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Summary 

In this work we report on the implementation of methods for data processing signals from 

microelectrode arrays (MEA) and the application of these methods for signals originated from two types 

of MEAs to detect putative neurons and sort them into subpopulations. We recorded electrical signals 

from firing neurons using titanium nitride (TiN) and boron doped diamond (BDD) MEAs. In previous 

research, we have shown that these methods have the capacity to detect neurons using commercially-

available TiN-MEAs. We have managed to cultivate and record hippocampal neurons for the first time 

using a newly developed custom-made multichannel BDD-MEA with 20 recording sites. We have 

analysed the signals with the algorithms developed and employed them to inspect firing bursts and 

enable spike sorting. We did not observe any significant difference between BDD- and TiN-MEAs over 

the parameters which estimated spike shape variability per each detected neuron. This result supports 

the hypothesis that we have detected real neurons, rather than noise, in the BDD-MEA signal. BDD 

materials with suitable mechanical, electrical and biocompatibility properties have a large potential in 

novel therapies for treatments of neural pathologies, such as deep brain stimulation in Parkinson’s 

disease. 
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The use of microelectrode arrays (MEAs) is a widespread method for an in-vitro neuronal network 

communication investigation, measuring spontaneous or stimulated activity (Pine 1980, Kunzinger 

2019). MEA technology can be applied to any electrogenic tissue (i.e., central and peripheral neurons, 

heart cells and muscle cells), and is therefore capable of recording from hippocampal neurons (Jonsson 

et al. 2016). The electrode material is considered to be a key element for successful recording. The 

optimal material for electrodes should be mechanically stable, biocompatible, enable low-noise 

recording and allow easy surface chemical functionalization (Obien et al. 2015). Prototyping and 

employing a certain type of custom-made MEA to record and analyse electrical signals from a cultivated 

population can be a valuable alternative to well-known commercial devices in specific cases, e.g. 

mapping of rat auditory cortex (Lindovsky et al. 2018). 

Various studies have shown that boron-doped diamond (BDD) materials with suitable mechanical, 

electrical and biocompatibility properties have a large potential in novel therapies for treatments of 

neural pathologies, such as deep brain stimulation (DBS) in Parkinson’s disease, which is linked to 

abnormal extracellular neurochemical concentrations (Bennet et al. 2013, Rusinek et al. 2018, 

Tyszczuk-Rotko et al. 2019). Apart from excellent electrochemical properties and biocompatibility, 

BDD is a perspective material in terms of recording. Clinical DBS usually relies on pre-determined 

stimulation parameters in an open-loop configuration. Results by (Bennet et al. 2016) suggest that BDD 

electrodes may be the solution for chronic DBS implantation, which could support long-term 

investigation of neurochemical responses in humans. This could potentially lead to close-loop in DBS 

and utilize neurochemical feedback to dynamically adjust stimulation parameters. 
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Furthermore, previous studies already demonstrated that BDD doping significantly improves the 

characteristics of sensing electrical signals (Matsubara et al. 2016, Zehani et al. 2015). Demonstrated 

application of BDD-MEAs in the biomedical field include all diamond MEAs for recording of 

electrogenic cells (Maybeck et al. 2014) and nanostructured BDD for MEA neural interfacing (Piret et 

al. 2015). However, these efforts have focused on the fabrication route challenges rather than on actual 

application of MEAs for recording from biological samples. 

The processing of extracellular signals is a computationally and conceptually complex task with 

multiple sources of errors, which can affect downstream data interpretation. It is challenging to solve 

the problem of automatic detection of action potentials satisfactorily for the following reasons: 

• Spike shapes and background noise are different for a neuron. 

• Attenuated action potentials from distant neurons can also penetrate into the recorded signal, it 

is difficult to clearly determine what we consider to be a relevant spike and what is noise. Indeed, often 

even two experts disagree on the makeup of a single recording. 

• Signal to noise ratio may be very low in some signals (Wilson and Emerson 2002). 

The current study builds upon our previous work (Klempir et al. 2019, Krusek et al. 2019). In this short 

communication, we present BDD-MEA signals and application of quantitative signal processing. 

