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Summary 

Acute myocardial infarction (AMI) is one of the leading causes of death among adults in older 

age. Understanding mechanisms how organism responds to ischemia is essential for the 

ischemic patient’s prevention and treatment. Despite the great prevalence and incidence, only 

a small number of studies utilize a metabolomic approach to describe AMI condition. Recent 

studies have shown the impact of metabolites on epigenetic changes, and plasma metabolites 

were related to neurological outcome of the patients, making metabolomic studies 

increasingly interesting. The aim of this study was to describe metabolomic response of an 

organism to ischemic stress through the changes in energetic metabolites and aminoacids in 

blood plasma in patients overcoming acute myocardial infarction. Blood plasma from patients 

in the first 12h after onsent of chest pain was collected and compared with volunteers without 

any history of ischemic diseases via NMR spectroscopy. Lowered plasma levels of pyruvate, 

alanine, glutamine and neurotransmitter precursors tyrosine and tryptophan were found. 

Further, we observed increased plasma levels of 3-hydroxybutyrate and acetoacetate in 

balance with decreased level of lipoproteins fraction, suggesting the ongoing ketonic state of 

an organism. Discriminatory analysis showed very promising performance, where 

compounds: lipoproteins, alanine, pyruvate, glutamine, tryptophan and 3-hydroxybutyrate 



were of the highest discriminatory power with feasibility of successful statistical 

discrimination.  
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Introduction 

Acute myocardial infarction (AMI), or heart attack, is one of the leading causes of death in 

the developed countries with lower incidence in women than men until midlife (Armeni and 

Lambrinoudaki 2017, Kittnar 2020). Healthy life-style should be encouraged already in 

children to avoid the developmet of AMI in future (Linhartová et al. 2019). It is most often 

caused by decrease or cessation of blood flow and the lack of oxygen in the coronary arteries, 

which results in impaired function of the part of the heart muscle or death (Alaour et al. 2018, 

Barberi and van den Hondel 2018). Atherosclerosis, dyslipidemia, hypertension, oxidation, 

inflammatory processes, as well as endothelial dysfunction and decreased glucose metabolism 

are considered to be the main risk factors for AMI (Trebatická  et al. 2017). 

 

Many studies confirm that the ischemic attack has its own metabolomic response not 

only in affected tissue but also in the circulation (Sidorov et al. 2019, Shah et al. 2012). 

Relatively much is known about blood glucose (Ishihara 2012) and lactate in patients 

overcoming AMI (Anderssen et al. 2013, Lazzeri et al. 2015).  Interruption of blood supply to 

a certain region of the myocardium results in increased levels of enzymes in patient's blood 

such as: lactate dehydrogenase (LDH), creatine kinase (CK) and aspartate aminotransferase 

(AST) isoenzymes (Mythili and Malathi 2015) which are directly related to metabolites 

(Ussher et al. 2016). In the last years, the importance of metabolomics in cardiovascular 

diseases increases and the metabolic profiles may serve as diagnostic and/or prognostic tools 



that have the potential to significantly alter the management of cardiovascular diseases 

(Ussher et al. 2016). It is relatively novel knowledge that some metabolites and metabolomic 

pathways have impact on epigenetics (Shimazu et al. 2013, Su et al. 2016, Ruan and 

Crawford 2018). Beside this, many clinical and experimental studies suggested the relation 

between plasma aminoacids levels and neurological outcome (Erdman et al. 2011, Coppola et 

al. 2013, Tournissac et al. 2018), making metabolomic studies increasingly attractive. 

This study was designed to evaluate relative changes in plasma metabolites traceable by NMR 

spectroscopy which is a robust tool broadly used in untargeted metabolomics. Plasma from 

patients was sampled within 12h after onset of chest pain and was compared with subjectively 

healthy volunteers without any history of ischemic diseases. The aim of this work was to 

describe metabolomic response of an organism to ischemic stress and explore the feasibility 

of statistical discrimination based on plasma metabolites. 

