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Mathematics in image processing

Mathematics in image processing, CV etc. My subjective importance

Linear algebra 70%
Numerical mathematics — mainly optimization 60%
Analysis (including convex analysis and variational

50%
calculus)
Statistics and probability — basics + machine learning 30%
Graph theory (mainly graph algorithms) 15%
Universal algebra (algebraic geometry, Grobner bases...) not much

Probably similar for many engineering fields...



Talk outline

 What is digital image processing? Typical
problems and their mathematical formulation.

e Bayesian view of inverse problems in (not

only) image restoration, analysis and synthesis
based sparsity

* Discrete labeling problems and Markov
random fields (MRFs, CRFs)



Image processing and related fields

* Image processing
— Image restoration (denoising, deblurring, SR)
— Computational photography (includes restoration)
— Segmentation
— Registration
— Pattern recognition

— Many applied subfields — image forensics, cultural heritage
conservation etc.

 Computer vision — recognition and 3D reconstruction but
growing overlap with image processing

 Machine learning

 Compressive sensing (intersects with computational
photography)



Image restoration (inverse problems)

—Denoising

— Deblurring (defocus, camera motion, object
motion)




Image segmentation and classification

e Separating objects, categories,
foreground/background, cells or organs in
biomedical applications etc.
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Image Registration

* Transforming different sets of data into one
coordinate system

* Transform is constrained to have a specific form
(rotation, affine, projective, splines etc.)

* Important general forms — optical flow & stereo




Optical flow

Seqguence of images contains information about the scene,
We want to estimate motion — special case of image registration



2D Motion Field = Optical Flow

3D motion field
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Optical flow example

Optic Flow Demo
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Image processing problems

* Image restoration
— denoising
— deblurring
— tomography
* Segmentation and classification

* |mage registration
— optical flow
— stereo



Mathematical image

* Greyscale image
— Continuous representation U : R? — (0,1)
— Discrete — matrix or vector v € R™*"™, 4w € R™
— Both can be extended to 3D

* Color image = set of 3 or more greyscale
Images

— RGB channels are highly correlated - many
algorithms work with greyscale only



Inverse problems in image restoration

* Denoising
* Linear image degradations
— Deconvolution and deblurring

— Super-resolution

— CT, MRI, PET etc. reconstruction (reconstruction
from projections)

* JPEG decompression



Image degradations

e Gaussian noise 2z = N(u,0l) =u+ N(0,01)

* Homogeneous blur = convolution with a
kernel h (PSF — Point-spread function)

z(x) = /h(w — s)u(s)ds = hxu = Hu

e Spatially-varying blur



Presentation outline

 What is digital image processing? Typical
problems and their mathematical formulation.

* Bayesian view of inverse problems in (not only)
Image restoration, sparsity

* Discrete labeling problems and Markov random
fields (MRFs, CRFs)

— Surprising result: a large family of non-convex MRF
problems can be solved exactly in polynomial time/
reformulated as convex optimization problems



Bayesian Paradigm

a posteriori distribution
unknown

p(2)

v

likelihood

a priori distribution
our prior knowledge

given by our problem

Z ... observation, u ... unknown original image
Maximum a posteriori (MAP): max p(u|z)
Maximum likelihood (MLE): max p(z|u)



MAP corresponds to regularization

maxp(ulz) o p(zlu)p(u)

!

min — log p(u|z) o< —logp(z|u) — log p(u)

_—

data term regularization term



Data term for image denoising

max p(u]2) o< p(z|u)p(u)

min — log p(u|z) o< —log p(z|u) — log p(u)

+ C



lmage Prior

min — log p(u|z) x — log p(z|u)|— log p(u)

Inp(u) =In Hp u;) Z In p(u;)
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lmage Prior
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Tikhonov versus TV Image Prior

Qw) = [ 19u* = AVl
Tikhonov regularization

p(u) o H e~ AVuil® — o—u'Lu
7

Qu) = A / Vul = \|[ V2.

