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Short title An overview of radiation-induced CNS injury 

Summary Experimental studies in animals provide relevant knowledge about pathogenesis of 

radiation-induced injury to the central nervous system. Radiation-induced injury can alter 

neuronal, glial cell population, brain vasculature and may lead to molecular, cellular and 

functional consequences. Regarding to its fundamental role in the formation of new 

memories, spatial navigation and adult neurogenesis, the majority of studies have focused on 

the hippocampus. Most recent findings in cranial radiotherapy revealed that hippocampal 

avoidance prevents radiation-induced cognitive impairment of patients with brain primary 

tumors and metastases. However, numerous preclinical studies have shown that this problem is 

more complex. Regarding the fact, that the radiation-induced cognitive impairment reflects 

hippocampal and non-hippocampal compartments, it is highly important to investigate 

molecular, cellular and functional changes in different brain regions and their integration at 
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clinically relevant doses and schedules. Here, we provide a literature review in order support 

the translation of preclinical findings to clinical practice and improve the physical and mental 

status of patients with brain tumors. 
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Introduction 

Experience from preclinical studies provided valuable insight into pathogenic 

mechanisms related to radiation-induced injury. During the last decade, preclinical, animal 

studies indicated that interventional therapy could prevent, mitigate and ameliorate radiation-

induced functional deficits. Implication of these recent preclinical findings to clinical therapy has 

the potential to improve the physical and mental status in patients with primary brain tumors and 

metastases (Reichman et al. 1986, Portnow et al. 2002, Monje et al. 2003, Jenrow et al. 2010). 

Cognitive deficits, including progressive deficits in learning, memory and spatial 

information processing abilities represent a significant risk for patients undergoing 

radiotherapy of brain primary tumors and metastases. These symptoms occur in up to 90% of 

adult patients who survive more than 6 months after treatment and can be seen without 

clinical and radiographic evidence of any histological changes (e.g., demyelination, white 

matter necrosis) (Johannessen et al. 2003, Greene-Schloesser and Robbins 2012). Due to the 

advanced techniques used for conventional radiotherapy, the patients with brain tumor survive 

longer but they experience the late effects of radiotherapy. Regarding the fact, that the 

population of patients with late symptoms is growing rapidly, the current effort is focused on 

prevention/mitigation of functional consequences of radiation-induced brain injury (Jenrow et 

al. 2010, Gehring et al. 2012, Zhao and Robbins 2014, Rapp et al. 2015, Soria et al. 2019). 

Based on the time of occurrence and clinical presentation, side effects of radiotherapy 

to the brain are discriminated into three types: (a) acute (during radiation up to first few weeks 

after irradiation), (b) subacute or early-delayed (1-6 months after irradiation) and (c) late 

(greater than 6 months to years after irradiation) (Greene-Schloesser and Robbins 2012). 

Acute effects are often characterized by drowsiness, headache, nausea, and vomiting as the 

result of increased intracranial pressure presumably caused by vasodilation, disruption of blood-

brain barrier (BBB) and edema. Corticosteroids such as dexamethasone may improve these 
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symptoms; however, they are mostly transient and resolve spontaneously. The subacute type 

of radiation-induced brain injury related to encephalopathy characterizes somnolence, fatigue 

and deterioration of preexisting deficits that resolve within several months. Unlike previous 

symptoms, late radiation effects are often progressive and irreversible. Late radiation-induced 

changes include leukoencephalopathy syndrome, vascular lesions (i.e., teleangiectasias, 

endothelial thickening, hyalinization, fibrinoid deposition, thrombosis and occlusion of 

vessels), true radionecrosis, brain parenchyma calcifications and increasing white matter 

abnormalities (Muphy et al. 2015). The late effects include several neurocognitive deficits, 

such as decreased verbal and spatial memory, attention, novel problem-solving ability, ataxia and 

urinary loss. Moreover, cognitive dysfunction progresses to dementia in up to 2-5% patients with 

radiotherapy (Brandsma et al. 2008, Greene-Schloesser and Robbins 2012). 

On the cellular level, irradiation triggers a cascade of the direct and indirect effects 

including activation of early response transcription factors, cascades of signal transduction, 

alteration of proliferative vascular and glial cells, neurogenesis and neural functions (Snyder 

et al. 2005). In this review, we present the previous and novel approaches used in the 

preclinical studies concerning with pathological mechanisms of the radiation-induced brain 

injury and perspective neuroprotective interventions. 