The whole microelectrode recording pipeline includes multiple steps ranging from initial sample 

preparation to analysis and interpretation. Extracellular neural activity was acquired by two MEA 

devices independently. For experiments, we used a commercial 60 channel titanium nitride (TiN) 

microelectrode array (USB-ME64-System by Multi Channel Systems MCS GmbH, Reutlingen, 

Germany) as a reference platform (210 x 210 x 35 mm). 60 TiN electrodes are arranged in 8 × 8 grid, 

with a sampling rate of up to 50 kHz (Fig. 1C). The layout of the fabricated BDD-MEA is comparable 

to the commercial MEA (Fig. 1A), but due to technical reasons, the number of electrodes was reduced 

to 20 (Fig. 1D). Figure 1B corresponds to the distribution of contacts in Figure 1D with 20 electrodes. 

The visible imperfections, but still satisfying electrode alignment (Fig. 1B), is related to the ink-jet 



printing technology used to produce localized nano-diamond seeding prior to BDD growth, which still 

requires optimisation. A total of 4 BDD chambers have been prepared with this technology. 

Deposition of BDD is realized using a linear antenna microwave plasma enhanced chemical vapour 

deposition system using conditions described in (Taylor et al. 2018) to produce conductive diamond. 

Chip preparation included the fixation of a glass ring using Sylgard elastomer and sterilization. 

Chemical treatment of neuroelectrodes was performed by treating material with selected cationic 

polymer (poly-L-lysine). The role of this polymer is to enhance cell adherence to the surface and 

increase attachment of cells. This method builds upon previous results of molecular functionalization 

of planar nanocrystalline and porous nanostructured diamond to form an interface with new-born and 

adult neurons, which has been described in (Krusek et al. 2019, Taylor et al. 2018). 

Adult hippocampal neurons of male rats of the Wistar strain were used in this experiment and were 

handled in accordance with law no. 246/1992 of the Czech Republic and the current Guidelines for the 

Treatment of Laboratory Animals (EU Guidelines 86/609/EEC). 

The reference TiN-MEA dataset contains 6 continuous measurements of spontaneous activity of 60 

channels. Signal time series included quiet spots, bursting and isolated spikes (Fig. 1E). In the case of 

BDD-MEA, the dataset contains 9 continuous measurements of spontaneous activity of 20 channels. 

Each electrode corresponds to an input time series channel and the recorded files had a length of 

approximately 6 minutes with a sampling rate of 20 kHz. Initial measurements were started immediately 

after the preparation of neural cultures with spiking activity becoming apparent after 1 week. Spikes 

were recorded for 14 days under the same conditions. A raw BDD-MEA electrophysiological signal of 

the neurons is presented in Figure 1F. 

In order to obtain individual spikes from microelectrode recordings, we recently implemented an 

automated analytical pipeline (Klempir et al. 2019): containing signal filtering, spike detection, spike 

sorting and individual spike train features computation. The proposed pipeline in Matlab (MathWorks, 

Natick, Massachusetts, USA) was applied to automate the extraction of neuron signals from both types 

of MEAs. 



Signals were band-pass filtered (Butterworth 2nd) over the 300–3000 Hz range. The number and time 

location of spikes were detected by the spike detection process. Since detection trade-off is related to 

the signal to noise ratio of recordings, an amplitude WaveClus detector was used for spike detection 

(Table 1). The WaveClus algorithm is an unsupervised spike detection and sorting tool, which has 

performed reasonably well on single-channel micro-recordings for both positive and negative spike 

polarities (https://github.com/csn-le/wave_clus). To capture the time courses of truly positive spikes, 

we used a threshold cut-off (Thr) of 5 times the standard deviation of the input signal noise 

(https://github.com/dbridges/mea-tools). 

𝑇ℎ𝑟 =  5𝜎𝑛   𝜎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛{
|𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙|

0.6745
} 

The number of samples corresponding to the minimum refractory period was considered as 36 (i.e. 1.8 

ms). Each detected spike bounded by a range of the pre- and post-event data points was modulated by 

a cubic spline curve and 20 equidistant shape-based features were computed (Table 1). Numerically, 

each row (i.e. spike waveform shape) in the dataset is represented by a vector of 20 numbers 

determining the neural morphologies and the distances and orientations relative to the recording 

electrode. 

