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Summary 

The cytoskeleton plays a key role in cellular proliferation, cell-shape maintenance and internal 

cellular organization. Cells are highly sensitive to changes in microgravity, which can induce 

alterations in the distribution of the cytoskeletal and cell proliferation. This study aimed to assess 

the effects of simulated microgravity (SMG) on the proliferation and expression of major cell 

cycle-related regulators and cytoskeletal proteins in human umbilical cord mesenchymal stem 

cells (hucMSCs). A WST-1 assay showed that the proliferation of SMG-exposed hucMSCs was 

lower than a control group. Furthermore, flow cytometry analysis demonstrated that the 

percentage of SMG-exposed hucMSCs in the G0/G1 phase was higher than the control group. A 

western blot analysis revealed there was a downregulation of cyclin A1 and A2 expression in 

SMG-exposed hucMSCs as well. The expression of cyclin-dependent kinase 4 (cdk4) and 6 

(cdk6) were also observed to be reduced in the SMG-exposed hucMSCs. The total nuclear 



intensity of SMG-exposed hucMSCs was also lower than the control group. However, there were 

no differences in the nuclear area or nuclear-shape value of hucMSCs from the SMG and control 

groups. A western blot and quantitative RT-PCR analysis showed that SMG-exposed hucMSCs 

experienced a downregulation of β-actin and α-tubulin compared to the control group. SMG 

generated the reorganization of microtubules and microfilaments in hucMSCs. Our study 

supports the idea that the downregulation of major cell cycle-related proteins and cytoskeletal 

proteins results in the remodeling of the cytoskeleton and the proliferation of hucMSCs. 

Keywords: cell proliferation, cytoskeleton, human umbilical cord mesenchymal stem cells, 

simulated microgravity. 

1. Introduction 

SMG can be generated by clinorotators, rotating wall vessels, and 2D or 3D clinostats (Chen et 

al. 2016, Mao et al. 2016, Devarasetty et al. 2017, Cazzaniga et al. 2016). They have been used 

to study the effects of SMG on the proliferation, structure and function of a variety of 

mammalian cell lines, especially stem cells (Imura et al., 2019). SMG has induced cytoskeletal 

rearrangements of endothelial cells by modifying gelsolin and α-tubulin expression (Griffoni et 

al., 2011), and the C2C12 mouse myoblast has, under SMG, demonstrated decreased 

proliferation and downregulation of transient receptor potential canonical type 1 and insulin-like 

growth factor 1 isoforms (Benavides et al., 2013, 2014). Increases in osteoclastogenesis has also 

been reported in mouse bone marrow cells under SMG conditions using autophagy markers 

(Sambandam et al., 2014). Changes in the immune system have also been described under SMG, 

with T-lymphocyte signal transduction modified by SMG, leading to a weaken immune system 

(Rea et al., 2016). Furthermore, SMG has been shown to correlate with immune depression by 

altering the expression of arginase and inflammatory cytokines in macrophages (Wang et al., 

2015). 

Human umbilical cord mesenchymal stem cells (hucMSCs) have recently emerged as a novel 

resource in regenerative medicine due to their therapeutic and biotechnological potentials and 

need for minimal manipulation (Weiss and Troyer, 2006; Marino et al., 2019). Mesenchymal 

stem cells (MSCs) can be isolated from different tissues (Cruciani et al., 2019; Kladnická et al., 



2019) and are able to differentiate into various cell types (Trávníčková and Bačáková, 2018). It 

has been observed that an increase in F-actin reorganization and cell stiffness inhibits cell 

migration in rat MSCs (Mao et al., 2016), and potential differentiation in rat bone MSCs depends 

on changes in gravity, e.g., hypergravity can increase osteogenesis and differentiation into 

cardiomyocytes, while SMG promotes rat MSC differentiation into adipocytes (Huang et al., 

2009). SMG has also been reported to stimulate osteogenic differentiation of human bone MSCs 