 

 

Materials and Methods 

 

Samples 

 

Together 30 plasma samples from patients with hospital-confirmed acute myocardial 

infarction provided by Division of Invasive Cardiology, Department of Internal Medicine I of 

University Hospital Martin were used. Plasma was sampled in time of 2.5 - 12h after onset of 

the chest pain. The patient group consisted of: 10 female, 20 male, aged: mean = 65 ± 11 yrs, 

median = 64 ± 9 yrs.  Except one man, age 81 yrs, all patients survived the heart attack.  

 



As controls, plasma samples from 30 subjectively healthy volunteers free of any medically 

manifesting diseases and without any history of acute coronary diseases were used, thereof 11 

female, 19 male, aged: mean = 57 ± 13 yrs, median = 58 ± 10 yrs. For controls, as well as for 

patients' selection, no additional criteria were used. Since in AMI it was not possible to plan 

the blood collection in advance, the blood sampling was carried on not insisting on fasting 

state for patients as for controls. 

 

Ethics 

 

This study was approved by the Ethics Committee of the Jessenius Faculty of Medicine in 

Martin (registered under IRB00005636 at Office for Human Research Protection, U.S. 

Department of Health and Human Services) under the code EK 1859/2016. Informed consent 

was obtained from all subjects of this study. 

 

Sample preparation 

 

Stock solution consisted of: 150 mM phosphate buffer and 0.30 mM TSP-d4 3-

(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt as a chemical shift reference in 

deuterated water. Blood was collected in EDTA coated tubes, centrifuged at 4 oC, 2000 rpm, 

for 20 minutes. Plasma was deproteinated by adding 600 µL of methanol to 300 µL of 

plasma. The mixture was vortexed for a few seconds and storaged at -20 oC for 20 minutes. 

Then, the mixture was centrifuged for 30 minutes at 14000 rpm. Finally, 700 µL of 

supernatant were dried out and subsequently carefully mixed with 100 µL of stock solution 

and 500 µL of deuterated water. 550 µL of final mixture were transferred into 5 mm NMR 

tube.  



 

NMR data acquisition 

 

NMR data were acquired on 600 MHz NMR spectrometer Avance III from Bruker equipped 

with TCI (triple resonance) cryoprobe. Initial settings were done on an independent sample 

and adopted for measurements. Samples were stored in Sample Jet at cca. 6 oC and randomly 

ordered for acquisition. Measurements were carried on at 310 K. An exponential noise filter 

was used to introduce 0.3 Hz line broadening before Fourier transform. We used standard 

Bruker profiling protocols that we modified as follows: profiling 1D NOESY with 

presaturation (noesygppr1d): FID size 64k, dummy scans 4, number of scans 128, spectral 

width 20.4750 ppm; COSY with presaturation (cosygpprqf): FID size 4k, dummy scans 8, 

number of scans 1, spectral width 16.0125 ppm; homonuclear J-resolved (jresgpprqf):  FID 

size 8k, dummy scans 16, number of scans 4; profiling CPMG with presaturation (cpmgpr1d, 

L4 = 126, d20 = 3ms):  FID size 64k, dummy scans 4, number of scans 128, spectral width 

20.0156 ppm. All experiments were conducted with a relaxation delay of 4 s; all data were 

once zero filled. 

 

Data analysis 

TSP-d4 signal was assigned a chemical shift of 0.000 ppm. All spectra were binned to bins of 

the size of 0.001 ppm, starting from 0.500 ppm to 9.000 ppm, with excluded water region 4.6 

- 4.9 ppm. Spectra were solved with the help of human metabolome database 

(www.hmdb.ca), chenomx software and by researching in metabolomics literature. For all 

compounds, the multiplicity of peaks was confirmed in J-resolved spectra and homonuclear 

cross peaks were confirmed in cosy spectra. 

