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Mathematics in image processing 

Mathematics in image processing , CV etc. My subjective importance 

Linear algebra 70% 

Numerical mathematics – mainly optimization 60% 

Analysis (including convex analysis and variational 
calculus) 

50% 

Statistics and probability – basics + machine learning 30% 

Graph theory (mainly graph algorithms) 15% 

Universal algebra (algebraic geometry, Gröbner bases…) not much 

Probably similar for many engineering fields… 



Talk outline 

• What is digital image processing? Typical 
problems and their mathematical formulation.  

• Bayesian view of inverse problems in (not 
only) image restoration, analysis and synthesis 
based sparsity 

• Discrete labeling problems and Markov 
random fields (MRFs, CRFs) 

 

 



Image processing and related fields 

• Image processing  
– Image restoration (denoising, deblurring, SR) 
– Computational photography (includes restoration) 
– Segmentation 
– Registration 
– Pattern recognition 
– Many applied subfields – image forensics, cultural heritage 

conservation etc. 

• Computer vision – recognition and 3D reconstruction  but 
growing overlap with image processing 

• Machine learning  
• Compressive sensing (intersects with computational 

photography) 



Image restoration (inverse problems) 

–Denoising 

–Deblurring (defocus, camera motion, object 
motion) 

–Tomography (CT, MRI, PET etc.) 



Image segmentation and classification 

• Separating objects, categories, 
foreground/background, cells or organs in 
biomedical applications  etc. 



Image Registration 

• Transforming different sets of data into one 
coordinate system  

• Transform is constrained to have a specific form 
(rotation, affine, projective, splines etc.)  

• Important general forms – optical flow & stereo   



Optical flow  

Sequence of images contains information about the scene, 

We want to estimate motion – special case of image registration 



2D Motion Field = Optical Flow 

Optical center 

2D motion field 

Projection on the 

image plane of the 3D 

scene velocity 

3D motion field 

Image intensity 

I1 

I2 



Optical flow example 

 

Source: CBIA Brno, http://cbia.fi.muni.cz 

http://cbia.fi.muni.cz/user_dirs/xulman/gtgen/gt_application.png


Stereo reconstruction 

Principle Result (depth map or 
disparity map) 

Result (3D model) 

Source: http://lcav.epfl.ch 

http://lcav.epfl.ch/


Image processing problems 

• Image restoration 

– denoising 

– deblurring 

– tomography 

• Segmentation and classification 

• Image registration 

– optical flow 

– stereo 



Mathematical image 

• Greyscale image 

– Continuous representation  

– Discrete – matrix or vector 

– Both can be extended to 3D  

• Color image = set of 3 or more greyscale 
images 

– RGB channels are highly correlated → many 
algorithms work with greyscale only 



Inverse problems in image restoration 

• Denoising 

• Linear image degradations 

– Deconvolution and deblurring  

– Super-resolution 

– CT, MRI, PET etc. reconstruction (reconstruction 
from projections) 

• JPEG decompression 



Image degradations 

• Gaussian noise 

• Homogeneous blur = convolution with a 
kernel h (PSF – Point-spread function) 

 

 

• Spatially-varying blur  

 



Presentation outline 

• What is digital image processing? Typical 
problems and their mathematical formulation.  

• Bayesian view of inverse problems in (not only) 
image restoration, sparsity 

• Discrete labeling problems and Markov random 
fields (MRFs, CRFs) 

– Surprising result: a large family of non-convex MRF 
problems can be solved exactly in polynomial time/ 
reformulated as convex optimization problems 



 
 
 
 
 

 
 

z … observation, u … unknown original image  
Maximum a posteriori (MAP): max p(u|z) 
Maximum likelihood (MLE): max p(z|u) 

Bayesian Paradigm 

a posteriori distribution 
unknown 

likelihood 
given by our problem 

a priori distribution 
our prior knowledge 



MAP corresponds to regularization 

data term regularization term 



Data term for image denoising 



Image Prior 
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Image Prior 

Gradient histogram 
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Theory on when we can do this will be given later (CRF)  