Radiation-induced changes in the central nervous system 

Apoptosis 

Apoptosis is a distinct form of cell death, which is triggered among other insults by 

ionizing radiation. It has specific morphological and molecular features and implications for 

surrounding tissue. Acute (0.1-4 Gy) or chronic (0.5 Gy) irradiation led to disturbance in 

extracellular-signal-regulated kinase (ERK1/ERK2) and signaling pathways, increased level of 

reactive oxygen species (ROS) and Trp53 and p21 protein levels (Limoli et al. 2004). 
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As was reported in numerous preclinical studies, the influence of ionizing radiation on 

apoptosis is dose-dependent and occurs within hours after treatment (Shinohara et al. 1997, 

Peissner et al. 1999, Sasaki et al. 2000, Tada et al. 2000, Mizumatsu et al. 2003). Single 

irradiation with a dose of 2 Gy led to apoptosis of neuronal and glial population reside the 

subvetricular zone (SVZ) lining the brain lateral ventricles (LV), neocortex, piriform and 

entorhinal cortex, striatum, thalamus, amygdala, dentate gyrus (DG), olfactory bulb (OB), 

brainstem, cerebral and cerebellar white mater (Ferrer at al. 1995). Large scale doses of single 

irradiation (2-10 Gy) caused steep increase of apoptosis in the DG within 3 to 6 hours after 

treatment (Shinohara et al. 1997, Peissner et al. 1999, Tada et al. 2000) and reaching a 

maximum within 6 to 12 hrs after exposure (Sasaki et al. 2000; Mizumatsu et al. 2003). The 

level of apoptosis remained unchanged within 1 to 9 months after irradiation (Tada et al. 

2000, Mizumatsu et al. 2003, Raber et al. 2004, Rola et al. 2004, Fan et al. 2007). 

The most radiosensitive type of cells undergoing apoptosis are undifferentiated and/or 

proliferating cells. Results revealed that radiation-induced impairment of proliferating cells 

and immature neurons were time- and dose-dependent. Surviving stem cells have limited 

capability to repopulate and regenerate the injured self-renewing potential several months 

after irradiation (Tada et al. 2000, Kee et al. 2002, Fan et al. 2007). In our previous 

experiments, after fractionated irradiation with various total doses (20 Gy, 35 Gy, 40 Gy; dose 

per fraction: 5 or 8 Gy), we achieved a significant reduction or elimination of stem cells and 

immature neurons in neurogenic regions approximately 4 months after treatment (Bálentová 

et al. 2017, Bálentová et al. 2018, Bálentová et al. 2019). 

Decline of neurogenesis in the DG was associated with impaired hippocampal-

dependent learning and spatial memory (Raber et al. 2004, Rola et al. 2004, Greene-

Schloesser et al. 2014). We also observed an early-delayed decrease in cognitive functions in 
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our experiment, in which rats were irradiated with a total dose of 20 Gy (divided into 4 

fractions with a dose per fraction: 5 Gy) (Bálentová et al. 2018). 

 Within the context of the other neurogenic region, the SVZ, whole brain irradiation 

with a single (0.5-30 Gy) or fractionated doses (daily 1.5 Gy for 7 days) led to the peak of 

apoptosis 6 hrs after treatment with subsequent no additional apoptosis until 48 hrs after 

irradiation (Bellinzona et al. 1996, Shinohara et al. 1997). The proliferative response after 

apoptosis may represent the recruitment of relatively quiescent stem/precursor cells 

(Shinohara et al. 1997, Mizumatsu et al. 2003). These findings support the hypothesis that 

neural stem cells (NSCs) are radioresistant and can respond to a brain injury, recovering the 

neurogenic niche. 

