Wayback Machine
«DEC APR May
Previous capture 4 Next capture
«2019 2020 2021
34 captures
27 Feb 09 - 4 Apr 20
Close Help
MATHEMATICA BOHEMICA, Vol. 127, No. 4, pp. 597-604, 2002

Positive solutions of inequality with
$p$-Laplacian in exterior domains

Robert Marik

Robert Marik, Dept. of Mathematics, Mendel University, Zemedelska 3, 613 00 Brno, Czech Republic, e-mail: marik@mendelu.cz

Abstract: In the paper the differential inequality
\Delta_p u+B(x,u)\leq0,
where $\Delta_p u=\div(\Vert\nabla u\Vert^{p-2}\nabla u)$, $p>1$, $B(x,u)\in C(\R^n\times\R,\R)$ is studied. Sufficient conditions on the function $B(x,u)$ are established, which guarantee nonexistence of an eventually positive solution. The generalized Riccati transformation is the main tool.

Keywords: $p$-Laplacian, oscillation criteria

Classification (MSC 2000): 35B05


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]