morgan monoids S6(B) from Dunn monoids B, where B is a subalgebra of
the Dunn monoid reduct of S6(B). We refer to these methods as skew reflection constructions.
Each construction first creates a copy b′ of every element b of B and orders the new elements
so that b′ 6 c′ iff c 6 b. A new upper bound 1 and lower bound 0 for all of these elements is
introduced, and b′ · c′ is defined to be 1 for all b, c ∈ B. No element of the form b′ is a lower
bound of an element of B, but certain elements of B may be lower bounds of new elements
b′ (thus expanding the order relation 6 on the superstructure S6(B) of B), subject to certain
axioms. The axioms ensure that S6(B) really is a De Morgan monoid.

We can prove that a De Morgan monoid belongs to U iff it is a subdirect product of skew
reflections of Dunn monoids, where the bottom element 0 is meet-irreducible in every subdirect
factor. This limits the choices of algebras A such that V(A) generates a cover of V(C4) within
M. It forces A to be finite, and leads eventually to the proof of Theorem 4.

There are additional motivations for study of M, which come from considerations of struc-
tural completeness. The minimal varieties of De Morgan monoids are structurally complete, as
are the well-understood varieties of odd Sugihara monoids. We have shown that all remaining
structurally complete subvarieties of DMM lie within M, though not all subvarieties of M are
structurally complete. The following result is therefore of interest:

Theorem 5. Every cover of V(C4) within M has no proper subquasivariety other than V(C4),
and is thus (hereditarily) structurally complete.
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The modal µ-calculus Lµ, see [4], enriches the syntax of (poly)modal logic K with least
and greatest fixed-point constructors µ and ν. In a Kripke model M, the formula µx.φ (resp.,
νx.φ) denotes the least (resp., the greatest) fixed-point of the function φM (of the variable x)
obtained by evaluating φ in M under the additional condition that x is interpreted as a given
subset of worlds. It is required that every occurrence of x is positive in φ, so φM is monotone
and the least fixed-point exists by the Tarski-Knaster theorem.

A formula φ(x) is said to be continuous if, for every modelM, the function φM is continuous,
in the usual sense. The continuous fragment C0(X) of the modal µ-calculus is the set of formulas
generated by the following syntax:

φ := x | ψ | > | ⊥ | φ ∧ φ | φ ∨ φ | 〈a〉φ | µz.χ ,

where x ∈ X, ψ ∈ Lµ is a µ-calculus formula not containing any variable x ∈ X, and χ ∈
C0(X ∪ { z }). Fontaine [3] proved that a formula φ ∈ Lµ is continuous in x if and only if it is
equivalent to a formula in C0(x); she also proved that it is decidable whether a formula of the
modal µ-calculus is continuous. We add to the above grammar one more production and study
the fragment C1(X) of Lµ defined as follows:

φ := x | ψ | > | ⊥ | φ ∧ φ | φ ∨ φ | 〈a〉φ | µz.χ | νz.χ ,

with the same constraints as above but w.r.t C1(X ∪ { z }).
Definition 1. Let κ be a regular cardinal. A set I ⊆ P (X) is κ-directed if every subset of
I of cardinality smaller than κ has an upper bound in I. A function f : P (X) −→ P (X) is
κ-continuous if it preserves unions of κ-directed sets.

Notice that, if κ = ℵ0, then κ-continuity is the standard notion of continuity. The following
proposition is an immediate consequence of the fact that ℵ1-continuous functions are closed
under parametrized least and greatest fixed-points, see [5, 6].

Proposition 2. Every formula in φ(x) ∈ C1(x) is ℵ1-continuous.

The folllowing theorem is a sort of converse to the previous statement.

Theorem 3. For each formula φ(x) ∈ Lµ we can construct a formula ψ(x) ∈ C1(x) such that
φ(x) is κ-continuous for some regular cardinal κ if and only if φ(x) is equivalent to ψ(x).

The consequences of this theorem are twofold.

Corollary 4. It is decidable whether a formula φ(x) is κ-continuous for some regular cardinal
κ.
∗Partially supported by FCT under grant SFRH/BSAB/128039/2016.
†Partially supported by the Project TICAMORE ANR-16-CE91-0002-01.
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Corollary 5. If a formula is κ-continuous for some regular cardinal κ, then it is κ-continuous
for some κ ∈ {ℵ0,ℵ1 }.

That is, there are no other relevant fragments of the modal µ-calculus, apart from C0 and
C1, that are determined from some continuity condition.

Let us recall that, for a monotone function f : P (X) −→ P (X), we can define the approxi-
mants to the least fixed-point of f as follows: fα+1(∅) = f(fα(∅)) and fβ(∅) =

⋃
α<β f

α(∅) (so

f0(∅) = ∅). If fα+1(∅) = fα(∅), then fα(∅) is the least fixed-point of f .

Definition 6. We say that and ordinal α is the closure ordinal of φ(x) ∈ Lµ if, for every model
M, φαM(∅) is the least fixed-point of φM, and moreover there exists a modelM for which φβ(∅)
is not the least fixed-point of φM, for every β < α.

Of course, not every formula φ(x) ∈ Lµ has a closure ordinal. For example [ ]x has no
closure ordinal, while ω0 is the closure ordinal of [ ]⊥ ∨ 〈 〉x. Czarnecki [2] proved that every
ordinal α < ω2

0 is the closure ordinal of a formula φ ∈ Lµ. Afshari and Leigh [1] proved that
if a formula φ(x) ∈ Lµ does not contain greatest fixed-points and has a closure ordinal α,
then α < ω2

0 . Considering that every ordinal below ω2
0 can be written as a polynomial in the

inderterminates 1, ω0, our next theorem can be used to recover Czarnecki’s result:

Theorem 7. Closure ordinals of formulas of the modal µ-calculus are closed under ordinal
sum.

Since a formula φ(x) in the syntactic fragment C1(x) is ℵ1-continuous, the maps φM con-
verge to their least fixed-point in at most ω1 steps, where ω1 is the least uncountable ordinal
(considering cardinals as specific ordinals, we have ω1 = ℵ1). In particular, every formula in
this fragment has a closure ordinal with ω1 as an upper bound. We prove that ω1 is indeed a
closure ordinal:

Theorem 8. ω1 is the closure ordinal of the formula φ(x) := νz.(〈v〉x ∧ 〈h〉z) ∨ [v]⊥.

Extending Thomason’s coding to the full modal µ-calculus, it is also possible to construct
a monomodal formula in Lµ whose only free variable is x, with ω1 as closure ordinal. Con-
sequently, we extend Czarnecki’s result by showing that polynomials in the inderterminates
1, ω0, ω1 denote closure ordinals.
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Canonicity, i.e. the preservation of validity of formulas from descriptive general frames to
their underlying Kripke frames, is an important notion in modal logic, since it provides a
uniform strategy for proving the strong completeness of axiomatic extensions of a basic (normal
modal) logic. Thanks to its importance, the notion of canonicity has been explored also for
other non-classical logics. In [19], Jónsson gave a purely algebraic reformulation of the frame-
theoretic notion of canonicity, which he defined as the preservation of validity under taking
canonical extensions, and proved the canonicity of Sahlqvist identities in a purely algebraic
way. The construction of canonical extension was introduced by Jónsson and Tarski [20] as
a purely algebraic encoding of the Stone spaces dual to Boolean algebras. In particular, the
denseness requirement directly relates to the zero-dimensionality of Stone spaces. A natural
question is then for which classes of formulas do canonicity-type preservation results hold in
topological settings in which compactness is maintained and zero-dimensionality is generalized
to the Hausdorff separation condition. This question has been addressed in [1, 2]. Specifically,
in [1], Bezhanishvili, Bezhanishvili and Harding gave a canonicity-type preservation result for
Sahlqvist formulas from modal compact Hausdorff spaces to their underlying Kripke frames,
and in [2], Bezhanishvili and Sourabh generalized this result to modal fixed point formulas.

The proposed talk reports on an ongoing work in which the canonicity-type preservation
results in [1, 2] are reformulated in a purely algebraic way in the spirit of Bjarni Jónsson.
This work pertains to the wider theory of unified correspondence, which aims at identifying the
underlying principles of Sahlqvist-type canonicity and correspondence for non-classical logics.
As explained in [11, 7], this theory is grounded on the Stone-type dualities between the algebraic
and the relational semantics of non-classical logics, and explains the “Sahlqvist phenomenon”
in terms of the order-theoretic properties of the algebraic interpretations of the connectives
of a non-classical logic. The focus on these properties has been crucial to the possibility of
generalizing the Sahlqvist-type results from modal logic to a wide array of non-classical logics,
including intuitionistic and distributive and general (non-distributive) lattice-based (modal)
logics [8, 10, 6], non-normal (regular) modal logics [25], monotone modal logic [15], hybrid logics
[14], many valued logics [22] and bi-intuitionistic and lattice-based modal mu-calculus [3, 4, 5].
In addition, unified correspondence has effectively provided overarching techniques unifying
different methods for proving both canonicity and correspondence: in [24], the methodology
pioneered by Jónsson [19] and the one pioneered by Sambin-Vaccaro [26] were unified; in [9, 12],
constructive canonicity proposed by Ghilardi and Meloni [17] was unified with the Sambin-
Vaccaro methodology; in [13], the Sambin-Vaccaro correspondence has been unified with the
methodology of correspondence via translation introduced by Gehrke, Nagahashi and Venema
in [16]. Recently, a very surprising connection has been established between the notions and
techniques developed in unified correspondence and structural proof theory, which made it
possible to solve a problem, opened by Kracht [21], concerning the characterization of the
axioms which can be transformed into analytic structural rules [18, 23].

The main tools of unified correspondence are a purely order-theoretic definition of inductive
formulas/inequalities, and the algorithm ALBA, which computes the first-order correspondent
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of input formulas/inequalities and is guaranteed to succeed on the inductive class.

In this talk, we illustrate how the preservation result of [1, 2] can be encompassed into
unified correspondence theory. Intermediate steps toward this goal are: the identification of the
order-theoretic properties which guarantee the Esakia lemma to hold, the proof of a suitably
adapted version of the topological Ackermann lemma, and the introduction of the version of
the algorithm ALBA appropriate for the ”compact Hausdorff” setting.

Together, these results show that the same proof techniques introduced by Jónsson to prove
the canonicity of Sahlqvist identities directly fuel the canonicity-type preservation of Sahlqvist
formulas in the setting of modal compact Hausdorff spaces. I will also discuss further general-
izations, and more in general a systematic approach to canonicity-type preservation results to
which these preliminary results pave the way.
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We study two modal logics: the Brouwer logic KTB := K⊕T ⊕B and its interesting sub-logic – the
logic KB := K⊕B, where:

T := 2p→ p

B := p→23p

The logic KTB (logic KB) is complete with respect to the class of reflexive and symmetric Kripke
frames (symmetric Kripke frames).
We shall study n-branching Brouwerian modal logics KTB.Alt(n) := KTB⊕altn as well as KB.Alt(n) :=
KB⊕altn where

altn := 2p1∨2(p1→ p2)∨ ...∨2((p1∧ ...∧ pn)→ pn+1).

For n = 3 the above axiom involves linearity of the appropriate reflexive frames – they are chains of
reflexive points. Chains of (possibly) irreflexive points characterize logic KB.Alt(2).

Definition 1. A logic L has the Craig interpolation property (CIP) if for every implication α → β in L,
there exists a formula γ (interpolant for α → β in L) such that

α → γ ∈ L and γ → β ∈ L and Var(γ)⊆Var(α)∩Var(β ).

The symbol Var(α) means the set of all propositional variables of the formula α .
The weaker notion of interpolation for deducibility is defined as follows:

Definition 2. A logic L has interpolation for deducibility (IPD) if for any α and β the condition α `L β
implies that there exists a formula γ such that

α `L γ and γ `L β , and Var(γ)⊆Var(α)∩Var(β ).

It is a logical folklore that (CIP) together with (MP) and deduction theorem implies (IPD).
It is known that K, T, K4 and S4 have (CIP), see Gabbay [3]. Also the logics from NEXT (S4) are well
characterized as regards interpolation (see [5], also [1], p.462-463). It is also known that S5 has (CIP).
The last fact can be proven by applying a very general method of construction of inseparable tableaux
(see i.e. [1], p. 446-449). The same method can be applied in the case of KTB and KB. Then we get
that the logics KTB and KB have (CIP).

The following facts were proven in [4]:

Theorem 1. The logic KTB.Alt(3) does not have (CIP).

Theorem 2. There are only two tabular logics from NEXT (KTB.Alt(3)) having (IPD). They are the
trivial logic L(◦) and the logic determined by two element cluster L(◦−−◦).
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In [4] the following conjectures are placed:

Conjecture 1. The logic determined by a reflexive and symmetric Kripke frame having the structure of
a Boolean cube has (IDP).

Conjecture 2. The logic determined by a reflexive and symmetric Kripke frame having the structure of
2n-element Boolean cube, n≥ 3, has (IDP).

In our talk we disprove these conjectures and prove others negative results on interpolation in
NEXT (KTB.Alt(n)) for n≥ 3. We also provide a similar research for the logics from NEXT (KB.Alt(n)).
First result, a similar to Theorem 1 is the following:

Theorem 3. The logic KB.Alt(2) does not have (CIP).

Second, in contrast to logics from NEXT (KTB.Alt(3)) we prove:

Theorem 4. There are infinitely many tabular logics from NEXT (KB.Alt(2)) having (IPD).
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We recall that a class of algebras K has f inite embeddability property, briefly (FEP), if
any finite partial sublagebra of any member is embeddable into some finite one from K. This
property was generalized in [1] by the following way.

Definition 1. Let A = (A,F) be an algebra and X ⊆ A. A partial subalgebra is a pair
A|X = (X,F), where for any f ∈ Fn and all x1, . . . , xn ∈ X, fA|X (x1, . . . , xn) is defined if and
only if fA(x1, . . . , xn) ∈ X. We put then

fA|X (x1, . . . , xn) := fA(x1, . . . , xn).

Definition 2. An algebra A = (A; F) satisfies the general finite embeddability ( finite embed-
dability property) property for the class K of algebras of the same type F if for any finite subset
X ⊆ A, there exist a (finite) algebra B ∈ K and an embedding ρ : A|X ↪→ B, i.e., an injec-
tive mapping ρ : X → B satisfying the property ρ(fA|X (x1, . . . , xn)) = fB(ρ(x1), . . . , ρ(xn)) if
x1, . . . , xn ∈ X, f ∈ Fn and fA|X (x1, . . . , xn) is defined.

The most important idea of this generalization is described in the following theorems. Both
theorems are direct consequences of well known model theory facts (see [4]) or alternatively the
direct proofs are published in [1].

Theorem 1. Let A = (A; F) be an algebra and let K be a class of algebras of the type F . If A
satisfies the general finite embeddability property for K then A ∈ ISPU(K).

Theorem 2. Let A = (A; F) be an algebra such that F is finite and let K be a class of algebras
of the type F . If A ∈ ISPU(K) then A satisfies the general finite embeddability property for K.

The great applicability of these concepts in logic theory is obvious. Examples of results
obtained using by some type of partial embeddability are contained for example in [1, 2, 5, 6, 7]
etc.

In our talk we present analogous property (a finite covering property of an algebra A by a
class K) and then we show that this property is equivalent to A ∈ HSPU(K).

In next we denote the set of all terms of type F over the set A by TF(A). Let t ∈ TF(A)
be a term then we denote by |t| the set of all variables (members of A) used in the term t. For
any set T ⊆ TF(A) we denote

|T | = ⋃
t∈t |t|.

Now we are ready to define the finite covering property.

Definition 3. Let A = (A,F) be an algebra and K be a class of algebras of the type F. We
say that the class K finitely partially covers the algebra A (or A satisfies the finite covering
property for the class K) if for every finite set of terms T ⊆ TF(A) there exist an algebra
B ∈ K, a mapping f : B → A and a set Y ⊆ B such that

i) f |Y : Y → |T | is a bijection,



A new characterization of a class HSPU(K) Michal Botur and Martin Broušek

ii) if t(a1, . . . , an) ∈ T and y1, . . . , yn ∈ Y are such that fyi = ai then

ftB(y1, . . . , yn) = tA(a1, . . . , an).

The following theorem is the most important result of our talk.

Theorem 3. Let A satisfy the finite covering property for the class K if and only if A ∈
HSPU(K).

This theorem has several natural consequences, for example, using well known Bjarni
Jónsson Lemma (see [3]) we obtain:

Theorem 4. Let K be a generating class of congruence distributive variety V then any subdi-
rectly irreducible member of V is finitely coverable by K.

References

[1] M. Botur: A non-associative generalization of Hájeks BL-algebras, Fuzzy Sets and Systems 178
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Rough set theory was defined by Pawlak [3] to deal with incomplete information. Since then
it has been studied from many directions including algebra and category theory. A summary
of previous work on categories of rough sets can be found in [2]. Our work is an amalgamation
of the algebraic and category-theoretic approaches. In this work, we introduce the class of
contrapositionally complemented pseudo-Boolean algebras and the corresponding logic, emerging
from the study of algebras of strong subobjects in a generalized category of rough sets.

Elementary topoi were defined to capture properties of the category of sets. With a similar
goal in mind, in [2] we proposed the following natural generalization RSC(C ) of the category
RSC of rough sets. RSC has the pairs (X1, X2) as objects, where X1, X2 are sets and X1 ⊆ X2,
and the set functions f : X2 → Y2 as arrows with domain (X1, X2) and codomain (Y1, Y2) such
that f(X1) ⊆ Y1. By replacing sets with objects of an arbitrary topos C , we obtain

Definition 1. [2] The category RSC(C ) has the pairs (A,B) as objects, where A and B are
C -objects such that there exists a monic arrow m : A → B in C . m is said to be a monic
corresponding to the object (A,B). The pairs (f ′, f) are the arrows with domain (X1, X2) and
codomain (Y1, Y2), where f ′ : X1 → Y1 and f : X2 → Y2 are C -arrows such that m′f ′ = fm, and
m and m′ are monics corresponding to the objects (X1, X2) and (Y1, Y2) in RSC(C ) respectively.

The category RSC(C ) forms a quasitopos [2]. Any quasitopos, just like a topos, has an inter-
nal (intuitionistic) logic associated with the strong subobjects of its objects [6]. LetM((U1, U2))
be the set of strong monics of an RSC(C )-object (U1, U2). M((U1, U2)) thus forms a pseudo-
Boolean algebra. Moreover, the operations on M((U1, U2)) are characterized as follows.

Proposition 1. The operations on M((U1, U2)) obtained by taking the pullbacks of specific
characteristic arrows along the RSC(C )-subobject classifier (>,>) : (1, 1)→ (Ω,Ω) are:

∩ : (f ′, f) ∩ (g′, g) = (f ′ ∩ g′, f ∩ g), ∪ : (f ′, f) ∪ (g′, g) = (f ′ ∪ g′, f ∪ g),
¬ : ¬(f ′, f) = (¬f ′,¬f), →: (f ′, f)→ (g′, g) = (f ′ → g′, f → g),

where (f ′, f) and (g′, g) are strong monics with codomain (U1, U2), and > : 1 → Ω is the
subobject classifier of the topos C . The operations on f ′, g′ (f, g) used above are those of the
algebra of subobjects of U1 (U2) in the topos C .

In the context of the algebra of strong subobjects of an RSC-object (U1, U2), we had noted
in [2] that, since the complementation ¬ is with respect to the object (U1, U2), we actually
require the concept of relative rough complementation. Iwiński’s rough difference operator [1]
is what we use, and we define a new negation ∼ on M((U1, U2)) as:

∼ (f ′, f) := (¬f ′,¬(m ◦ f ′)),
where (f ′, f) is a strong monic with codomain (U1, U2) and m : U1 → U2 is a monic arrow
corresponding to (U1, U2). We observe that A := (M((U1, U2)), (IdU1

, IdU2
),∩,∪,→,∼) forms

a contrapositionally complemented (c.c.) lattice [5], with 1 := (IdU1
, IdU2

). In fact, A satisfies
the property ∼ a = a → ¬¬ ∼ 1, which is not true in general for an arbitrary c.c. lattice.
Moreover, ∼ is neither a semi-negation nor involutive. These observations indicate that A is an
instance of a new algebraic structure, involving two negations ∼ and ¬, and defined as follows.
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Definition 2. An abstract algebra A := (A, 1, 0,→,∪,∩,¬,∼) is said to be a contrapositio-
nally complemented pseudo-Boolean algebra (c.c.-pseudo-Boolean algebra) if (A, 1, 0,→,∪,∩,¬)
forms a pseudo-Boolean algebra and ∼ a = a→ (¬¬ ∼ 1), for all a ∈ A.

An entire class of c.c.-pseudo-Boolean algebras can be obtained as follows, starting from any
pseudo-Boolean algebra H := (H, 1, 0,→,∪,∩,¬).