Inflammation and oxidative stress 

Ionizing radiation influences the inflammatory/immune system and modulates immune 

cell populations (Kalm et al. 2009). Oxidative stress results from an inflammatory response 

and is defined as an imbalance between production of ROS and ability of organism to detoxify 

reactive products or to repair the resulting damage. Irradiation activates microglia and causes 

infiltration of the brain with immune cells, which produce ROS (Hwang et al. 2006). The most 

widely used method for evaluation of oxidative stress is measurement of inflammatory response 

to the increase of oxidative stress. Irradiation with various single doses (2-10 Gy) upon in vitro 

or in vivo conditions increased expression of pro-inflammatory molecules such as tumor 

necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), intercellular adhesion molecule-1 

(ICAM-1), cyclooxygenase 2 (COX-2) (Kyrkanides et al. 1999, Ramanan et al. 2008, Kalm et 

al. 2009, Lee et al. 2010), activation of transcription factors (AP-1, nuclear factor kappa B; 

NFκB, cAMP response element-binding protein; CREB) (Ramanan et al. 2008, Lee et al. 

2010) and upregulation of mRNA levels of several chemokines (MCP1/CCL2, 

Gro/KC/CXCL1) (Lee et al. 2010). Single irradiation with doses ≥15 Gy resulted in acute 
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infiltration of neutrophils and a delayed increase in T cells, MHC (major histocompatibility 

complex) II-positive cells, and cluster of differentiation 11c (CD11c)-positive cells at least 1 

year after the irradiation (Moravan et al. 2011). Preclinical data support the hypothesis, that 

oxidative stress might drive the progression of radiation-induced late injury (Robbins and 

Zhao 2004, Zhao et al. 2014). Administration of various anti-inflammmatory drugs prevents 

radiation-induced cognitive impairment (nonsteroidal and steroidal agents, COX inhibitors, etc.) 

(Reichman et al. 1986, Portnow et al. 2002, Monje et al. 2003). 

Neurogenesis 

Adult mammalian brain contains at least two discrete sources of NSCs. The first 

source is known as the subgranular zone (SGZ) and it is located in the DG of the hippocampal 

formation (Baptista and Andrade 2018). The second region is called the SVZ and it extent 

along the brain LV outer wall, the anterior SVZ (SVZa). The neuronal progeny of the SGZ 

travel to the granular cell layer (GCL) and the progeny of the SVZa traverse as tangentially 

oriented chains, migrate to the rostral migratory stream (RMS) en route the olfactory bulb 

(OB) (Doetsch et al. 1997, Kempermann 2002, Alvarez-Buylla and Lim 2004, Bohlen and 

Halbach 2011, Baptista and Andrade 2018). Except of the self-renewing capacity, the NSCs 

are capable to generate new neurons, astrocytes and oligodendrocytes (Carleton et al. 2003, 

Abrous et al. 2005, Lledo et al. 2006, Biswas et al. 2019, Urbach and Witte 2019). 

According to high rate of cell proliferation in this region, the DG is more sensitive to 

therapeutic doses of radiation. Single whole brain irradiation (2-10 Gy) of young adult mice 

led to significant reduction of proliferating cells and immature neurons in the DG. The long-

term impairment of SGZ neurogenesis was associated with hippocampal-dependent memory 

deficits (Monje et al. 2002, Raber et al. 2004, Rola et al. 2004). In contrast to young adults, 

older rodents did not shown sustained decrease of immature neurons, however they displayed 

cognitive dysfunction (Lamproglou et al. 1995, Schindler et al. 2008, Tang et al. 2019). In 
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addition to radiation-induced changes in the DG, single (5-30 Gy) and fractionated (daily 1.5 

Gy) irradiation of rat brain have been shown to result in dose dependent increase of apoptosis 

and decrease in cellularity, which involved reduction of proliferating cells, NSCs and 

progenitors. However, the cellular response to fractionated irradiation differs from that of 

single treatment; the single dose response is rapid and the fractionated response is delayed and 

surpassed the radiation treatment (Shinohara et al. 1997, Gaber et al. 2003, Bálentová et al. 

2017, Bálentová et al. 2019, Tang et al. 2019). The apparent resistance of cells after 

fractionated treatment may represent the recruitment of quiescent NSCs (Shinohara et al. 

1997, Mizumatsu et al. 2003). During fractionated irradiation, the first dose per fraction 

affects preferentially proliferating cells, but the apoptosis occurs several hours later. The 

proliferative activity is then rebound and the next dose per fraction eliminate the cells that 

start to proliferate spontaneously or in response to the previous cell death (Shinohara et al. 1997). 

