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Short title: Nickel in Relation to Sexual Steroid Hormones  30 

 31 

Summary 32 

Nickel is a ubiquitous environmental pollutant, which has various effects on 33 

reproductive endocrinology. In this study, human adrenocortical carcinoma (NCI-34 

H295R) cell line was used as an in vitro biological model to study the effect of nickel 35 

chloride (NiCl2) on the viability and steroidogenesis. The cells were exposed to 36 

different concentrations (3.90; 7.80; 15.60; 31.20; 62.50; 125; 250 and 500 μM) of 37 

NiCl2 and compared with control group (culture medium without NiCl2). The cell 38 

viability was measured by the metabolic activity assay. Production of sexual steroid 39 

hormones was quantified by enzyme linked immunosorbent assay. Following 48 h 40 

culture of the cells in the presence of NiCl2 a dose-dependent depletion of progesterone 41 

release was observed even at the lower concentrations. In fact, lower levels of 42 

progesterone were detected in groups with higher doses (≥ 125 μM) of NiCl2 (P < 0.01), 43 

which also elicited cytotoxic action. A more prominent decrease in testosterone 44 

production (P < 0.01) was also noted in comparison to that of progesterone. On the 45 

other hand, the release of 17β-estradiol was substantially increased at low 46 

concentrations (3.90 to 62.50 μM) of NiCl2. The cell viability remained relatively 47 

unaltered up to 125 μM (P > 0.05) and slightly decreased from 250 μM of NiCl2 (P < 48 

0.05). Our results indicate endocrine disruptive effect of NiCl2 on the release of 49 

progesterone and testosterone in the NCI-H295R cell line. Although no detrimental 50 

effect of NiCl2 (≤ 62.50 μM) could be found on 17β-estradiol production, its toxicity 51 

may reflect at other points of the steroidogenic pathway. 52 
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 56 

Introduction 57 

 58 

Several environmental contaminants are recognized as endocrine disruptors (EDs), 59 

which may adversely affect the reproductive functions of humans, as well as wildlife 60 

species (Kabir et al. 2015, Vitku et al. 2015, Yang et al. 2015, Roychoudhury et al. 61 

2016, Kolatorova et al. 2017, Jambor et al. 2018, Jambor et al. 2019). This 62 

heterogeneous group of exogenous substances has the ability to alter functions of the 63 

endocrine system with a subsequent negative impact on the cellular behaviour and 64 

health in an intact organism. Endocrine disruptors may be found in a variety of 65 

products, such as pesticides, household items, cosmetics or plastic packaging. It is likely 66 

that some EDs are structural analogues of steroids, having similar effects as true 67 

hormones, high levels of which may have disproportionate consequences (Sanderson 68 

2006, Svechnikov et al. 2010). They can strongly affect reproductive and endocrine 69 

functions in several ways (Andersen et al. 2002), either by directly affecting the 70 

hormone production through interaction with the appropriate enzymes, or through 71 

interfering with their transport to target organs to alter natural hormone metabolism or 72 

even to inactivate the function of steroidogenesis regulatory proteins (e.g., 73 

Steroidogenic Acute Regulatory – StAR) (Sanderson and van den Berg 2003).  74 

Nickel (Ni) is a widely distributed metal that is industrially applied in various mineral 75 

forms (Lu et al. 2005). Dusts from volcanic emissions, the weathering of rocks and 76 

soils, biological cycles and solubilisation of Ni compounds from soils (Sunderman 77 

2004) represent the main natural sources of atmospheric (7.0-12.0 ng of Ni/m3 of air; 78 
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150 ng of Ni/m3 of air near point sources) and aqueous (3-10 μg of Ni/l of water in 79 

surface water and groundwater) Ni (ATSDR 2005). Anthropogenic sources of Ni 80 

pollution include mining, smelting and refining activities, burning of fossil fuels, 81 

sewage incineration and plastic production (Yu 2005). The major source of exposure to 82 

Ni for the general population is the food chain (Pandey and Srivastava 2000, Llamas 83 

and Sanz 2008). It usually enters the body via food and water consumption, although 84 

inhalation exposure in occupational settings is the primary route for Ni-induced toxicity 85 