Theorem 2. Let H[2] := {(a, b) : a ≤ b, a, b ∈ H}, and u := (u1, u2) ∈ H[2]. Consider the set
Au := {(a1, a2) ∈ H[2] : a2 ≤ u2 and a1 = a2 ∧ u1}. Define the following operators on Au:
t : (a1, a2) t (b1, b2) := (a1 ∨ b1, a2 ∨ b2), u : (a1, a2) u (b1, b2) := (a1 ∧ b1, a2 ∧ b2),
¬ : ¬(a1, a2) := (u1 ∧ ¬a1, u2 ∧ ¬a2), ∼: ∼ (a1, a2) := (u1 ∧ ¬a1, u2 ∧ ¬a1),
→: (a1, a2)→ (b1, b2) := ((a1 → b1) ∧ u1, (a2 → b2) ∧ u2).

Then Au := (Au, u, (0, 0),→,t,u,¬,∼) is a c.c.-pseudo-Boolean algebra.

We define in the standard way, a c.c.-pseudo-Boolean set lattice. Using the representation
theorem for pseudo-Boolean algebras [5], one obtains the following.

Theorem 3 (Representation Theorem). Let A := (A, 1, 0,→,∪,∩,¬,∼) be a c.c.-pseudo-
Boolean algebra. There exists a monomorphism h from A into a c.c.-pseudo-Boolean set lattice.

Note that, as the class of all pseudo-Boolean algebras is equationally definable, the class
of all c.c.-pseudo-Boolean algebras is also so. Thus we define the logic corresponding to c.c.-
pseudo-Boolean algebras, and call it Intuitionistic logic with minimal negation (ILM).

Various definitions of mappings from one formal system to another can be found in lite-
rature. A detailed study of connections between Classical logic (CL), Intuitionistic logic (IL)
and Minimal logic (ML) can be found in [4], which has first formally defined the notion of
‘interpretability’ of formulas of one logic into another. In our work, we generalize the notion as
follows. The mapping r : L1 → L2 from formulas in logic L1 to formulas in logic L2 is called
an interpretation, if for any formula α ∈ L1, we have `L1 α if and only if ∆α `L2 r(α), where
∆α is a finite set of formulas in L2 corresponding to α. r is an embedding, if it is the inclusion
map and ∆α = ∅ for any α in L1. IL can clearly be embedded into ILM. Furthermore, we have

Theorem 4. There exists an interpretation from ILM into IL.

The proof is similar to the one used to show connections between constructive logic with strong
negation [5, Chapter XII] and IL.

We may also compare ILM and ML. Since ML corresponds to the class of c.c lattices [5]
and any c.c.-pseudo-Boolean algebra is a c.c. lattice, ML can be embedded inside ILM. Using
Theorem 4 and an interpretation of IL into ML [4, Theorem B], we have

Corollary 5. There exists an interpretation from ILM into ML.
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We study the variety of nuclear algebras — algebras of the form (A, ∧, 1, →, j) where
(A, ∧, 1, →) is a meet-implicative semilattice and j : A → A is a nucleus.

The latter means that j is an idempotent inflationary multiplicative unary operator, that
is, the identities

x 6 jx

jjx = jx

j(x ∧ y) = jx ∧ jy

hold in A.
It has been proved by Diego in [1] that the variety of meet-implicative semilattices is locally

finite. Our main result is that the same remains true after extending the signature with a
nucleus as above.

Archetypal example of an implicative semilattice: let (X, 6) be a poset (partially ordered
set), and let A = D(X, 6) be the set of downsets of (X, 6) (subsets D ⊆ X satisfying x ∈
D, y 6 x ⇒ y ∈ D for all x, y ∈ X). Let us equip A with the semilattice structure via
D1 ∧ D2 := D1 ∪ D2; it has unit 1 := ∅ and the implication given by D1 → D2 := ↓(D2 − D1),
where for a subset S ⊆ X , we denote by ↓(S) the smallest downset containing S, i. e. ↓(S) =
{x ∈ X : ∃ s ∈ S x 6 s}.

NB. The partial order 6 on A resulting from this structure is the opposite of the subset
inclusion, i. e. D 6 D′ iff D ⊇ D′.

In fact it follows from the work of Köhler [3] that every finite implicative semilattice is
isomorphic to one of the above form. Moreover, Köhler obtained a dual description of ho-
momorphisms between finite implicative semilattices in terms of certain partial maps between
posets.

We extend this finite duality of Köhler to nuclear algebras. Every subset S ⊆ X of a poset
(X, 6) gives rise to a nucleus jS : D(X, 6) → D(X, 6) defined by jS(D) = ↓(S ∩D). Moreover
for finite X , every nucleus j on D(X, 6) is equal to some such jS , for a unique subset S ⊆ X .
We also obtain description of homomorphisms of nuclear algebras in terms of partial maps
between the corresponding posets, as in [3].
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This in turn makes it possible to give a dual description of nuclear subalgebras, and a dual
characterization of situations when a nuclear algebra A is generated by its elements a1, ..., an ∈
A. In particular, we have

Theorem 1. Given downsets D1, ..., Dn of a finite poset (X, 6) and a subset S ⊆ X, if the
nuclear algebra (D(X, 6), jS) is generated by its elements D1, ..., Dn then for any x ∈ X, either
x ∈ max(Dk) for some k ∈ {1, ..., n} or x ∈ max(S ∩ ↓ y) for some y 6= x.

This then enables us to apply the general construction of the universal model from [2] to
our case.

Given a natural number n, we construct a poset L(n), a subset S(n) ⊆ L(n) and downsets
D(n, 1), ..., D(n, n) ∈ D(L(n)) with the following universal property: for any finite poset X and
any subset S ⊆ X , if the nuclear algebra (D(X), jS) is generated by the downsets D1, ..., Dn ∈
D(X), then there is a unique isomorphism ϕ : X → X ′ to a downset X ′ ⊆ L(n) with ϕ(S) =
X ′ ∩ S(n) and ϕ(Dk) = X ′ ∩ D(n, k), k = 1, ..., n.

The construction is inductive: we start with L(n)0 empty; having constructed S(n)i ⊆
L(n)i and D(n, 1)i, ..., D(n, n)i ∈ D(L(n)i), we define L(n)i+1 ⊇ L(n)i, S(n)i+1 ⊇ S(n)i,
D(n, k)i+1 ⊇ D(n, k)i, k = 1, ..., n, as follows.

L(n)i+1 \ L(n)i consists of elements rα,σ /∈ S(n)i+1, one for each antichain α in L(n)i,
with α * L(n)i−1 if i > 0, and each σ $ {k ∈ {1, ..., n} : α ⊆ D(n, k)i}, as well as elements
sα,σ ∈ S(n)i+1, one for each such pair α, σ that σ ⊆ {k ∈ {1, ..., n} : α ⊆ D(n, k)i} and either
σ 6= {k ∈ {1, ..., n} : α ⊆ D(n, k)i} or α * S(n)i.

We then define D(n, k)i+1 = D(n, k)i ∪ {rα,σ : k ∈ σ} ∪ {sα,σ : k ∈ σ}, k = 1, ..., n.
Extension of the partial order to L(n)i+1 is uniquely determined by the requirements

max(↓(rα,σ) \ {rα,σ}) = α and max(↓(sα,σ) \ {sα,σ}) = α.
We then have

Theorem 2. The above construction stops after finite number of steps, i. e. there is an i such
that L(n) = L(n)i with S(n) = S(n)i, D(n, k) = D(n, k)i has the above universal property.

On the other hand we have

Theorem 3. The variety of nuclear algebras has the finite model property.

These facts enable us to conclude

Corollary. For each n, the finite nuclear algebra (D(L(n)), jS(n)) is the free n-generated nuclear
algebra. In particular, the variety of nuclear algebras is locally finite.

References
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Abstract interpretation is a theory of formal program verification which generates sound
approximations of the semantics of programs, and has been used as the basis of methods and
effective algorithms to approximate undecidable or computationally intractable problems such
as the verification of safety-critical software (e.g. medical, nuclear, aviation software).

Typically, a complex concrete model (such as the powerset P(Σ) of a possibly infinite set
modelling program executions) is related to a model that can be efficiently represented and
manipulated (such as a finite lattice A, encoding the relevant – logically interconnected –
properties about these executions) by means of an adjoint pair of maps. Specifically, the right
adjoint (the concretization map γ : A → P(Σ)) provides the intended interpretation of the
symbolic properties (that is, S |= a iff S ⊆ γ(a) for any S ∈ P(Σ) and a ∈ A); the left adjoint
(the abstraction map α : P(Σ) → A) classifies the executions of the given program according
to their satisfying the relevant properties.

Although this theory was connected to logic since its inception [2, 1, 4], it is only in the
last decade that the connection was made systematic. In particular, the notion of an (internal)
logic of an abstraction was introduced in [5] and systematically related to the order-theoretic
properties of the concretization map. In [3], this line of research is further developed. Namely,
the logics underlying specific abstractions are identified, together with explicit specification of
proof-theoretic presentations for each of them.

The present talk reports on the preliminary results of an ongoing work in which, using duality
theory and algebraic logic, we generalise the results of [3] and introduce a general procedure for
generating the (internal) logic of an abstraction together with the specification of a proof system
for it. The main idea is to generate a logic whose Lindenbaum-Tarski algebra is isomorphic to
the abstract algebra A. In particular, we highlight the connection between properties of the
logic, such as its expressiveness and its completeness, and the preservation properties of the
concretization map. Ongoing research directions concern the extension of these results to richer
abstract algebras A endowed with modal (dynamic) operators.
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1 Introduction

A residuated lattice is an algebra (A,∧,∨, ·, \/, 1), where (A,∧,∨) is a lattice, (A, ·, 1) is a
monoid and x · y ≤ z iff x ≤ y/z iff y ≤ x\z, for all x, y, z ∈ A. If · is equal to ∧, then A is
called a Brouwerian algebra (these are the bottom-free subreducts of Heyting algebras) and in
this case we write x→y for x\y; it also follows that y/x = x\y so we suppress this operation. A
generalized bunch implication algebra, or GBI-algebra, is an algebra A = (A∧,∨, ·, \, /, 1,→,>),
where (A,∧,∨, ·, \/, 1) is a residuated lattice and (A,∧,∨,→,>) is a Brouwerian algebra.

Commutative and bounded GBI-algebras are known as BI-algebras and they form algebraic
semantics for bunched implication logic. The later is of interest in computer science and it is
used in proving correctness of concurrent programs.

2 Decidability and FMP

We present a Gentzen calculus for GBI, which enjoys cut elimination; the proof proceeds by
considering distributive residuated frames, two-sorted structures that form relational semantics
for GBI-algebras. This allows to prove cut elimination for any extension of GBI with equations
over the signature {∨,∧, ·, 1}. In particular we recover the known cut elimination for the system
of bunched implication (BI) logic as a special case.

We further prove decidability of GBI. The decidability of the→-free fragment can be shown
by defining an appropriate complexity measure on sequents. We demonstrate that this complex-
ity measure fails to be decreasing for the→ rules of the calculus and also discuss the difficulties
in finding any complexity measure that is decreasing. Nevertheless, we prove the decidability
by defining a binary graph on the sequent tree of each sequent and showing that certain aspects
of these graphs are reduced as we trace a proof upwards. This can be combined with the fact
that we can restrict our attention to special types of sequents in a proof (3-reduced) to put a
bound on the overall search space, thus yielding decidability.

We further prove that from the termination of the proof search we not only obtain decid-
ability but also the finite model property. We do that by creating a distributive residuated
frame whose dual GBI-algebra is finite.

3 Congruences

Congruences in residuated lattices are determined by certain subsets (in a way similar to the
fact that congruences in groups are determined by normal subgroups). Given a, x ∈ A we
define ρ′ax = ax/a and λ′a(x) = a\xa (which are akin to conjugates in group theory). A subset
is called normal if it is closed under ρ′a and λ′a for all a ∈ A. A (RL)-deductive filter of a
residuated lattice A is defined to be a normal upward closed subset of A that is closed under
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multiplication and meet and contains the element 1. It is known that if θ is a congruence on
A then ↑[1]θ, the upset of the equivalence class of 1, is a deductive filter. Conversely, if F is
a deductive filter of a residuated lattice A, then the relation θF is a congruence on A, where
a θF b iff a\b ∧ b\a ∈ F .

Note that if A is a Brouwerian or a Heyting algebra, then deductive filters are usual lattice
filters.

We prove that the GBI-deductive filters are exactly the RL-deductive filters that are further
closed under ra,b(x) = (a→ b)/(xa→ b) and sa,b(x) = (a→ bx)/(a→ b), for all a, b.

Alternatively, congruences are characterized by their equivalence classes of >. These are
usual lattice filters that are closed under the ta,b(x) = a/b→(a∧x)/b, t′a,b(x) = b/a→b/(a∧x),
ua,b(x) = a/(b ∧ x)→ a/b, u′a,b(x) = (b ∧ x)\a→ b\a, va,b(x) = ab→ (a ∧ x)b and v′a,b(x) =
ab→ a(b ∧ x) for all a, b.

4 Examples

A weak conucleus on a residuated lattice A is an interior operator σ on A such that σ(x)σ(y) ≤
σ(xy), for all x, y ∈ A. Then σ[A] = (σ[A],∧σ,∨, ·, \σ, /σ) is a residuated lattice-ordered
semigroup, where x•σ y = σ(x•y), where • ∈ {∧, \, /}; we are interested in the cases where this
algebra also has an identity element e and hence (σ[A], e) is a residuated lattice. A topological
weak conucleus on a GBI-algebra A is a conucleus on both the residuated lattice and the
Brouwerian algebra reducts of A.

Given a residuated lattice A and a positive idempotent element p we define the map σp
by σp(p) = p\x/p. Then σp is a topological weak conucleus (which we call the double division
conucleus by p), and p is the identity element σp(A); we denote the resulting residuated lattice
(σp(A), p) by p\A/p. If A is involutive then so is p\A/p and the latter is a subalgebra of A
with respect to the operations ∧,∨, ·,+,∼,−. Recall that an involutive residuated lattice is
an expansion of a residuated lattice with an extra constant 0 such that ∼(−x) = x = −(∼x),
where ∼x = x\0 and −x = 0/x; we also define x+ y = ∼(−y · −x).

Given a poset P = (P,≤), we define the set Wk(P) of all binary relations R on P such that
a ≤ b R c ≤ d implies a R d, for all a, b, c, d ∈ P ; these are called ≤-weakening relations. In
other words Wk(P) = O(P × P∂), where O denotes the downset operator, and it supports a
structure of a GBI-algebra, under union and intersection, and composition of relations.

We note that we also have that Wk(P) ∼= Res(O(P)), where for a complete join semilattice
L, Res(L) denotes the residuated lattice of all residuated maps on L; recall that a map on f on
a poset P is called residuated if there exists a map f∗ on P such that f(x) ≤ y iff x ≤ f∗(y),
for all x, y ∈ P .

Given a poset P = (P,≤), we set A = Rel(P ), to be the involutive GBI algebra of all binary
relations on the set P . Note that p = ≤ is a positive idempotent element of A. It is easy to see
that p\A/p is exactly Wk(P). Since A is an involutive GBI-algebra, so is Wk(P).
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Introduction. Exponentiability of objects and morphisms is one of the important good properties
for a category. The problem of exponentiability is studied in many contexts and starts its history since
1940’s. Among the past works on the subject the most useful for the author were: the great note [4];
the articles [1],[7], [8]; and the books [3], [5],[6].

Due to the existence of important dualities between Stone spaces and Boolean algebras, as well as
between Priestley spaces and distributive lattices, our aim is to characterize exponentiable objects and
exponentiable morphisms in the categories of Stone spaces and Priestley spaces. The presented work
is a part of the more extensive program, which aims to study local homeomorphisms of the so called
logical spaces e.g. Stone spaces, Priestley spaces, Spectral spaces, Esakia spaces. This is motivated by
the importance of local homeomorhphisms not only in topology, but in algebraic geometry and other
areas of mathematics due to their attractive properties.

Given objects X, Y in the small category C with finite limits, the object Y X (if it exists in C) is said
to be an exponential of Y by X, if for any object A in C there is a natural bijection between the set of all
morphisms from A×X to Y and the set of all morphisms from A to Y X , i.e. C(A×X,Y ) ∼= C(A, Y X).
An object X of a category C is said to be exponentiable if the exponent Y X exists in C for any object
Y . Given object X in C, consider the family C/X of morphisms f : Y → X with codomain X in
C. Let morphisms between members of the mentioned family be obvious commutative triangles. It is
easy to check that the family together with the defined morphisms between them is a category. It is
the case that if C has all finite limits, then C/X also does so. Let us note that the product of two
objects of C/X is a pullback in C with the obvious projection to X. As in the case of C, given two
morphisms f : Y → X and g : Z → X the object gf (if it exists in C/X) is said to be an exponential of
g by f , if for any object h : W → X in C/X there is a natural bijection between the set of morphisms
from h ×X f to g and the set of morphisms from h to gf , i.e. C/X(h ×X f, g) ∼= C/X(h, gf ). A
morphism f of a category C is said to be exponentiable morphism if the exponent gf exists in C/X
for any morphism g of C.

Note that for categories of structured sets, the problem of exponentiability reduces to finding
appropriate corresponding structure on the set of structure-preserving maps between structured sets.
In the following subsections we state the main result already obtained regarding exponentiable objects
and morphisms in the categories of Stone spaces and Priestley spaces. For brevity, the supporting
lemmas and propositions are omitted.

Exponentiability in Stone spaces. A compact, Hausdorff, and zero-dimensional topological
space is called a Stone space. The first category we are interested in is the category of Stone spaces and
continuous maps. Let us denote the mentioned category by Stone. Investigation of exponentiability of
object in Stone showed that only the finite spaces are exponentiable (unlike the case of all topological
spaces where only so-called core-compacts are exponentiable, which can be infinite [2],[4]). Thus we
obtain the following result:

Proposition 1. A Stone space X is exponentiable in Stone if and only if X is finite.

∗Other people who contributed to this work include David Gabelaia (Razmadze Mathematical Institute) and
Mamuka Jibladze (Razmadze Mathematical Institute).



After that we are able to prove the full characterization of exponentiable maps of Stone spaces.
That is the following result holds:

Proposition 2. The map f : X → B between Stone spaces is exponentiable in Stone/B if and only
if f is a local homeomorphism.

Exponentiability in Priestley spaces. A partially ordered topological space (X,≤) is called
a Priestley space, if X is compact Hausdorff space and for any pair x, y ∈ X with x 6≤ y, there exists
a clopen up-set U of X such that x ∈ U and y 6∈ U . It turns out that the topology on a Priestley
space is compact Hausdorff and zero-dimensional, i.e. is a Stone topology. The second category we are
interested in is the category of Priestley spaces and continuous order-preserving maps. Let us denote
this category by PS (Priestley Spaces). Investigation of exponentiability of objects in PS showed that,
similarly to the case of Stone spaces, only finite spaces are exponentiable in PS. Hence the following:

Proposition 3. A Priestley space X is exponentiable in PS if and only if X is finite.

Due to this fact, given a Priestley space B we get the following corollary about exponentiability of
π2 : X ×B → B in PS/B:

Corollary 3.1. π2 : X ×B → B is exponentiable in PS/B if and only if X is finite.

Moreover, we were able to prove a necessary condition for exponentiability of a map between
Priestley spaces. An order preserving map f : X → B is called an interpolation-lifting map if given
x ≤ y in X and f(x) ≤ b ≤ f(y), there exists x ≤ z ≤ y such that f(z) = b.

Proposition 4. If f : X → B is exponentiable in PS/B then f is interpolation-lifting.

We are still unable to find a necessary and sufficient condition for exponentiability of Priestley maps.
Already obtained results draw quite interesting picture of considered categories. Only the smallest part
of the considered categories (only finite objects) have such strong property as exponentiability. Further
work is in progress, namely we are investigating whether exponentiable morphisms in PS are precisely
the local homeomorphisms that are also interpolation-lifting maps.
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In the work we present we introduce the notion of filter pair as a tool for creating and
analyzing logics. We sketch the basic idea of this notion:

By logic we mean a pair (Σ,`) where Σ is a signature, i.e. a collection of connectives
with finite arities, and ` is a Tarskian consequence relation, i.e. an idempotent, increasing,
monotone, finitary and structural relation between subsets and elements of the set of formulas
FmΣ(X) built from Σ and a set X of variables.

It is well-known that every logic gives rise to an algebraic lattice contained in the powerset
℘(FmΣ(X)), namely the lattice of theories. This lattice is closed under arbitrary intersections
(since intersections of theories are theories) and suprema of directed subsets.

Conversely an algebraic lattice L ⊆ ℘(FmΣ(X)) that is closed under arbitrary intersections
and unions of increasing chains gives rise to a finitary closure operator (assigning to a subset
A ⊆ FmΣ(X) the intersection of all members of L containing A). This closure operator need
not be structural — this is an extra requirement.