TV regularization
(isotropic)




Non-convex Image Prior

Q(u) ZA/IWIO‘S .

S
07t ! g
; b
0B s ~
P Ay
osf w
% .
D4t P \
s .,
L P \ .
s ™,
: 5

03
02 —/
s .
o1k ; ™ i
a A
D 1 1 1 1 1 1 Il 1 1
05 04 03 02 01 0 01 02 03 04 05

Qw = [ [7u

Non-convex regularization

8
7




Bayesian MAP approach for denoising

—Inp(z|u)—Inp(u

T‘zz Zi — U;) +)\Z¢]Vui])
m&n @ Z — ;)% + )\Z Vg, P

—Inp(u|z) =



Analysis-based sparsity

* TV regularization can be extended to other sparse
representations

|
min 5 2 — uH2 + A|Vul|l2.1

1
min 5llz = wl|* + M||[Wull;

u

* W often a set of convolutions with highpass
filters

— Wavelets (property of the Daubechie wavelets)
— Learned by PCA



Synthesis-based sparsity

Bayesian approach applied on transform coefficients:

1
min |z — ul|? 4+ A[Wal|;
|
min §||z — Whwl|]* + A||wl
u
(for a Parseval frame W)

PETER G. CASAZZA AND JANET C. TREMAIN: A BRIEF INTRODUCTION TO HILBERT SPACE FRAME THEORY
AND ITS APPLICATIONS



Measures of sparsity

lall, = (Z aﬁ”);

[p horm, counts nonzero elements

many other sparsity measures
— smooth |,

l,, 0<p<1 horms [’

A
o(a) = lafl — elog (1 4] ”1)

€

|, is the only sparsity enforcing convex p-norm



|, unit ball
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l,s unit ball




l,-norm

a = arg min subject to

a




|,-norm

a = arg min subject to

a




Deblurring

e Denoising  z=u+ N(0,0°1)
1
min 5|z — ul® + M Val|2,1

* Deblurring

z=hxu+ N(0,0%I) = Hu + N(0,0°I)

1
min =12 = Hull? + \|Vua,



Super-resolution (with deblurring)

Several possibly shifted blurred images

2 = DH;u + N(0,0°])

1
mgn 5 Z |z; — DH;ul|* + M| V|21

D. ... downsampling operator

Convolutions represent also the shift



Super-resolution
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Optical flow

Based on the assumption of constant
brightness and Taylor series =

I(tv .GL’(t), y(t)) — I(th m(tO)a y(tO))

Ox Oy or B
(E,E)-VlnLa—Oatt—to

Optical flow is the velocity field

vito) = (57 (t0). G 1))



Optical flow

2
1
min = [ (VI-v+ L,)%dz + X Z INAAPE!
v 2Jo i=1
Data Regularization
term Weighting term

parameter
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Bayesian MAP restoration

MAP — maximum a posteriori probability

min — log p(z|u) — log p(u)

—logp(u) = 7||Wul

0 QCuc (QCz—0.5QCz+0.5)

—log p(z|u) = -
oo otherwise
C ... 2D cosine transform (orthogonal 64x64 operator)

Q ... diagonal quantization operator (division by entries g; of the
quantization table)



Bayesian JPEG decompression

Using total variation (TV)

min [|Vu||21,s.t. QCu € (QCz—0.5,QCz+ 0.5)

(Bredies and Holler, 2012)

Or using redundant wavelets

min |Wull2.1,5t. QCu € (QCz—0.5,QCz+ 0.5)

C ... 2D cosine transform (orthogonal 64x64
operator)

Q ... diagonal quantization operator (division
by entries g, of the quantization table)
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Convex variational problems

* Denoising, deblurring, SR, optical flow, JPEG
decompression ...