(Ankel-Fuchs and Thauer 1988). Based on the average levels of Ni consumption 86 

through water (4.0-8.6 μg/day) and food (69.0-162.0 μg/day), the daily per oral intake 87 

of the metal was estimated to be 0.001-0.0024 mg/kg/day for an average adult human 88 

being weighing 70 kg (ATSDR 2005). Another source of non-occupational exposure to 89 

Ni is tobacco smoking, and each cigarette is estimated to contain 1.1-3.1 μg of Ni 90 

(Cempel and Nikel 2006). 91 

Although Ni is considered to be an essential micronutrient (Eisler 1998), it has a 92 

number of effects in the cell (Das 2009). It plays an important role in DNA, RNA and 93 

protein structure and/or function (Pandey and Srivastava 2000). Nickel also serves as a 94 

cofactor or a structural component of several metalloenzymes (Przybyla et al. 1992). 95 

Deficiency is rare due to a low level of requirement, and relatively high availability in 96 

the diet, but experiments have shown that at cellular levels Ni deprivation may result in 97 

changes in the membrane properties and other structures (Das and Dasgupta 1997, Das 98 

2009). On the contrary, high quantity of Ni is injurious for animal and human health 99 

(Pandey et al. 1999, Pandey and Srivastava 2000). More recently, several reports have 100 

showed that Ni is able to induce toxicological, physiological and histopathological 101 

alterations in a number of animal species (Pane et al. 2003, Bersenyi et al. 2004, Brix et 102 

al. 2004, Gupta et al. 2006, Krockova et al. 2011, Lukac et al. 2011). Soluble Ni 103 

compounds are likely to be human carcinogens (Costa 1991, Costa et al. 2005), and 104 
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toxic and/or carcinogenic effects of such Ni compounds may be associated with Ni-105 

mediated oxidative damage to DNA, proteins and inhibition of cellular antioxidant 106 

defences (Rodriguez et al. 1996). There is sufficient evidence that Ni ions (Ni2+) have 107 

potential toxic effects on the reproductive system (Das and Dasgupta 2000). Animal 108 

studies referred to the negative effects of Ni2+ on the structure and function of testis, 109 

seminal vesicles, prostate gland (Pandey et al. 1999, Forgacs et al. 2001, Massanyi et 110 

al. 2003, Massanyi et al. 2007, Zemanova et al. 2007), and spermatozoa concentration 111 

as well as motility (Das and Dasgupta 2000, Lukac et al. 2011). Nickel salts are also 112 

capable of inducing morphological changes such as, degeneration of testicular germinal 113 

epithelium (Benson et al. 1988, Pandey et al. 1999), testicular sarcomas as well as 114 

functional disorders including inhibition of spermatogenesis (Mathur et al. 1977, Yokio 115 

et al. 2003) and steroidogenesis (Das and Dasgupta 2002, Krockova et al. 2011). Such 116 

negative effects may ultimately lead to sterility (Massanyi et al. 2007).   117 

Steroidogenesis can be tested using a number of cell lines or primary culture with 118 

gonadal tissue, but the most widely used assay utilizes a human adrenocortical 119 

carcinoma (NCI-H295R) cell line. Such in vitro steroidogenesis screening assays are 120 

used to examine the impact of endocrine active chemicals/substances (EACs) capable of 121 

altering steroid biosynthesis (Ding et al. 2007, Fialkova et al. 2018). Progesterone, 122 

testosterone and estradiol are the main steroid hormones that play essential roles during 123 

the regulation of reproduction in vertebrates and are also involved in numerous other 124 

processes related to development and growth (Hecker and Giesy 2008). The present 125 

study investigated the effects of nickel chloride (NiCl2) on the viability and 126 

steroidogenesis of the NCI-H295R cell line. Specifically, we examined the dose-127 

dependent changes of NiCl2 as a potential endocrine disruptor in relation to the release 128 

of progesterone, testosterone and 17β-estradiol by NCI-H295R cell line in vitro. The 129 

NCI-H295R cell line was derived from H295 cells which were established from a 130 
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primary hormonally active adrenocortical carcinoma (Gazdar et al. 1990, Rainey et al. 131 

2004). This cell line has physiological characteristics of zonally undifferentiated human 132 

fetal adrenal cells (Staels et al. 1993, Harvey and Everett 2003), and represent an unique 133 

in vitro model system having the ability to produce all of the steroid hormones found in 134 

the adult adrenal cortex and the gonads, allowing testing the effects on both 135 

corticosteroid synthesis together with the production of sexual steroid hormones 136 