We observe that the structurality of the logic just defined is equivalent to the naturality
(in the sense of category theory) of the inclusion of the algebraic lattice into the power set of
formulas with respect to endomorphisms of the formula algebra: Structurality means that the
preimage under a substitution of a theory is a theory again or, equivalently, that the following
diagram commutes for any substitution σ:

FmΣ(X)

σ

��

L �
� i // ℘(FmΣ(X))

FmΣ(X) L

σ−1|
L

OO

� � i // ℘(FmΣ(X))

σ−1

OO

Further, it is equivalent to demand this naturality for all Σ-algebras and homomorphisms
instead of just the formula algebra. We thus arrive at the definition of filter pair :

Definition. (i) A filter pair for the signature Σ is a contravariant functor G from Σ-algebras
to algebraic lattices together with a natural transformation i : G → ℘(−) from G to the
functor that takes an algebra to the power set of its underlying set, which preserves arbi-
trary infima and suprema of directed subsets.

(ii) The logic associated to a filter pair (G, i) is the logic associated (in the above fashion) to
the algebraic lattice given by the image i(G(FmΣ(X))) ⊆ ℘(FmΣ(X)).

Thus a filter pair can be seen as a presentation of a logic, different from the usual style of
presentation by axioms and derivation rules. For a given logic L one can take G := FiL, the
functor which associates to a Σ-algebra the lattice of L-filters on it; this shows that every logic
admits a presentation by a filter pair.

A more interesting case is when G is the functor associating to a Σ-structure the lattice of
congruences relative to some quasivariety K, that is, G : A 7→ {θ | A/θ ∈ K} – we call these



filter pairs congruence filter pairs. There is a huge supply of congruence filter pairs by the
following result:

Theorem. Let K be a quasivariety, and τ = 〈ε, δ〉 a set of equations (i.e. pairs of unary
formulas in the signature of K). For every Σ-algebra A denote by ConK(A) := {θ | A/θ ∈ K}
the set of congruences relative to K. Then

(G : A 7→ ConK(A), i : θ 7→ {a ∈ A | ε(a) = δ(a) in A/θ})

defines a filter pair

It follows from [BP, Thm 5.1(ii)] that every algebraizable logic admits a presentation by
such a congruence filter pair. But strictly more logics arise in this way, even non-protoalgebraic
logics. A presentation by a congruence filter pair can give means of determining the position of
a logic in the Leibniz hierarchy; e.g. the logic is algebraizable if the natural transformation i is
injective. Similar criteria can be given for being truth-equational or Lindenbaum algebraizable.

Further, we have algebraic tools available for dealing with logics which admit a presentation
by a congruence filter pair. For example, (under an additional technical assumption) the logic
presented by a congruence filter pair has the Craig interpolation property if the quasivariety has
the amalgamation property. Further correspondence principles between algebraic and logical
properties are under investigation.

Thus on the one hand filter pairs give a way of analyzing logics, on the other hand they give
a new way of attacking the problem of associating a logic to a given quasivariety.

In the talk we will motivate and introduce the notions of filter pair and congruence filter
pair, and make the above statements concrete in examples.

We will further offer a point of view on congruence filter pairs as being an approach to
algebraizing logic which is dual to the one via the Leibniz operator. The Leibniz operator is
a map from the lattice of filters to the lattice of congruences which is “trying to be” a right
adjoint (and actually is a right adjoint for protoalgebraic logics). The natural transformation i
of a congruence filter pair, in contrast, has a left adjoint going from the lattice of filters to the
lattice of congruences. Thus the congruence filter pair approach to defining and analyzing logics,
while being equivalent to the Leibniz operator approach in the algebraizable case, diverges into
a different direction in the non-algebraizable case. We will also make this point of view concrete
with sample calculations.
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Organizations are social units of agents who are structured and managed to meet a need,
or to pursue collective goals. The study of organizations in economics and social science has
led to substantial literature, which explains the various forms of organization structure and the
relations they bear to the generation of competitive advantage in terms of agency, knowledge,
goals, capabilities and inter-agent coordination. As such, organization theory is very amenable
to be studied with the logical tools developed in the context of the study of information flow.

However, presently there are not many instances of logical systems specifically designed to
describe the internal dynamics of organizations. Furthermore, existing logics aimed at capturing
notions of agency and information flow typically lack a comparable proof-theoretic development.
More often than not, the hurdles preventing their standard proof-theoretic development are due
to the very features which make them capture essential aspects of the real world, such as their
not being closed under uniform substitution, or the presence of certain extralinguistic labels
and devices encoding key interactions between logical connectives.

In [2], a framework similar in spirit to STIT logics is presented, that aims at achieving an
emergent notion of dynamics which is based on a hierarchy of more primitive notions, the most
basic of which are agency and agents’ capabilities.

With [2] as a starting point, we develop a logic aimed to describe dynamics of organizations,
the logic of resources and capabilities [1]. The key feature of this logic lies on the idea that a
better grasp on the notion of capabilities can be achieved if we simultaneously can talk about
resources. For instance we can compare the capabilities of different agents in terms on their
being able to perform a certain task with less resources or we can extend the reasoning over a
planning problem in terms of the order of which resources needs to be used to perform a certain
task.

The core aspect of this logic is based on multi-type display-type calculi, a methodology
introduced in [4, 3] motivated by considerations discussed in [8, 6] to provide DEL and PDL
with analytic calculi, and further developed in [5, 7, 11, 12, 13, 10], in synergy with algebraic
techniques [9]. In the present framework, resources and formulas are represented as terms of
different types, each with an independently defined logic, which interact thanks to operators,
such as the capability operators in this specific setting, which take arguments of different types
(resources and formulas in this specific setting).

The present contribution reports on the technical aspects involved in the logic of resources
and capabilities, that is, the analyticity of its axioms, the rules of the proof system, the cor-
responding semantics, the canonicity of the rules and cut elimination. Finally, some examples
will be presented that illustrate what this logic can be used for.
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We approach Intuitionistic Logic and Heyting algebras from fixed-point theory and µ-calculi
[1]. A µ-calculus is a prototypical computational logic, obtained from a base logic or a base
algebraic system by addition of distinct forms of iteration, least and greatest fixed-points, so to
increase expressivity. We consider therefore IPCµ, the Intuitionistic Propositional µ-Calculus,
whose formula-terms are generated by the grammar

φ = x | > | φ ∧ φ | φ ∨ φ | φ→ φ | µx.φ | νx.φ ,

where it is required in the last two productions that the variable x occurs positively in φ.
Formulas are interpreted over complete Heyting algebras, with µx.φ (resp. νx.φ) denoting the
least fixed-point (resp. the greatest fixed-point) of the intepretation of φ(x), as a monotone
function of the variable x. These extremal fixed-points exist, by the Knaster-Tarski theorem.

Ruitenburg [3] proved that for each formula φ(x) of the IPC there exists a number ρ(φ) such
that φρ(φ)(x)—the formula obtained from φ by iterating ρ(φ) times substitution of φ for the
variable x—and φρ(φ)+2(x) are equivalent in Intuitionistic Logic. An immediate consequence
of this result is that a syntactically monotone intuitionisitc formula φ(x) converges both to
its least fixed-point and to its greatest fixed-point in at most ρ(φ) steps. In the language of
µ-calculi, we have µx.φ(x) = φρ(φ)(⊥) and νx.φ(x) = φρ(φ)(>). These identities witness that
the IPCµ is degenerated, meaning that every formula from the above grammar is equivalent to
a fixed-point free formula. They also witness that nor completeness neither the Knaster-Tarski
theorem are needed to interpret the above formulas over Heyting algebras.

Ruitenburg’s result is not the end of the story. We aim at computing explicit representations
of fixed-point expressions by means of fixed-point free formulas. Such an algorithm would
provide an axiomatization of fixed-points in the IPC and also a decision procedure for the
IPCµ. We also aim at computing closure ordinals of intuitionisitc formulas φ(x), that is, the
least number n such that µx.φ(x) = φn(⊥) and the least number m for which νx.φ(x) = φm(>).
Notice that bounds on Ruitenberg’s numbers ρ(φ) might be over-approximation of closure
ordinals of φ, for example, for an arbitrary intuitionistic formula φ, νx.φ(x) = φk(>) for k = 1,
while ρ(φ) might be arbitrarily large. We tackled these problems in a recent work [2]. We
achieve there an effective transformation of intuitionisitc µ-formulas into equivalent fixed-point
free intuitionisitc formulas. Such a transformation allows to estimate upper bounds of closure
ordinals, which are tight in many cases.

We sketch in what follows the ideas by which we devise our effective transformation.
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†Partially supported by the Project TICAMORE ANR-16-CE91-0002-01.
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Lemma. Every polynomial f : H −−→ H over a Heyting algebra H is compatible, meaning that
the equation f(x) ∧ y = f(x ∧ y) ∧ y holds.

A first consequence of the above statement is that, for such a polynomial, f2(>) = f(>),
so f(>) is the greatest fixed-point of f when f is monotone. This observation is generalized to
systems of equations as follows.

Lemma. If H is an Heyting algebra and, for i = 1, . . . , n, fi : Hn −−→ H is a monotone
polynomial, then 〈f1, . . . , fn〉n(>) is the greatest fixed-point of 〈f1, . . . , fn〉 : Hn −−→ Hn.

Fact. If f : P −−→ Q and g : Q −−→ P are monotone functions such that the least fixed-point
µ.(g ◦ f) of g ◦ f exists, then f(µ.(g ◦ f)) is the least fixed-point of f ◦ g.

These statements allow us to give an explicit representation of µx.φ(x) when all the oc-
currences of the variable x are under the left side of an implication. Namely, if we write
φ(x) = ψ0[ψ1(x)/y1, . . . , ψn(x)/yn] with yi under the left side of just one implication, then

µx.φ(x) = ψ0( νy1,...,yn .〈ψ1(ψ0(y1, . . . , yn)), . . . , ψn(ψ0(y1, . . . , yn))〉 )
= ψ0( 〈ψ1(ψ0(y1, . . . , yn)), . . . , ψn(ψ0(y1, . . . , yn))〉n(>) ) .

Other two important consequences of compatibility of polynomials are the following distribution
laws of least fixed-points w.r.t. the residuated structure:

µ.(
∧

i∈I
fj) =

∧

i∈I
µ.fi , µ.(α→ f) = α→ µ.f , (1)

which holds when f and fi are monotone polynomials and α is a constant.

Fact. The least fixed-point of a monotone function f(x, x) can be computed by firstly comput-
ing the least fixed-point of f(x, y) in the variable y, parametrizing in the variable x, and then
by computing the least fixed-point of the resulting monotone function in the variable x.

This observation allows us to split the search of an explicit representation of the least fixed-
point of a formula into two steps: first we can assume that every occurrence of the variable x
is under the left side of an implication; then we can assume that there are no occurrences of
the variable x under the left side of an implication. A formula with the latter property is then
equivalent to a conjunction of disjunctive formulas, that is, formulas generated by the grammar
below on the left:

φ = x | β ∨ φ | φ ∨ β | α→ φ | φ ∨ φ , µx.φ = (
∧

α∈Head(φ)

α)→ (
∨

β∈Side(φ)

β) , (2)

where α and β are formulas with no occurrence of the variable x. The first of the relations
(1) reduces the computation of the least fixed-point of a formula to the computation of the
least fixed-point of a disjunctive formula φ. For such a formula, call α a head formula and β
a side formula; let Head(φ) denote the set of head formulas in a parse tree of φ and, similarly,
let Side(φ) be the set of side formulas in the same parse tree of φ. Using the second of the
relations (1) and the fact that disjunctive formulas give rise to monotone inflationary functions,
an expression for the least fixed-point of a disjunctive formula appears on the right of (2).
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The existing sequent calculi for first-order logic [18] contain special rules for the introduction
of quantification and for substitution. The application of these rules depends on the unbounded
and bounded variables occurring in formulas. For example, in the standard Gentzen calculus
for first-order logic the rules

Γ ` ∆, A[x]

Γ ` ∆,∀xA
Γ, A[x] ` ∆

Γ,∃xA ` ∆

are sound only when x does not appear free in the conclusions of the rules.
A proposal for a display calculus for fragments of first-order logic was first presented in

[21, 20]. The key idea of this approach is that existential quantification can be viewed as a
diamond-like operator of modal logic, and universal quantification can be seen as a box-like
operator as discussed in [14, 19]. The underlying reason for these similarities which have been
observed and exploited in [14, 19, 21, 20] is order-theoretic and pertains to the phenomenon
of adjunction: indeed the set theoretic semantic interpretation of the existential and universal
quantification are the left and right adjoint respectively of the inverse projection map and more
generally, in categorical semantics, the left and right adjoint of the pullbacks along projections
[15],[7, Chapter 15]. However, the display calculus of [21] contains rules with side conditions on
the free and bounded variables of formulas similar to the ones presented above. This implies
that the rules are not closed under uniform substitution, that is, the display calculus is not
proper [20, Section 4.1].

We present results based on ongoing work in [10] on a proper display calculus for first-order
logic. The design of our calculus is based on the multi-type methodology first presented in
[5, 2], motivated by considerations discussed in [8, 4], for DEL and PDL and further developed
in [3, 6, 11, 12, 13, 1], in synergy with algebraic techniques [9]. The multi-type approach allows
for the co-existence of terms of different types bridged by heterogeneous connectives. The
requirement for the calculus is that in a derivable sequent x ` y the structures x and y must be
of the same type. In this framework properness means uniform substitution within each type.

Using insights from [15, 16, 17] we introduce a proper display calculus for first-order logic.
The conditions on rules are internalised in the calculus by the use of appropriate types. The
language of first-order logic is expanded with a unary heterogeneous connective that serves as
the right adjoint of the existential quantifier and the left adjoint of the universal quantifier.
In the context of the calculus this connective signifies the introduction of a fresh variable to a
formula.

In my talk I will present the proper display calculus for first-order logic and discuss its
completeness, soundness, cut-elimination and conservativity.
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With the purpose of finding a Stone duality for bitopological spaces, A. Jung and A. Moshier introduced

in [2] the category dFrm of d-frames in which objects are structures that comprise two frames, thought

of as lattices of open sets, and two relations that connect both frames, as abstractions of the covering

and disjointness relation. Morphisms in this category, named d-frame homomorphims, are pairs of frame

homomorphisms preserving those relations. The aim of this talk is to explore an approach to the notion

of parts of a space in this pointfree bitopological setting.

In the category Loc of locales, subobjects, namely sublocales, can be thought of as generalized subspaces

and they form a far more complex and richer structure than their classical counterpart [1]. They can

be represented in several different ways: frame congruences, nuclei, sublocale sets and sublocale maps

(onto frame homomorphisms). The categorical interpretation of the last one provides a candidate for the

bitopological case, as onto frame homomorphisms are precisely extremal epimorphisms in the category

Frm = Locop of frames. Motivated by this fact, in this talk, we will present a characterization of extremal

epimorphisms in the category of d-frames. They are given by certain pairs of onto frame homomorphisms

and, consequently, they can be represented by pairs of sublocale sets endowed with appropriate covering

and disjointness relations. However, non-trivial examples are not easily found and even though one can

easily show that they form a complete lattice, this structure does not seem to be as rich as in the localic

case.

Furthermore, we will define dense d-frame homomorphisms and show that, given a pair of sublocale

sets containing all the regular elements of a d-frame, their associated sublocale maps form a dense extremal

epimorphism in dFrm. Conversely, an extremal epimorphism in dFrm is dense if and only if its associated

pair of sublocale sets contains all the regular elements. Accordingly, we will show that there is a least

dense extremal epimorphism for each d-frame, obtaining in this way a Isbell-type density theorem for the

category of d-frames.
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Let k denote an algebraically closed field. A “k-algebra” is a ring with compatible k-vector
space structure. A “module” over a k-algebra A is a k-vector space M with an action of A that
is compatible with the group and vector space structures on M . It is known that the classical
first-order theory of modules over the free algebra k〈X,Y 〉 is undecidable. More precisely,
the classical first-order theory is undecidable in that there is no Turing machine algorithm
that will establish whether a given sentence of the theory is a theorem [4], [1]. A k-algebra
S is “wild” if its category of modules admits a “representation embedding.” This is a finitely
generated (S, k〈X,Y 〉)-bimodule M , free over k〈X,Y 〉, such that an induced functor M⊗k〈X,Y 〉
− : k〈X,Y 〉-mod → S-mod, between categories of finite-dimensional modules, preserves and
reflects indecomposability and isomorphism (p. 272 of [4]). The conjecture of M. Prest is that
any finite-dimensional wild algebra has an undecidable theory of modules (p. 350 of [4]).

There are two goals of our recent work [3]. First is to reformulate the theory of modules
over a fixed k-algebra within the cartesian fragment of first-order categorical logic as described
in D1.2 of [2]; and then to prove that the cartesian theory of k〈X,Y 〉-modules in particular
is undecidable. The second is to reformulate Prest’s conjecture in a manner appropriate for
cartesian logic and then to prove it. Our hope is that this rephrasing in cartesian categorical
logic will shed light on the original problem in classical model theory. However, we make no
claim to resolve the original conjecture.

That the cartesian theory of k〈X,Y 〉-modules is undecidable can be seen by adapting the
proof idea of the original source [1]. That is, it can be seen that each element of a distinguished
class of sequents of the cartesian theory is provable in the theory if, and only if, the two words
of a corresponding pair of words of a fixed monoid with an undecidable word problem are
equivalent. Thus, the module theory can be seen to interpret the undecidable word problem of
a finitely presented monoid, making it undecidable as well. The affirmative result here meets
the first goal stated above.

To attain the second goal, undecidability must somehow be “transmitted” between cartesian
theories of modules over k〈X,Y 〉 and S of the first paragraph. This is accommplished by
giving what amounts to a translation between the theories. This is by the device of “syntactic
categories.” The syntactic category CT of a cartesian theory T is a categorification of the syntax
of T, described for example in D1.4 of [2]. A translation of theories T → T′ is essentially the
same thing as a functor of syntactic categories CT → CT′ . Our main result is that what we
call a “representation embedding” of cartesian theories T and T′ induces such a functor of
syntactic categories. The functor amount to a conservative translation of theories, so that if T
is undecidable, then so is T′.

In a bit more detail, a representation embedding between categories of models of cartesian
theories can be defined to be a functor between the categories of Set-models that preserves
indecomposability and projectivity and that reflects epics when restricted to the full subcat-
egory of indecomposable projective models. The main result, then, is that if there is such a
representation embedding between cartesian theories say T and T′, then if T is undecidable,
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so is T′. Our reformulation of Prest’s conjecture in cartesian logic can be seen to provide a
representation embedding in this sense between the respective cartesian theories of k〈X,Y 〉-
and S-modules. Thus, the main result is applied to obtain an affirmative resolution of the
reformulation in cartesian logic of Prest’s conjecture as a corollary.
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There exist two known concepts of ultrafilter extensions of first-order models, both in a cer-
tain sense canonical. One of them [1] comes from universal algebra where it goes back to
a seminal paper by Jónsson and Tarski [2] and also modal logic [3, 4]. Another one [5, 6] has its
sources in iterated ultrapowers in model theory [7, 8, 9] and especially algebra of ultrafilters,
with ultrafilter extensions of semigroups [10] as its main precursor. By a classical fact of general
topology, the space of ultrafilters over a discrete space is its largest compactification. The main
result of [5, 6], which confirms a canonicity of the extension introduced there, generalizes this
fact to discrete spaces endowed with arbitrary first-order structure. An analogous result for the
former type of ultrafilter extensions was obtained in [11].

Here we offer a uniform approach to both types of extensions. It is based on the idea to
extend the extension procedure itself. We propose a generalization of the standard concept of
first-order models in which functional and relational symbols are interpreted rather by ultrafil-
ters over sets of functions and relations than by functions and relations themselves. We provide
two specific operations which turn generalized models into ordinary ones, characterize the re-
sulting ordinary models in topological terms, and establish necessary and sufficient conditions
under which the latter are the two canonical ultrafilter extensions of some models. For details,
we refer the reader to the forthcoming [12].
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1. Introduction. We introduce and apply unification in predicate logics that extend
intuitionistic predicate logic Q-INT and modal predicate logic Q-S4 (or Q-K4). S. Ghilardi
succesfully applied unification in propositional logic [5], [6], [7]. We show that unification in
L ⊇ Q-INT is projective iff L ⊇ P.Q–LC, Gödel-Dummett’s predicate logic plus Plato’s Law (in
modal case: L ⊇ mP.Q-S4.3); hence, such L is almost structurally complete: each admissible
rule is either derivable or passive and unification in L is unitary. We provide an explicit basis for
all passive rules in Q-INT (Q-S4). We show that every unifiable Harrop’s formula is projective
and we extend the classical results of Kleene (on disjunction and existence quantifier under
implication) to projective formulas and to all extensions of Q− INT. Rules that are admissible
in all extensions of Q-INT are given. We prove that L has filtering unification iff L extends
Q-KC: = Q-INT + (¬A∨¬¬A) ( Q-K4.2+), and that unification in Q-LC, Q-KC (Q-S4.3, Q-S4.2)
is nullary and in Q-INT (Q-S4) it is not finitary, contrary to the propositional cases.