The main output of the detection function from the whole duration and all channels contains indexes of 

detected peak positions, threshold amplitudes and associated waveforms. For downstream analysis, we 

included only active channels. The channel must detect at least 20 spikes in order for the channel to be 

considered active. 

For data exploration, we investigated transformations of individual spike waveforms through 

embedding into a lower dimension. We anticipated extending Principal Component Analysis (PCA) 

with UMAP (Uniform Manifold Approximation and Projection) and replacing the subsequent clustering 

K-means algorithm with Louvain method. Namely, the current pipeline contains clustering and 

identification of waveforms types on the principle of Scanpy package in Python (Wolf et al. 2018), 

which stands out in its ability to identify subpopulations in single cell data. We reduced the 



dimensionality of the data by running PCA, which reveals the main axes of variation and denoises the 

waveform data. Then we computed the neighbourhood graph matrix using the 5 PCAs representation 

of the data matrix based on similarity of waveforms. We embedded the neighbourhood graph (n = 10) 

in 2 dimensions using UMAP with ScanPy default settings. Finally, the unsupervised Louvain graph-

clustering method directly clusters the neighbourhood graph of waveforms to sort them automatically 

into subpopulations. 

The level of spike-to-spike variability was further evaluated for the sorted spikes. We implemented the 

method published by (Stratton et al., 2012). Spike variability was calculated so that a variability of 0 

indicated that every spike waveform from a given neuron was exactly the same (i.e. no variability) and 

that variability approached 1 as noise began to dominate the waveforms (i.e. spike shapes became 

random). Each spike in a unique putative neuron was then compared to the mean spike for that neuron 

using the dot product (cosine distance). The mean of the distribution of dot product values for all spikes 

provided a measure of the variability from spike to spike, independent of any amplitude changes (since 

the spike vectors were normalised). (Stratton et al., 2012) 

We continued by checking for consistency between spike-to-spike variability and a second alternative 

variability estimation approach. For each putative neuron, the median from absolute values of individual 

coefficients of variation (CV) across individual 20 shape-based features was calculated. Distributions 

with a CV found to be less than 1 were considered to be low-variance, whereas those with a CV higher 

than 1 were considered to be high variance. 

As voltages and spike-to-spike parameters were not found to be normally distributed by the one-sample 

Shapiro-Wilk test, statistical comparisons were performed using a non-parametric Mann-Whitney test. 

The correlation was assessed using the Spearman correlation coefficient, which measures monotonic 

relationship. The statistical significance was determined as p = 0.05. 

Detected waveforms across all the measurements (>20 spikes on recording) were projected into a 

reduced UMAP space, as can be seen in Fig. 2E. Evaluation of voltage waveforms collected from BDD-

MEA (n = 10403) vs. commercially available TiN-MEA (n = 11346) reveals that they differ mostly in 



amplitude values (p < 0.05). Significantly smaller amplitudes were observed in BDD-MEA. The 

differences in amplitudes could be caused by HW and may not reflect a difference in physiology. 

Furthermore, we determined clusters using the unsupervised Louvain method, which found 14 

waveform subpopulations (Fig. 2C). By assigning waveforms to subpopulations, in total 35 putative 

neurons in TiN-MEA and 31 putative neurons in BDD-MEA were found. Examples of variability in 

neuronal shapes for both types of MEAs are illustrated in Figure 2B. 

Statistical testing did not show any significant difference (p = 0.27) in the spike-to-spike variability in 

BDD-MEA (n = 31) vs. TiN-MEA (n = 35), which supports the hypothesis that we detect real neurons 

rather than noise in the BDD signals. With the same Thr = 5, BDD-MEA has a slightly higher level of 

variability (0.09 ± (SD) 0.07) against (0.09 ± (SD) 0.05) for TiN-MEA (Fig. 2D). Scatter plot 

demonstrated significant consistency (rho = 0.43; p < 0.001) of both methods for variability estimation 

(Fig. 2A). Given the CV variability could be sensitive to outliers, the value of correlation coefficient is 

not representing a completely tight relationship. Overall, the detection method proves to be feasible for 

detection from various biological samples. 

