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Summary 15 

The pulse-respiration quotient (heart rate divided by the respiration rate, PRQ = HR/RR) is a 16 

parameter capturing the complex state of cardiorespiratory interactions. We analysed 482 17 

single PRQ values obtained from measurement on 134 healthy adult subjects (85 men, 49 18 

women, age: 24.7 ± 3.4, range: 20–46 years) during rest. We found that the distribution of PRQ 19 

values (i) has a global maximum at around a value of 4 (median: 4.19) and (ii) follows a 20 

lognormal distribution function. A multimodality of the distribution, associated with several 21 

PRQ attractor states was not detected by our group-level based analysis. In summary, our 22 

analysis shows that in healthy humans the resting-state PRQ is around 4 and lognormally 23 

distributed. This finding supports claims about the special role of the 4 to 1 cardiorespiratory 24 

coupling in particular and the PRQ in general for physiological and medical views and 25 

applications. To the best of our knowledge, our study is the largest conducted so far in healthy 26 

adult humans about reference values of the PRQ during a resting-state at day. 27 
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 36 
Two intrinsic oscillatory processes accompany each moment of a living human being: cardiac 37 

activity and respiration. Both oscillations are locally triggered but regulated in a complex way 38 

as best represented by a non-linear dynamical system based on two weakly coupled oscillators 39 

that are coupled by several structural and functional types of cardiorespiratory interactions, 40 

leading to emergent cardiorespiratory coupling phenomena (Benarroch 2018, Dick et al. 2014, 41 

Elstad et al. 2018, Krause et al. 2017, Lotrič and Stefanovska 2000, Moser et al. 2008, Schulz et 42 
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al. 2013, Valenza et al. 2016). Such a cardiorespiratory coupling phenomenon is that the heart 43 

rate (HR) and the respiration rate (RR) have a specific frequency relationship. As recently 44 

reviewed by our group (Scholkmann and Wolf 2019), this relationship is given by dividing the 45 

heart rate (HR) by the respiration rate (RR), resulting in the pulse-respiration quotient (PRQ = 46 

HR/RR). The PRQ in humans is of physiological relevance and depends mainly on the age, sex 47 

and individual physiological constitution of the subject, as well as on the time-of measurement 48 

(linked to the chronobiological state), physical activity, psychophysical and cognitive activity, 49 

and body posture (Scholkmann and Wolf 2019). 50 

Two special features of the PRQ are that (i) in the resting-state of a healthy human 51 

(preferably during night, or during resting-periods at day), the PRQ tends to have a value of 4, 52 

i.e. a state where the heart beats four times during one breathing cycle (Bettermann et al. 53 

2000, Gutenbrunner and Hildebrandt 1998, Steiner 1989), and that (ii) the PRQ is not 54 

normally distributed but seems to follow a lognormal distribution (Scholkmann and Wolf 2019). 55 

Furthermore, there are reports indicating that the PRQ tends to favour integer values (a 56 

quantization) due to an in-phase cardiorespiratory coupling effect (termed cardiorespiratory 57 

coordination) with preferred values of the harmonic ratios n/m with n = 3–6 and m = 1 while n 58 

and m represent the numerator and denominator of the equation PRQ = HR/RR = n/m 59 

(Bettermann et al. 2000, Bettermann et al. 2001, Bettermann et al 2002, Scholkmann and Wolf 60 

2019). The relationship between the HR and RR is thus not random but is an emergent 61 

property as a result of complex cardiorespiratory interactions. A PRQ of 4 can be regarded as 62 

an attractor state that is approached during resting-conditions, while other attractor states are 63 

at other harmonic ratios (but less pronounced). 64 

The aim of the present work was to evaluate these three assertions, i.e. the preference of the 65 

resting-state PRQ showing values around 4, being lognormally distributed and also exhibiting 66 

a quantization of values with preferences around integers. To this end, a large data set of own 67 

measurements has been analysed that was obtained during a systemic physiology augmented 68 

functional near-infrared spectroscopy (SPA-fNIRS) study conducted at our institute. The data 69 

set comprised of resting-state measurement of HR and RR of subjects sitting on a chair in a 70 

darkened room and wearing a SPA-fNIRS setup to measure brain and physiological activity. 71 

HR was measured with a device registering cardiac activity as well as continuous blood 72 

pressure (SOMNOtouch NIBP, SOMNOmedics GmbH, Randersacker, Germany; sampling rate: 73 