Systematic experimental applications showed, that there is a limit for a numbers of doses per 

fractions (Shinohara et al. 1997, Snyder et al. 2005). Criteria, which can alter the effect of 

radiation treatment, include the dose rate, energy, activity and intensity of the source, source -

to-axis distance (SAD), shielding, etc. (https://www.nde-

ed.org/EducationResources/CommunityCollege/RadiationSafety/theory/activity.htm). 

Previous findings revealed, that local brain irradiation did not cause the same degree 

of cognitive impairment as the whole-brain irradiation (WBI). Clinical retrospective study of 

Peiffer et al. (2013), which used neuroanatomic target theory suggests, that the incidence and 

type of cognitive decline depends more on specific areas of interest than on the total dose 

received by the brain. This type of targeting, i.e. WBI is not predictive of cognitive outcomes. 

Glial cells 

Molecular studies have provided evidence that glial cells are essential for the survival 

of neurons by supplying trophic factors to the neurons (Jäkel and Dimou 2017). Thus, the 

https://www.nde-ed.org/EducationResources/CommunityCollege/RadiationSafety/theory/activity.htm
https://www.nde-ed.org/EducationResources/CommunityCollege/RadiationSafety/theory/activity.htm
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mechanism underlying the adverse brain effects of irradiation has been believed to mainly be 

the insufficient supply of nutrients and blood to neurons due to the impaired functions of 

irradiated glial cells (Kudo et al. 2014). 

Regarding to radiation response of glia following irradiation, the myelin-producing 

oligodendrocytes did appear more radiosensitive than other glial cells. The key cell for 

production of mature oligodendrocytes is the oligodendrocyte type-2 astrocyte (O-2A) a 

progenitor cell that is able to differentiate into an oligodendrocyte or fibrous astrocyte (Tabata 

2015). Radiation-induced loss of O-2A progenitor cells leads to failure of their reproducing 

capacity that ultimately results in demyelination and white matter necrosis (Li and Leung 

2015). Single irradiation (1-30 Gy) of the rat cervical spinal cord examined 24 hrs after 

treatment revealed a significant increase of oligodendroglial apoptosis and concomitant 

decrease of O-2A cells and mature oligodendrocytes (Li et al. 1996, Atkinson et al. 2003). 

Radiation-induced oligodendroglial apoptosis was seen after WBI with doses of 10-22 Gy in 

the SVZ, SGZ of the DG, corpus callosum, subcortical and periventricular white matter (Sano 

et al. 1997, Chow et al. 2000, Sasaki et al. 2000, Kurita et al. 2001). On the contrary, several 

studies reported the increased numbers of immature oligodendrocytes and this effect did not 

really reflect production of new oligodendrocytes but rather was a manifestation of radiation-

induced inflammatory response (Sasaki et al. 2000, Mizumatsu et al. 2003). In contrast, 

fractionated irradiation of rats with a total dose of 45 Gy investigated a year later did not 

affect gross morphology, structural integrity of myelin and white matter necrosis, and these 

changes did not correspond to the observed cognitive impairment (Shi et al. 2009). Thus, the 

relationship between radiation damage of oligodendrocytes and late radiation-induced 

changes remains unclear. 

Astrocytes are the most numerous and diverse neuroglial cells in the central nervous 

system (CNS) which exceed the neurons by more than five times. Except of their supportive 
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role, the astrocyte performs numerous functions, i.e. define the micro-architecture of the 

brain, maintain brain homeostasis, store and distribute energy substrates, control the 

development of neural cells and modulate the synaptic transmission (Jäkel and Dimou 2017). 

It has been suggested that descendants of the SVZ astrocytes represent a part of neurogenic 

lineage, or they might dedifferentiate into uncommitted precursors (Doetsch et al. 1997). In 

the adult RMS, the astrocytes ensheathe the chains of migrating neuronal precursors and 

provide important signals and guidance for migrating young neurons toward the OB 

(Kempermann 2002). Fractionated irradiation (with a total dose of 40 Gy) caused activation 

of astrocytes and microglial cells at least 6 months after treatment (Ciciarello et al. 1996, 