e Solution by convex optimization (interior

point, proximal methods)
N. Parikh, S. Boyd: Proximal Algorithms

* \What to do for discrete or non-convex
problems such as segmentation and stereo?



http://scholar.google.com/citations?view_op=view_citation&hl=cs&user=9A6exiwAAAAJ&citation_for_view=9A6exiwAAAAJ:2osOgNQ5qMEC

Discrete labeling problems

* For each site (pixel) we look for a label (or a
vector of labels)

* Labels depend on local image content and a
smoothness constraint

* Image restoration, (/.”’”,”f
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Discrete labeling problems

* For each site (pixel) we look for a label (or a
vector of labels)

* Labels depend on local image content and a
smoothness constraint

Segmentation foreground/background {0,1}
or object number {1.. k}
Stereo disparity (inverse depth) -k..k
Optical flow local motion vector (-k..k) x (-k..k)
Restoration intensity 0..255




Segmentation by graph cuts
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Graph cuts & Belief propagation

Graph cuts

,Classical local algorithms”

50



Markov Random Fields (MRFs)

e Markov Random Field, Gibbs Random Field
— MRF & GRF (Hammersley-Clifford theorem)

* MRF models including smoothness priors
— stereo

— segmentation
— restoration (denoising, deblurring)

* Discrete optimization on MRFs based on graph
cuts



Markov Random Field (MRF)

sitesS =11, ...,

m}

F ... set of random variables defined on S

N ... neighborhood system
(possibly discrete) label

fie L ...

configuration f = {f, ...
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Gibbs Random Field

P(f) = le—%U(f) P(f) >0 !

Z

Partition function 7 = Ze*%Uﬁ)
f

tofepele
S pNpeTele
S efee

Energy function U(f) %

=> VeH =D Vilf)+>_ > Valfi, fr)

ceC €S €S i/ eN;

V(f) ... clique potentials



Hammersley-Clifford theorem

MRF = GRF
Fis an MRF on S with respect to N
if and only if
F is a Gibbs random field on S with respect to N

MREF ... conditional independence of non-neighbor nodes
(variables)

GRF ... global function depending on local “compatability
functions”



Hammersley-Clifford theorem - proof

* An MRF is also a GRF — complicated,
introduction of canonical potentials needed

* AGRFisa MRF P(filfs—giy) = P([ilfn;)

P(fil fo_in) = P(f) e et
B Zfi.6£ P(f,) Zf: e_zcec Ve (f)

e_ Z{Ce?'-Ec} Vrc(f)
Zf/ e_ Z {c;i€c} I/rc(f)

P(filfs—iy) =



MRF = GRF

* MAP-MRF
mj‘gxp(f) = %eEm
m}n(— np(f)) = m}n E(f) + const

* How to incorporate smoothness?
— Penalties/potentials similar for most applications



Smoothness prior

Priors on derivatives, usually first derivative

V(fz, fj) — I{?:J' 5(1} L fj) segmentation, sometimes in

stereo

V(f-ia fJ) — Ry (fz, — fj)Q Tikhonov regularization

Discontinuity preserving penalties

TV regularization
V(fi, £i) = kij | fi = i
line process, Mumford-Shah

V(fi, f;) = ke min((f; — f;)?, const) functional



MAP-MRF for stereo (Boykov & al.)

N A 3d point

2 images di,d? on the input

Zv (fid',d*) +nZo firr = fi)

Blrchfleld -Tomasi matchmg cost — insensitive to
sampling:

Vi(fi,d", d*) = min( <fmmf o df —di A, .., const)?
L2



MAP-MRF for segmentation

» “ “GrabCut” — Interactive Foreground Extraction using
lterated Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake,
SIGGRAPH 2004
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MAP-MRF for segmentation

* “Grab cut” example

2
[ld;—d;]|

VQ(fiafj) = KRij O(fi — fj) =ye 22 O(fi — fj)

12
10

Vi(fi,di) = —Inp(fild;) = —Inp(d;|fi) — Inp(fi)
V,(f,d.) ~ probability to be in fg/bg based on a
feature space (intensities, texture features etc...)