Q-L denotes the least predicate logic extending a propositional logic L, e.g. Q-CL, Q-
INT, Q-S4. We follow the axioms and notation of [2], [3]. We consider a standard first-
order (or predicate) language {→,∧,∨,⊥,∀,∃} (plus modal 2,3) with free individual vari-
ables: {a1, a2, a3, . . . }, bound individual variables: {x1, x2, x3, . . . }, predicate variables: Pr=
{P1, P2, P3, . . . }; no function symbols or =. Formulas (Fm) are q-formulas (q-Fm) in which no
bound variable occurs free. A 2nd-order substitution for predicate variables is used.

2. Unifiability. A basis for passive rules. A unifier for A in a logic L is a substitution
(for predicate variables) τ making A a theorem of L, i.e. τ(A) ∈ L. A formula A is unifiable in
L (L-unifiable) if it has a unifier in L. A unifier v : Pr → {⊥,>} is called ground. Note: (i) A
is L-unifiable iff (ii) there is a ground unifier for A in L iff (iii) A is valid in a classical model
with 1-element universe. Hence unifiability is absolute. Note: Unifiable 6= Consistent. A rule
A/B is passive, if A is not unifiable. Consider the following (schematic) rules:

(P∀) :
¬∀zC(z) ∧ ¬∀z¬C(z)

⊥
(

(2P∀) :
3∃xA(x) ∧3∃x¬A(x)

⊥
)

Theorem 1. P∀ (2P∀) form a basis for all passive rules over Q–INT ( Q–K4D)

3. Projective unification and Harrop formulas. A unifier ε for a formula A in a logic
L is projective if `L (2)A → ∀x1,...,xn

(ε(Pi(x1, . . . , xn)) ↔ Pi(x1, . . . , xn)), for each predicate
variable Pi. A logic L enjoys projective unification if each L-unifiable formula has a projective
unifier. P.Q-LC (mP.Q-S4.3 ) denotes the Gödel-Dummett (S4.3 modal) predicate logic extended
with the following formula called (modal) Plato’s Law
(P): ∃x(∃xB(x)→ B(x)), (mP): ∃x2(∃x2B(x)→ B(x)).

Theorem 2. A superintuitionistic predicate logic L enjoys projective unification if and only if
P.Q-LC ⊆ L . If a modal logic L enjoys projective unification, then mP.Q-S4.3 ⊆ L.
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Corollary 3. Every logic containing P.Q-LC is almost structurally complete i.e. every admis-
sible rule is either derivable or passive.

Corollary 4. P.Q-LC is the least logic L ⊇ Q-INT in which ∨ and ∃ is definable by ∧,→,∀.

Theorem 5. For an infinite rooted Kripke frame F =< W,6,D >, (m)P is valid in F iff F has
constant domain D and W is well (quasi-)ordered. IP.Q-LC (mP.Q-S4.3) is Kripke incomplete.

Harrop q-formulas q-FmH (or Harrop formulas FmH) are defined by the clauses:
1. all elementary q-formulas (including ⊥) are Harrop; 2. if A,B ∈ q-FmH , then A ∧ B ∈
q-FmH ; 3. if B ∈ q-FmH , then A→ B ∈ q-FmH ; 4. if B ∈ q-FmH , then ∀xj

B ∈ q-FmH .

Theorem 6. Any unifiable Harrop’s formula is projective in Q–INT.

Theorem 7. For any L-projective sentence A and any formulas B1, B2,∃xC(x), we have
(i) if `L A→ B1 ∨B2, then `L (A→ B1) ∨ (A→ B2),
(i)’ if `L A→ 2B1 ∨2B2, then `L 2(2A→ B1) ∨2(2A→ B2), (in the modal case),
(ii) if `L A→ ∃xC(x), then `L ∃x(A→ C(x)),
(ii)’ if `L A→ ∃x2C(x), then `L ∃x2(2A→ C(x)), (in the modal case).

Example: The following non-passive rule is admissible in every predicate logic L ⊇ Q-INT:
¬(∃xP (x) ∧ ∃x¬P (x))→ ∃yQ(y) / ∃y[¬(∃xP (x) ∧ ∃x¬P (x))→ Q(y)].

4. Filtering unification and unification types. Recall: σ is more general than τ , if
`L τ(x) ↔ θ(σ(x)), for some substitution θ (σ, τ are defined on finite sets of variables). A
most general unifier, mgu, for a formula A is a unifier that is more general than any unifier for
A. Unification in L is unitary, 1, if every L-unifiable formula has a mgu. The other unification
types: finitary, infinitary and nullary, 0, depend on the number of maximal unifiers see [1]. [7]
characterized modal logics in which unification is filtering, that is, for every two unifiers for a
formula there is another unifier that is more general than both of them, (type 1 or 0).

Theorem 8. Let L be a superintuitionistic predicate logic (modal logic extending Q-K4). Uni-
fication in L is filtering iff the Stone law ¬¬A ∨ ¬A (2+ : 3+2+A→ 2+3+A) is in L.

Corollary 9. For every superintuitionistic (modal) predicate logic L (containing Q-S4)
(i) if Q-KC ⊆ L (Q-S4.2 ⊆ L), then unification in L is either unitary or nullary;
(ii) if L enjoys unitary unification, then Q-KC ⊆ L (Q-S4.2⊆ L).

Corollary 10. Unification in Q-LC, Q-KC (Q-S4.3, Q-S4.2) is nullary and in Q-INT (Q-S4) it
is either infinitary or nullary, contrary to the corresponding propositional cases.
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Introduction. The methods of filtration and selective filtration are among the oldest and
best known techniques for obtaining finite models in modal logic. In the present work we define
the filtration construction in the context of many-valued modal logics with arbitrary residuated
lattices as truth spaces. We prove an accompanying filtration theorem and show that many-
valued filtrations exist by exhibiting the smallest and largest filtrations satisfying the definition.
Next, we apply filtrations to show that certain natural many-valued analogues of T, K4 and
S4 have the strong finite model property. A more challenging example perhaps is the many
valued analogue of Gödel-Löb logic. We show that this logic is characterized by the class of all
finite MV-frames which satisfy a certain many-valued version of transitivity and which contain
no infinite non-0 paths. As in the classical case, this latter result requires the use of a selective
filtration construction.

Many valued modal logic. In [2, 3] Fitting introduced a family of many-valued modal logics
over Heyting algebras where both the valuation and the accessibility relations of the associated
Kripke models are many-valued. This can be generalized by replacing Heyting algebras with
residuated lattices, as is done in e.g. [1]. We follow this framework. Formulas are given by the
following recursion: ϕ := ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | 3ϕ | 2ϕ, with p from a denumerably
infinite set PROP of proposition letters. Let A = (A,∧,∨, ◦,→, 1, 0) be a residuated lattice.
In other words, the reduct (A,∧,∨, 1, 0) is a bounded lattice while the reduct (A, ◦, 1) is a
commutative monoid, and moreover → is the right residual of ◦, i.e. a ◦ b ≤ c iff a ≤ b → c
for all a, b, c ∈ A. An A-frame is a triple F = (W,D,B) with a non-empty universe W and
A-valued accessibility relations D : W ×W → A and B : W ×W → A. An A-model is a pair
M = (F, V ) where F is an A-frame and V : PROP ×W → A is an A-valued valuation. The
valuation can be extended to all formulas. In particular,

V (3ϕ,w) =
∨
{D(w, v) ◦ V (ϕ, v) | v ∈W} and

V (2ϕ,w) =
∧
{B(w, v)→ V (ϕ, v) | v ∈W}.

Let a ∈ A, then a formula ϕ is said to be a-true in a model at w ∈W , denoted by M, w 
a ϕ,
if V (ϕ,w) ≥ a.

Filtrations. Given a subformula-closed set of formulas Σ, define an equivalence relation!Σ

on an A-model M = (W,D,B, V ) such that w!A
Σ v iff V (ϕ,w) = V (ϕ, v) for all ϕ ∈ Σ. Let

[w]AΣ denote the equivalence class of w ∈W under !A
Σ .

Definition 1. Let WΣ = {[w]Σ | w ∈W}. Let Mf = (WΣ,Df ,Bf , VΣ) be any model such that:

(R1) Let a ∈ A. If Dwv ≥ a, then Df [w][v] ≥ a.
(R2) Let a, a′ ∈ A. If Df [w][v] ≥ a, then for every 3ϕ ∈ Σ, if M, v 
a′ ϕ, then
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M, w 
a◦a′ 3ϕ.
(R3) Let a ∈ A. If Bwv ≥ a, then Bf [w][v] ≥ a.
(R4) Let a, a′ ∈ A. If Bf [w][v] ≥ a, then for every 2ϕ ∈ Σ, if M, w 
a′ 2ϕ, then M, v 
a◦a′ ϕ.
(V) VΣ([w], p) = V (w, p) for all p ∈ Σ.

Then Mf is called an A-valued filtration of M through Σ.

Theorem 2 (A-valued Filtration Theorem). Let Mf = (WΣ,Df ,Bf , VΣ) be a filtration of M
through a subformula closed set Σ over A. Then, for all formulas ϕ ∈ Σ, all states w in M
and any truth value a 6= 0 in A, we have that M, w 
a ϕ ⇐⇒ Mf , [w]AΣ 
a ϕ. Moreover, if
A and Σ are both finite, then so is Mf .

We show that A-valued filtrations exist by exhibiting the smallest and largest filtrations (in
the sense of producing, respectively, the smallest and largest relations Df and Bf in terms of the
order of A) satisfying the definition. We also define a filtration which preserves a-transitivity
of models (see below).

Applications: Many-valued modal logics with the FMP. In this section, for simplicity,
we restrict to A-frames F = (W,D,B) where D = B which we notate as F = (W,R). Moreover,
we will assume that A is a finite Heyting algebra. In [1] Bou et. al. axiomatize the logic
Λ(Fr,Ac) of the class of all A-frames. In analogue to the classical case, let T(A), K4(A) and
S4(A) be the logics obtained by adding to to the system of Bou et. al. the axioms 2p→ p and
2p→ 22p individually and in combination. Let gl be the Löb formula 2(2p→ p)→ 2p and
let GL(A) be the logic obtained by adding gl and 4 to an axiomatization of Λ(Fr,Ac).

An A-frame F = (W,R) is a-reflexive if Rwv ≥ a for all w, v ∈ W ; it is a-transitive if
a ≤ (Rwv ∧Rvu→ Rwu) for all w, v, u ∈W . It follows that F is 1 transitive iff Rwv ∧Rvu ≤
Rwu for all w, v, u ∈W . A non-0 path in F is a finite or infinite sequence w0, w1, . . . such that
Rwiwi+1 > 0 for all i ≥ 0.

Lemma 3. The axioms 2p → p and 2p → 22p are canonical for 1-reflexivity and 1-
transitivity, i.e., the canonical models (see [1]) of T(A), K4(A) are 1-reflexive and 1-transitive,
respectively.

Now we can obtain the following theorem by judicious application of filtrations.

Theorem 4. T(A) and K4(A) are characterized by the classes of all finite 1-reflexive and 1-
transitive A-frames, respectively. S4(A) is by the class of all finite 1-reflexive and 1-transitive
A-frames.

A more intricate argument, combining transitive and selective filtration, establishes the
following analogue of the well-known classical result.

Theorem 5. Let A be a finite Heyting chain. Then GL(A) is determined by the class of finite,
1-transitive A-frames with no infinite non-0 paths.
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Many-valued modal logics provide a natural formalisation of reasoning with modal notions
such as knowledge or action in contexts where the two-valued classical picture is not sufficient.
Such contexts typically involve reasoning with incomplete, inconsistent or graded information.

A prominent example of a (non-modal) many-valued logic designed to deal with incomplete
and incosistent information is is the Dunn–Belnap four-valued logic [4, 2, 3]. Ginsberg [7]
generalized the Dunn–Belnap four-valued matrix FOUR by introducing the notion of a bilattice
and shows that bilattices emerge naturally in many computer science applications; see also
[5, 6].

Formally, bilattices are sets equipped with two partial orders ≤t (the “truth order”) and
≤i (the “information order”) that both satisfy the lattice properties (plus other assumptions
that need not be discussed now). Intuitively, ≤t orders members of a bilattice with respect to
how truthful they are; ≤i orders them with respect to how much information they represent.
For instance, in Belnap’s four-valued matrix the value “true” is above the value “both” with
respect to ≤t but below it with respect to ≤i.

Arieli and Avron [1] study a (non-modal) logic based on bilattices using the full language
{∧,∨, t, f,⊗,⊕,⊥,⊤,¬,−,⊃} containing constants for maximal (⊤, t) / minimal (⊥, f) ele-
ments and suprema (∨,⊕) / infima (∧,⊗) operators for both of the orderings, with two nega-
tions (¬,−) and an implication connective (⊃).

Several modal extensions of Dunn–Belnap and Arieli–Avron have been studied recently
[9, 8, 10]. These modal extensions add a modal operator 2 to either the full Arieli–Avron
language [8, 10] or to its fragment {∧,∨,¬, f,⊃} [9]. The operator 2 is interpreted in terms of
the truth-order infimum (simplifying a bit, the value of 2ϕ in world w of a Kripke model is the
truth-order infimum of the values of ϕ in worlds w′ accessible from w.)

However, a modal operator 2i corresponding to the information-order infimum is a natural
addition to consider. If worlds in a Kripke model are seen as “sources” of information, then
the value of 2iϕ at w is the minimal information about ϕ on which all the sources agree. If
accessible worlds are seen as possible outcomes of some information-modifying operation (such
as adding or removing information), then the value of 2iϕ at w is the minimal information about
ϕ that is guaranteed to be preserved by the operation. (This extension is briefly considered but
not pursued in [8, 10]).

The present paper studies the bimodal bilattice logic arising from such an extension. It
is well known that 2i is expressible in any language extending {∧,∨,¬,⊥,2}; define 2iϕ :=
(⊥ ∧ ¬2¬ϕ) ∨ 2ϕ. We focus here on the case where ⊥ is not available and extend the modal
language used in [9] with 2i. For the sake of simplicity, we use Belnap’s FOUR as our bilattice
of truth values (the non-modal logic of arbitrary bilattices is identical to the the non-modal
logic of FOUR, [1]).

Our main technical result is a sound and complete axiomatization. The axiomatization
reflects the fact that 2iϕ has a designated value (i.e. one of ⊤, t) iff 2ϕ has a designated
value; but 2i is distinctive in the context of negation. More specifically, we add the following
axioms to the non-modal base: 2ϕ ≡ 2iϕ, 2¬ϕ ≡ ¬2iϕ, (¬2ϕ ⊃ f) ≡ 2(¬ϕ ⊃ f), 2t,
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(2ϕ ∧ 2ψ) ⊃ 2(ϕ ∧ ψ), together with the inference rule
ϕ ⊃ ψ

2ϕ ⊃ 2ψ
.

Potential applications of the logic in knowledge representation and expressiveness of the
language are discussed as well. The work done in this paper is preliminary – a version of the
framework with many-valued accessibility is a topic for future research.
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Lattice logic is the {∧,∨,>,⊥}-fragment of classical propositional logic without distributivity. Lattice
logic is captured by a basic Gentzen-style sequent calculus (cf. e.g. [18]), which we refer to as L0. Such a
calculus has the usual rules of Identity (restricted to atomic formulas with empty contexts on both sides of
the sequent), Cut (with empty contexts on both sides of the sequents) and the standard introduction rules
for the logical connectives in additive form.1 L0 is perfectly adequate as a proof calculus for lattice logic,
when this logic is regarded in isolation. However, the main interest of lattice logic lays in it serving as base
for a variety of logics, which are either its axiomatic extensions (e.g. the logics of modular and distributive
bounded lattices and their variations [16]), or its proper language-expansions (e.g. the full Lambek calculus
[17, 8], bilattice logic [2], orthologic [9], linear logic [15]). Hence, it is sensible to require of an adequate
proof theory of lattice logic to be able to account in a modular way for these logics as well. A source
of nonmodularity arises from the fact that L0 lacks structural rules. Indeed, the additive formulation of
the introduction rules of L0 encodes the information which is stored in standard structural rules such as
weakening, contraction, associativity, and exchange. Hence, one cannot use L0 as a base to capture logics
aimed at ‘negotiating’ these rules, such as the Lambek calculus [17] and other substructural logics [8].

To remedy this, in [10] the first and the fourth author introduced two sequent calculi, which we refer here
as L1 and L2. L1 is a sequent calculus that adopts the visibility2 principle isolated by Sambin, Battilotti
and Faggian in [19] to formulate a general strategy for cut elimination. L2 is a sequent calculus which enjoys
the display3 principle isolated by Belnap in [1]. Properness (i.e. closure under uniform substitution of all
parametric parts in rules, see [20]) is the main interest and added value of L2 and allows for the smoothest
Belnap-style proof of cut-elimination. The second attempt is motivated by and embeds in a more general
theory—that of the so-called proper multi-type calculi, introduced in [13, 5, 6, 4] and further developed in
[7, 3, 14, 11]—which creates a proof-theoretic environment designed on the basis of algebraic and order-
theoretic insights (see [12]), which aims at encompassing in a uniform and modular way a very wide range
of non-classical logics, spanning from dynamic epistemic logic, PDL, and inquisitive logic to lattice-based
substructural (modal) logics. Proper multi-type calculi are a natural generalization of Belnap’s display
calculi [1] (later refined by Wansing’s notion of proper display calculi [20]), the salient features of which
they inherit. L1 and L2 have a structural language and the introduction rules for the logical connectives
are formulated in multiplicative form.4 This more general formulation of the introduction rules implies that

∗The research of the first, third and fourth author is supported by the NWO Vidi grant 016.138.314, by the NWO Aspasia
grant 015.008.054, and by a Delft Technology Fellowship awarded to the fourth author in 2013.

1A logical rule is in additive form if each occurrence of non-active formulas in the conclusion occurs in each premise and
conversely (in the literature such rules are also called context-sharing rules). Moreover, in the unary introduction rules for
conjunction and disjunction only one immediate subformula of the principal formula appears as active formula in the premise.
An introduction rule for the logical connectives is in multiplicative form if each occurrence of non-active formulas in the
conclusion occurs in exactly one premise and conversely (in the literature such rules are also called context-splitting rules).
Moreover, in the unary introduction rules for conjunction and disjunction both immediate subformulas of the principal formula
appear as active formulas in the premise.

2A sequent calculus verifies the visibility property if both the auxiliary formulas and the principal formula of the introduction
rules for the logical connectives occur in an empty context.

3A sequent calculus verifies the display property if each substructure can be isolated on exactly one side of the turnstile by
means of structural rules. Notice that display property implies visibility, but not vice versa.

4The multiplicative form of the introduction rules is the most important aspect in which L1 departs from the calculus of
[19]. Indeed, the introduction rules for conjunction and disjunction in [19] are in additive form.



the structural rules of weakening, exchange, associativity, and contraction are not anymore subsumed by the
introduction rules. L1 and L2 are more uniform and modular compared to L0 in a precise sense. All these
calculi block the derivation of the distributivity axiom, as well as of any other weaker form of distributivity.
However, in the literature there are no instances of analytic sequent calculi in which axiomatic extension of
lattice logic which are weaker than distributive lattice logic are captured using structural rules.

In this talk I will expand on an ongoing work on modular proof theory for axiomatic extensions and
expansions of lattice logic. In particular, I will present a sequent calculus enjoying a weaker form of visibility
that derives the modularity axiom but still blocks distributivity, thanks to a generalized form of the binary
logical rules for conjunction and disjunction.
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luca.reggio@irif.fr

The main content of this talk concerns recent joint work (see [4]) with Mai Gehrke and
Daniela Petrişan on the understanding, at the level of recognisers, of the effect of applying a
layer of various kinds of quantifiers in the context of logic on words.

Two approaches have been remarkably effective in the study of languages: the algebraic
one, and the logical one. Whereas the former relies on the notions of recognition by a monoid
and of syntactic monoid of a language, the latter is based on a semantic on finite words. Let
us briefly recall these two approaches.

Consider a finite set A (the alphabet) and an A-language, i.e. a subset L of the monoid A∗

free on A. We say that a monoid M recognises the language L provided there is a monoid
morphism φ : A∗ →M and P ⊆M such that φ−1(P ) = L. This condition is equivalent to the
existence of a homomorphism A∗ → M whose kernel saturates L. The maximal congruence
∼L on A∗ saturating L is defined by (x, y) ∈∼L if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ A∗. The
quotient A∗/ ∼L is called the syntactic monoid of L, and one can define a regular language to
be one whose syntactic monoid is finite.