(Cazzaniga et al., 2016). Another report has shown that the proliferation and osteogenic 

differentiation of rat bone MSCs could be inhibited by SMG (Chen et al., 2016). The inhibition 

of proliferation was also demonstrated in human hematopoietic progenitor cells, bone marrow 

MSCs, and mouse MSCs (Plett et al., 2004, Yan et al., 2015, Touchstone et al., 2019). However, 

the mechanisms behind the reduction of cell proliferation remains unclear. Therefore, in this 

study, hucMSCs were used to assess the effects of SMG on the expression of major cell cycle-

related regulators and cytoskeletal proteins that control proliferation. 

2. Materials and methods 

2.1. Thawing and culturing of hucMSCs 

Passage 1 hucMSCs were supplied by Dr. Doan Chinh Chung (Doan et al., 2013, 2014). The 

cryotube containing hucMSCs was removed from liquid nitrogen and incubated at 37 °C for 30 

seconds. The hucMSCs were then resuspended and transferred to a 15 ml tube containing 4 ml 

DMEM/Ham’s F-12 (DMEM-12-A; Capricorn Scientific, Ebsdorfergrund, Germany) 

supplemented with 15% fetal bovine serum (FBS-HI-22B, Capricorn Scientific) and 1% 

penicillin/streptomycin (15140-122; Thermo Fisher ScientificTM Gibco, Waltham, MA, USA). 

The cell pellets were then resuspended and transferred to a T-25 flask with 4 ml of culture 

medium and cultured at 37 oC with 5% CO2. 

2.2. Microgravity simulation  

The hucMSCs were seeded in a T-25 flask (1 × 105 cells/flask) and placed in a 96-well plate (2 × 

103 cells/well for the cell proliferation assay and 1 × 103 cells/well for the cytoskeleton stains). 

The T-25 flask and 96-well plate were carefully filled with culture medium (ensuring no bubbles 

formed to avoid shearing of the fluid) (Leguy et al., 2011). The cell containers were fixed in the 



sample stage of a clinostat. The clinostat was then placed in a CO2 incubator (Sanyo MCO-

18AIC CO2 Incubator; Sanyo Electric Co., Japan). The hucMSCs were exposed to SMG using a 

3D clinostat (<10−3 G) that was operated for 72 h. The control group was treated at 1 G in the 

same CO2 incubator. 

2.3. WST-1 cell proliferation assay 

The hucMSCs were seeded in a 96-well plate (161093; Thermo Fisher ScientificTM Thermo 

Scientific) at a concentration of 2 × 103 cells/well and a culture medium of 395 µl/well. Parafilm 

was used to cover the wells. After the hucMSCs underwent SMG for 72 h, the culture medium 

was removed and 100 µl of new medium and 10 µl WST-1 (11644807001; Roche, Basel, 

Switzerland) were added to each well. The hucMSCs were incubated for 3.5 h at 37 °C, 5% CO2 

and measured at 450 nm using a GloMax® Explorer Multimode Microplate Reader (Promega, 

Madison, WI, USA). A control was treated without the SMG condition. 

2.4. Flow cytometry analysis 

The hucMSCs were seeded in a T-25 flask (160430; Thermo Fisher ScientificTM Thermo 

Scientific) at a concentration of 1 × 105 cells/flask. The flask was filled with culture medium and 

then capped without causing bubbles in the flask. The hucMSCs were then exposed to SMG for 

72 h. Following trypsinization, hucMSCs were fixed with 4% paraformaldehyde (09154-85; 

Nacalai Tesque, Kyoto, Japan) for 15 min. The hucMSCs were then washed twice with cold PBS 

and resuspended in 1x Binding Buffer at a concentration of 1 x 106 cells/ml. The hucMSCs were 

then stained with 5 µl of propidium iodide (51-66211E; BD Biosciences, San Jose, CA, USA). 

The cell cycle progression was analyzed by measuring the cellular DNA content using an Accuri 

C6 plus flow cytometer (BD Biosciences). 