— modeled for example as a mixture of Gaussians

60



MAP-MRF for restoration

* Denoising (with anisotropic TV regularization)
— 2D indexing - only this slide

E(f) = % Z(ﬁj —di;)* + f‘tz | fiv1 — fijl + f‘bz | fij+1 — fijl
- ” -

Deblurring (with TV regularization)
1
E(f) = —gllf s b= dlP + 53 | fovrs = fisl + 6D | figan = fi

e Discrete methods not efficient for restoration!



MRFs - Summary

e Common framework for many image
processing a CV problems

* Fits well to the Bayesian framework
* MRF = GRF



MAP-MRF using graph cuts

* MAP — Maximum a posteriori probability

‘ _ LB
m}gxp(f) = ¢

m}n(— np(f)) = m}n E(f) + const

e Graph cuts = min-cut ~ max-flow (Ford-Fulkerson
theorem)

 Much better than simulated annealing based
methods, often very close to global optimum



Graph cuts minimization

E(f) = Zvl(fi) + ZVz(fi,fj)

For V, 2 0 metric
- V,(a,b)=0 & a=b
— V,(a,b) =V,(b,a) (actually not necessary)
— V,(a,b) £V,(a,c) + V,(c,b)

or semimetric (without A-inequality)

O(fi = fi)

Metric: ,
min(|f; — f;], const) for any norm |.|

Semimetric: min((f; — f;)%, const)



E

Graph cuts minimization
(f) = Zvl(fzﬁ) + ZVz(fi,fj)

General strategy — minimum if no possible decrease of
E(f) in one “move”

Iterated conditional modes (ICM) iteratively minimizes
each node (pixel) ®» easily gets trapped in a local
minimum (~ gradient descent)

Simulated annealing — global moves but without any
specific direction ®» slow

Graph cuts — use much larger set of “moves” so that
the minimum over the whole set can be found in a
reasonable (polynomial) time



a-B swap and a-expansion moves

h.hl-'h ;if" hhl-'h ;V hhl-'h :V

(a) (b) (c) (d)
I . . . o-expansion
initial labeling single pixel ICM a-fB swap move rr?ove

move
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o,

a-expansion algorithm

Start with an arbitrary labeling f
Set success =0

For each label a € L
3.1. Find f =argmin E(f') among f' within one a-expansion of f

~

3.2. If E(f) < E(f), set f := f and success := 1
If success = 1 goto 2
Return f

Arbitrary metric V,(a,B) (A-inequality)
Not worse than 2x optimum



o-B swap algorithm

1. Start with an arbitrary labeling f

2. Set success := 0

3. For each pair of labels {a,8} C L
3.1. Find f=argminE(f’) among f' within one «-3 swap of f
3.2. If E(f)<E(f), set f := f and success := 1

4. If success = 1 goto 2

5. Return f

* Arbitrary semimetric V,(a,p)
(without A-inequality)

* No optimality guaranteed



a-B swap move graph
E(f) = Z‘ﬁ(ﬂ:) + ZVQ(fipfj)

€p.q) €r.s}
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a-B swap move graph

o

tg Vp(@) + zqﬁfﬂﬁ V(Of: fq) P € Paos

ly | Vo(B) + X aee V(B 10) | P € Pas
af

gIeEN

€{p,q} Vi, B) Eqi};a )




a-B swap move graph

edge t,

E(f) = Zvl(fi) + ZVz(fi,fj)

Proof step 1: For each p in the set P,
the minimum cut contains exactly one

tg Vp(@) + zqﬁfﬂﬁ V(Of: fq) P € Paos

ly | Vo(B) + X aee V(B 10) | P € Pas
af

gIeEN

€{p,q} Vi, B) Eqi};a )




a-B swap move graph

E(f) = Zvl(fi) + ZVz(fi,fj)