(Gazdar et al. 1990). Another advantage of the H295R cell bioassay is that it can be 137 

used to evaluate the enzymatic activities of steroidogenic genes (Hilscherova et al. 138 

2004). In fact, the NCI-H295R Steroidogenesis Assay has been included in the Tier1 139 

Screening Battery of the United States Environmental Protection Agency’s (EPA) 140 

Endocrine Disruptor Screening Program (EDSP). The test guideline of the H295R 141 

Steroidogenesis Assay (TG 456) has been further validated by the Organization for 142 

Economic Cooperation and Development (OECD 2011).  143 

 144 

Materials and Methods 145 

 146 

Cell culture 147 

The NCI-H295R cell line was obtained from the American Type Culture Collection 148 

(ATCC, Manassas, VA, USA). The cells were cultured in a Good Laboratory Practice 149 

(GLP) certified laboratory (National Institute of Chemical Safety, Budapest, Hungary; 150 

OGYI/31762-9/2010) according to previously established and specifically validated 151 

protocols (Hilscherova et al. 2004, Zhang et al. 2005, Hecker et al. 2006, Hecker and 152 

Giesy 2008, OECD 2011). 153 

After initiation of the NCI-H295R culture from the original ATCC batch, cells were 154 

cultured for five passages and these cells were split and frozen down in liquid nitrogen 155 

(-196ºC). The cells for the experiments were cultured for a minimum of five additional 156 
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passages using new NCI-H295R batches from frozen stocks prior to initiation of the 157 

exposure studies. The cells were grown in 75 cm2 plastic cell culture flasks (TPP 158 

Techno Plastic Products AG, Switzerland) in an incubator under standard conditions 159 

(37°C and 5.0% CO2 atmosphere). Subsequently, the cells were grown in a 1:1 mixture 160 

of Dulbecco's Modified Eagle's Medium and Ham's F-12 Nutrient mixture 161 

(DMEM/F12; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 1.2 g/l NaHCO3 162 

(Sigma-Aldrich, St. Louis, MO, USA), 5.0 ml/l of ITS+Premix (BD Bioscience, San 163 

Jose, CA, USA) and 12.5 ml/l of BD Nu-Serum (BD Bioscience, San Jose, CA, USA). 164 

The medium was changed 2-3 times per week and cells were detached from flasks for 165 

sub-culturing using sterile 0.25% trypsin-EDTA (Sigma-Aldrich, St. Louis, MO, USA). 166 

After trypsinization, cells were plated at the appropriate density to obtain 90-100% 167 

confluency. Cell density was determined using a hemocytometer (Fig. 1) and adjusted 168 

with culture medium to a final concentration of 300 000 cells/ml. The cell suspensions 169 

were plated (with final volume of 1.0 ml/well) into sterile plastic 24-well plates (TPP, 170 

Grainer, Germany) for estimation of sexual steroid hormones (50-60% confluency of 171 

cells). For cytotoxicity evaluation, the cells (100 µl/well) were seeded into 96-well 172 

plates (MTP, Grainer, Germany). The seeded plates were incubated at 37ºC and 5.0% 173 

CO2 atmosphere for 24 h to allow the cells to attach to the wells (Knazicka et al. 2013). 174 

 175 

In vitro exposure 176 

After 24 h attachment period, the cell culture medium was removed from the plates and 177 

replaced with a new medium supplemented with 3.90; 7.80; 15.60; 31.20; 62.50; 125; 178 

250 and 500 μM nickel chloride (NiCl2; ≥ 98%; Sigma-Aldrich, St. Louis, MO, USA), 179 

respectively. Cell cultures were set in 24 and 96-well plates (MTP, Grainer, Germany). 180 

Following treatment, the cells were maintained for 48 h. The experimental groups A - H 181 
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(exposed to different concentrations of NiCl2) with control group (Ctrl) (culture medium 182 

without NiCl2) were compared.  183 

 184 

Cell viability  185 

The viability of the cells exposed to NiCl2 was evaluated by the metabolic activity 186 