2.5. Quantitative real-time (RT)-PCR 

Total RNA of the hucMSCs were extracted using the ReliaPrepTM RNA Cell Miniprep System 

(Z6011; Promega). Each reaction was carried out in a 20 μL reaction consisting of 1 μL of total 

RNA, 2 μL of primers (forward and reverse), 10 μL 2x Mix Hi-ROX, 1 μL RTAse, and 6 μL 

dH2O. The qRT-PCR reaction underwent one cycle at 45 °C for 15 min, one cycle at 95 °C for 2 



min, 40 cycles at 95 °C for 10 sec, 60 °C for 15 sec, and 71 cycles at 60 °C for 15 sec. A 

PikoReal 96 Real-Time PCR System (Thermo Fisher ScientificTM Thermo Scientific) was used 

for the qRT-PCR with the 2x qPCR SyGreen 1-Step Go Hi-ROX kit (PCR Biosystem, London, 

England). The 2−ΔΔCt method was used for the Ct value analysis (Livak and Schmittgen, 2001). 

Primers were as follows: β-actin, F 5’-GAG CAC AGA GCC TCG CCT TT-3’ and R 5’-AGA 

GGC GTA CAG GGA TAG CA-3’ (Zhao et al., 2015); α-tubulin 3, F 5′-CAT TGA AAA GTT 

GTG GTC TGA TCA-3′ and R 5′-GCT TGG GTC TGT AAC AAA GCA T-3′ (Fischer et al., 

2005), and; glyceraldehyde-3-phosphate dehydrogenase (GAPDH), F 5’-CAT GAG AAG TAT 

GAC AAC AGC CT-3’ and R 5’-AGT CCT TTC CAC GAT ACC AAA GT-3’ (Gorgogietas et 

al., 2018). 

2.6. Western blot 

The hucMSCs were collected from the T-25 flask and a lysate was prepared using Optiblot LDS 

sample buffer (ab119196; Abcam). Equal amounts of protein were loaded into the wells of the 

Precast Gel SDS-PAGE 4-12% (ab139596; Abcam). The gel was run in Optiblot SDS Run 

Buffer (ab119197, Abcam) for 2 h at 50 V. Protein was transferred to a PVDF membrane 

(ab133411; Abcam), which was blocked overnight at 4 °C with a blocking buffer (ab126587; 

Abcam). The membrane was then incubated with primary antibodies in the blocking buffer 

overnight at 4 °C. Anti-beta actin antibodies (ab8226; Abcam) and anti-alpha tubulin antibodies 

(ab52866; Abcam) were used at 1:1000 dilutions. Anti-cyclin A1 + cyclin A2 antibodies 

(ab185619; Abcam), anti-cyclin-dependent kinase (cdk) 4 antibodies (ab137675; Abcam), and 

anti-cdk6 antibodies (ab124821; Abcam) were used at 1:5000 dilutions. Anti-GAPDH antibodies 

(ab181602; Abcam) at 1:5000 dilutions were used as a control. The membrane was washed three 

times for 10 min each with TBST. The membrane was then incubated with secondary antibodies 

in a blocking buffer at room temperature for 1 h. Goat anti-mouse IgG (ab6789; Abcam) and 

goat anti-rabbit IgG (ab6721; Abcam) were used against the beta actin antibodies and other 

primary antibodies, respectively. The blots were visualized using the ECL Western Blotting 

Substrate Kit (ab65623; Abcam). Imaging was carried out using x-ray film. The intensities of the 

protein bands were quantified using ImageJ software (National Institutes of Health, Bethesda, 

MD, USA). 



2.7. Microtubule staining 

The hucMSCs were seeded in a 96-well plate at a concentration of 1 × 103 cells/well, with 395 

µl/well of culture medium. Microtubules were labeled with 2 µl SiR-Tubulin (CY-SC002, 

Cytoskeleton, Inc., Denver, CO, USA) with a final concentration of 50 nM for each well. 