It turns out that, beyond the regular case, monoids do not provide a notion of recognition
that is fine-grained enough to be useful. This led us to introduce in [3] the notion of a Boolean
space with an internal monoid (BM, for short), which behaves well with respect to recognition
in the non-regular setting. A BM is a pair (X,M) given by a Boolean space X (i.e, a compact
and Hausdorff space that is zero-dimensional) along with a dense subset M carrying a monoid
structure, such that ∀m ∈M the maps λm, ρm : M →M given by left and right multiplication
by m, respectively, can be extended to continuous functions on X. An example is provided by
the pair (β(A∗), A∗), where β(A∗) is the Stone-Čech compactification of the discrete set A∗.
Now, define a morphism (X,M)→ (Y,N) to be a continuous function X → Y whose restriction

is a monoid morphism from M to N . Recalling the bijection L 7→ L̂ between P(A∗) and the
clopens of β(A∗), we say that a BM (X,M) recognises the language L if there is a morphism

φ : (β(A∗), A∗)→ (X,M) and a clopen subset C ⊆ X such that φ−1(C) = L̂. This extends the
classical definition of recognition in the regular case.

The second approach stems from the interpretation of a word w ∈ A∗, say of length n, as a
relational structure on the set {1, . . . , n}. These structures are equipped with (interpretations
of) unary relations Pa, one for each a ∈ A, selecting the positions in the word w in which the
letter a appears. Additional relations, such as the natural order on {1, . . . , n}, are sometimes
considered in specific situations. Every (first-order, or higher-order) sentence ψ in a language
interpretable over words determines a language Lψ ⊆ A∗ consisting of all those words satisfying
ψ. However, if ψ(x) is a formula containing a free first-order variable x, in order to be able to
interpret the free variable we extend the alphabet to (A × {0, 1})∗ and use the more compact
notation a1a

′
2a
′
3 · · · an for the word (a1, 0)(a2, 1)(a3, 1) · · · (an, 0) ∈ (A×{0, 1})∗. The language

∗This work is part of the project DuaLL which has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement
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Lψ(x) ⊆ (A × {0, 1})∗ is then the collection of all the words in the extended alphabet, with
only one marked position, in which the formula ψ(x) is satisfied when the variable x points
at that position. Finally, one can consider the quantified formula ∃x.ψ(x) which yields the
language over the alphabet A∗ of all those words a1 · · · an such that there exists 1 ≤ i ≤ n with
a1 · · · a′i · · · an ∈ Lψ(x). There are other quantifiers of interest in language theory. An example
is provided by modular quantifiers: a word w satisfies the sentence ∃p mod qx.ψ(x) if there are
p mod q positions in the word w in which the formula ψ(x) is satisfied.

The question we pose, and answer, is the following: Suppose a language, defined by a formula
ψ(x), is recognised by a BM (X,M). If Q is some quantifier (e.g. a modular quantifier), how can
we construct a BM recognising the language associated to the sentence Qx.ψ(x)? The question
is motivated by open problems on the separation of Boolean circuit complexity classes, where
classes of languages are characterised in terms of logic fragments.

The answer employs duality-theoretic and categorical tools. Several quantifiers of interest
can be modelled using commutative semirings S (e.g. S = Z/qZ for the modular quantifiers)
or, from a categorical viewpoint, the free S-semimodule monad on Set (=the category of sets
and functions). On the way to our answer, we prove that whenever an operation on languages
— quantification being a particular case — can be modelled by a finitary commutative monad
(in the sense of [6]) T on Set, then a recogniser for the languages obtained by applying the

operation represented by T can be built by means of the profinite monad T̂ on the category
of Boolean spaces and continuous functions. The profinite monad T̂ associated to T was first
defined in [1], building on the ideas introduced in [2], and it is based on the notion of codensity
monad of a functor which has its origins in the work of Kock in the 60’s (see also [5]).

In the case of quantifiers modelled by a finite and commutative semiring S, that is when
T is the free S-semimodule monad, we provide a concrete description of the Boolean space
T̂X, for X any Boolean space, in terms of certain S-valued measures on X. If in addition
the semiring S is idempotent (hence a semilattice), T̂X can be equivalently described as the
space of all continuous functions X → S, where S is equipped with the topology of all downsets
with respect to its semilattice order. We remark that, in the case S = 2 is the two-element
Boolean algebra, T̂ is the Vietoris monad on Boolean spaces (already related to the existential
quantifier in [3]) and we essentially recover the classical description of the Vietoris space in
terms of functions into the Sierpiński space.
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In their seminal 1951-52 papers [1] on Boolean algebras with operators (BAOs), Jónsson and
Tarski showed that many varieties of BAOs, including the variety of relation algebras, are closed
under canonical extensions, and that a relation algebra is complete and atomic with all atoms
as functional elements if and only if it is the complex algebra of a generalized Brandt groupoid.
The results about canonical extensions were extended to distributive lattices with operators by
Gehrke and Jónsson in 1994, and to lattices with operators by Gehrke and Harding in 2001.
Here we show results about relation algebras can also be generalized to certain distributive
residuated lattices and involutive distributive residuated lattices, in some cases expanded by
a Heyting implication. These varieties include (generalized) bunched implication algebras and
weakening relation algebras, which have applications in computer science and algebraic logic.

A relation algebra (A,∧,∨,′ ,>,⊥, ·,`, 1) is a Boolean algebra (A,∧,∨,′ ,>,⊥) and a monoid
(A, ·, 1) such that xy ≤ z ⇐⇒ x` · z′ ≤ y′. An excellent introduction to relation algebras is in
[2] and several results about them were extended to residuated Boolean monoids in [3].

A cyclic involutive generalized bunched implication algebra (or CyGBI-algebra for short)
(B,∧,∨,→,>,⊥, ·, 1,∼) is a Heyting algebra (B,∧,∨,→,>,⊥) and a monoid (B, ·, 1) with a
linear cyclic negation ∼ that satisfies ∼∼x = x and x ≤ ∼y ⇐⇒ xy ≤ ∼1. So they are
involutive residuated lattices expanded with a Heyting implication, and both relation algebras
and CyGBI-algebras can be defined by identities. A relation algebra is a CyGBI-algebra if we
define x→ y = x′∨y and ∼x = x′`. In a CyGBI-algebra define x` = ∼¬x where ¬x = x→ ⊥,
then it is a relation algebra if it satisfies the identities ¬¬x = x and (xy)` = y`x`.

We define algebras of binary relations that are cyclic involutive GBI-algebras and gener-
alize representable relation algebras: Let P = (P,v) be a partially ordered set, Q ⊆ P 2

an equivalence relation that contains v, and define the set of weakening relations on P by
Wk(P, Q) = {v ◦ R ◦ v : R ⊆ Q}. Note that this set is closed under intersection ∩, union ∪
and composition ◦, but not under complementation R′ = Q−R or converse R`.

Weakening relations are the natural analogue of binary relations when the category Set of
sets and functions is replaced by the category Pos of partially ordered sets and order-preserving
functions. Since sets can be considered as discrete posets (i.e. ordered by the identity relation),
Pos contains Set as a full subcategory, which implies that weakening relations are a substan-
tial generalization of binary relations. They have applications in sequent calculi, proximity
lattices/spaces, order-enriched categories, cartesian bicategories, bi-intuitionistic modal logic,
mathematical morphology and program semantics, e.g. via separation logic.

Theorem 1. Let P = (P,v) be a poset, Q an equivalence relation that contains v, and for
R,S ∈ Wk(P, Q) define > = Q, ⊥ = ∅, 1 = v, ∼R = R`′ and R → S = (w ◦ (R ∩ S′) ◦ w)′

where S′ = Q− S. Then Wk(P, Q) = (Wk(P, Q),∩,∪,→,>,⊥, ◦, 1,∼) is a CyGBI-algebra.

Algebras of the form Wk(P, Q) are called representable weakening relation algebras, and if
Q = P×P , then we write Wk(P) and call this algebra the full weakening relation algebra on P.
If P is a discrete poset then Wk(P) is the full representable set relation algebra on the set P , so
algebras of weakening relations play a role similar to representable relation algebras. We define
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the class RwRA of representable weakening relation algebras as all algebras that are embedded
in a weakening relation algebra Wk(P, Q) for some poset P and equivalence relation Q that
contains v. In fact the variety RRA of representable relation algebras is finitely axiomatized
over RwRA.

Theorem 2. 1. RwRA is a discriminator variety closed under canonical extensions.

2. RRA is the subvariety of RwRA defined by ¬¬x = x.

3. The class RwRA is not finitely axiomatizable relative to the variety of all CyGBI-algebras.

A groupoid is defined as a partial algebra G = (G, ◦,−1 ) such that ◦ is a partial binary
operation and −1 is a (total) unary operation on G that satisfy the following axioms:

1. (x ◦ y) ◦ z ∈ G or x ◦ (y ◦ z) ∈ G =⇒ (x ◦ y) ◦ z = x ◦ (y ◦ z),
2. x ◦ y ∈ G ⇐⇒ x−1 ◦ x = y ◦ y−1,

3. x ◦ x−1 ◦ x = x and (x−1)−1 = x.

Typical examples of groupoids are disjoint unions of groups and the pair-groupoid (X×X, ◦,` ),
where (x, y)` = (y, x) and (x, y) ◦ (z, w) = (x,w) if y = z (undefined otherwise). A partially-
ordered groupoid (G,≤, ◦,−1 ), or po-groupoid for short, is a groupoid (G, ◦,−1 ) such that (G,≤)
is a poset and

4. x ≤ y and x ◦ z, y ◦ z ∈ G =⇒ x ◦ z ≤ y ◦ z,
5. x ≤ y =⇒ y−1 ≤ x−1,

6. x ◦ y ≤ z ◦ z−1 =⇒ x ≤ y−1.

If P = (P,v) is a poset with dual poset P∂ = (P,w) then P × P∂ = (P × P,≤, ◦,` ) is a
po-groupoid, called a po-pair-groupoid, with (a, b) ≤ (c, d) ⇐⇒ a v c and b w d. The set of
order-ideals of P is denoted by O(P).

Theorem 3. Let G = (G,≤, ◦,−1) be a po-groupoid. Then (O(G),∩,∪,→,>, ∅, ·, 1,∼) is
a CyGBI-algebra, where X → Y = O(G) − ↑(X − Y ), X · Y = ↓{x · y : x ∈ X, y ∈ Y },
1 = ↓{x ◦ x−1 : x ∈ G} and ∼X = O(G)− {x−1 : x ∈ X}.

For example, for a poset P = (P,v) the weakening relation algebra Wk(P) is obtained
from the po-pair-groupoid G = P × P∂ , and for an equivalence relation Q ⊆ P 2, Wk(P, Q)
is obtained from the sub-po-groupoid (Q,≤, ◦,` ). If one takes the 2-element chain P = C2 =
({0, 1},v) with the usual order 0 v 1, then P 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and

Wk(C2) = {∅, {(0, 1)}, {(0, 0), (0, 1)}, {(0, 1), (1, 1)}, {(0, 0), (0, 1), (1, 1)}, P 2}.

Theorem 4. For an n-element chain Cn the algebra Wk(Cn) has cardinality
(
2n
n

)
.
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Introduction. In this work, we define proper multi-type display calculi for both classical and intuitionsitic
inquisitive logic, which enjoy Belnap-style cut-elimination and subformula property.

Inquisitive logic is the logic of inquisitive semantics, a semantic framework developed by Ciardelli, Groe-
nendijk and Roelofsen [5, 1] which captures both assertions and questions in natural language. A distin-
guishing feature of inquisitive logic is that formulas are evaluated on information states, i.e., sets of possible
worlds, rather than on single possible worlds. Inquisitive logic defines a support relation between states
and formulas, the intended understanding of which is that in uttering a sentence, a speaker proposes to
enhance the current common ground to one that supports the sentence. This semantics is also known as
team semantics, which was introduced by Hodges [6, 7] in the context of dependence logic [8]. Recent work
[2] generalised the original classical logic-based framework of inquisitive logic [1], and introduced inquisitive
logic on the basis of intuitionistic propositional logic.

The Hilbert-style presentations of both classical and intuitionistic inquisitive logic are not closed under
uniform substitution, and some axioms are sound only for a certain subclass of formulas, called standard
formulas. This and other features make the quest for analytic calculi for the logics not straightforward. A
first step in this direction was taken in [3], where a multi-type sequent calculus was developed for classical
inquisitive logic. However, this calculus does not enjoy display property. In this work, we generalise the
methodology of [3] and propose a proper multi-type display calculi for both classical and intuitionistic
inquisitive logic. We develop a certain algebraic and order-theoretic analysis of the support semantics,
which provides the guidelines for the design of a multi-type environment accounting for two domains of
interpretation, for standard and for general formulas, as well as for their interaction. This multi-type
environment in its turn provides the semantic environment for the multi-type calculi for both classical and
intuitionistic inquisitive logic we propose in this work.

Classical and intuitionistic inquisitive logic. The following grammar defines the language of both
classical (CInq) and intuitionistic inquisitive logic (IInq) presented as a language of two types:

Standard 3 α ::= p | 0 | α u α | α _ α General 3 A ::= ↓α | A ∧A | A ∨A | A→ A

Standard formulas of CInq and IInq adopt the standard semantics for classical and intuitionistic proposi-
tional logic, respectively. General type formulas are evaluated on information states, which sets of classical
valuations for CInq, or sets of possible worlds in intuitionistic Kripke models M = (W,R, V ) for IInq. The
support relation S |= φ of a general type formula φ in either logic on a state S is defined as:

S |=↓ α iff v |= α for all v ∈ S S |= φ ∨ ψ iff S |= φ or S |= ψ
S |= φ ∧ ψ iff S |= φ and S |= ψ S |= φ→ ψ iff for any T ≤ S, if T |= φ, then T |= ψ

where the extension relation ≤ between information states is defined as T ≤ S iff T ⊆ S in the CInq case,
and as T ≤ S iff T ⊆ R[S] in the IInq case. IInq and CInq are complete with respect to the systems below:

System of IInq: Rule: Modus Ponens for both types

Axioms: • Axiom schemata of (disjunction-free) intuitionistic logic (IPC) for Standard-formulas
• Axiom schemata of IPC for General-formulas
• (↓α→ (A ∨B))→ (↓α→ A) ∨ (↓α→ B) (Split axiom)

System of CInq: The system of IInq extended with two extra axioms: • ∼∼ α _ α • ¬¬↓α→ ↓α
∗This research is supported by the NWO Vidi grant 016.138.314, by the NWO Aspasia grant 015.008.054, and by a Delft

Technology Fellowship awarded to the second author in 2013.



Order-theoretic analysis. In the setting of CInq, the base logic, namely classical propositional logic, gives
rise to a Boolean algebra B = (P(2V ),∩,∪, (·)c,∅, 2V ). The set P↓(P(2V )) of downward closed collections
of states forms a perfect Heyting algebra A := (P↓(P(2V )),∩,∪,⇒,∅,P(2V )) as the complex algebra of the
relational structure (P(2V ),⊆). The following mappings between the two algebras

f∗ : B→ A ;S 7→ {{v} | v ∈ S} ∪ {∅} f : A→ B; S 7→ {T | T ⊆ S} ↓ : B→ A; S 7→ {T | T ⊆ S},

turn out to be adjoints to one another: f∗ a f a ↓, since fS ⊆ S iff S ⊆ ↓S and f∗S ⊆ S iff S ⊆ fS. Similar
observations can be made for IInq, and similar mappings can be found between a Heyting algebra for the
base logic, intuitionistic logic with single-world semantics, and a Heyting algebra on the higher level.

Proper multi-type display calculi for CInq and IInq. Building on the order-theoretic analysis, we
introduce the corresponding structural operators F∗, F and ⇓ for the mappings f∗, f and ↓. The structural
languages for the standard type and general type and their interpretations are presented as follows:

Standard Γ ::= α | Φ | Γ , Γ | Γ A Γ | FX General X ::= A | ⇓Γ | F∗Γ | X ;X | X > X

Structural symbols Φ , A ; > F∗ F ⇓
Operational symbols (1) 0 u (t) (7→) _ ∧ ∨ (�) → (f∗) (f) (f) ↓

Our calculi for CInq and IInq are built on the basis of the one introduced [3], but there are major differences
in the following structural rules that characterise the interaction between the two types:

F∗Γ ` ∆
f adj

Γ ` F∆

FX ` Γ
d adj

X ` ⇓Γ

X ` ⇓FY
d-f elim

X ` Y
Γ ` ∆

bal
F∗Γ ` ⇓∆

X ` Y
f mon

FX ` FY

X ` ⇓(Γ A ∆)
d dis

X ` F∗Γ > ⇓∆

FX ,FY ` Z
f dis

F(X ;Y ) ` Z
X ` F∗Γ > (Y ;Z) X ` F∗Γ > (Y ;Z)

Split
X ` (F∗Γ > Y ) ; (F∗Γ > Z)

We adopt a standard display calculus for standard formulas of IInq, and we add the following classical Grishin
rule for standard formulas of CInq:

Π ` Γ A (∆ ,Σ)
CG

Π ` (Γ A ∆) ,Σ

The completeness of the calculi is proved by deriving the axioms and rules of the Hilbert systems. In
particular, the split axiom in both logics is derived by applying the Split rule, and the double negation
law for CInq is derived by applying the Grishin rule for classical standard formulas. The proposed calculi
are proper multi-type display calculi, a strict and particularly well-behaved subclass of multi-type sequent
calculi, therefore cut-elimination and subformula property follow from the general result in [4].
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By a celebrated theorem of Solovay, the Gödel-Löb logic GL is the modal logic of the provabil-
ity predicate of Peano Arithmetic PA. This entails arithmetic interpretation of the intuitionistic
propositional calculus IPC as was shown by Goldblatt, by Boolos, and by Kuznetsov and Mu-
ravitsky in the late 1970’s and early 1980’s. To see this, first use the Gödel translation t to
embed IPC into the modal logic Grz, and then use the splitting translation sp—that maps 2ϕ
to ϕ ∧2ϕ—to embed Grz into GL as in the following diagram.

IPC Grz GL

IPC ` ϕ Grz ` t(ϕ) GL ` sp(t(ϕ))iffiff

t sp

Finally, use Solovay’s theorem to interpret GL into PA. The aim of this talk is to lift the
above correspondences to monadic extensions of the logics in question completing the work of
Esakia [2, 3]. To motivate the exact statement, we recollect some obstacles one encounters
when trying to extend the above correspondences to the predicate setting. Let QIPC, QGrz,
and QGL be the full predicate extensions of IPC, Grz, and GL, respectively. As was shown by
Montagna [9], the analogue of Solovay’s theorem is no longer true for QGL. Regarding the
remaining correspondences, the situation seems at least severely more complicated than in the
propositional case. While it is a well-known result of Kripke [8] that QIPC is complete with
respect to Kripke frames, neither QGL nor QGrz is complete with respect to Kripke frames (see
[9] and [5]). So the standard proofs for the propositional case do not extend to the predicate
setting since they make use of Kripke semantics for IPC, Grz, and GL, respectively.

Unlike the full predicate logics, their one-variable fragments often behave much nicer. We
will refer to them as monadic fragments. Bull [1] showed that the intuitionistic bi-modal logic
MIPC axiomatizes the monadic fragment of QIPC (by interpreting 2 and 3 as the universal
and existential quantifiers, respectively). Esakia [2] introduced the monadic fragments MGL and
MGrz of QGL and QGrz, respectively, and conjectured that—in contrast to the full predicate
case—Solovay’s theorem extends to MGL. This conjecture was verified by Japaridze [6, 7].

The (extended) Gödel translation embeds MIPC into MGrz. However, the (extended) split-
ting translation fails to embed MGrz into MGL. To remedy this, Esakia adopted Casari’s formula
Cas—a modified version of the rule of universal quantification—to the monadic setting.

(Cas) ∀x[(p(x)→ ∀xp(x))→ ∀xp(x)]→ ∀xp(x)

Let MCas be the monadic version of Casari’s formula and let

M+IPC = MIPC + MCas and M+Grz = MGrz + t(MCas).

Esakia anticipated that the desired correspondence can be lifted to M+IPC, M+Grz and, MGL
(note that MGL ` sp(t(MCas)), so M+GL = MGL):
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M+IPC M+Grz MGL

M+IPC ` ϕ M+Grz ` t(ϕ) MGL ` sp(t(ϕ))iffiff

t sp

The goal of this talk is to verify this. Our main technical contribution consists in proving
the finite model property (fmp) for the logics M+IPC and M+Grz. We prove this by carefully
modifying the selective filtration method for MIPC as presented in [4, Section 10.3].

Theorem 1. The logics M+IPC and M+Grz have the fmp.

Using that finite M+IPC-frames coincide with finite M+Grz-frames, we can now show:

Corollary 2. The Gödel translation embeds M+IPC into Q+Grz, and the splitting translation
embeds M+Grz into MGL.