Yuan et al. 2006). The prominent molecular characteristics of activated astrocytes are 

upregulation of glial fibrillary acidic protein (GFAP), proliferation, secretion of a host of 

proinflammatory mediators (COX, ICAM-1) and altered expression of many genes (Liddelow 

and Barres 2017). Activated astrocytes and reactive astrogliosis accompany many 

pathological situations that affect the CNS, such as trauma, ischemic damage, 

neuroinflammation, or neurodegenerative disorders (i.e. Alzheimer’s disease, Batten disease) 

(Pekny and Pekna 2014). The reactive astrogliosis is often associated with decline in 

cognitive functions. Radiation treatment of adult rats with either single (20-45 Gy) or 

fractionated doses (a total dose of 20 or 40 Gy) led to a significant reactive astrogliosis, 

disruption of BBB integrity and cognitive impairment up to 1 year after irradiation (Chiang et 

al. 1993, Wilson et al. 2009, Zhou et al. 2011). Although radiation-induced astrogliosis is not 

directly characteristic of inflammation, it is associated with or is a byproduct of brain 

inflammation. Irradiation of rat microglia-astrocytes mixed cultures and mouse microglia 

cultures showed initiation of reactive astrogliosis due to dose-dependent increase in mRNA 

levels for COX-2, IL1-β, interleukin 6 (IL-6), interleukin 18 (IL-18), TNF-α, and interferon-
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gamma-inducible protein-10 (IP-10), which are associated with microglial activation (Hwang 

et al. 2006). 

Microglial cells are the primary immune effector cells of the CNS and they constitute 

approximately 10-20% of the total population of glial cells. They act as the main 

inflammatory cell type in the brain involved in immune defense and the maintenance of brain 

homeostasis (Perry and Tealing 2013). Acute CNS injury, stroke, inflammatory and 

neurodegenerative diseases can activate microglia (Ladeby et al. 2005, Kawabori and Yenari 

2015). Microglial activation is characterized by morphological transformation, induction of 

myeloid markers, free radicals, nitric oxide, increased expression of the proinflammatory 

genes, several surface molecules (ionized calcium binding adaptor molecule; Iba1, lectin 

binding sugar molecules, enzyme nucleoside diphosphatase; NDPase) and acquisition of 

phagocytic phenotype (Ladeby et al. 2005, Hwang et al. 2006, Lee et al. 2010). Single in vivo 

or in vitro irradiation led to up-regulation of mRNA and expression of proinflammatory 

mediators (ICAM, TNF-α, IL1-β, monocyte chemoattractant protein-1; MCP-1), apoptosis-

related, stem cell-related, trophic and transcription factors (AP-1, CREB, NF-κB) (Lee et al. 

2010). Radiation-induced activation of microglia did not seem to be associated with the acute 

decline of proliferative cells and immature neurons; they did appear too related to changes in 

neurogenesis (Mizumatsu et al. 2003). Rodent studies also detected the increase of activated 

microglia in the brain during the latent period before expression of late radiation-induced 

injury (Mildenberger et al. 1990, Chiang et al. 1997, Han et al. 2016). 

Endothelial cells 

Cranial irradiation has a fundamentally negative effect on the vasculature in the CNS. 

Radiation-induced vascular injury is a complex process and involves capillary and arterial 

damage with veins being less sensitive (Murphy et al. 2015). 
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A large amount of studies described radiation-induced structural changes of 

endothelium, characterized by apoptosis of endothelial cells, enlargement of cell nuclei, 

basement membrane thickening, adventitial fibrosis, increase in vessel permeability, 

telangiectasia, edema, thrombosis, hemorrhage and ischemic necrosis (Ljubimova et al. 1991, 

Schultheiss and Stephens 1992, Siegal and Pfeffer 1995, Yuan et al. 2003, Li et al. 2004, 

Brown et al. 2005, Yuan et al. 2006, Brown et al. 2007, Murphy et al. 2015). Radiation-

induced injury may lead to the production of ROS under hypoxic conditions. Profound cerebral 

microvascular rarefaction reversed by systemic hypoxia been discovered in the hippocampus 

of mice 2 months after fractionated irradiation (Warrington et al. 2011). Moreover, systemic 

hypoxia is able to reverse radiation-induced impairment in the spatial learning and memory 