Tikhonov versus TV Image Prior 

Tikhonov regularization 

TV  regularization 

(isotropic) 
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Non-convex Image Prior 

Non-convex regularization 



Bayesian MAP approach for denoising 



Analysis-based sparsity 

• TV regularization can be extended to other sparse 
representations 
 
 
 
 

• W often a set of convolutions with highpass 
filters 
– Wavelets (property of the Daubechie wavelets) 
– Learned by PCA 



Synthesis-based sparsity 

Bayesian approach applied on transform coefficients: 
 
 
 
 
 

 
 
 
   (for a Parseval frame W) 
 
PETER G. CASAZZA AND JANET C. TREMAIN: A BRIEF INTRODUCTION TO HILBERT SPACE FRAME THEORY 
AND ITS APPLICATIONS 

 



Measures of sparsity 

•     norms  

 

 

•    norm, counts nonzero elements 

• many other sparsity measures  
– smooth l1  

 

 

• l1 is the only sparsity enforcing convex p-norm  



l2  unit ball 



l1  unit ball 



l0.9  unit ball 



l0.5  unit ball 



l2-norm  



l1-norm  



Deblurring 

• Denoising 

 

 

• Deblurring 



Super-resolution (with deblurring) 

Several possibly shifted blurred images 

 

 

 

 

Di … downsampling operator 

 

Convolutions represent also the shift 



Super-resolution 

 

http://zoi.utia.cas.cz/bsr-toolbox 



Optical flow 

• Based on the assumption of constant 
brightness and Taylor series 

 

 

 

• Optical flow is the velocity field 



Regularization 

term 

Data 

term 
Weighting 

parameter 

Optical flow 



JPEG compression 

C TQ 
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Bayesian MAP restoration 

MAP – maximum a posteriori probability 
 
 
 
 
 
 
 
 
 
 
C … 2D cosine transform (orthogonal 64x64 operator) 
Q … diagonal quantization operator (division by entries qi of the 
quantization table) 
 

 
 
 

 
 



Bayesian JPEG decompression 

(Bredies and Holler, 2012) 

Or using redundant wavelets 

Using total variation (TV) 

C … 2D cosine transform (orthogonal 64x64 
operator) 
Q … diagonal quantization operator (division 
by entries qi of the quantization table) 



50 
jpg 



50 
est 
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Convex variational problems 

• Denoising, deblurring, SR, optical flow, JPEG 
decompression … 

• Solution by convex optimization (interior 
point, proximal methods) 
N. Parikh, S. Boyd: Proximal Algorithms  

• What to do for discrete or non-convex 
problems such as segmentation and stereo? 

http://scholar.google.com/citations?view_op=view_citation&hl=cs&user=9A6exiwAAAAJ&citation_for_view=9A6exiwAAAAJ:2osOgNQ5qMEC


• For each site (pixel) we look for a label (or a 
vector of labels) 

• Labels depend on local image content and a 
smoothness constraint 

• Image restoration,  
segmentation, stereo,  
and optical flow are all  
labeling problems 

 

Discrete labeling problems 

47 



• For each site (pixel) we look for a label (or a 
vector of labels) 

• Labels depend on local image content and a 
smoothness constraint 

Discrete labeling problems 

48 

Segmentation foreground/background 
or object number 

{0,1} 
{1.. k} 

Stereo disparity (inverse depth) -k..k 

Optical flow local motion vector (-k..k) x (-k..k) 

Restoration  intensity 0..255 



Segmentation by graph cuts 

49 



Graph cuts & Belief propagation 
„Classical local algorithms“ 

Belief propagation 

Graph cuts 

50 



• Markov Random Field, Gibbs Random Field 

– MRF ⇔ GRF (Hammersley-Clifford theorem) 