 



Metabolites showing weak intensive peaks or peaks overlap were excluded from the 

evaluation. After the metabolites were identified (Table 1), we chose the spectra subregions 

with only single metabolite assigned. In 0.001 ppm binned spectra, we summed integrals of 

selected signals. These data representing relative concentration of metabolites in plasma were 

used for statistical analysis. No normalization method was applied on NMR data. After 

normality test by Shapiro-Wilk and Kolmorogov test (OriginPro 2019), statistical analysis 

was carried on using Mann-U-Whitney test (Matlab R2015a). Principal component analysis 

(PCA), partial least squares discriminant analysis (PLS-DA) and receiver operating 

characteristic (ROC) curves derived from random forest (RF) algorithm were performed by 

using Metaboanalyst 4.0 (Chong et al. 2019) and Matlab R2015a.  

 

Here Table 1 

 

Results 

Together 20 plasma metabolites from 21 identified (except threonine, Table 1) were 

quantified. Statistically significant (p value < 0.05, Mann-U-Whitney test) changes in plasma 

metabolite levels in patients´ group against controls are summarized in Table 2. Other 

metabolites were without significant changes. Lipoproteins fraction contained mainly VLDL, 

LDL, HDL and IDL as described in the work by Liu et al. (2002). 

 

Here Table 2 

 

 

 

 



PCA, PLS-DA analysis 

Firstly, the results were visualized by PCA and PLS-DA methods (Figure 1). PCA is a tool for 

exploratory data analysis and, in addition to other uses, provides a 2D plot of the multivariate 

data. Unlike PCA, PLS-DA includes also a discrimination algorithm. We used as an input for 

the PCA and PLS-DA algorithm relative concentrations of plasma metabolites determined by 

NMR spectroscopy. Both analyzes suggested that good discrimination between patients and 

controls is attainable (Figure 1). In order to show the reliability of PLSDA, the PLSDA results 

are presented along with the results of permutation test and leave-one-out cross-validation 

(LOOCV). In permutation test, we permuted the y values 1000 times and showed the resulting 

Rsquare (value calculated based on the difference between the real outcome and the outcome 

predicted) distribution together with Rsquare value determined on true labeled samples 

(Figure 2). In the each iteration of LOOCV, one sample was left out and the multivariate 

model was constructed by the rest of the samples. Then the predicted value of omitted sample 

was calculated based on model created. The entire procedure was repeated until each case had 

been omitted once. Finally, we calculated Rsquare, Q square and accuracay that were (in the 

mentioned order): 0.72, 0.306 and -0.11 for 5 components and 0.74, 0.52 and -3.98 for 8 

components. The results from PCA and PLSDA analysis based on spectral NMR bins of 

0.001 ppm are shown in the Supplementary material.   

 

Here Figure 1 

Here Figure 2 

 

 

 



Random Forest classification 

 

In the same way as in PCA and PLS-DA, the input variables for RF were the relative plasma 

concentration of metabolites. After RF run, ROC curve was created. ROC curve analysis is 

the standard method for describing and assessing the performance of diagnostic - 

discrimination tests. It is produced by plotting the true positive rate against the false positive 

rate at various threshold settings. An important parameter, area under curve (AUC) represents 

ranking quality. The AUC of a ranking is 1 (the maximum of AUC value) when all samples 

are truly assigned into the groups. An AUC of 0.5 is equivalent to randomly classifying 

subjects as either positive or negative (the classifier is of no practical utility). When evaluated 

AMI patients against controls, an excellent classification with AUC of 0.97 for n=2 features 

(alanine and lipoproteins) and AUC of 0.985 for n=5 features (alanine, lipoproteins, pyruvate, 

tryptophan and glutamine) was obtained. By including further metabolites n=10, we obtained 

AUC of 0.989 and with n=20, AUC of 0.992 was achieved.  