(MTT) assay (Mosmann 1983). This colorimetric assay measures the conversion of 187 

a yellow tetrazolium salt [3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 188 

i.e. MTT), to blue formazan particles by mitochondrial succinate dehydrogenase 189 

enzyme of intact mitochondria of living cells. Formazan was measured 190 

spectrophotometrically. Following the termination of NiCl2 exposure, the cells were 191 

stained with MTT (Sigma-Aldrich, St. Louis, MO, USA) at a final concentration of 0.2 192 

mg/ml. After 2 h incubation (37ºC, and 5.0% CO2 atmosphere), the cells and the 193 

formazan crystals were dissolved in 150 µl of acidified (0.08 M HCl) isopropanol 194 

(CentralChem, Bratislava, Slovak Republic). The absorbance was determined at 195 

a measuring wavelength of 570 nm against 620 nm as reference by a microplate reader 196 

(Anthos MultiRead 400, Austria). The data were expressed in percentage of the control 197 

group (i.e., absorbance of formazan from cells not exposed to NiCl2). 198 

 199 

Hormonal analysis 200 

At the end of 48 h NiCl2 exposure, the aliquots of the culture medium were removed 201 

from the 24-well cell culture plates and after centrifugation the supernatant was 202 

collected and frozen at -80ºC until sexual steroid hormones measurements. Enzyme 203 

linked immunosorbent assay (ELISA) was used for the quantification of progesterone, 204 

testosterone and 17β-estradiol (Dialab GmbH, Wiener Neudorf, Austria) directly from 205 

the aliquots of the medium. According to the manufacturer's data, the sensitivity of 206 

testosterone assay was 0.075 ng/ml, and the intra- and inter-assay coefficients of 207 
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variation were 4.6% and 7.5%, respectively. Cross-reactivity with 5α-208 

dihydrotestosterone was 16.0%. The sensitivity of progesterone assay was 0.05 ng/ml, 209 

and the intra- and inter-assay coefficients of variation were  4.0% and  9.3%, 210 

respectively. The intra- and inter-assay coefficients of variation for the 17β-estradiol 211 

assay were  9.0% and  10.0%, and the sensitivity was 8.68 pg/ml. The absorbance 212 

was determined at a wavelength 450 nm using a microplate reader (Anthos MultiRead 213 

400, Austria) and the data were evaluated by WinRead 2.30 computer software. Values 214 

were expressed in percentage of the untreated control (control groups served as 100%). 215 

Forscolin, prochloraz and aminoglutethimide (Sigma-Aldrich, St. Louis, MO, USA) 216 

dissolved in 0.1% DMSO were used as positive controls. 217 

 218 

Statistical analysis 219 

Obtained data were statistically analyzed using the PC program GraphPad Prism 3.02 220 

(GraphPad Software Incorporated, San Diego, California, USA). Descriptive statistical 221 

characteristics (arithmetic mean, minimum, maximum, standard deviation and 222 

coefficient of variation) were evaluated. Homogeneity of variance was assessed by 223 

Bartlett’s test. One-way analysis of variance (ANOVA) and the Dunnett’s multiple 224 

comparison tests were used for statistical evaluations. The level of significance was set 225 

at *** (P < 0.001); ** (P < 0.01) and * (P < 0.05). Three independent experiments were 226 

performed. 227 

 228 

Results 229 

 230 

Cell viability 231 

The cell viability remained relatively unaltered up to 125 μM (P > 0.05) and slightly 232 

decreased from 250 μM of NiCl2 (P < 0.05). The cytotoxic effect of NiCl2 (˂ 50%) was 233 
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very distinct (P < 0.01) in the group with the highest concentration (500 μM) of NiCl2 234 

(Fig. 2). 235 

 236 

Release of progesterone by human adrenocortical carcinoma (NCI-H295R) cell line 237 

Following 48 h culture of NCI-H295R cell line in the presence of NiCl2, a dose-238 

dependent depletion (P < 0.01) of progesterone release was observed in all the 239 

experimental groups, even at the lowest concentration (3.90 μM) of NiCl2 used in the 240 

study (19.56 ± 4.00 ng/ml). Lower levels of progesterone were detected in groups with 241 

higher doses (≥ 125 μM) of NiCl2 (P < 0.01) as shown in Table 1. In the control group, 242 

progesterone production (100%) was 21.05 ± 4.40 ng/ml. The percentage changes of 243 

progesterone release after NiCl2 exposure are presented in Fig. 3. 244 

 245 

Table 1. Effect of 48 h NiCl2 exposure on the release of progesterone (ng/ml) by human 246 

adrenocortical carcinoma (NCI-H295R) cell line. Abbreviations: x – arithmetic mean, 247 