Proof step 2: go through 3 types of
pairwise configurations. We need
binary V to be semi-metric V(a,a)=0

Vp(@) + qug’rﬂe Ve, fg) | P € Pas
Vp(ﬁ) + quee?;”fpﬁ V(AB: fq) pE Paﬁ
Vi, B) {p.a}eN
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a-B swap - summary

(a) (b) (c) (d)

1t

* We know how to transform minimization of E(f)
over all possible a-B swap moves to graph cut
problem
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a-expansion move graph
E(f)=) Vi(fi)+> Val(fi, [)
i ij

e{p,a} @ e{a.q}
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a-expansion move graph
E(f) = Zvl(fi) + ZVQ(fi,fj)

tg‘ oC p € P,
t? ‘/p(fp) P é Pa
ty V() peP

epat | V(fp )
efagy | Viwfo) |[{pa} €N, o # fo

ta | V{p Jo)
epa | V(fpa) | {mat €N, =1,
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a-expansion graph - cuts

ty 00 p € Pa
ty | Vo(/p) P & Pa
tp V() peP
epat | V(fp )
efagy | Viwfo) |[{pa} €N, o # fo
: : ta | V(fps fo)
A- mequallty | epa | V(fpa) | {mat €N, =1,
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o-expansion - summary

(@) (b) () (d)

 We know how to transform minimization of E(f) over
all possible a-expansion moves to graph cut problem

e What remains? - how to find the minimum cut
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Graph cuts algorithm

“Augmenting path” type algorithm with simple
heuristics

— Looks for a non-saturated path ~ path in residual
graph
— Simultaneously builds trees from a and 8

Maximum complexity O(n*mC__ ), C,.., cost of
the minimum cut

Actually typically linear with respect to the
number of pixels

On our problems faster than good combinatorial
algorithms - Dinic O(n’m), Push-relabel O(n*Vm)

Mmax



Graph cuts - summary

* Minimization of E(f) by finding min-cut in a graph in
polynomial time

4

2 label minimization can be done in polynomial (and
typically linear) time with respect to the number of pixels

e K>2 labels — NP hard

— Equivalent to Multiway Cut Problem
— a-expansion finds a solution £ 2*optimum

— In practice both a- swap and a-expansion algorithms get very
close to global minimum



Graph cuts — additional example

» “ “GrabCut” — Interactive Foreground Extraction using
lterated Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake,
SIGGRAPH 2004

80



Discrete optimization in MRFs -
summary
* Conditional independence is strong structural
information that can be exploited

e Gives useful approximations for difficult (NP-
hard) problems

* For convex problems mostly better to use
continuous methods
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Convex formulation of multi-label
problems

* Continuous counterpart of Ishikawa’s pairwise
MRF problem taking huge memory

e “Arbitrary” non-convex data term

min ( /Q olu(z), z)dx + /Q \W(@\@)

Pock, Schoenemann, Graber, Bischof, Cremers: A Convex Formulation of Continuous Multi-
label Problems (2008)



http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf

Functional lifting

U

min ( / o(u(x), z)dz + / ]Vu(az)|da¢> O
Q 9

O(x,77) = Liy(z)>-1 (T) Representing u in terms of its level sets

Layer cake formula u(x) = Ymin + / o(x,v)dy
r

min ( [ e io,6(. )] + IVfb(fc,v)ldE)

peD’

D' = {¢ IR {07 1} ‘ ¢($77min) =1, Cb(xv’)/ma:c) — 0}

D= {Cb IR <0a 1> | qﬁ(aja%’nin) =1, Cb(xanax) — 0}



Mathematics in image processing

Many image processing/CV problems can be
formulated as optimization problems and solved by
variational or discrete algorithms within a common

framework

— image restoration (denoising, deblurring, SR, JPEG
decompression)

— Image segmentation
— optical flow
— stereo