Parafilm was used to cover the wells. The hucMSCs then underwent SMG for 72 h. The stained 

hucMSCs were observed using a Cytell microscope (GE Healthcare, Bloomington, IL, USA). 

2.8. Microfilament staining and nuclear morphology evaluation 

The hucMSCs were seeded in a 96-well plate at a concentration of 1 × 103 cells/well with 395 

µl/well of culture medium. Parafilm was used to cover the wells. The hucMSCs were placed 

under the SMG for 72 h. They were then fixed with 4% paraformaldehyde (Nacalai) for 30 min 

and permeabilized with 0.1% Triton X-100 (Merck, Darmstadt, Germany) overnight at 4 oC. The 

actin filament was stained using Phalloidin CruzFluor™ 488 Conjugate (sc-363791; Santa Cruz 

Biotechnology, Dallas, TX, USA), and the nucleus was stained using Hoechst 33342 (14533; 

Sigma-Aldrich, St. Louis, MO, USA) for 15 min. The cells were washed three times for 10 min 

each with phosphate-buffered saline (Thermo Fisher ScientificTM Gibco). The stained hucMSCs 

were observed under a Cytell microscope (GE Healthcare). The cell cycle app of the Cytell 

microscope was used to assess nuclear morphology, including nuclear area, intensity, and the 

nuclear-shape value (Son et al., 2019). 

2.9. Statistical analysis 

All experiments were performed at least three times. The data were analyzed for statistical 

significance using one-way ANOVA analyses, where P<0.05 was considered statistically 

significant. 

3. Results 

3.1. Cell proliferation inhibited by SMG 

The growth and viability of the hucMSCs was estimated using a WST-1 assay. The absorbance 

value of the hucMSCs from the SMG group was 0.97 ± 0.05, which was lower than the control 



group (1.09 ± 0.13, P < 0.001) (Figure 1A). This result indicates that the proliferation of 

hucMSCs from the SMG group was lower than the control group. 

Flow cytometry analysis was used to assess the cycle progression of hucMSCs. As seen in Figure 

1B, the percentage of hucMSCs from the control and SMG groups in the G0/G1 phase were 

72.27 ± 1.28% and 85.65 ± 0.65%, respectively (P < 0.01). Furthermore, the total ratio of S and 

G2/M phases of the hucMSCs from the SMG group was lower than the control group (P < 0.01). 

This suggests that SMG can induce the cell cycle arrest phase in hucMSCs. 

A western blot analysis showed that there was a lower expression of cyclin A1 and A2 proteins 

in the hucMSCs from the SMG group compared to the control group (Figure 1C). We also 

observed a downregulation of cdk 4 and 6 proteins in the hucMSCs from the SMG group in 

contrast to the hucMSCs from the control group. 

3.2. Effects of SMG on nuclear morphology 

The intensity of the nucleus was measured using the cell cycle app of the Cytell microscope. The 

hucMSCs from the SMG group showed a lower total nuclear intensity value than the control 

group (5629317 ± 39469 compared to 5957254 ± 65063, respectively; P<0.001) (Figure 2A). 

However, there was no significant difference in the nuclear area between the control (318.07 ± 

1.73 µm2) and the SMG groups (314.04 ± 2.55 µm2; P = 0.197) (Figure 2B). The nuclear-shape 

value generated by the cell cycle app (1.0 = circle, < 1.0 = non-circular), was also assessed to 

estimate the nuclear morphology of hucMSCs under SMG. The results demonstrated no 

significant difference in nuclear shape values between the control (0.88 ± 0.003) and the SMG 

groups (0.89 ±0.002; P = 0.143) (Figure 2C). 

The Figure 2D displays the distribution of the nuclei for both the nuclear-shape value and the 

total nuclear-intensity value. Figure 2E shows the distribution of the nuclei for both the nuclear-

area value and the total nuclear-intensity value. Nearly all of the nuclei from the SMG group had 

a distribution lower than 1.00E+7, while the distribution of nuclei from the control group 

exceeded 1.00E+7. Similar distributions of the nuclear-shape value and nuclear area of the 

hucMSCs were observed in both the control and SMG groups. 