±S.D. – standard deviation, CV (%) – coefficient of variation. The level of significance 248 

was set at *** (P ˂ 0.001), ** (P ˂ 0.01) and * (P ˂ 0.05). Ctrl – control group. 249 

 250 

Groups 

Control 3.90 7.80 15.60 31.20 62.50 125 250 500 

Ctrl H G F E D C B A 

NiCl2 (μM) 

X 21.05 19.56** 11.07** 10.59** 11.70** 9.93** 7.33** 6.18** 5.79** 

minimum 15.24 15.64 6.24 6.84 8.27 6.88 5.27 4.25 3.55 

maximum 28.25 24.12 14.25 15.26 14.85 14.49 10.58 8.18 7.58 

±S.D. 4.40 4.00 3.26 3.06 2.65 3.00 1.99 1.62 1.35 

CV (%) 20.91 20.46 29.48 28.96 22.96 30.24 27.15 26.13 23.41 

% 100.00 92.92 52.59 47.51 55.58 47.19 34.83 29.37 27.48 

 251 
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Release of testosterone by human adrenocortical carcinoma (NCI-H295R) cell line 252 

Testosterone production decreased significantly (P < 0.01) at all the concentrations of 253 

NiCl2 used in the study (Table 2). Furthermore, this decline was more prominent in 254 

comparison to that of progesterone. The lowest release of testosterone was (P < 0.01) 255 

noted at 125 μM of NiCl2 (1.22 ± 0.74 ng/ml) in comparison with control group (10.75 256 

± 3.45 ng/ml). The percentage changes of testosterone release after NiCl2 exposure are 257 

presented in Fig. 4. 258 

 259 

Table 2. Effect of 48 h NiCl2 exposure on the release of testosterone (ng/ml) by human 260 

adrenocortical carcinoma (NCI-H295R) cell line. Abbreviations: x – arithmetic mean, 261 

±S.D. – standard deviation, CV (%) – coefficient of variation. The level of significance 262 

was set at *** (P ˂ 0.001), ** (P ˂ 0.01) and * (P ˂ 0.05). Ctrl – control group. 263 

 264 

Groups 

Control 3.90 7.80 15.60 31.20 62.50 125 250 500 

Ctrl H G F E D C B A 

NiCl2 (μM) 

X  10.75 4.42** 3.18** 1.98** 4.96** 1.46** 1.22** 2.18** 1.86** 

minimum 6.54 2.12 1.84 0.48 3.02 0.27 0.25 0.88 0.57 

maximum 16.44 7.28 5.87 3.54 7.12 2.71 2.33 3.19 3.21 

±S.D. 3.45 2.02 1.47 1.18 1.71 0.90 0.74 0.89 1.07 

CV (%) 32.12 45.66 46.33 59.52 34.45 61.85 60.43 41.05 57.51 

% 100.00 41.10 29.55 18.41 46.14 13.53 11.30 20.23 17.26 

 265 

Release of 17β-estradiol by human adrenocortical carcinoma (NCI-H295R) cell line 266 

The 17β-estradiol production was substantially increased at low concentrations (3.90 to 267 

62.50 μM) of NiCl2. However, the increment was not statistically significant (P > 0.05) 268 

in comparison with control group (Fig. 5). The lowest release of 17β-estradiol by NCI-269 
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H295R cell line was recorded in groups with high concentrations (≥ 125 μM) of NiCl2, 270 

which released similar levels of 17β-estradiol (Table 3). 271 

 272 

Table 3. Effect of 48 h NiCl2 exposure on the release of 17β-estradiol (pg/ml) by human 273 

adrenocortical carcinoma (NCI-H295R) cell line. Abbreviations: x – arithmetic mean, 274 

±S.D. – standard deviation, CV (%) – coefficient of variation. The level of significance 275 

was set at *** (P ˂ 0.001), ** (P ˂ 0.01) and * (P ˂ 0.05). Ctrl – control group. 276 

 277 

Groups 

Control 3.90 7.80 15.60 31.20 62.50 125 250 500 

Ctrl H G F E D C B A 

NiCl2 (μM) 