4 Hz). RR was measured with a patient monitor with a capnography module (LifeSense, Nonin 74 

Medical, Plymouth, MN, USA; sampling rate: 1 Hz). The capnograph was connected to a small 75 

tube with an open end attached below the nostrils of the subject. The tube attached did not 76 

influence the breathing of the subject nor caused any discomfort. The PRQ was determined by 77 

averaging the HR and RR measurement for each experiment for a recording period of 5 78 

minutes (i.e. last 5 minutes of the baseline phase). It was ensured that the subjects were in an 79 

awake resting-state during the measurements. Measurements were conducted in 134 healthy 80 

subjects (85 men, 49 women, age: 24.7 ± 3.4, range: 20–46 years) and were repeated 2–4 times 81 

for each subject (on different days) resulting in 482 single measurements and thus single 82 
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resting-state PRQ values. The subjects did not have an acute disease nor a chronic disease 83 

affecting the cardiovascular, cardiorespiratory or neuronal system. The body mass index of the 84 

population was 22.08 ± 2.42 (range: 17.54-31.22) showing that the population consisted of 85 

subjects of normal weight.  86 

The measured raw signals were processed in Matlab (R2017a, MathWorks, Inc., MA, USA) 87 

and the statistical analysis was conducted in R (version 3.4.4) (R Core Team 2019). For the 88 

analysis of the data distribution, the R package “fitdistrplus” (Delignette-Muller and Dutang 89 

2015) was employed. 90 

In order to investigate assertion 1 (i.e. the prevalence of the resting-state PRQ showing 91 

values around 4) and assertion 2 (i.e. the lognormal distribution of the data), the PRQ data 92 

were analysed with a Cullen and Frey plot (skewness-kurtosis plot) (Cullen and Frey 1999) 93 

involving a nonparametric bootstrap procedure (number of bootstraps: 5000) to take into 94 

account the uncertainty in estimating the kurtosis and skewness (Efron and Tibshirani 1994). 95 

The empirical distribution of PRQ values was compared with the following distributions: 96 

normal, uniform, exponential, logistic, beta, lognormal and gamma. Fig. 1(a) shows that the 97 

lognormal distribution is the most suitable one explaining the empirical PRQ distribution. To 98 

further corroborate this finding, the goodness-of-fit was evaluated by fitting a lognormal 99 

distribution to the data, comparing the empirical and theoretical cumulative density functions 100 

(CDFs), creating a Q-Q plot (theoretical vs. empirical quantiles) and a P-P plot (fitted 101 

distribution function vs. empirical distribution function). Because the Cullen and Frey plot 102 

analysis found the lognormal distribution representing the empirical PRQ distribution at best, 103 

and since the Weibull distribution is similar to the lognormal one (Cain 2002, Kundu and 104 

Manglick 2004), the goodness-of-fit was evaluated for the lognormal and Weibull distribution. 105 

The analysis showed that the lognormal distribution fits the PRQ data better than the Weibull 106 

distribution (loglikelihood: -627.7287, Akaike information criterion (AIC): 1259.457, Bayesian 107 

information criterion (BIC): 1267.813 vs. -684.2619, AIC: 1372.524, BIC: 1380.88). The fit with 108 

the lognormal distribution (Fig 2(c)) gave a median PRQ value of 4.19 with a skewness of the 109 

distribution of 1.00 and a kurtosis of 5.30, respectively. That the lognormal distribution fits the 110 

data well can be also inferred by visually comparing the empirical fit (density estimate) with 111 

the lognormal fit (Fig.2(a, c)). Also the comparison with the empirical and theoretical CDFs 112 

(Fig. 2(d)), the Q-Q plot (Fig. 2(e)) and the P-P plot (Fig. 2(f)) support the finding that the PRQ 113 

data follow a lognormal distribution. 114 

To evaluate assertion 3 (i.e. the quantization of PRQ values with preferences of integers), 115 

the following procedure was performed: each single PRQ value of the data set was compared to 116 

the next integer and the difference was calculated, resulting in ΔPRA values (ΔPRA = PRQ – 117 

[PRQ], with [.] the round-to-nearest integer operator), and the distribution of ΔPRQ values was 118 

analysed.  119 

Since a quantization of PRQ values results in a distribution with preferred values of 120 

integers, the resulting ΔPRQ distribution should have a clear maxima around 0 and should 121 

follow approximately a normal distribution. As Fig. 2(b) shows, no preferred ΔPRQ value was 122 
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evident from the distribution. The Cullen and Frey plot of the data (Fig. 1(b)) further showed 123 

that the data can be approximated at best with a uniform distribution and that a normal 124 

distribution does not fit the data well. Both results support the conclusion that no quantization 125 

of PRQ values was evident. 126 

 127 
[Single-column figure] Figure 1: Cullen and Frey plots for the PRQ (a) and ΔPRQ (b) data. The 128 
analysis revealed that the distribution of PRQ data is approximated at best by a lognormal 129 
distribution and the ΔPRQ data by a uniform one. 130 