3.3. Expression of cytoskeleton-related genes of hucMSCs under SMG 

In this study, β-actin and α-tubulin expression were analyzed to evaluate the effects of SMG on 

the hucMSC cytoskeleton. Western blot results revealed the downregulation of both β-actin and 

α-tubulin in hucMSCs in the SMG group (Figure 3A). In addition, qRT-PCR analysis revealed a 

reduction of the β-actin and α-tubulin 3 transcripts in hucMSCs in the SMG group (Figure 3B). 

3.4. SMG-induced cytoskeleton remodeling in hucMSCs 

We also assessed the morphology of the cytoskeleton by staining the main cytoskeletal proteins. 

As seen in Figure 4, microtubules were in a parallel distribution and spread throughout the length 

of the hucMSCs in the control group. This distribution was not observed in the SMG group. 

Instead, there was a cross distribution of microtubule bundles in the cytoplasm. 

Figure 4 also illustrates the parallel distribution of microfilament bundles, which extended 

throughout the cellular length of the hucMSCs from control group. Both microfilament and 

microtubule staining revealed the limitations of the length of hucMSCs from the SMG group, 

where the cells tended to expand out to form a round shape rather than stretch longitudinally. 

4. Discussion 

SMG has been shown to reduce the proliferation of several cell types such as mouse MSCs 

(Touchstone et al., 2019), mouse skeletal myoblasts (Benavides et al., 2014), human 

hematopoietic progenitor cells (Plett et al., 2004), melanoma cells (Tan et al., 2018), and bone 

marrow MSCs (Yan et al., 2015). In this study, we have also shown decreases in hucMSC 

proliferation under SMG. However, the mechanism underlying the decrease in cell propagation 

has not been well characterized; although, cell death is not believed to cause this inhibition. 

Instead, it has been hypothesized that changes in cell cycle progression lead to the inhibition of 

cell proliferation (Benavides et al., 2014). 

In this study, cell cycle progression and the expression of major cell-cycle proteins were shown 

to be associated with a reduction in hucMSC proliferation. The hucMSCs were arrested in the 

G0/G1 phase under SMG, suggesting that cell division and proliferation were decelerated. Cell 



division is the process that enables cell proliferation. In cell cycle progression, cdk4 and cdk6 

contribute to the transition from the G1 to the S phase (Tigan et al., 2016). This transition plays 

an important role in controlling cell proliferation (Bertoli et al., 2013), and the inhibition of 

cdk4/6 causes the attenuation of cell proliferation (Garrido-Castro and Goel 2017, Kollmann et 

al., 2019, Bonelli et al., 2019). Both cdk4 and cdk6 were downregulated in the hucMSCs under 

SMG, which resulted in the increased distribution of hucMSCs in the G0/G1 phase. 

The downregulation of cyclin A1 and cyclin A2 were also observed in the SMG hucMSCs. 

Cyclin A1 is crucial for spermatogenesis and is expressed in the testes, while cyclin A2 is 

expressed throughout the S and G2 phases in all proliferating cells (Ji et al., 2005, Kalaszczynska 

et al., 2009). This study demonstrated that the decrease in SMG-induced hucMSC proliferation 

was accompanied by a decrease in cyclin A1 and A2 expression, which was correlated with a 

reduction in their total ratio in the S and G2 phases. In addition, cell division requires chromatin 

condensation, which is an important process in mitosis (Habela and Sontheimer, 2007). 

Chromatin condensation was visualized using Hoechst 33342 staining, which increases nuclear 

intensity (Habela and Sontheimer, 2007). The current study illustrates that SMG-induced 

hucMSCs had a lower nuclear intensity than the control group. This result indicates that there 

was a decrease in chromatin condensation, leading to a decrease in SMG hucMSC division. 