(Warrington et al. 2012). In contrast, tissue oxygen conditions may improve with hyperbaric 

oxygen treatment (HBO). Previous clinical studies described successful treatment of late CNS 

toxicity by prophylactic HBO (Chuba et al. 1997, Leber et al. 1998, Ohguri et al. 2007, 

Heyboer et al. 2017). In contrast, reoxygenation of hypoxic tissue may accelerate axonal injury 

(Stys 2004). Hypoxia is also a crucial stimulus for increase of vascular endothelial growth 

factor (VEGF) expression, known to modulate vascular permeability, inflammation and 

contributes to BBB breakdown (Proescholdt et al. 1999, Ramakrishnan et al. 2014). The 

model of radiation-induced myelopathy revealed, that BBB breakdown is associated with 

upregulation of VEGF expression in astrocytes without a concomitant endothelial 

proliferation (Tsao et al. 1999). Ionizing radiation induced the early endothelial cell apoptosis 

within 24 hrs after the single WBI or spinal cord irradiation (Schultheiss and Stephens 1992, 

Peña et al. 2000, Li et al. 2003, Li et al. 2004, Yang et al. 2017). Acid sphingomyelinase 

(ASM) pathway mediates the radiation-induced apoptosis of endothelial cells. Experiments 

made with knockout mice with inherited deficiency of ASM displayed mitigation of the 

endothelial cell apoptosis (Santana et al. 1996, Peña et al. 2000, Li et al. 2003). Inhibiting 
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ASM activity might provide a highly specific approach to reduce endothelial cell apoptosis 

(Kölzer et al. 2003, Kornhuber et al. 2010). Growth factors such as basic fibroblast growth 

factor (bFGF), platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-

1) were also tested a few years ago to mitigate endothelial cell apoptosis (Peña et al. 2000, 

Andratschke et al. 2004, Nieder et al. 2005). 

Despite the fact, that vascular injury is recognized as a primary cause of radiation-

induced changes, the pathophysiology of late injury is multifactorial (e.g., demyelination, 

microvascular changes, decline of neurogenesis, glial cells proliferation or decline) (Khunthia 

2015). 

Preclinical strategies for prevention/mitigation of radiation-induced changes 

Potential preclinical and clinical interventions, needed for prevention, mitigation and 

amelioration of radiation-induced changes include: (a) reduction of apoptosis by e.g., 

inhibition of ASM activity (Kölzer et al. 2003, Kornhuber et al. 2010); (b) inhibition of 

VEGF (Gonzales et al. 2007); (c) inhibition of inflammatory response by nonsteroidal and 

steroidal agents, COX inhibitors, PPAR (peroxisomal proliferator-activated receptor) agonists 

(Reichman et al. 1986, Portnow et al. 2002, Monje et al. 2003, Zhao and Robbins 2014); (d) 

oxygen starvation or HBO (Chuba et al. 1997, Warrington et al. 2012, Heyboer et al. 2017); 

(e) administration of erythropoietin (EPO) (Knisely et al. 2004); (f) renin-angiotensin-

aldosteron system (RAAS) blockers (Jenrow et al. 2010); (g) acetylcholinesterase (ACHE) 

inhibitors (Rapp et al. 2015); (h) N-methyl-D-aspartate (NMDA) receptor antagonists (Brown 

et al. 2013); (i) CNS stimulants (Gehring et al. 2012); (j) stem cell therapy (Acharya et al. 

2011, Piao et al. 2015, Sato et al. 2018, Soria et al. 2019, Smith et al. 2020); (k) enviromental 

enrichment (Naylor et al. 2008, Wong-Goodrich et al. 2010, Riggs et al. 2017), etc. 

Regarding the therapeutic potential of growth factors, earlier studies showed that they 

increase the long-term radiation tolerance of the spinal cord (Nieder et al. 2002, Andratschke 

https://en.wikipedia.org/wiki/Acetylcholinesterase_inhibitor
https://en.wikipedia.org/wiki/Acetylcholinesterase_inhibitor
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et al. 2004, Nieder et al. 2005). The VEGF pathway blocking with bevacizumab might be 

able to reduce radiation necrosis in patients with brain tumors (Gonzales et al. 2007). 

However, application of the right dose, timing and combination of various growth factors 

seem to be problematic for human radiotherapy. 