 131 
Our analysis thus confirmed assertion 1 and 2 that the resting-state PRQ on a group-level 132 

has a high probability of having a value of around 4 and being lognormally distributed. Our 133 

analysis thus agrees with the previous publications stating assertions 1 and 2, indicating the 134 

occurrence of cardiorespiratory coupling in the resting-state. Assertion 3 about the 135 

quantization of PRQ values (which would indicate a cardiorespiratory coordination) was not 136 

supported by our analysis. There are three main reasons for not finding the PRQ quantization 137 

according to our reasoning. First, it could be that the PRQ quantization is more/less 138 

pronounced in individual subjects and that a group-level analysis (as we did) is not able to 139 

detect it since the effect is weakened by our analysis approach. This aspect is especially 140 
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significant since we calculated the PRQ value by dividing the median of the HR by the median 141 

of the PR (from the 5 min time-series) and not by calculating the instantaneous PRQ (from the 142 

5 min time-series) and then taking the median of it. The second approach might be better 143 

characterizing the individual quantized PRQ states. Further research is needed to investigate 144 

this reasoning. Second, the PRQ quantization could be mainly better detected by analysing the 145 

PRQ values of an individual subject during a specific time-interval (during this interval, there 146 

might be a cardiorespiratory coupling preference, i.e. cardiorespiratory coordination, with 147 

integer PRQ values, as indicated by previous works). Calculating an average over all PRQ 148 

values for the interval (as we did) might weaken the PRQ quantization effect in the data since 149 

only the average of the PRQ is taken into account in the final group-level analysis and not 150 

possible additional maxima of the PRQ distribution. This conclusion is supported for example 151 

by the study of Bettermann et al.  (Bettermann et al. 2001) who detected a PRQ quantization 152 

when first analysing the individual PRQ distributions for each experiment and then 153 

performing the group-average; with this approach, the presence of local maxima in the PRQ 154 

distribution at values of 4, 3, 2 and 5 in nightly resting-stated PRQ values of women with 155 

metastasized breast cancer was detected. According to this finding, the PRQ quantization thus 156 

might be also related to the health state of a subject, and since our study included healthy 157 

young subjects, the occurrence of this effect might be less likely. Third, the PRQ quantization 158 

might be only an artefact or phenomena that is happening only occasionally so that a 159 

generalization is unjustified. According to our assessment, the most likely conclusions seem to 160 

be the first and second ones. Further research is needed, and will be conducted by us, to clarify 161 

this aspect. 162 

Our finding that the resting-state PRQ of human adults is indeed around 4 is not only of 163 

interest for basic human physiology but has also medical relevance since deviations from this 164 

norm might be associated with pathophysiological processes. Indeed, the usefulness of 165 

evaluating the resting-state PRQ in patients for diagnosis and disease monitoring has been 166 

already shown (Bettermann et al. 2001, Göbels 2014, Heckmann 2001, Hildebrandt 1960, 1980, 167 

1985, 2009, Kümmell and Heckmann 1987, Suchantke 1951, Weckenmann 1975, 1981). For 168 

example, a tendency of resting-state PRQ to be closer to 4 during the course of an influenza 169 

disease has been documented (Müller 1972). A state of PRQ ≈ 4 has been termed “PRQ 170 

normalization”, associated with an optimal functioning of the cardiovascular system a balanced 171 

state of the autonomic nervous system, being relevant for and being correlated with a healthy 172 

physiological state of a human (Hildebrandt 1997, Scholkmann and Wolf 2019). The 173 

significance of PRQ ≈ 4 is highlighted by the fact that the resting-state PRQ is also around 4.5 174 

for all mammals and thus is not following an algometric scaling law as the HR or RR (Schmidt-175 

Nielsen 1984, Stahl 1967). 176 

The finding about the lognormality of the PRQ distribution is important for future studies 177 

using the PRQ since the statistical analysis of PRQ values thus needs to be treated accordingly, 178 

i.e. taking the log of the PRQ value is necessary to transform the data to a normal distribution 179 

so that the requirements of the classical statistical test are fulfilled. 180 
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To the best of our knowledge, our study is the largest conducted so far in healthy adult 181 

humans about reference values of the PRQ during a resting-state at day. 182 

 183 

 184 
 185 
[Double-column figure] Figure 2: (a, b) Comparison of histograms of PRQ and ΔPRQ values 186 
with density estimations. (c-f) Evaluation of the goodness-of-fit for fitting the PRQ distribution 187 
with a lognormal distribution. CDFs: cumulative density functions. 188 
 189 
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