 

 

Discussion 

 

Biochemical aspects related to heart attack 

 

Significantly increased plasma glucose level found in AMI patients was expected, as acute 

hyperglycemia is a common feature during the early phase after acute myocardial infarction, 

regardless of diabetes status (Ishihara 2012). As a result of tissue hypoxia and accelerated 

anaerobic glycolysis, lactate plasma level increases. Elevated plasma lactate level in AMI 

patients can vary dependent on extent of injury (Andersen et al. 2013) and can serve as a 



predictor of early mortality (Lazzeri et al. 2015). During shock, lactate is the most important 

fuel for the heart, and rather than its absolute value the lactate clearance has been reported as 

clinically more reliable (Abramson et al. 1993, Zhang and Xu 2014). It has been demonstrated 

in previous studies that after ischemic attack, the amount of lactate gradually decreases during 

reperfusion time, both in the brain parenchyma (Liu and Li 2016) as well as in blood 

(Rehncrona et al. 1981, Kliegel et al. 2004).  In our study, we did not observe significantly 

increased lactate level in blood plasma in cardiac patients (Figure 3), as it can be expected in 

early time after onset of the chest pain. As the lactate is rapidly consumed in stress condition 

by heart, brain and other tissues, the time of blood collection plays an important role. 

Normalization of lactate level after AMI was observed within 24h (Kliegel et al. 2004), and in 

patients who underwent therapeutic hypothermia within 48h respectively (Lee et al. 2013). 

The fact that 29 from 30 patients examinated in our study survived the AMI indicates better 

general outcome in studied group what is related to faster lactate clearance. It is to note, that 

there were no special criteria in selecting the control group regarding diabetes or other 

metabolomic disorders, which may cause e.g. lactic acidosis in uninjured group and also 

influence the statistical result.  

 

Here Figure 3 

 

Lactate metabolism is closely interconnected with pyruvate and alanine, where the mutual 

conversion of these metabolites occurs in Cori and Callih cycles. Unlike lactate, AMI patients 

showed significantly decreased plasma levels of aerobic glycolysis intermediate pyruvate and 

amino acid alanine (Table 2, Figure 3). In the liver, the carbon skeleton of alanine is through 

pyruvate reconverted to glucose and released into the bloodstream. Circulating glucose is 

available for uptake by muscle and resynthesis of alanine in pyruvate-alanine cycle. The 



decreased plasma levels of alanine and pyruvate suggest the modifications in alanine- and 

pyruvate- related metabolism induced by AMI injury. 

 

At the time of altered glucose utilization, alternative substrates such as ketone bodies could 

support metabolic requirements. Ketone bodies can provide more than two thirds of the brain 

energy demands more efficiently than glucose (Puchalska and Crawford 2017). Very recent 

study showed that failing heart utilizes 3-hydroxybutyrate as a metabolic stress defence 

(Horton et al. 2019). In our study, we observed significantly increased plasma levels of ketone 

3-hydroxybutyrate and its redox partner acetoacetate. The increase in plasmatic ketone bodies 

in blood after brain ischemic injury has been already described in rodents (Baranovicova et al. 

2018a, Baranovicova et al. 2018b). It is to note, that the levels of glycolytic intermediates and 

ketone bodies in blood plasma are strongly dependent on diet and time elapsed from last food 

intake. 3-hydroxybutyrate level in starving subjects starts to increase prominently after 4-8h 

(Cahill 2006). After the onset of chest pain, no food intake by patients can be assumed, 

although, in this study, no exact data were collected to confirm it. With respect to these facts, 

we cannot recognise the define origin of increased plasma ketone bodies and this may result 

from combination of both, starvation and ischemic attack. Parallel to increased plasmatic 

ketone bodies, a significant decrease in lipoprotein fraction containing LDL, HDL and VLDL 

was observed. This fraction, besides others, contains the main substrates for ketone bodies 

production, such as triacylglyceroles (Liu et al. 2002). Detailed profile of plasma lipids in 

AMI patients was already described, showing decrease in LDL and HDL after AMI (Kumar et 

al. 2019).  