Using Theorem 1, we can also draw the connection to the full predicate case. Let

Q+IPC = QIPC + Cas and Q+Grz = QGrz + t(Cas).

Using a semantic criterion from [10], we derive:

Corollary 3. M+IPC is the monadic fragment of Q+IPC and M+Grz is the monadic fragment
of Q+Grz.

Recall that by Japaridze’s results, MGL is arithmetically complete. We therefore obtain
arithmetic interpretation of the one-variable fragment of Q+IPC.
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Dedicated to the memory of Bjarni Jónsson

In their landmark 1951 work, Jónsson and Tarski identified defining properties of boolean
algebras with operators (baos) dual to relational structures (which we know today as Kripke
frames) and showed that every bao A can be embedded into such a dual suitably constructed
from A, which they called the perfect extension and which we know today as the canonical
extension of A. Furthermore, they isolated a class of equations preserved by this process, thus
pioneering a line of work which much later came to include results such as the Sahlqvist theorem
and its generalizations to, e.g., inductive (in-)equalities.

Let us briefly recall these defining properties of duals of relational structures, restricting
attention to modal algebras (mas, i.e., baos with a single unary 3) for simplicity: they are
lattice-Complete, Atomic (thus also atomistic, being boolean algebras) and completely additiVe,
i.e., for any set X of elements, if

∨
X exists, then

∨{3x | x ∈ X} exists and

3
∨
X =

∨
{3x | x ∈ X}.

Hence, it is natural to call such algebras CAV-baos and write CAV to denote this class.
It is also natural to use similar conventions for classes of algebras obtained by dropping some
of these conditions, e.g., CA or CV. Some of these classes are dual disguises of more general
semantics of modal logic, e.g., CA-baos are dually equivalent to neighbourhood frames (Došen
1989), thus also providing an algebraic framework for coalgebraic semantics; CV-baos, as shown
recently by Holliday, allow a dual representation in terms of possibility semantics; and AV-baos
are dual incarnations of discrete general frames.

For every variety of baos V defined by equations satisfying the conditions of Jónsson and
Tarski, or perhaps by in-equalities studied in Jónsson’s 1994 work, or by Sahlqvist/inductive
(in-)equalities, the following meta-level “equation” holds:

V = S(V ∩ CAV), (1)

i.e., every A ∈ V is (an isomorphic copy of) a subalgebra of a CAV-bao from the same variety.
Several authors, like Goldblatt, call this property being complex ; in our setting, to be more
precise, we should speak of being CAV-complex. As shown by Wolter in the 1990’s, this is a
proper generalization of canonicity. In other words, there is a variety whose defining equations
are not preserved in general by canonical (perfect) extensions, yet satisfying (1); furthermore,
this variety happens to correspond to a very natural tense logic. Wolter has also shown that
CAV-complexity is the algebraic counterpart of two distinct notions of modal completeness:
strong global completeness and strong local completeness, corresponding to the two natural
notions of modal consequence.

What happens when CAV in (1) is replaced by a broader class of algebras? First of all,
note that there is a natural generalization of canonicity, proposed by Chellas 1980. This notion
allowed Surendonk (2001) to prove that some flagship examples of varieties failing (1) are, e.g.,
CA-complex. But, in general, for many non-canonical varieties even C-complexity (i.e., closure
under completions) is too much too ask. Furthermore, while the Wolterian correspondence
between X -complexity and strong global X -completeness is quite robust (to wit, it survives
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whenever X is closed under products), strong local X -completeness can be a weaker property
when X 6⊆ AV. Results of Shehtman imply strong local CA-completeness of many logics which
are not closed under completions.

Finally, an obvious corollary of canonicity or CAV-complexity of V is weak Kripke com-
pleteness, i.e., completeness for theoremhood, i.e., the satisfaction of the following meta-level
“equation”:

V = HSP(V ∩ CAV). (2)

Given that, on the one hand, a) even (1) itself is a weaker property than canonicity and
(2) is still a much weaker property than (1) and that on the other hand, b) weak completeness
can be proved by more constructive methods, which do not involve the Axiom of Choice and
yet establish a strong property (fmp) for possibly non-canonical logics (cf., e.g., Fine 1975,
Moss 2007 or Bezhanishvili and Ghilardi 2014), there is some irony in the fact that canonicity
appears in many presentations of modal logic mostly en route to weak completeness. This state
of affairs does not seem to do full justice to either notion. Still, weak completeness is quite
often the notion of completeness of interest from modal logicians’ point of view.1 An obvious
question is thus, again, what happens when CAV is replaced in (2) by other classes of baos?
Note, for example, that weak AV-completeness, strong AV-completeness and AV-complexity
coincide, so while we can expect numerous negative results, there are some unexpected positive
ones too.

More than a decade ago, I attempted to clarify the picture during my PhD studies (Litak
2004, 2005, 2008), unifying, expanding, and building on earlier results by Thomason, Fine,
Gerson, van Benthem, Blok, Chagrova, Chagrov, Wolter, Zakharyaschev, Venema and other
researchers. As it turns out, every possible combination of C, A, V and related properties allows
to produce examples of logics/varieties for which completeness fails in a different way. More-
over, negative results concerning Kripke completeness, such as the Blok Dichotomy (sometimes
also called the Blok Alternative), generalize to these weaker completeness notions. The only
major piece of the puzzle missing was the status of V-completeness—and I only managed to
solve this in a recent collaboration with Holliday, using a first-order formulation of complete
additivity inspired by his work on possibility semantics (some additional insights on this issue
have been obtained by Andréka, Gyenis and Németi and more recently by van Benthem). We
were surprised how natural some of our counterexamples turned out to be.

Where do we go from here? Even as far as weak completeness of modal logics is concerned,
there are numerous unanswered questions like availability of broader completeness results in
smaller lattices of logics (are all extensions of K4 AV-complete, for example?) or the status of
the Blok Dichotomy for A-completeness. Our understanding of the hierarchy of notions refining
strong completeness and canonicity seems even more sketchy—and further study could yield
dividends for coalgebraic semantics and possibility semantics (which, as observed by Holliday,
can be used to present a constructive perspective on canonical extensions). But our ignorance in
these matters as far as other non-classical logics are concerned is most striking. We have some
isolated results: we know, for example, that MV-algebras are not only non-canonical (Gehrke
and Priestley 2002), but fail to be closed under completions (Gehrke and Jónsson 2004) and
the same applies to many other varieties of GBL-algebras (Kowalski and Litak 2008). Thanks
to Shehtman 1977, we also know that there are Kripke-incomplete si-logics, even uncountably
many ones (Litak 2002), but this is the border of hic sunt leones area: Kuznetsov’s earlier
question about the existence of topologically incomplete si-logics remains unanswered until
today. And for substructural logics in general, not much more seems to be known. Where will
the door opened by Jónsson and Tarski in 1951 finally lead us?

1Surely enough, things looks different when a logic is taken to be a consequence relation rather than a set
of theorems.
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In 1984, Wim Ruitenburg [19] published a surprising result1 about the intuitionistic proposi-
tional calculus (IPC). It does not seem well-known: one of the few researchers making extensive
use of it was the late Sergey Mardaev [9–13]; apart from it, some recent references quoting
Ruitenburg’s paper include Ghilardi et al. [6] or Humberstone’s monograph [7]. Moreover,
most of these references use it in the context of definability (eliminability) of fixpoints, where
it is just one of possible lines of attack (the other being via uniform interpolation [16]; see [6]
for a discussion). The property established by Ruitenburg deserves more attention though: to
begin with, it turns out to be a natural generalization of local finiteness.

Consider a propositional formula A. Fix a propositional variable p, which can be thought
of as representing the context hole or the argument of A taken as a polynomial (other propo-
sitional variables being additional constants). Given any other formula B, write A(B) for the
result of substituting B for p. Also, write A ≡L B for `L A↔ B. Now define the obvious iter-
ated substitution operation A0(p) := p,An+1(p) := A(An(p)). Such a sequence turns almost
immediately into a cycle modulo ≡CPC:

Lemma 1 ([19], Lemma 1.1). For any A, A(p) ≡CPC A
3(p).

The above observation can be reformulated as asserting that CPC has uniformly globally
periodic sequences (ugps). A logic L has this property if there exist b, c s.t. for any formula
A, Ab(p) ≡L Ab+c(p). However, ugps has still a rather strong logical form: two existential
quantifiers preceding an universal one. Hence one can consider changing the order of quantifiers
to weaken the property:

(eventually) periodic sequences:

globally locally
uniformly ∃b. ∃c. ∀A. Ab(p) ≡L Ab+c(p) ∃c. ∀A. ∃b. Ab(p) ≡L Ab+c(p)
parametrically ∃b. ∀A. ∃c. Ab(p) ≡L Ab+c(p) ∀A. ∃b. ∃c. Ab(p) ≡L Ab+c(p)

So, do standard non-classical propositional calculi, IPC in particular, have at least plps
(parametrically locally periodic sequences)?2 To begin with, we have an obvious observation:

Lemma 2. Any locally finite logic has plps.

It is, however, well-known that IPC is not locally finite: even in one propositional variable,
there are infinitely many nonequivalent formulas. And one can show that (uniformly or para-
metrically) globally periodic sequences would be too much to expect, at least when formulas
are allowed to contain other variables than p itself [19, §2]. But we do have

Theorem 3 ([19], Theorem 1.9). IPC has the ulps property: for any A, there exists b s.t.
Ab(p) ≡IPC A

b+2(p). Moreover, b is linear in the size of A.

1I would like to thank Albert Visser for attracting my attention to this work and for his comments on this
abstract.

2Ruitenburg himself was using the term finite order.
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In fact, Ruitenburg’s theorem is effective: the proof provides an algorithm to compute b
in question.3 Moreover, as the periodic sequence property (in all its incarnations) transfers
from sublogics to extensions in the same signature (just like local finiteness and unlike uniform
interpolation), we also get that all superintuitionistic logics (si-logics) have ulps. This shows
that unlike local finiteness, ulps does not guarantee the fmp, or even Kripke completeness.

As it turns out, however, finding other natural examples of logic enjoying plps without local
finiteness is a very challenging task. First let us consider intuitionistic or classical normal modal
logics (with 2 only), with superscript ·cl denoting the CPC propositional base:

Theorem 4. A normal extension of K4cl has plps iff it is locally finite.

Corollary 5. All extensions of Kint
2 contained in either S4Grz.3cl (including, for example, Kcl,

K4cl, S4cl, Tcl, K4int
2 , Tint

2 , S4int
2 , S4Grz.3int

2 or S4Grz.3int
2 ) or GL.3cl (including, for example, GLcl,

GLint
2 or GL.3int

2 ) fail to have locally periodic sequences.4

Some intuitionistic modal logics of computational interest have “degenerate” classical coun-
terparts and hence Corollary 5 cannot be used to disprove they have periodic sequences. This
includes Sint

2 := Kint
2 ⊕A→ 2A, i.e., the Curry-Howard logic of applicative functors, also known

as idioms [14]. Its classical counterpart Scl and all its two consistent proper extensions are fi-
nite logics enjoying ulps. In contrast, not only does Sint

2 have uncountably many propositional
extensions, but the failure of plps remains a common phenomenon among them:

Theorem 6. No sublogic of KM.3int
2 , also denoted as KMlin [4] has parametrically locally periodic

sequences; this in particular applies to SL.3int
2 := Sint

2 ⊕ GL.3int
2 , SLint

2 := Sint
2 ⊕ GLint

2 or Sint
2 .

To contrast this with Theorem 4, note that KM.3int
2 , the propositional fragment of the logic

of the Mitchell-Bénabou logic of the topos of trees [2, 4, 8], is prefinite (pretabular). Turning
to substructural logics:

Theorem 7. The product logic Π, the infinite valued Łukasiewicz logic Ł∞ or the logic of
the heap model of BBI (boolean logic of bunched implications [3, 15, 17, 18]) fail to have plps.
Consequently, the property fails in all their sublogics, including (In−)FL(ew), multiplicative-
additive fragment of linear logic MALL (and its intuitionistic fragment IMALL) and fuzzy logics
like BL or MTL.5

Presently, I am running out of ideas how to obtain an example of a natural non-locally-finite
logic with plps which is not a si-logic. Here are the remaining lines of attack I can think of:

Open Problem 1. Do any extensions of the relevance logic R have periodic sequences without
being locally finite? How about the propositional lax logic PLLint

2 ?

For the latter case, note that si-logics can be identified with extensions of PPLint
2 satisfying

p ↔ 2p, so the question here is if Ruitenburg’s result can be extended in a nontrivial way.
And at any rate, we need an in-depth algebraic investigation why plps tends to collapse to local
finiteness so often—and why varieties of Heyting algebras do not follow the trend.

3A formally verified proof in the Coq proof assistant allowing computation of b using either programming
features of Coq itself or via extraction to other languages is available at git://git8.cs.fau.de/ruitenburg1984,
with a web front end at https://git8.cs.fau.de/redmine/projects/ruitenburg1984.

4The reader is referred to the extensive literature [1, 8, 20–23] for basic information about intuitionistic
modal logics, including axiomatizations of systems mentioned in this theorem.

5See Galatos et al. [5] for substructural systems mentioned in the statement of this theorem.
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Abstract

The notion of logical equivalence still remains one of the most interesting subjects of
investigation. In many logical systems the question that arises is how to describe the theory
of a considered structure by means of a single formula.

We transfer this problem to intuitionistic first-order logic and consider Kripke seman-
tics. By a Kripke model for a first-order language L we define a structure K = (K,≤
, {Kα : α ∈ K},
K) (for a more general definition see [2]). To any node α ∈ K there is
assigned a classical first-order structure Kα for L, and for any two nodes α, α′ ∈ K we
require that

α ≤ α′ ⇒ Kα ⊆ Kα′ .

The forcing relation 
K on K is defined in the standard way, inductively over the construc-
tion of a formula (see [1], [2]).

Since quantifiers ∀ and ∃ are not mutually definable, and implication refers to all
nodes accessible from a certain node, as a measure of formula’s complexity we consider the
characteristic of a formula (see [1]). We say that characteristic of a formula ϕ, char(ϕ),
equals (→p,∀ q,∃ r) whenever there are p nested implications, q nested universal quantifiers
and r nested existential quantifiers in ϕ.

Given two Kripke models K = (K,≤, {Kα : α ∈ K},
K) and M = (M,≤, {Mβ : β ∈
M},
M), we consider a relation of logical equivalence with respect to all formulae of
characteristic not greater than (→p,∀ q,∃ r). For nodes α ∈ K, β ∈ M and any sequences
a and b of elements of structures Kα and Mβ respectively, we define a relation ≡p,q,r as
follows

(α, a) ≡p,q,r (β, b) :⇐⇒ (α 
K ϕ[a]⇔ β 
M ϕ[b])

for all formulae ϕ(x) with char(ϕ) ≤ (→p,∀ q,∃ r).
Since intuitionistic connectives differ significantly from the classical ones, one might

expect a more complex solution of the aforementioned problem. We confine our consider-
ations to a class of strongly finite Kripke models. We say that Kripke model K is strongly
finite if and only if both the frame and first-order structures assigned to the nodes are
finite. Moreover, the finite signature of language L is considered with no function symbols.

Under these assumptions we construct so-called Yes Formulae and No Formulae which
describe theory of a node, the former will encode positive information and the latter –
negative information of a node. For a strongly finite Kripke model K = (K,≤, {Kα : α ∈
K},
K), its node α ∈ K and a sequence a of elements of the structure Kα, we introduce
a symbol

Y α,ap,q,r

to denote a formula of characteristic not greater than (→p,∀ q,∃ r) that is forced at α by
a. Similarly, a formula of characteristic at most (→p,∀ q,∃ r) that is refuted at α by a is
denoted by

Nα,a
p,q,r.
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Formulas Y α,ap,q,r and Nα,a
p,q,r are defined inductively over p, q, r ≥ 0 in the following way:

Y α,a0,0,0(x) =
(∧
{ϕ : char(ϕ) = (→0,∀ 0,∃ 0), α 
 ϕ(a)}

)
(x)

Nα,a
0,0,0(x) =

(∨
{ϕ : char(ϕ) = (→0,∀ 0,∃ 0), α 6
 ϕ(a)}

)
(x)

Y α,ap+1,q,r(x) =
∧

α′≥α
(Nα′,a

p,q,r → Y α
′,a

p,q,r)(x)

Nα,a
p+1,q,r(x) =

∨

α′≥α
(Y α

′,a
p,q,r → Nα′,a

p,q,r)(x)

Y α,ap,q+1,r(x) = ∀y
∨

α′≥α

∨

a∈Kα′

Y α
′,aa

p,q,r (x, y)

Nα,a
p,q+1,r(x) =

∨

α′≥α

∨

a∈Kα′

∀y Nα′,aa
p,q,r (x, y)

Y α,ap,q,r+1(x) =
∧

a∈Kα

∃y Y α,aap,q,r (x, y)

Nα,a
p,q,r+1(x) = ∃y

∧

a∈Kα

Nα,aa
p,q,r (x, y)

For a strongly finite Kripke model K, its node α ∈ K and a sequence a of elements
of Kα, by Thp,q,r(α, a) we denote a set of all formulae of characteristic not greater than

(→p,∀ q,∃ r) forced at α by a, and by T̃ hp,q,r(α, a) we will mean a set of all formulae of
characteristic at most (→p,∀ q,∃ r) refuted at α by a. We claim that

Y α,ap,q,r ` Thp,q,r(α, a) and Nα,a
p,q,r ` T̃ hp,q,r(α, a).

Using this fact, we can characterise the notion of (p, q, r)-equivalence, ≡p,q,r. Consider
strongly finite Kripke models K and M, and nodes α ∈ K, β ∈ M . Let a and b be
sequences of elements of worlds Kα and Mβ respectively. For p, q, r ≥ 0,

(α, a) ≡p,q,r (β, b)

if and only if
β 
M Y α,ap,q,r(b) and β 6
M Nα,a

p,q,r(b).

Hence, logical equivalence between strongly finite rooted Kripke models (K, α) and
(M, β) can be described as follows:

(K, α) ≡p,q,r (M, β)

if and only if
β 
M Y α,ap,q,r(b) and β 6
M Nα,a

p,q,r(b)

for all p, q, r ≥ 0 and all sequences a of Kα and b of Mβ .
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The algebraic semantics for distributive Full Lambek logic DFL is the class of algebras
A = (A,∧,∨,⊗, /, \,1,0) such that (A,∧,∨) is a distributive lattice (i.e. x ∧ (y ∨ z) ≤ (x ∧
y) ∨ (x ∧ z)), and (A,⊗,1) is a monoid, and 0 is an arbitrary element of A, and x ⊗ y ≤ z
iff x ≤ z/y iff y ≤ x \ z for all x, y, z ∈ A. Meanwhile the algebraic semantics for the logic of
Bunched Implication BI is the class of Heyting algebras equipped with an additional monoidal
operation ⊗ and associated implications / and \ satisfying x ⊗ y ≤ z iff x ≤ z/y iff y ≤
x \ z. Thus BI has the intuitionistic implication → and the multiplicative left / and right \
implications. Here we propose a new proof calculus formalism called bunched hypersequents
which can be used to study those subclasses of these algebras that satisfy suitable inequalities.
In particular, we construct analytic proof calculi such that the inequalities that hold on the class
of algebras are precisely those that can be proved in the proof calculus in a finite number of steps.
Here the term analytic means that the proofs in the proof calculus need only contain subterms of
the inequality to be proved. In the language of proof-theory, such proof calculi are said to have
the subformula property. The subformula property (and the ensuing restriction on the space
of possible proofs) is crucial for using the calculus for investigating various logical properties
such as decidability, complexity, interpolation, conservativity, standard completeness [10], and
for developing automated deduction procedures.

Gentzen [7] presented the first analytic calculi, for classical and intuitionistic logic, in his
sequent calculus formalism. For example, his sequent calculus for intuitionistic logic consists
of a small number of unary and binary rules (functions) on sequents; a sequent has the form
X ⇒ A where X is a ;-separated list of formulas and A is a formula. By repeated application
of the rules, complicated sequents can be proved (derived) starting from initial sequents of the
form p ⇒ p such that B1; . . . ;Bn ⇒ A is derivable iff B1 ∧ . . . ∧ Bn → A is a theorem of
intuitionistic logic (i.e. the corresponding inequality is valid on the class of Heyting algebras).
This calculus can be used to give direct proofs of e.g. consistency (there is no derivation of
⇒ ⊥) and optimal complexity bounds for the derivability relation.