X 1.10 1.69 2.08 1.66 1.42 1.34 0.89 0.86 0.91 

Minimum 0.74 0.94 1.02 0.80 0.84 0.94 0.64 0.76 0.51 

Maximum 1.68 2.88 2.57 2.39 2.78 2.51 1.30 1.05 1.06 

±S.D. 0.29 0.67 0.57 0.68 0.71 0.60 0.20 0.09 0.18 

CV (%) 26.32 39.86 27.57 41.23 49.90 45.05 21.87 10.49 20.35 

% 100.00 154.70 167.00 151.70 129.60 122.40 81.73 78.37 83.21 

 278 

 279 

Discussion 280 

 281 

Hormonal effects are believed to play an important role in the reproductive toxicology 282 

of Ni at both the neuroendocrine and gonadal levels in the hypothalamic-pituitary-283 

gonadal (HPG) axis (Forgacs et al. 2012). The effects of Ni on steroidogenesis have 284 

been described recently; however, the results vary depending on the experimental 285 

model, duration of exposure as well as the doses used. The present study on the impact 286 

of NiCl2 on the NCI-H295R cell line suggests a direct action of NiCl2 on the steroid-287 
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producing cells and subsequent changes in hormonal release. Nickel significantly 288 

decreased the release of progesterone and testosterone in the entire range of 289 

concentrations of NiCl2 used in the study whereas the cell viability remained relatively 290 

unaltered up to 125 μM (P > 0.05) and slightly decreased from 250 μM of NiCl2 (P < 291 

0.05). The cytotoxic effect of NiCl2 (˂ 50%) was evident (P < 0.01) in the group with 292 

the highest concentration (500 μM) of NiCl2. These results clearly confirm reports of 293 

Forgacs et al. (2011) and Ocztos et al. (2011), who observed similar effects of Ni2+, 294 

Hg2+ and Cd2+ on the release of progesterone and testosterone by NCI-H295R cell line. 295 

Using primary gonadal culture, these authors also confirmed that Ni2+ is able to disturb 296 

the sexual steroid production far below its cytotoxic concentration. Similar effects of 297 

other metals (cadmium, mercury, copper) have also been reported by our group from 298 

studies in the NCI-H295R cell line (Knazicka et al. 2013, 2015, Bilcikova et al. 2020). 299 

Earlier, Krockova and Massanyi (2010) reported a dose-dependent decrease in 300 

progesterone production by the Leydig cells at the highest concentration of 1000 μmol/l 301 

of NiCl2. Revesz et al. (2004) previously exposed human ovarian granulosa cells 302 

(obtained from women undergoing in vitro fertilization) to 15.60 to 1000 μM of Ni2+ for 303 

48 h in order to determine the site of action of Ni2+. The granulosa cells were stimulated 304 

to produce progesterone by using maximally stimulating amounts of human chorionic 305 

gonadotropin (0.10 IU/ml hCG) or dibutyryl cyclic adenosine monophosphate (1.00 306 

mM db-cAMP). Dose-dependent depression in both hCG and db-cAMP stimulated 307 

progesterone production was seen at 15.60 μM or higher concentration of Ni2+ which is 308 

not cytotoxic to human ovarian granulosa cells. The viability of cells remained 309 

unaffected up to 31.25 μM of Ni2+ and decreased significantly at 62.50 μM of Ni2+. 310 

Their data further indicated that the effect of Ni2+ on the progesterone production is not 311 

due to cytotoxicity, and the cellular site(s) of inhibitory action appears to be subsequent 312 

to the membrane receptor and production of db-cAMP. The inhibition of progesterone 313 
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secretion by granulosa cells (Roychoudhury et al. 2014a, 2015) or rat ovarian fragments 314 

(Roychoudhury et al. 2014b) were also induced by other metals. The effect of Ni2+ may 315 

be associated with its interactions with other essential divalent metal cations, blocking 316 

functional groups, displacing essential metal ions or modifying active conformation of 317 

biomolecules (Coogan et al. 1989). Ni2+ is known to inhibit calcium (Ca2+) channels. 318 

On the other hand, Ca2+ plays an important role in the regulation of progesterone 319 

production as shown in the rat granulosa cells (Tsang and Carnegie 1983). In addition, 320 