Ketone bodies, besides serving as fuel in metabolic pathways, coordinate cellular function via 

epigenomic regulation (Ruan and Crawford 2018). There is evidence that increased level of 

ketone bodies, above all of 3-hydroxybutyrate, may influence epigenetic histone acetylation 



(Shimazu et al. 2013, Su et al. 2016). The ketonic state with increased plasma ketone bodies 

3-hydroxybutyrate and acetoacetate is interfering with the level of NAD and in further may 

influence eventual histone acetylation (Su et al. 2016). Histone deacetylase inhibitors have 

provide beneficial cardiac and vascular protective effects in rats with pressure overload 

cardiac hypertrophy (Jung et al. 2019). As next, methylation status is sensitive to oxygen and 

TCA-related metabolism (Su et al. 2016). Lai et al. (2014) showed that TCA cycle 

intermediates in heart failure patients are reduced (Aubert et al. 2016). It is to consider that 

the metabolic enzyme expression has the potential to impact DNA methylation and histone 

acetylation in mammals (Su et al. 2016), what makes detailed metabolomic and enzymatic 

studies all the more interesting and useful.  

 

Glutamine is conditionally essential in humans and in some instances of stress the demand of 

body for glutamine increases. It serves as fuel for lymphocytes and macrophages (Parry-

Billings et al. 1992), is involved in modulating immune cells function and protecting them 

from apoptosis (Chang et al. 2002). Glutamine also plays a crucial role in the production of 

cytokines (Shah et al.  2020). During catabolic/hypercatabolic situations glutamine can 

become essential for metabolic function, but its availability may be compromised due to the 

impairment of homeostasis in the inter-tissue metabolism of amino acids. Reduced  plasma  

level  of  glutamine  was  observed  in  various  emergency  conditions  including  surgical 

interventions (Parry-Billings et al. 1992). In cardiac patients, intracellular myocardial 

glutamine concentrations were reduced (Suleiman et al. 1997). Interestingly, experimental 

and clinical studies have demonstrated the cardio protective effect of glutamine. For example, 

the beneficial effect of glutamine on ischemic rat heart was shown by Khogali et al. (2002). 

Consistently with current knowledge, we observed significantly lowered glutamine plasma 

levels in patients overcoming AMI when compared with controls.  



 

Tryptophan is an essential amino acid and besides participating in the biosynthesis of proteins 

serves as a precursor to kynurenine metabolites, neurotransmitter serotonin and others. The 

role of tryptophan metabolism in cardiovascular diseases was summarized by Lenhert et al. 

(2014). It is i.a. involved in endothelium derived blood pressure control and microvascular 

reactivity in stroke (Mangge et al. 2014). Tyrosine is conditionally essential amino acid for 

patients with chronic renal failure having various relations to vascular system. In our study, 

both, tyrosine and tryptophan plasma levels were observed to be decreased in AMI patients 

against controls, similarly as it was in stroke patients in study by Ormstad et al. (2013), 

suggesting increased rate of their metabolic conversion. These findings indicated that the 

proinflammatory response may be responsible for a reduced capacity for the biosynthesis of 

brain catecholamines and mediate neurotoxic effects. Results of many studies support this 

concept, e.g. patients after AMI suffered cognitive and somatic depressive symptoms with 

depression recognition (Smolderen et al. 2009), they have also a higher risk of anxiety and 

depressive disorders (Feng et al.  2016), cognitive impairment (Gharacholou et al. 2011) and 

so on.  

As methodological note: some metabolites, such as lactate or tryptophan bind to serum 

albumine (Cunningham et al. 1975)  what influences the concentration of 'free' metabolites in 

blood plasma. During deproteinization procedure proteins are denaturized and non-

specifically bound substances are likely to be released. We did not run additional experiments 

to examine this process in detail, however would not expect much impact on the results.  

 

Biomarkers discovery 

 



There are two main approaches in data evaluation and interpretation in the metabolomics. The 

first of them is focused on gaining the improved biological understanding through analyzing 

metabolite profiles. Here, p values from hypothetical statistical testing are used as essential 

statistical tools. While lists of compounds found to be significantly changed are sometimes 

referred as 'putative biomarkers', they are not really useful as clinical biomarkers which 

require different analysis, evaluation and validation (Xia et al. 2013). The second fundamental 

metabolomic approach is oriented towards biomarkers that are not intended to explain biology 

but they are rather designed to discriminate with an optimal sensitivity/specificity (Xia et al. 