Numerous experimental studies have suggested that EPO is an endogenous mediator 

of neuroprotection in various CNS disorders and injuries (e.g., ischemia, concussive brain 

injury, experimental autoimmune encephalomyelitis, and kainate-induced neurotoxicity) 

(Sakanaka et al. 1998, Brines et al. 2000, Gorio et al. 2002). However, EPO is not validating 

for post-radiation therapy because the potential adverse effect of EPO on tumor control need 

to be investigated (Henke et al. 2003). 

Most novel potential therapeutic strategies have focused on anti-inflammatory agents 

and stem cell therapies. Rather than attempt to develop novel agents, recent studies have been 

focus on using drugs that have been used successfully for many years in clinical practice to 

treat other symptoms (Derosa 2010, McKeage and Keating 2011, Meguro et al. 2014, Storebø 

et al. 2018). The anti-inflammatory PPARα, δ and γ agonists are the nuclear receptors, 

belonging to the PPAR family of transcription factors, which regulate inflammatory signaling 

and provide neuroprotection in a variety of CNS diseases (Bright et al. 2008, Ramanan et al. 

2010, Kvandová et al. 2016). For instance, the PPARγ agonist pioglitazone (Pio) has been 

prescribed for several years to treat diabetes (Derosa 2010). Administration of the PPARγ 

agonist pioglitazone (Pio) before, during, and for 4 or 54 weeks after fractionated irradiation 

with a total dose of 40 or 45 Gy (5 Gy/d, 2d/week for 4 or 4.5 weeks) substantially but not 

significantly reduced the radiation-induced cognitive impairment (Zhao and Robbins 2014). A 

clinical trial is after completion at Wake Forest Baptist Medical Center, Winston-Salem, NC, 

USA given to patients with brain tumors (https://clinicaltrials.gov/ct2/show/NCT01151670). 

A similar conceived study of Greene-Schloesser et al. (2014) showed that dietary 

https://pubmed.ncbi.nlm.nih.gov/?term=Storeb%C3%B8+OJ&cauthor_id=29744873
https://clinicaltrials.gov/ct2/show/NCT01151670
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administration of the PPARα agonist, fenofibrate starting 7 days prior to radiation treatment 

and continuously until 30 weeks prevented the radiation-induced impairment in the perirhinal 

cortex, but did not protect inhibition of neurogenesis and activation of microglia. On the other 

hand, administration of fenofibrate before single irradiation of mice with inherited deficiency 

of PPARα receptor prevented inhibition of hippocampal neurogenesis by promoting the 

survival of newborn cells and decreased microglial activation (Ramanan et al. 2009). 

Inhibitors of the RAS, including angiotensin-converting enzyme inhibitors (ACEI), 

angiotensin II receptor blockers (ARBs) have been used in the treatment of hypertension and 

have proved to be very effective in the experimental model of nephropathy (Moulder et al. 

2003) and pneumopathy (Molteni et al. 2000). Later studies showed that chronic 

administration of ramipril beginning 24 hrs after single irradiation and continuously for 12 

weeks may mitigate neurogenesis following 10 Gy but was not effective following 15 Gy 

(Jenrow et al. 2010). These preclinical outputs raise a question about a timing or dosage of 

ramipril administration and different radiobiological tissue response following single and 

fractionated irradiation. Recently, a phase I/II of clinical trial is developed to identify if 

ramipril can mitigate the radiation-induced cognitive impairment in brain tumor patients 

(https://clinicaltrials.gov/ct2/show/NCT03475186?term=ramipril&cond=brain&cntry=US&dr

aw=2&rank=1). 

Memantine, an NMDA receptor antagonist and donepezil, which is an ACHE inhibitor 

are drugs prescribed for the treatment of Alzheimerʻs disease (Meguro et al. 2014, Kishi et al. 

2017). In a completed randomized clinical trial, the effect of memantine was studied in 

patients after radiotherapy for brain metastases. Patients treated with memantine had better 

cognitive function over time; specifically, memantine delayed time to cognitive decline and 

reduced the rate of decline in memory, executive function, and processing speed (Brown et al. 