Ni has been demonstrated to alter the metabolic activity of microsomal monoxygenases, 321 

some of which are essential for steroid metabolism (Mattison et al. 1983). Thus, above 322 

mentioned findings could also participate in Ni-triggered alterations of progesterone 323 

release by NCI-H295R cell line.   324 

Our presented data showed that testosterone seemed to be more vulnerable than 325 

progesterone and 17β-estradiol to NiCl2 exposure suggesting multiple sites of action of 326 

this metal in steroidogenesis. Disorders of the testosterone synthesis could result in a 327 

reduced activity of the key enzymes involved in the biosynthesis of testosterone. Das 328 

and Dasgupta (2002) reported that nickel sulphate (NiSO4) affects steroidogenic 329 

enzymes (3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase) 330 

causing alterations in the testosterone formation in adult rat testes. In another study, 331 

Krockova et al. (2011) investigated the effects of NiCl2 on the testosterone secretion, 332 

cell viability and apoptosis in mouse Leydig cells in vitro. They demonstrated that 333 

NiCl2 decreased the testosterone production at a low dose (15.67 μmol/l) and 334 

subsequently confirmed Ni-induced structural and functional alterations in the Leydig 335 

cells. Testosterone production by mouse primary Leydig cells culture following an in 336 

vitro Ni2+ exposure (62.50 to 1000 μM) was also evaluated by Forgacs et al. (1998). 337 

Dose-dependent depression in hCG-stimulated testosterone production was found at ≥ 338 

125 μM or higher dose of Ni2+, while basal testosterone production remained 339 
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unaffected. They further showed the effect to be dose-dependent, and is not due to 340 

cytotoxicity. Previously, Laskey and Phelps (1991) examined the effect of Ni2+ and 341 

other metal cations (Co2+, Cu2+, Hg2+, Cd2+ and Zn2+) on in vitro Leydig cell 342 

testosterone production. The results showed no change in Leydig cell viability with any 343 

metal cation treatment during the 3 h incubation. Dose-response depression in both 344 

hCG- and db-cAMP-stimulated testosterone production was noted with Cd2+, Co2+, 345 

Cu2+, Hg2+, Ni2+ and Zn2+ treatment. Surprisingly, Cd2+, Co2+, Ni2+ and Zn2+ caused a 346 

depletion in hCG- and db-cAMP-stimulated testosterone production, also caused 347 

significant increases in 20α-hydroxycholesterol- and pregnenolone-stimulated 348 

testosterone production over untreated and similarly stimulated cultures. This indicates 349 

that these cations may act at multiple sites within the Leydig cells. Sun et al. (2003) 350 

studied the mechanisms of changes in the genital system caused by nickel sulfate 351 

(NiSO4) in male rats. They observed that the contents of testicular Ni were increased; 352 

however, the blood serum contents of testosterone, follicle-stimulating hormone (FSH) 353 

and luteinizing hormone (LH) were reduced. It was assumed that the Ni-induced genital 354 

system injury in male rats may be related to the decrease in the content of these 355 

hormones. 356 

The present study noted that the 17β-estradiol production was increased (although non-357 

significantly) at low concentrations (3.90 to 62.50 μM) of NiCl2 (P > 0.05). In 358 

agreement with our results, no significant changes were observed in serum estradiol 359 

levels in rats intraperitoneally injected with NiCl2 (4 mg/kg body weight) (Hfaiedh et al. 360 

2007). In the treated rats, demonstrably increased activity of testicular aromatase was 361 

also reported. Taking into account these considerations we presume that the 362 

considerably decreased levels of testosterone together with non-significant alterations in 363 

release of 17β-estradiol in the present study could be associated with higher aromatase 364 
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activity leading to stable estrogen levels as an adaptive response of NCI-H295R cell line 365 

to Ni exposure.  366 

As a metalloestrogen, Ni activates estrogen receptor-α (ERα) (Darbre 2006, Forgacs et 367 

al. 2012). Martin et al. (2003) examined the ability of metal ions to activate ERα in the 368 

human breast cancer cell line (MCF-7). Similar to estradiol, treatment of cells with Cu, 369 