• MRF models including smoothness priors 

– stereo 

– segmentation 

– restoration (denoising, deblurring) 

• Discrete optimization on MRFs based on graph 
cuts 

 

Markov Random Fields (MRFs) 

51 



• sites S = {1, ... , m} 
• F ... set of random variables defined on S 
• N ... neighborhood system 
•            ... (possibly discrete) label  
• configuration f =  {f1 ... fK},   

 
 
 

• Other possible properties – homogeneity, 
isotropy 

Markov Random Field (MRF) 

52 



Gibbs Random Field 

Partition function 

Energy function U(f) 

Vc(f) ... clique potentials 

P(f) > 0 ! 

53 



MRF = GRF 
 
F is an MRF on S with respect to N 
 
    if and only if 
 
F is a Gibbs random field on S with respect to N 
 
MRF ... conditional independence of non-neighbor nodes 

(variables) 
GRF ... global function depending on local “compatability 

functions” 
 

Hammersley-Clifford theorem 

54 



• An MRF is also a GRF – complicated, 
introduction of canonical potentials needed 

• A GRF is a MRF 
 

Hammersley-Clifford theorem - proof 

55 



• MAP-MRF 

 

 

 

 

 

• How to incorporate smoothness?  
– Penalties/potentials  similar for most applications 

56 

MRF = GRF 



Priors on derivatives, usually first derivative 

      

 

 

 

Discontinuity preserving penalties 

 

                             

Smoothness prior 
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segmentation,  sometimes in 
stereo 

Tikhonov regularization 

TV regularization 

line process, Mumford-Shah 
functional 



2 images d1,d2 on the input 

 

 

 

 

Birchfield-Tomasi matching cost – insensitive to 
sampling: 

 

MAP-MRF for stereo (Boykov & al.) 
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 “ “GrabCut” — Interactive Foreground Extraction using 
Iterated Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake, 
SIGGRAPH 2004 
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MAP-MRF for segmentation 



• “Grab cut” example 

 

 

 

 

 

V1(fi,di) ~ probability to be in fg/bg based on a 
feature space (intensities, texture features etc...) 
– modeled for example as a mixture of Gaussians 

MAP-MRF for segmentation 
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• Denoising   (with anisotropic TV regularization) 
– 2D indexing  - only this slide  

 
 
 

• Deblurring (with TV regularization) 
 
 
 

• Discrete methods not efficient for restoration! 
 
 

MAP-MRF for restoration 
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• Common framework for many image 
processing a CV problems  

• Fits well to the Bayesian framework 

• MRF = GRF 

 

 

 

MRFs - Summary 
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• MAP – Maximum a posteriori probability 
 
 
 
 
 

• Graph cuts = min-cut ~ max-flow (Ford-Fulkerson 
theorem) 

• Much better than simulated annealing based 
methods, often very close to global optimum 
 
 

MAP-MRF using graph cuts 
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For V2 ≥ 0 metric 

– V2(a,b) = 0  ⇔  a = b 
– V2(a,b) = V2(b,a)  (actually not necessary) 
– V2(a,b) ≤ V2(a,c) + V2(c,b) 

or semimetric (without ∆-inequality) 
 
Metric:   

     for any norm |.| 
 
Semimetric: 

 
 

 

Graph cuts minimization 
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• General strategy – minimum if  no possible decrease of 
E(f) in one “move”  

• Iterated conditional modes (ICM) iteratively minimizes 
each node (pixel)       easily gets trapped in a local 
minimum (~ gradient descent) 

• Simulated annealing – global moves but without any 
specific direction       slow 

• Graph cuts – use much larger set of “moves” so that 
the minimum over the whole set can be found in a 
reasonable (polynomial) time 

Graph cuts minimization 

65 



α-β swap and α-expansion moves 

initial labeling single pixel ICM 
move 

α-β swap move 
α-expansion 

move 
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• Arbitrary metric V2(α,β) (Δ-inequality)  