2013). Less promising results were achieved in another clinical study in which donepezil was 

https://clinicaltrials.gov/ct2/show/NCT03475186?term=ramipril&cond=brain&cntry=US&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT03475186?term=ramipril&cond=brain&cntry=US&draw=2&rank=1
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administered to patients treated with primary and secondary brain tumors. Treatment with 

donepezil did not significantly improve the overall cognitive composite score in patients 

(Rapp et al. 2015). 

Interesting results were obtained in a small pilot study investigating the effects of 

methylphenidate. This psychostimulant drug is routinely prescribed to treat attention deficit 

hyperactivity disorder (Storebø et al. 2018).  Following stimulant treatment of patients, there 

was evidence of a beneficial effect on test performance in speed of processing and executive 

function requiring divided attention (Gehring et al. 2012). 

Transplantation of NSCs has been considered as an effective therapeutic strategy in a 

variety of neurological disorders characterized by the collapse of CNS repair mechanisms in 

restoring the tissue damage and rescuing the lost function. Cellular sources for NSCs include 

fetal and adult CNS-derived NSCs, neural progenitors and a wide range of non-neural stem 

cells such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) 

(Vishwakarma et al. 2014). 

Numerous preclinical studies have been focused on xenogenic transplantation of 

human pluripotent MSCs or NSCs into the rodent host (Acharya et al. 2011, Piao et al. 2015, 

Sato et al. 2018, Soria et al. 2019). Recently published study by Soria et al. (2019) 

demonstrated, that intranasally delivered human MSCs promoted radiation-induced brain 

injury repair of cognitive dysfuncions and protect against neuronal loss 1 month following 

irradiation. Also, intrahippocampal transplantation of hNSCs or hNSCs-derived 

microvesicles after exposure to a single dose of 8 or 10 Gy reverses or prevents radiation-

induced cognitive dysfunction following irradiation (Baulch et al. 2016, Sato et al. 2018). It 

also reduces the impact of radiation on dendritic complexity and spine density of neurons 

(Smith et al. 2020). Although stem cell therapy represents a good strategy for restoration of 

functional deficits, it has several major limitations: migration of the transplanted cells is 

https://pubmed.ncbi.nlm.nih.gov/?term=Storeb%C3%B8+OJ&cauthor_id=29744873
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limited; the limited sources of donor cells and many ethical concerns and political restrictions 

(https://www.isscr.org/policy/guidelines-for-stem-cell-research-and-clinical-translation). 

Another promising non-pharmacological intervention to prevent/mitigate of radiation-

induced changes represents an enriched environment. Stimulation of the brain by its physical 

and social surroundings has been shown to have a positive impact on the brain function not 

only in healthy animals but also in those with traumatic brain injury, stroke, epilepsy, 

Parkinson’s disease an Huntingtonʻs disease. The functional improvement is partially 

determinate through the increase of neurogenesis (Spires et al. 2004; Bruel-Jungerman et al. 

2005; Goldberg et al. 2012; Janssen et al. 2014, Maegele et al. 2015). In general, voluntary 

physical activity has been a very strong stimulus for adult hippocampal neurogenesis in 

rodents from birth to oldest age (Kannangara et al. 2011, Saraulli et al. 2017). Single 

exposure (a dose of 5-6 Gy) of juvenile mice brain combined with a voluntary running 

significantly restored level of neurogenesis and ameliorated radiation-induced cognitive 

changes (Naylor et al. 2008; Wong-Goodrich et al. 2010). Preclinical works indicates that 

the functional deficits observed in pediatric patients after radiation therapy are not irreversible 

and may be acceptable to treatment. Promising results have been achieved in some clinical 

trials that have used aerobic exercise to improve radiation-induced cognitive dysfunctions in 

children (Riggs et al. 2017). Pediatric patients treated for primary brain tumors and conducted 

exercise training improved cognitive performances and mitigate structural changes, i.e. 

decrease in hippocampal volume and increased white matter myelination. 

Conclusion 

Taking to account the most recent preclinical data, it is idealistic to suppose, that one 

therapeutic approach may prevent or mitigate every histopathological and functional 

consequences of radiation-induced brain injury. On the other hand, stem cell based therapies 

https://www.isscr.org/policy/guidelines-for-stem-cell-research-and-clinical-translation
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and pharmaceutical treatment are very perspective and requires more preclinical research 

before they can be translate into clinical treatment. 
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