2013). Whereas PCA serves to visualise data in 2D format, supervised PLS-DA includes also 

a discrimination algorithm. Both, PCA as well as PLS-DA suggested the good potential of the 

system to obtain sufficient discrimination (Figure 1ab).  However, PLS-DA models have a 

very strong propensity to overfit to training data mainly under high dimensionalities and small 

sample conditions (Rodríguez-Pérez et al. 2018). We run additional tests to confirm the 

reliability of PLSDA results. As can be seen from Figure 2, the permutation test shows a 

relatively good reliability of PLSDA analysis to discriminate between cases and controls with 

Rsquare = 0,8326. In cotrast to, the Qsquare values from LOOCV cross validation suggest 

overfitted PLSDA model.  

 

To estimate the more realistic discriminatory power of the system, we decided to employ 

random forest discriminatory analysis. Cross validated RF algorithm picks up two-third data 

for training and rest for testing for regression and almost 70% data for training and rest for 

testing during classification in order to overcome the training and testing on the same data. 

Although this approach does not substitute the clinical validation, it may lead to encouraging 

results in exploratory studies. The further advantage of RF algorithm is identifying the most 

important features that are responsible for success of discrimination. Random Forest 



performed very well with AUC of 0.97 for only two variables: lipoproteins and alanine. With 

increasing number of variables the AUC was getting closer to 1. It is to note, that the obtained 

performance could be achieved by various combination of variables that permuted in 

importance order. For example, if alanine was excluded from the variables, RF performed 

also very well with AUC very close to 1 for two metabolites lipoproteins and tryptophan. The 

discriminatory power of this system was not dependent exclusively on one particular 

metabolite but offered various combinations to achieve very good results. As examples, the 

very good discrimination was achieved by using relative concentration of plasma metabolites: 

lipoproteins and alanine (AUC = 0.97), lipoproteins and pyruvate (AUC = 0.97), alanine and 

pyruvate (AUC = 0.92), lipoproteins and tryptophan (AUC = 0.96), lipoproteins and 

glutamine (AUC = 0.97). Having run RF with various combinations of variables as an input, 

we observed that following metabolites combined together gave the best discriminatory 

performance and behaved in our study as potential plasma biomarkers of AMI: lipoproteins, 

alanine, pyruvate, glutamine, tryptophan and 3-hydroxybutyrate. In addition to metabolomics, 

proteomics approach seems to be also a suitable method to identify reliable specific novel 

biomarkers in heart failure. Rehulkova et al. (2016) found a number of proteins with unique 

changes in plasma levels. More studies are required for complete the understaning and clarify 

the the pathophysiology of serious complications (Lacko et al. 2018) of acute cardiogenic 

shock, from which the patient would ultimately benefit.  

 

Here Figure 4 

Conclusion 

 



In patients overcoming AMI, besides expected hyperglycemia, the decrease in plasma level of 

pyruvate, alanine, glutamine, tyrosine and tryptophan was found. The elevated plasma levels 

of ketone bodies 3-hydroxybutyrate and acetoacetate, parallel to decrease in plasma 

lipoprotein fraction point out on the ongoing ketogenic state. PCA and PLS-DA analyzes 

separated favourably but not ideally patients from controls. By employing cross-validated 

Random Forest algorithm, we obtained almost ideal discrimination patients from controls, 

where following metabolites combined together gave the best discriminatory performance: 

lipoproteins, alanine, pyruvate, glutamine, tryptophan and 3-hydroxybutyrate. Based on the 

obtained results, we would like to emphasize the very promising possibility to discriminate 

between AMI patients and controls on the basis of principal plasma metabolites. 
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Tables 



Table 1 Plasma metabolites: 1H NMR chemical shifts used for identification, in bold 

chemical shifts used for quantification (all or the part of, s-singlet, d-doublet, t-triplet, q-

quarte, m-multiplet).  