• Not worse than 2x optimum 

α-expansion algorithm 
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• Arbitrary semimetric V2(α,β) 
 (without Δ-inequality)  

• No optimality guaranteed 

 

α-β swap algorithm 

68 



α-β swap move graph 

69 



α-β swap move graph 

70 



α-β swap move graph 
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Proof step 1: For each p in the set Pαβ, 
the minimum cut contains exactly one 
edge tp 



α-β swap move graph 
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Proof step 2: go through 3 types of 
pairwise configurations. We need 
binary V to be semi-metric V(α,α)=0 



 
 
 
 
 
 
 

• We know how to transform minimization of E(f) 
over all possible α-β swap moves to graph cut 
problem 

73 

α-β swap - summary 



α-expansion move graph 
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α-expansion move graph 
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∆ - inequality ! 

α-expansion graph - cuts 
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• We know how to transform minimization of E(f) over 
all possible α-expansion moves to graph cut problem 

• What remains? - how to find the minimum cut 

77 

α-expansion - summary 



• “Augmenting path” type algorithm with simple 
heuristics 
– Looks for a non-saturated path ~ path in residual 

graph 
– Simultaneously builds trees from α and β 

• Maximum complexity O(n2mCmax), Cmax cost of 
the minimum cut 

• Actually typically linear with respect to the 
number of pixels 

• On our problems faster than good combinatorial 
algorithms - Dinic O(n2m), Push-relabel O(n2√m)  

Graph cuts algorithm 

78 



• Minimization of E(f) by finding min-cut in a graph in 
polynomial time 

    
 

   2 label minimization can be done in polynomial (and 
typically linear) time with respect to the number of pixels 
 

• K>2 labels – NP hard 
– Equivalent to Multiway Cut Problem 
– α-expansion finds a solution ≤ 2*optimum 
– In practice both α-β swap and α-expansion algorithms get very 

close to global minimum 

Graph cuts - summary 
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 “ “GrabCut” — Interactive Foreground Extraction using 
Iterated Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake, 
SIGGRAPH 2004 
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Graph cuts – additional example 



• Conditional independence is strong structural 
information that can be exploited 

• Gives useful approximations for difficult (NP-
hard) problems 

• For convex problems mostly better to use 
continuous methods 

Discrete optimization in MRFs - 
summary 

81 



• Graph Cuts 
– “Fast Approximate Energy Minimization via Graph Cuts” - Y. 

Boykov, O. Veksler, R. Zabih, PAMI 2001 (Augmenting path min-
cut algorithm) 

– “An Experimental Comparison of Min-Cut/Max-flow Algorithms 
for Energy Minimization in Vision” – Y. Boykov, V. Kolmogorov, 
PAMI 2004 (Graph construction for α-β swap and α-expansion 
moves) 

– “ “GrabCut” — Interactive Foreground Extraction using Iterated 
Graph Cuts”, C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004 

• Belief propagation 
– “Understanding Belief Propagation and its Generalizations” -  

J.S. Yedidia, W.T.Freeman, Y.Weiss (Mitsubishi electric research 
laboratories, Technical report, 2002) 

References 
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• Continuous counterpart of Ishikawa’s pairwise 
MRF problem taking huge memory 

• “Arbitrary” non-convex data term 

 

 

Convex formulation of multi-label 
problems 

Pock, Schoenemann, Graber, Bischof, Cremers: A Convex Formulation of Continuous Multi-
label Problems (2008) 

http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf
http://vision.in.tum.de/_media/spezial/bib/pock_et_al_eccv08.pdf


Functional lifting 

 

 

     

 Layer cake formula 

Representing u in terms of its level sets  



Mathematics in image processing 

Many image processing/CV problems can be 
formulated as optimization problems and solved by 
variational or discrete algorithms within a common 
framework 
 

– image restoration (denoising, deblurring, SR, JPEG 
decompression) 

– image segmentation 

– optical flow 

– stereo 

 