Unfortunately there are many logics which do not support an analytic treatment in the
sequent calculus formalism. The reason is that the form of the proof rules in that formalism
are too restrictive. In the last three decades this has led to the introduction of many other
formalisms of varying expressivity; prominent examples include the hypersequent [14, 1], dis-
play calculus [2] (viewed from a more algebraic perspective as residuated frames [6]), labelled
calculus [16, 12] and bunched sequent calculus [5, 11]. The reason for the numerous different
formalisms is the tradeoff that exists between an expressive formalism which yields an analytic
treatment of many different logics and the difficulty in using such a formalism to prove met-
alogical properties. As a slogan: typically, the formalism most amenable for proof-theoretic
investigation of a logic is the simplest formalism which supports its analyticity.

For distributive substructural logics (including relevant logics)—the logics that are of interest
here—bunched sequent calculi, also known as Dunn-Mints systems [5, 11], have been proposed
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as a means of developing an analytic formulation. In this formalism, sequents have the form
X ⇒ A where A is a formula and X is a list of formulas with two list separators: (“;”) is the list
separator corresponding to the logical connective ∧ and (“,”) is the list separator corresponding
to ⊗. Bunched calculi have also been employed to define analytic calculi for the logic of Bunched
Implication BI [15]. This logic has been used to reason about dynamic data structures [13] and
is a propositional fragment of (intuitionistic) separation logic. Note that although these logics
can be formalised using the more powerful formalism of display calculi, the advantage of using
a simpler formalism is evident, e.g., when searching for proofs of decidability and complexity
of the logic (see [8, 3, 9]).

In this paper we introduce a new proof theoretic framework called bunched hypersequents.
Bunched hypersequents extend the bunched sequents by adding a hypersequent structure. In
analogy with its extension of traditional sequents, we consider a non-empty set of bunched
sequents rather than just a single bunched sequent. This structure allows the definition of new
rules which apply to several bunched sequents simultaneously thus increasing the expressive
power of the bunched sequent framework. Although a bunched hypersequent is a more com-
plex data structure than a bunched sequent, it is nevertheless a simple and natural extension,
retaining many of the useful properties of the sequent calculus (recall the slogan).

The expressive power of the new formalism is demonstrated by introducing analytic bunched
hypersequent calculi for a large class of extensions of distributive Full Lambek calculus DFL.
The extensions are obtained by suitably extending the procedure in [4] for transforming Hilbert
axioms into structural rules. We then consider the case of extensions of the logic of bunched
implication BI. Extensions of BI by a certain class of axioms including restricted weakening
and restricted contraction are obtained.

Our attempt to extend the BI calculus to obtain a simple analytic calculus for BBI
(boolean BI; known to be undecidable) met with a surprising obstacle. While a hyperse-
quent structure extending the bunched calculus for BI can be defined (and hence also logics
extending BI via the exploitation of the hypersequent structure), there are technical difficul-
ties associated with the interpretation of hypersequent structure at intermediate points of the
derivation. In response, we turn the investigation on its head and formulate an analytic hyper-
sequent calculus for a consistent extension of BI which derives a limited boolean principle. The
properties of this logic, including its decidability problem, invite further investigation.
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1 Logic for LFP Categories

The domain of a first-order structure M is a (typically infinite) set. First-order logic provides a
finitary syntax for describing properties of M by way of how M is constructed from finite pieces,
i.e. as the directed colimit of all finite subsets of M . Explicitly, a first-order formula describes a
property of a tuple of elements of M , and quantifiers allow us to explore how this tuple can be
expanded to larger finite tuples. This perspective on the expressive power of first-order logic is
elegantly captured by the Ehrenfeucht–Fräıssé game.

A locally finitely presentable (LFP) category is one in which every object is a directed colimit
of objects which are finitary in a precise sense. In direct analogy with ordinary first-order logic
for Set, we develop a logic for describing properties of an object M in an LFP category (possibly
expanded by extra “finitary” structure) by way of how M is constructed from finitary pieces.

To be more precise, an object x in a category D is called finitely presentable if the functor
HomD(x,−) preserves directed colimits. The category D is called locally finitely presentable if
it is cocomplete, every object is a directed colimit of finitely presentable objects, and the full
subcategory C of finitely presentable objects is essentially small. We call D the category of do-
mains and C the category of variable contexts, and we fix a set A of isomorphism representatives
for the objects of C, called arities.

Then a signature L consists of a set of relation symbols with associated arities from A,
together with a finitary endofunctor F : D → D, and an L-structure is an object M in D, given
with an F -algebra structure η : F (M)→M , and interpretations of the relation symbols: given
an arity n ∈ A and an object M ∈ D, an n-tuple from M is just an arrow n → M , and an
n-ary relation is a subset of Hom(n,M).

We can now describe the logic FO(D,L): For an arity n and a variable context x, an n-term
in x is a map n → T (x), the term algebra (i.e. free F -algebra) on x. An atomic formula is
an equality between two n-terms or an n-ary relation symbol applied to an n-term. General
formulas are built from atomic formulas by ordinary Boolean combinations and by quantifiers:
for each arrow f : x → y between contexts, we associate a universal and existential quantifier
∃f and ∀f which quantify over extensions of x-tuples to y-tuples, respecting f . Of course
there is a completely natural semantics for evaluation of terms and satisfaction of formulas in
L-structures.

2 The first-order translation

To each M in D, we associate the finite-limit preserving presheaf HomD(−,M) : Aop → Set.
In fact, by Gabriel-Ulmer duality (see [1]), D is equivalent to the category Lex(Aop,Set) of
finite-limit preserving presheaves on A. Such presheaves can be viewed as models for a certain
(ordinary) first-order theory, in a language with a sort for each object in A. Extending this
equivalence from objects of D to L-structures, we obtain the following theorem.
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Theorem 1. For every LFP category D and signature L, there is an ordinary multi-sorted first-
order signature PS(D,L) and a theory TPS in this signature, so that the category of L-structures
is equivalent to the category of models of TPS. Further, there is an explicit satisfaction-preserving
translation from formulas in FO(D,L) to first-order PS(D,L)-formulas.

This interpretation of FO(D,L) in ordinary first-order logic allows us to easily import theo-
rems and notions (compactness, Löwenheim-Skolem, interpretability, stability, etc.) from first-
order model theory.

3 Cologic

Whenever B is a category with finite limits, the category pro−B (the formal completion of B
under codirected limits) is co-LFP, i.e. (pro−B)op is LFP. Then the logic FO((pro−B)op,L)
expresses properties of “cotuples” from an object M , i.e. maps M → x, where x ∈ B. For
example, a cotuple from a Stone space S (an object of Stone = pro−FinSet) is a continuous
map from S to a finite discrete space, or equivalently a partition of M into clopen sets. And a
cotuple from a profinite group G (an object of pro−FinGrp) is a group homomorphism from G
to a finite group.

These logics provide a unified framework for the model theory of profinite structures, with
connections to several independent bodies of work. I will mention a few:

1. Projective (or Dual) Fräıssé theory, as developed by Irwin and Solecki [3] and recently
reformulated in terms of corelations by Panagiotopoulos [5]. The dual ultrahomogene-
ity exhibited by projective Fräıssé limits can be expressed by ∀∃ sentences in the logic
FO(Stone,L).

2. The “cologic” of profinite groups (e.g. Galois groups), developed by Cherlin, van den
Dries, and Macintryre [2] and by Chatzidakis, which plays an important role in the model
theory of PAC fields. This logic is presented in a multi-sorted first-order framework,
which is essentially equivalent to the first-order translation of Theorem 1, applied to
FO(pro−FinGrp, ∅).

3. The theory of coalgebraic logic, in the special case of cofinitary functors on Stone spaces
(see, e.g. [4]), is exactly the theory of equationally defined classes in FO(Stone,L), since
L-structures are coalgebras for cofinitary functors. This theory has connections to modal
logic; for example, when the functor F is the Vietoris functor, FO(Stone,L) embeds modal
logics on descriptive general frames.
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The connection between topology and lattice theory began to be exploited after the work
of Marshall Stone. The fact that the lattice of open sets of a topological space contains plenty
of information about the topological space indicates that a complete lattice, satisfying the

distributive law a ∧
∨
S = {a ∧ s | s ∈ S}, deserves to be studied as a “generalized topological

space”. In this sense, frames (locales) generalize the notion of topological spaces and frame
homomorphisms (localic maps) generalize the notion of continuous functions; that is, pointfree
topology is an abstract lattice approach to topology. The algebraic nature of a frame allows
its definition by generators and relations. Joyal [5] used this to introduced the frame of the
real numbers; the idea is to take the set of open intervals with rational endpoints for the
basic generators. Later, Banaschewski [1] studied this frame with a particular emphasis on the
pointfree extension of the ring of continuous real functions and provided a pointfree version of
the Stone-Weierstrass Theorem. We are interested in the field of the p-adic numbers Qp and
the ring of continuous p-adic functions. Qp is the completion of Q with respect to the p-adic
absolute value | · |p, which satisfies |x+ y|p ≤ max{|x|p, |y|p} (i.e., it is nonarchimedean, see [3]
and [4]). In particular, Qp is 0-dimensional, completely regular, and locally compact. In [2],
Dieudonné proved that the ring Qp[X] of polynomials with coefficients in Qp is dense in the
ring C(F,Qp) of continuous functions defined on a compact subset F of Qp with values in Qp,
and Kaplansky [6] extended this result by proving that if F is a nonarchimedean valued field
and X is a compact Hausdorff space, then any unitary subalgebra A of C(X,F) which separates
points is uniformly dense in C(X,F). We define the frame of Qp and we give a p-adic version
of the Stone-Weierstrass theorem in pointfree topology.

To specify the frame of Qp by generators and relations, we consider the fact that the open
balls centered at rational numbers generate the open subsets of Qp and thus we think of them
as the basic generators; we consider the (lattice) properties of these balls to determine the
relations these elements must satisfy. Let L(Qp) be the frame generated by the elements Br(a),
where a ∈ Q and r ∈ |Q| := {p−n, n ∈ Z}, subject to the following relations:

(Q1) Bs(b) ≤ Br(a) whenever |a− b|p < r and s ≤ r,

(Q2) Br(a) ∧Bs(b) = 0 whenever |a− b|p ≥ r ∨ s,

(Q3) 1 =
∨{

Br(a) : a ∈ Q, r ∈ |Q|
}

,

(Q4) Br(a) =
∨{

Bs(b) : |a− b|p < r, s < r, b ∈ Q, s ∈ |Q|
}

.

We prove that L(Qp) is the pointfree counterpart of Qp; that is, L(Qp) is a spatial frame
whose space of points is homeomorphic to Qp. In particular, we show with pointfree arguments
that L(Qp) is 0-dimensional, completely regular, and continuous.
As in the real case, from the well-known adjunction between frames and topological spaces (see,
e.g., [7]), we have a natural isomorphism Top(X,Qp) ∼= Frm(L(Qp),Ω(X)), for a topological
space X. This provides a natural extension of the classical notion of a continuous p-adic
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function: a continuous p-adic function on a frame L is a frame homomorphism L(Qp) → L.
We denote the set of all continuous p-adic functions on a frame L with Cp(L), and we show that
it is a Qp-algebra under the following operations:

(f + g)
(
Br(a)

)
=
∨{

f
(
Bs1(b1)

)
∧ g
(
Bs2(b2)

)
|Bs1∨s2〈b1 + b2〉 ⊆ Br〈a〉

}

(f · g)
(
Br(a)

)
=
∨{

f
(
Bs1(b1)

)
∧ g
(
Bs2(b2)

)
|Bt〈b1 · b2〉 ⊆ Br〈a〉

}
,

where t = max
{
p−1rs, s|a|p, r|b|p

}
.

If X is compact Hausdorff and f ∈ C(X,Qp), then ||f || = sup{|f(x)|p} defines a nonar-
chimedean norm on C(X,Qp). In our case, we show that if L is a compact regular frame, then
||h|| = inf

{
p−n : n ∈ Z, h

(
Bp−n+1(0)

)
= 1
}

defines a nonarchimedean norm on Cp(L).
Recall that if X is compact Hausdorff then X is 0-dimensional iff C(X,Qp) separates points,
thus we assume that X is 0-dimensional; in the pointfree context, we assume that L is a com-
pact 0-dimensional frame. Additionally, if X is compact Hausdorff and 0-dimensional, then
each f ∈ C(X,Qp) can be approximated by a linear combination of Qp-characteristic functions
of clopen subsets. Thus, if A is a unitary subalgebra of C(X,Qp) such that its closure contains
these Qp-characteristic functions, then A is dense in C(X,Qp). It can be shown (see [6]) that this
is the case whenever A separates points. Therefore, we extend the notion of a Qp-characteristic
function of a clopen subset, showing that if u is a complemented element (with complement u′)
in L, then the function χu : L(Qp)→ L defined on generators by

χu
(
Br(a)

)
=





1 if |a|p < r and |1− a|p < r,

u if |a|p ≥ r and |1− a|p < r,

u′ if |a|p < r and |1− a|p ≥ r,
0 otherwise,

is a frame homomorphism. We show that these elements are precisely the idempotents in Cp(L)
and we extend the notion of a subalgebra in C(X,Qp) that separates points to the pointfree
context as follows: Given a compact 0-dimensional frame L, we say that a unitary subalgebra
A of Cp(L) separates points if A contains the idempotents of Cp(L).
Finally, we provide the following pointfree version of the Stone-Weierstrass Theorem: Let L
be a compact 0-dimensional (regular) frame and let A be a unitary subalgebra of Cp(L) which
separates points, then A is uniformly dense in Cp(L).
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There are many ways to combine modal logics. Some of them are syntactical and some
semantical. The simplest syntactical combination is the fusion. The fusion of two unimodal
logics L1 and L2 is the minimal bimodal logic containing axioms from L1 rewritten with 21 and
axioms from L2 rewritten with 22. Notation: L1 ∗ L2.

The product of two modal logics is a semantical way to combine logics. The product of two
modal logics is the logic of the class of all products of semantical structures of the corresponding
logics. Such construction based on the product of Kripke frames was introduced by Shehtman
in 1978 [10]. Later in 2006 van Benthem et al. [1] introduced a similar construction based on
product of topological spaces1.

Neighborhood semantics is a generalization of the Kripke semantics and the topological
semantics. It was introduced independently by Dana Scott [9] and Richard Montague [7]. The
product of neighborhood frames was introduced by Sano in [8]. The product of topological
spaces from [1] is a particular case of the product of the neighborhood product for S4-frames.
Several paper was studying neighborhood products [5, 6].

A recent paper by Kremer proposed a mixed space-frame product and proved a general
completeness result for S4 and Horn axiomatized extensions of logic D.

In this work we generalize Kremer’s results to neighborhood-Kripke frames product.
A (normal) neighborhood frame (or an n-frame) is a pair X = (X, τ), where X is a nonempty

set and τ : X → 22
X

such that τ(x) is a filter on X for any x. The function τ is called the
neighborhood function of X, and sets from τ(x) are called neighborhoods of x.

A Kripke frame is a pair tuple (X,R), where X is a non-empty set and R ⊆ X × X is a
relation on X.

A valuation on a Kripke (n-) frame is a function V : PV → 2X . For a Kripke (n-) frame X
and a valuation V pair (X, V ) is called a Kripke (neighborhood) model.

The truth for models define in the usual way see [2] and [3].
A neighborhood-Krike frame is a triple (X, τ,R) such that (X, τ) is a n-frame and (X,R) is

a Kripke frame. The notion of truth uses neighborhood structure for 21 and Kripke structure
for 22. For n-frame X1 = (X1, τ1) and Kripke frame F2 = (X2, R2) the product of them is a
neighborhood-Krike frame X1 × F2 = (X1 ×X2, τ

′
1, R

′
2) such that for (x, y) ∈ X1 ×X2

U ∈ τ ′1(x, y) ⇐⇒ ∃V ∈ τ1(x) (V × {y} ⊆ U)

R′
2(x, y) = {(x, y′) | yR2y

′ }

A logic of a frame or a class of frames is all the formulas that are true at all points in all
models of these frames.

A logic L is called an PTC-logic if it can be axiomatized by closed formulas and formulas of
the type ♦m2p→ 2np, n,m ≥ 0. (see [4]).

∗This research was done in part within the framework of the Basic Research Program at National Research
University Higher School of Economics and was partially supported within the framework of a subsidy by the
Russian Academic Excellence Project 5-100, and also by the Russian Foundation for Basic Research (project
No. 16-01-00615).

1“Product of topological spaces” is a well-known notion in Topology but it is different from what we use
here (for details see [1])



A logic L is called an HTC-logic (from Horn preTransitive Closed logic) if it can be axioma-
tized by closed formulas and formulas of the type 2p→ 2np, n ≥ 0. These formulas correspond
to universal strict Horn sentences (see [4]).

For two normal modal logics L1 and L2 the nk-product of them is the logic of all products
of n-frames of logic L1 and Kripke frames of logic L2. Notation: L1 ×nk L2.

Our main result is the following

Theorem 1. For any HTC logic L1 and PTC logic L2

L1 ×nk L2 = L1 ∗ L2 + com12 + chr + ∆1 + ∆2, where
com12 = 2122p→ 2221p,
chr = ♦122p→ 22♦1p,
∆1 = {φ→ 22φ |φ is closed and 22-free} ,
∆2 = {ψ → 21ψ |ψ is closed and 21-free} .
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We consider first-order normal modal and superintuitionistic predicate logics in a signature
with only predicate letters and perhaps with equality. A logic is defined in a standard way, as
a certain set of formulas, cf. [2], sec. 2.6.

Every logic L without equality has the minimal extension L= with equality ([2], sec. 2.14.).
It is well-known that completeness of L in the standard Kripke semantics does not imply the
completeness of L=. So there is a natural question — how to axiomatize the logic with equality
characterized by Kripke frames for L. As we show, quite often (but not always) this is done by
the extensions L=d := L= + DE in the intuitionistic case and L=c := L= + CE in the modal
case, where

DE := ∀x∀y(x = y ∨ ¬(x = y)) (the axiom of decidable equality),
CE := ∀x∀y(3(x = y) ⊃ x = y) (the axiom of closed equality).

Here we deal with two kinds of semantics: the semantics of predicate Kripke frames (K) and the
semantics of Kripke frames with equality (KE) (equivalent to the semantics of Kripke sheaves);
cf. [2], sections 3.2, 3.5, 3.6. Recall that a predicate Kripke frame (PKF) over a propositional
Kripke frame F = (W,R) is a pair (F,D), where D = (Du)u∈W is a family of non-empty
expanding domains (uRv implies Du ⊆ Dv). A predicate Kripke frame with equality (KFE) is a
triple (F,D,�), where (F,D) is a PKF and �= (�u)u∈W is a family of expanding equivalence
relations �u⊆ Du ×Du (uRv implies �u⊆�v). The notions of validity in these semantics are
standard. The set of formulas valid in a PKF or a KFE F is called the logic of F (modal or
superintuitionistic) and denoted by ML(F) or IL(F), or by ML=(F) or IL=(F) for logics with
equality.

The logics of a class of frames C are ML(=)(C) :=
⋂{ML(=)(F) | F ∈ C},

IL(=)(C) :=
⋂{IL(=)(F) | F ∈ C}; these logics are called Kripke (K-) complete if C is a class of

PKFs, Kripke sheaf (KE-) complete if C is a class of KFEs.
Note that a KFE (W,R,D,�) validates CE iff its reflexive transitive closure (W,R∗, D,�)

validates DE iff
∀u, v∈W ∀a, b∈Du (uR∗v& a �v b⇒ a �u b).

So CE and DE are obviously valid in every PKF, since a PKF can be regarded as a KFE, in
which �u are the identity relations.

Usually KE-completeness transfers from L to L= and L=d (or L=c); cf. [2], theorems 3.8.3,
3.8.4, 3.8.7, 3.8.8 for the details.

Proposition 1. (1) Suppose F |= CE is a KFE over a propositional frame F , F ∗ is the reflexive
transitive closure of F and one of the following conditions holds: (i) F ∗ is an S4-tree; (ii) F ∗

is directed; (iii) F has a constant domain.
Then there exists a PKF F′ such that ML=(F′) = ML=(F).
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(2) The same holds for the intuitionistic case and F 
 DE.

Hence we obtain
Theorem 1. (1) Suppose L is a K-complete modal predicate logic of one of the following types:
(i) L is complete w.r.t. frames over trees; (ii) L ` 3�p ⊃ �3p; (iii) L ` ∀x�P (x) ⊃ �∀xP (x)
(the Barcan formula). Then L=c is K-complete.

(2) Suppose L is aK-complete superintuitionistic predicate logic of one of the following types:
(i) L is complete w.r.t. frames over trees; (ii) L ` J (= ¬p∨¬¬p); (iii) L ` CD (= ∀x(P (x)∨
q) ⊃ ∀xP (x) ∨ q). Then L=d is K-complete.

Remark. Recall that L = QH + CD + J is Kripke incomplete [1]. We do not know if L=d is
Kripke complete in this case.

However, not every KFE validating DE is equivalent to a PKF. This allows us to construct
Kripke complete logics L, for which L=d is Kripke incomplete.