The cytoskeleton is a structure that maintains cellular shape and organization, as well as 

providing support for cell division and movement. The two main components of the cytoskeleton 

are actin and tubulin, which form microfilaments and microtubules, respectively (Nakaseko and 

Yanagida, 2001). In this investigation, a reorganization of the microtubules and microfilaments 

were observed in hucMSCs from the SMG group. The remodeling of microtubules in SMG-

induced hucMSCs were distributed with equivalent density throughout the entire body cell. In 

contrast, the microtubules of the hucMSCs from the control group displayed a higher density 

around the nucleus. The remodeling of the microfilaments was also observed in the SMG-

exposed hucMSCs. The remodeling of microfilaments of SMG-exposed MSCs and microtubules 

of chondrocytes has also been characterized in previous studies (Chen et al., 2016, Cazzaniga et 

al., 2016, Aleshcheva et al., 2013). However, the relationship between the remodeling of 

microtubules and microfilaments and the levels of actin and tubulin expression has not been 



characterized. The present study shows that the decrease of α-tubulin and β-actin expression 

results in the remodeling of microtubules and microfilaments in SMG-exposed hucMSCs. 

In conclusion, our results show there is a downregulation of major cell cycle proteins and 

cytoskeletal proteins in SMG exposed hucMSCs. This suggests that SMG inhibits proliferation 

of hucMSCs by promoting cell cycle arrest. 
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Figure legends 

 

Fig 1. The proliferation of hucMSCs from control and simulated microgravity (SMG) groups. 

(A) hucMSC proliferation assessed by a WST-1 kit. In the control group, the OD value of 

hucMSCs was higher than the SMG group. (B) Flow cytometry analysis of hucMSCs. In the 

SMG group, hucMSCs showed a higher G0/G1 ratio than the control group, resulting in the 

induction of cell cycle arrest in the hucMSCs. (C) The expression of major regulators was 

estimated by western blot. In the SMG group, the expression of cell cycle-related proteins in 

hucMSCs was downregulated. 

***indicates a significant difference compared with the control group (P < 0.001) 

** indicates a significant difference compared with the control group (P < 0.01) 

* indicates a significant difference compared with the control group (P < 0.05) 

  



 

Fig 2. The evaluation of nuclear morphology in human umbilical cord mesenchymal stem cells 

(hucMSCs). (A), total nuclear intensity, (B) nuclear area, and (C) nuclear shape of hucMSCs 

generated by the cell cycle app. In the control group, the nuclei of the hucMSCs showed a higher 

intensity than those from the simulated microgravity (SMG) group. There was no difference in 

the nuclear area or nuclear-shape value between the control and SMG groups. (D) The 

distribution of nuclear-shape values in relation to total nuclear intensity. (E) The distribution of 

the nuclear area in the relation to total nuclear intensity. Blue color indicates the G0/G1 phase, 

red indicates the S phase, green indicates the G2/M phase, grey indicates <2n, and yellow 

indicates >4n. 

*** indicates a significant difference compared with the control group (P < 0.001) 



 

Fig 3. The expression of β-actin and α-tubulin in human umbilical cord mesenchymal stem cells 

(hucMSCs). (A) A western blot analysis shows the expression β-actin and α-tubulin protein. In 

the simulated microgravity (SMG) group, hucMSCs demonstrated a lower expression of 

cytoskeletal proteins than the control group. (B) A qRT-PCR showing the transcript expression 

of β-actin and α-tubulin 3. The β-actin and α-tubulin 3 transcripts were attenuated in hucMSCs 

under SMG. 

*** indicates a significant difference compared with the control group (P < 0.001). 

  



 

Fig 4. Cytoskeleton staining of human umbilical cord mesenchymal stem cells. Microtubules 

were stained with SiR-tubulin (red). Microfilaments were stained with phalloidin (green). The 

nucleus was counterstained with H33342 (blue). (Magnification ×100), Scale bar = 200 µm. 

 