 

metabolite peaks assigned 

threonine 1.33d, 3.60 d, 4.26dq 

lactate 1.34d, 4.15q 

formate 8.46 s 

alanine 1.48d, 3.81q 

valine  0.99d, 1.05d, 2.28m, 3.62d 

glucose 

3.25dd, 3.40t, 3.41dd, 3.47m, 3.49m, 3.53 dd, 3.71t, 3.72m, 

3.76m, 3.83m, 3.84m, 3.90dd, 4.63d, 5.23d 

leucine 0.96d, 0.97d, 1.72m 

isoleucine 0.94t, 1.01d, 3.67d 

acetoacetate 2.28s 

acetate 1.91s 

pyruvate 2.37s 

citrate 2.55d, 2.66d 

2-oxoisocaproate 0.95d, 2.1m,  2.61d 

phenylalanine 7.33d, 7.38t, 7.42t 

tryptophan 7.19t, 7.27t, 7.31s, 7.55d, 7.74d 

tyrosine 6.90d, 7.15d 

creatine 3.03s, 3.93s 

creatinine 3.04s, 4.05s 



glutamine 2.11m, 2.14m, 2.44m, 2.47m,  

3-hydroxybutyrate 1.20d,  2.31dd, 2.39dd, 4.15m 

lipoproteins  0.8-0.87m,  1.19-1.33m,  see ref. Liu et al. (2002) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 Relative changes in plasma metabolites in patients after AMI against subjectively 

healthy controls, p value derived from Mann-U-Witney test, % change derived from median.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

metabolite p-value 

% change in 

patients 

against 

controls 

glucose p < 0.005 26 

pyruvate p < 0.0005 -34 

alanine p < 0.0005 -17 

tryptophan p < 0.000005 -28 

tyrosine p < 0.05 -11 

glutamine p <0.005 -18 

3-hydroxy-butyrate p < 0.00005 57 

acetoacetate p < 0.0005 40 

lipoproteins p < 0.000005 -45 



 

Figure legends 

 

Figure 1 PCA (left) and PLS-DA (right) analysis of plasma metabolites in patients after 

ischemic attack in comparison to controls. 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 2 PLSDA permutation test: expressed by histogram of Rsquare values with marked 

Rsquare value after PLSDA on truely labeled samples. 

 

 



 

 

 

 

 

Figure 3 Relative plasma concentration of selected metabolites determined via NMR. 

 

 

 

 

 



 

 

 

 

Figure 4 ROC curve based on Random Forest classification for plasma metabolites 

determined by NMR is showing very good performance with AUC very close to 1 for system 

AMI patients - controls. 

 

 

 

 



Supplementary material 

Multivariation analyzes based on binned NMR spectra 

We performed PCA and PLSDA analyzes based on NMR spectra binned to bins of 0.001 

ppm. We left out water region 4.6-5.0 ppm, and used NMR spectra from 0.5 ppm to 9.0 ppm. 

The result of PCA and PLSDA analyzes are shown on Figure S1. 

 

Figure S1. PCA (left) and PLSDA (right) analyzes based on NMR spectral bins of 0.001 

ppm, a - AMI patients, b- controls, performed online using Metaboanalyst 4.0. 

To show the reliability of PLS-DA method, we used leave-one-out cross-validation (LOOCV) 

and permutation test. The validation results are summarized in table S1. The permutation test 

performed with p<0.01 (0/100). 

Table S1. Details from LOOCV PLS-DA validation. 

 

Measure 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 

Accuracy 0.76271 0.77966 0.77966 0.79661 0.79661 0.77966 0.79661 0.77966 

R2 0.30297 0.44752 0.4922 0.53222 0.56052 0.58769 0.62336 0.65369 

Q2 0.16529 0.25991 0.29227 0.30281 0.28668 0.28188 0.27459 0.23037  

 

 