Consider the weak De Morgan law

J2 := ¬(p0∧p1∧p2) ⊃ ¬(p0∧p1)∨¬(p0∧p2)∨¬(p1∧p2),

and the frame F0 := (W0,≤), with W0 := {u0} ∪ {uij | i, j∈{1, 2}}, which is a poset with the
root u0 and (uij < ui′j′) iff (i < i′). Then F0 validates J2, but not J . IL(KF0) denotes the
superintuitionistic logic of all PKFs over F0 (which coincides with the logic of all KFEs over
F0).

Theorem 2. Let L be a predicate logic such that QH + J2 ⊆ L⊆ IL(KF0). Then the logic
L=d is Kripke incomplete.

We do not know if the segment mentioned in Theorem 2 contains finitely axiomatizable Kripke
complete logics.

This research was done in part within the framework of the Basic Research Program at
National Research University Higher School of Economics and was partially supported within
the framework of a subsidy by the Russian Academic Excellence Project 5-100, and also by the
Russian Foundation for Basic Research (project No. 16-01-00615).
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Partially ordered structures are ubiquitous in theoretical computer science: knowledge rep-
resentation, abstract interpretation in static analysis, resource modelling, protocol or access
rights modelling in formal security, etc, the list of applications is enormous. Being able to
formally reason about transition systems over posets therefore seems important. The natural
formalism to reason about transition systems is undoubtedly the class of modal logics, but
most are tailored to transition structures over sets. This is a direct consequence of the fact
that most modal logics are boolean. Positive modal logic is the exception, and is most naturally
interpreted in partially ordered Kripke structures (see for example [2, 6]).

Arguably, the most natural and powerful framework to study boolean modal logics in uni-
form and systematic way, is the theory of Boolean Coalgebraic Logics (henceforth BCL, see e.g.
[3]). In its abstract flavour, it is parametrised by an endofunctor L : BA → BA which builds
modal terms over a boolean structure, an endofunctor T : Set→ Set which builds the transi-
tion structures over which the modal terms are to be interpreted, and a natural transformation
δ : LP → PT (where P : Setop → BA is the powerset functor) which implements the interpre-
tation by associating sets of acceptable successors states to each modal term over a predicate.
This data, and the dual adjunction between Set and BA, is traditionally summarized in the
following diagram

BA

S
))

L

,,
⊥ Setop

P

ii T op

gg
(1)

where S is the functor sending a boolean algebra to the set of its ultrafilters.

To develop an equally powerful framework for reasoning about transition structures over
posets, it seems natural to study Positive Coalgebraic Logics (henceforth PCL). In fact, work
in this direction has already started, see for example [7, 1]. We pursue this work further and
present PCL in full generality, i.e. at the same level of generality as its boolean counterpart.
Moreover, given the close kinship between the two theories, we will show that the wheel does
not have to be re-invented every time, and that many BCLs have a canonical positive fragment
which inherits useful properties of its boolean parent. In fact, adapting well-known situations
from the boolean to the positive setting is one of the guiding principles of this work.

Let us sketch the main features of the theory of PCLs and its relationship with BCLs.
First of all, whilst the mathematical universe hosting the theory of BCLs is ordinary category
theory, the most natural environment to discuss PCLs is category theory enriched over Pos, the
category of posets and monotone maps. Indeed, on the model side the category Pos is naturally
enriched over itself, while on the syntax side we will consider endofunctors L′ : DL→ DL over
the category of distributive lattice, which is also Pos-enriched. Moreover, whilst boolean modal

∗Supported by the ERC project ProFoundNet - Probabilistic Foundations for Networks (grant number
679127).
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logics are axiomatized by equations, represented categorically as coequalizers, the axioms of
standard positive modal logic (see [5, 2, 6]) are given by inequations, which are very naturally
interpreted as coinserters, the Pos-enriched analogue of coequalizers. In this Pos-enriched
framework, we have an analogue of Diagram (1) given by

DL

S′

**
L′
++

⊥ Posop

P′

hh (T ′)op
cc

where S ′ is the functor sending a distributive lattice to the poset of its prime filters (under
inclusion), and P ′ is the functor sending a poset to the distributive lattice of its upsets.

Coalgebras over posets. Transition structures over posets will be formalized as coalgebras
for an endofunctor T ′ : Pos → Pos. Here, we are already confronted with a situation which
perfectly captures the philosophy of this work. How do we choose such a functor? In practice
both our requirements and our intuition are guided by examples of endofunctors T : Set→ Set,
for example non-deterministic computations modelled as coalgebras for the powerset functor
P : Set→ Set, or models of graded modal logic as coalgebras for the multiset functor B : Set→
Set. The solution is to adapt these well-know functors to posets. We use the posetification
procedure developed in [1] and define for each Set-endofunctor T its posetification by T ′ :
Pos → Pos by T ′ = LanDDT , where D is the functor sending a set to its discrete poset. It
was shown in [1] that T ′ can be computed using certain coinserters, and we now have a whole
repertoire of Set-endofunctors for which we have computed the posetification: the powerset
functor, the neighbourhood functor, the monotone neighbourhood functor, the multiset functor,
etc, as well as a grammar to combine them.

Syntax. The syntax of a positive coalgebraic logic will be given by a locally monotone (i.e.
Pos-enriched) endofunctor L′ : DL → DL. Whilst [1] focused defining such functors directly
from the semantics, here we once again focus on adapting existing boolean logics. This leads us
to an operation which is dual to that of posetification, and which we call positivisation: given
an endofunctor L : BA → BA, we define its positivisation L′ : DL → DL by L′ = RanUUL
where U : BA→ DL is the obvious forgetful functor. The positivisation of a BA-endofunctor
can be computed explicitly via inserters. We can distinguish two classes of positivisation:
those for which the natural transformation β : L′U → UL given by universality of the right
(enriched) Kan extension is an iso, and all the others. The former correspond to boolean logics
L : BA → BA which have a monotone presentation. We have computed the positivisation of
the functors defining the boolean modal logics with (i) no axioms, (ii) monotonicity only, (iii)
the standard axioms of modal logic, and (iv) the axioms of graded modal logic.

Semantics. Following our guiding philosophy, we would like to canonically turn a boolean
coalgebraic logic (L, T, δ) with nice properties (for example completeness) into a positive coalge-
braic logic (L′, T ′, δ′), hopefully with equally nice properties. First we need to build a semantic
natural transformation δ′ : L′P ′ → P ′T ′, from the transformation δ : LP → PT . By combining
the posetification and the positivisation procedures described above, and the properties of P ′,
one can build a transformation δ′ : L′P ′ → P ′T ′ from δ in a universal way. Moreover, if δ
and β : L′U→ UL are component-wise injective, so is δ′, in other words completeness transfers
from the boolean logic to its canonical positive fragment. Similarly, strong completeness via the
coalgebraic Jónsson-Tarski theorem – which is equivalent to the adjoint (or mate) δ̂ of δ being
component-wise split epi [8, 9, 4] – transfers from a boolean coalgebraic logic to its positive
fragment. The transfer of expressivity is more involved.
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Introduction. It is by now generally acknowledged that coalgebras for a Set-functor unify
a wide variety of dynamic systems [16]. The classical study of their behavior and behavioral
equivalence is based on qualitative reasoning – that is, Boolean, meaning that two systems (the
systems’ states) are bisimilar (equivalent) or not. But in recent years there has been a growing
interest in studying the behavior of systems in terms of quantity. There are situations where
one behaviour is smaller than (or, is simulated by) another behaviour, or there is a measurable
distance between behaviours in terms of real numbers, as it was done in [15, 18]. This can be
achieved by enlarging the coalgebraic set-up to the category of (small) enriched V -categories
V -cat [10] (V is a commutative quantale), which subsumes both ordered sets and (generalised)
metric spaces [12].

Coalgebras over generalised metric spaces. The project of developing multi-valued logic
for coalgebras on V -cat has started in [1] by extending functors H : Set → Set (and more
generally Set-functors which naturally carry a V -metric structure) to V -cat-functors. In this
talk, we shall briefly outline the extension procedure: using the density of the discrete functor
D : Set → V -cat, we apply H to the V -nerve of a V -category, and then take an appropriate
quotient in V -cat. If H preserves weak pullbacks, then the above can be obtained using Barr’s
relation lifting in a form of “lowest-cost paths” (see also[18, Ch. 4.3], [9]). For example, the
extension of the powerset functor yields the familiar Pompeiu-Hausdorff metric, if the quantale
is completely distributive.

A logical framework. The next step, following the well-established tradition in coalge-
braic logics (see e.g. [14]), is to seek for a contravariant V -cat-enriched adjunction - on top
of which to develop coalgebraic logics– involving, on one side, a category of spaces Sp, and
on the other side, a category of algebras Alg, obtained eventually by restricting the adjunc-

tion V -catop
[−,V ]

--> V -cat
[−,V ]

mm . Moreover, we would want for Alg be a variety in the “world of

V -categories”, at least monadic over V -cat. In classical (Boolean) coalgebraic logics (no enrich-
ment), this is achieved by taking Sp to be Set, and Alg to be the category of Boolean algebras
(see e.g. [7]). One step further, the case of the simplest quantale V = 2 targets positive coal-
gebraic logics [2], from an order-enriched point of view, by choosing Sp to be the category of
posets and monotone maps, and Alg to be the category of bounded distributive lattices – which
is a finitary ordered variety [4].

In the present work we focus on the unit interval quantale V = [0, 1], endowed with the
usual order, the  Lukasiewicz tensor given by truncated sum r ⊗ s = max(0, r + s − 1), with

∗This work has been funded by University Politehnica of Bucharest, through the Excellence Research Grants
Program, UPB–GEX, grant ID 252 UPB–EXCELENŢĂ–2016, research project no. 23/26.09.2016.



unit e = 1 and internal hom (residual) [r, s] = min(1− r + s, 1). Our original motivation to do
so came from (at least) the following reason: the unit interval naturally carries an MV-algebra
structure. Recall that the MV-algebras are the models for  Lukasiewicz multi-valued logic, and
that their variety is generated by [0,1] [5, 6]. As the propositional (Boolean) logic is the base
for the usual coalgebraic logic, we looked for a connection between coalgebras based on [0, 1]-
categories (that is, “bounded-by-1” quasi-metric spaces) and multi-valued logics. However, we
shall explain in the talk that MV-algebras are not adequate for our purpose, and propose a
different solution instead, detailed below.

An alternative to MV-algebras. The logical connection we therefore propose uses an
adaptation of the Priestley duality as in [8]. We introduce the notion of a distributive lattice
with adjoint pairs of V -operators (dlao(V )) as a bounded distributive lattice (A,∧,∨, 0, 1),
endowed with a family of adjoint operators (r � − a t (r,−) : A → A)r∈V , such that the
conditions below are satisfied for all r, r′ ∈ V and all a, a′ ∈ A:

1� a = a (r ⊗ r′)� a = r � (r′ � a)

0� a = 0 (r ∨ r′)� a = (r � a) ∨ (r′ � a)

t (1, a) = a t (r ⊗ r′, a) = t (r,t (r′, a))

t (0, a) = 1 t (r ∨ r′, a) = t (r, a)∧ t (r′, a)

Notice that by adjointness r � − preserves finite joins and t (r,−) preserves finite meets. A
morphism of dlao(V ) is a bounded distributive lattice map preserving all the adjoint operators
r�− and t (r,−). Let DLatAO(V ) be the ordinary category of distributive lattices with adjoint
pairs of V -operators (notice that DLatAO(V ) is an algebraic category).

Each dlao(V ) A becomes a V -category [3, 13] with V -homs A(a, a′) =
∨{r ∈ [0, 1] |

r � a ≤ a′} =
∨{r ∈ [0, 1] | a ≤ t (r, a′)}, and each dlao(V )-morphism is also a V -

functor. The V -categories thus obtained are antisymmetric, finitely complete and cocom-
plete [17]. Consequently, DLatAO(V ) is a V -cat-category, and it follows that the forgetful
functor DLatAO(V )→ V -cat is monadic V -cat-enriched.

The ordinary dual category to DLatAO(V ) can be obtained by adapting the arguments in
[8]: an object is a Priestley space (X, τ,≤), endowed with a family of ternary relations (Rr)r∈V ,
which satisfy, besides the topological conditions from [8, pp. 184-185], the requirements that
R1 is the order relation on X, and that Rr ◦ Rr′ = Rr⊗r′ and Rr ∨ Rr′ = Rr∨r′ hold. The
morphisms are continuous bounded maps [8, Section 2.3]. Denote by RelPriest(V ) the resulting
category. Then the dual equivalence RelPriest(V )op ∼= DLatAO(V ) is obtained by restricting
the usual Priestley duality.

Using the above duality, we can transport the V -cat-category structure on RelPriest(V ),
thus rendering the duality RelPriest(V )op ∼= DLatAO(V ) V -cat-enriched. The V -cat-category
structure such exhibited on RelPriest(V ) does not say too much at first sight. To gain more
insight, we use the lax-algebra framework of [9], in the context of (T,V )-categories, where T is
a monad on Set which laxly distributes over the V -valued powerset monad. We shall see that
each relational Priestley space (X, τ,≤, (Rr)r∈V ) is in fact a V -compact topological space [11]
– an algebra for the extension of the ultrafilter monad to V -cat (see [9, Ch. III.5.2] for the
cases V = 2 and V = [0,∞]). The duality RelPriest(V )op ∼= DLatAO(V ) can now be seen
as a V -cat-duality between a category of certain compact V -topological spaces (in particular
V -categories) and a category of algebraic V -categories. In future work, more properties of the
above duality are planned to be investigated.
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Beck [3] introduced the notion of coloring in a commutative ring R as follows. Let G be a
simple graph whose vertices are the elements of R and two distinct vertices x and y are adjacent
in G if xy = 0 in R.

Nimbhorkar et al. [8] introduced a graph for a meet-semilattice L with 0, whose vertices
are the elements of L and two distinct elements x, y ∈ L are adjacent if and only if x ∧ y = 0.
They correlated properties of semilattices with coloring of the associated graph. A nonzero
element a ∈ L is called a zero-divisor if there exists a nonzero b ∈ L such that a ∧ b = 0. We
denote by Z(L) the set of all zero-divisors of L. We associate a graph Γ(L) to L with vertex set
Z∗(L) = Z(L)−{0}, the set of nonzero zero-divisors of L and distinct x, y ∈ Z∗(L) are adjacent
if and only if x∧ y = 0 and call this graph as the zero-divisor graph of L. In a meet-semilattice
L with 0, a nonzero element a ∈ L is called an atom if there is no x ∈ L such that 0 < x < a.

MAIN RESULTS

Lemma 1. Let L be a complemented distributive lattice. An element b ∈ L is an atom in L iff
b
′

is the unique end adjacent to b in Γ(L).

Lemma 2. Let L 6= C2 be a complemented distributive lattice. Then atoms in L are precisely
the vertices in Γ(L) which are adjacent to an end.

We recall that C2 denotes the two element chain.

Lemma 3. Let L 6= C2 be a complemented distributive lattice. The complement a
′

of a ∈ L is
also a complement of of a in Γ(L). Hence Γ(L) is uniquely complemented.

Lemma 4. If Γ(L) splits into two subgraphs X and Y via a then a is an atom of L.

However, the converse of Lemma 4 need not hold.

Lemma 5. If Γ(L) splits into two subgraphs X and Y via a then a ≤ x for every x ∈ L−Z(L).

Lemma 6. For any lattice L with 0, L− Z(L) is a dual ideal.

Theorem 1. Let L be a finite lattice. If Γ(L) splits into two subgraphs X and Y via a, then
either X or Y is a set of isolated vertices.

Theorem 2. If Γ(L) splits into two subgraphs X and Y via a, then N(a) is a maximal element
in the set {N(x)|x ∈ Γ(L)}.

The converse need not hold.

Theorem 3. If a− x is an edge in Γ(L) and a, x are not pendant vertices then the edge a− x
is contained in a 3-cycle or a 4-cycle.

Theorem 4. Every pair of non-pendant vertices in Γ(L) is contained in a cycle of length less
than or equal to 6.
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The following example shows that 6 is the best possible bound.

Example 1. Let L be the lattice of all positive divisors of n = 4620 with divisibility as the partial
order. Then a, b are adjacent in Γ(L) iff the greatest common divisor of a, b is 1. Consider
a = 30 and b = 154. Then a, b are non-pendant vertices in Γ(L) and these are contained in the
6-cycle 30− 7− 5− 154− 3− 11− 30 but not in a cycle of smaller length. Moreover, this cycle
is not unique. 30− 7− 3− 154− 5− 11− 30 is another cycle.
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A SIMPLE RESTRICTED PRIESTLEY DUALITY FOR

BOUNDED DISTRIBUTIVE LATTICES WITH AN

ORDER-INVERTING OPERATION

TOMASZ KOWALSKI

Introduction. Bounded distributive lattices with a single unary order-inverting
operation form an algebraic semantics (in a technical sense of Blok-Jónsson equiv-
alence, cf. [4]) for a logic of a minimal negation on top of the classical disjunction
and conjunction. This logic was investigated in [8], and found particularly useful
for analysing various forms of negation occurring in natural languages. It is quite
easy to give a natural sequent system for that logic, and prove cut elimination.

Although Priestley-like dualities for distributive-lattice-based algebras are many
and varied, they are either very general and quite complex (e.g., [1] or [3]), or not
quite as general as needed here (e.g., [6] or [7]). Canonical extensions, which of
course cover our case and a topological duality can be extracted from them (not
without some work, see e.g., [5]), are a significantly different setting.

Apart from the connection to the logic of minmal negation, I choose to work
with a single unary order-inverting operation only for simplicity. Generalising to
any number of unary order-inverting or order-preserving operations is completely
straightforward, and generalisations to operations of arbitrary arities should not be
difficult either. However, generality and naturalness seem to be contravariant here.

Algebras. Let BDLN (bounded distributive lattices with negation) stand for the
class of all algebras A = 〈A;∧,∨,¬, 0, 1〉 such that 〈A;∧,∨, 0, 1〉 is a bounded
distributive lattice, and ¬ is a unary operation on A satisfying the quasiequation

x ≤ y ⇒ ¬y ≤ ¬x (?)

which states that ¬ is an order-inverting operation. It is easily shown that BDLN
is a variety, axiomatised by adding any one of

¬x ∨ ¬y ≤ ¬(x ∧ y)

¬(x ∨ y) ≤ ¬x ∧ ¬y
to the identities defining bounded distributive lattices.

Dual spaces. Some notation first. For a Priestley space P , we write Clup(P ) for
the set of clopen upsets of P . For any ordered set P , we write O(P ) for the set of
downsets (order ideals) of P . Any order-preserving map h : P → Q between ordered
sets P and Q can be naturally lifted to the setwise inverse map h−1 : P(Q)→ P(P )
taking each X ∈ P(Q) to h−1(X) ∈ P(P ). It maps upsets to upsets and downsets
to downsets. The lifting can be iterated to (h−1)−1 : P(P(P ))→ P(P(Q)). We will
write h for this double lifting.

As expected, we will now define a category of Priestley spaces with an additional
structure. The objects are pairs

(
P, N : P → O(Clup(P ))

)
, such that:

(1) P is a Priestley space.
(2) Clup(P ) is the set of clopen upsets of P .
(3) O(Clup(P )) is the set of downsets of Clup(P ).

1
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(4) N : P → O(Clup(P )) is an order-preserving map, such that for every X ∈
Clup(P ), the set {p ∈ P : X ∈ N (p)} is clopen.

Since the domain and range of the map N : P → O(Clup(P )) are completely de-
termined by P , from now on we will write (P,NP ) for the objects. One may find
it convenient to think of N as associating a system of non-topological neighbour-
hoods to any point in P . If P is finite, then (P,NP ) is just P together with an
order-preserving map from P to the set of downsets of (the poset of) upsets of P .
If P is a singleton there are precisely three such objects, and their dual algebras
generate the three minimal subvarieties of BDLN.

Let (P,NP ) and (Q,NQ) be objects, and let h : P → Q be a continuous map.
Since h is continuous, the map h−1 : Clup(Q) → Clup(P ) is well defined. It fol-
lows that the double lifting h is also well defined as a map from O(Clup(P )) to
O(Clup(Q)). It is easy to verify that, for a W ∈ O(Clup(P )), we have h(W ) =
{U ∈ Clup(Q) : h−1(U) ∈W}.

Now we can define morphisms. A morphism from (P,NP ) to (Q,NQ) is a con-
tinuous map h such that the diagram

P Q

O(Clup(P )) O(Clup(Q))

NP NQ

h

h

commutes. The category we have just defined will be called Priestley neighbourhood
systems, or PNS.

Theorem 1. The categories BDLN (with homomorphisms) and PNS are dually
equivalent.

Indeed, this duality is an instance of a restricted Prestley duality, in the sense
of [2]. Several existing dualities can be obtained as special cases.
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