Apart from the clear BDD spike activity, we have noticed some other activities on some of the 

electrodes whose origin we do not understand. Either they are minor events covered in noise, but by 

shape they could be normal activity, only recorded from a greater distance, or with a worse contact. We 

even saw events of a completely different shape, whose origin is unknown. Sometimes rectangular 

events were recorded, which look like neural channel openings. However, their length was several times 

the length of the normal spike and were suppressed by filtering. 

Comparing the performance of UMAP with five other tools, UMAP should provide the fastest run 

times, highest reproducibility and the most meaningful organization of cell clusters (Becht et al., 2019). 

The most notable is that UMAP, like t-distributed Stochastic Neighbor Embedding, does not completely 

preserve density and can also create clusters that are not actually present, resulting in a finer clustering 

than is necessarily present in the data. On the other hand, the UMAP visualisations with apparent 



separation of data could facilitate discovery of rare spikes population, which would not be possible 

without upgrading our pipeline. 

Finding action potentials in a signal based on their shape, in other words, template matching, is another 

method of spike detection. It uses a manually created database of spike shapes, with which parts of the 

signal are continuously compared. With this method, it is possible to achieve much better results than 

simply thresholding the signal (Kim and McNames 2007). However, as each neuron or group of neurons 

has a different characteristic spike shape, use of this method requires manual creation of a database of 

spike shapes for each analysed signal. Therefore, this method is unsuitable for automatic spike 

detection. 

The BDD-MEA density of the electrodes is lower compared to the TiN-MEA, which leads to a lower 

resolution of the electrophysiological picture of the neuronal network and therefore to a lower statistical 

significance with regard to the interpretation of the network functionality. To record all 20 BDD-MEA 

channels at 20 kHz generates a huge amount of data. A six-minute recording creates a file, which is 1 

GB in size. In order to analyse this data, high demands must be placed on laboratory hardware and 

software (Kunzinger 2019). 

We ultimately aim at the development of BDD MEA for dual recording, which will employ BDD based 

micro-probes positioned within close proximity of a firing neuron on an MEA electrode for 

simultaneous recording of electrical and chemical activity. As a first step towards this goal, we have 

measured cyclic voltammograms recorded on BDD micro-probe demonstrating dopamine detection 

under simulation conditions, i.e. controlled release into cell culture dishes to characterize micro-probe 

sensitivity (Baluchova et al., 2019). 

In conclusion, we have presented extracellular recordings from cultures of hippocampal neurons on 

BDD-MEAs over a period of weeks allowing analysis of network development. Previous research 

showed only signals without closer analysis of BDD-MEA spikes (Piret et al. 2015). 
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Fig. 1. Signal acquisition of neuronal activity on MEAs. A) BDD-MEA with glass ring and gas 

permeable membrane lid. B) BDD-MEA with visible hippocampal neurites and neurons growth across 

electrodes. C) Reference TiN-MEA electrode distribution. (G = ground). D) BDD TiN-MEA electrode 

distribution. E) Raw recording of spontaneous hippocampal neuronal activity recorded in vitro from 

TiN-MEA. F) Raw recording of spontaneous hippocampal neuronal activity recorded in vitro from 

BDD-MEA. Peaks represent a spike, bursting activity is also evident. The noise level is around ± 5 µV 

while signal amplitudes are from ± 15 µV. 



Table 1. Waveclus detector: an overview of the set hyperparameters. 

hyperparameter value 

minimum refractory period (data points) 36 

number of pre-event data points stored 10 

number of post-event data points stored 10 

spike waveform interpolation cubic spline 

maximum detection threshold 30𝜎𝑠𝑖𝑔𝑛𝑎𝑙  

 



 

Fig. 2. A) Scatter plot representing relationship between both variability estimations. B) Example spikes 

from both types of MEAs. The mean spikes (black) and the spikes of those means. C) UMAP plot 

visualizing cluster assignments of waveforms which are defined by Louvain clustering and denoted as 



distinct colours. D) Distribution of spike-to-spike variability via boxplots. E) Colouring by individual 

measurements. 