Co, Ni, Pb, Hg, Sn, Cr or V stimulated cell proliferation. The metals also decreased the 370 

concentration of ERα protein and mRNA, and induced expression of the estrogen-371 

regulated genes, progesterone receptor and pS2. The ability of such metals to alter gene 372 

expression was blocked by an anti-estrogen, suggesting that their activity is probably 373 

mediated by ERα. The estrogenic potency of Ni was comparable to that of estradiol. 374 

Moreover, the cytotoxic effect of NiCl2 (˂ 50%) was evident (P < 0.01) in the group 375 

with the highest concentration (500 μM/ml) of NiCl2 used in the study. The cell 376 

viability remained relatively unaltered up to 125 μM (P > 0.05) and slightly decreased 377 

from 250 μM of NiCl2 (P < 0.05). Ng and Liu (1990) noted that Ni (1.0; 10.0 and 100 378 

µM of NiCl2.6H2O) and other metals tested (including PbCl2, ZnCl2, AlCl3, CrCl3, 379 

FeCl2 and LiCl) had no deleterious effect on viability and hormone-induced 380 

steroidogenesis of Leydig cells and the cells in the adrenal gland. 381 

 382 

Conclusion 383 

 384 

The results of the present study indicate the endocrine disruptive effect of NiCl2 on the 385 

release of sexual steroid hormones (progesterone and testosterone) in the human 386 

adrenocortical carcinoma (NCl-H295R) cell line even at low (minimum) concentrations. 387 

Testosterone release seemed more vulnerable whereas no detrimental effect of NiCl2 388 

could be seen at concentrations ≤ 62.50 µM of NiCl2 on 17β-estradiol production 389 

thereby suggesting multiple sites of action of this metal in the steroidogenic pathway. 390 



17 

 

Further research may clarify the precise molecular mechanism of action of NiCl2 on the 391 

sexual steroid production and their metabolites whose production is conditioned by the 392 

steroidogenic enzymes. 393 
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Figure 1. Monolayer of human adrenocortical carcinoma (NCI-H295R) cell line. 644 

Abbreviations: A – low density; B – high density (magnification 100x).  645 

 646 

Figure 2. The viability of NCI-H295R cell line in culture after 48 h of NiCl2 exposure. 647 

Abbreviations: The cytotoxicity was assessed using the MTT assay following NiCl2 648 

exposure. Each point represents the arithmetic mean (±S.D.) absorbance in % of 649 

(untreated) controls (Ctrl) determined in three independent experiments. The number of 650 

replicate wells was 22-32 at each point. A decline in absorbance reflects a decline in cell 651 

viability. The statistical difference between the values of Ctrl and treated cells was 652 

indicated by asterisks *** (P < 0.001); ** (P < 0.01) and * (P < 0.05) (One-way 653 

ANOVA with Dunnett’s multiple comparison test).  654 

 655 

Figure 3. Progesterone release (%) by NCI-H295R cell line in culture after 48 h of 656 

NiCl2 exposure. Abbreviations: Each point represents the arithmetic mean (±S.D.) 657 

progesterone % of (untreated) controls (Ctrl) determined of three repeated experiments. 658 

The number of replicate wells was 4-6 at each point per experiment. The statistical 659 

difference between the values of Ctrl and treated cells was indicated by asterisks *** (P 660 

˂ 0.001); ** (P ˂ 0.01) and * (P ˂ 0.05) (One-way ANOVA with Dunnett’s multiple 661 

comparison test).  662 

 663 

Figure 4. Testosterone release (%) by NCI-H295R cell line in culture after 48 h of 664 

NiCl2 exposure. Abbreviations: Each point represents the arithmetic mean (±S.D.) 665 

testosterone % of (untreated) controls (Ctrl) determined of three repeated experiments. 666 

The number of replicate wells was 6-10 at each point per experiment. The statistical 667 

difference between the values of Ctrl and treated cells was indicated by asterisks *** (P 668 
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˂ 0.001); ** (P ˂ 0.01) and * (P ˂ 0.05) (One-way ANOVA with Dunnett’s multiple 669 

comparison test).  670 

 671 

Figure 5. 17β-estradiol release (%) by NCI-H295R cell line in culture after 48 h of 672 

nickel chloride (NiCl2) exposure. Abbreviations: Each point represents the arithmetic 673 

mean (±S.D.) 17β-estradiol % of (untreated) controls (Ctrl) determined of three repeated 674 

experiments. The number of replicate wells was 6-12 at each point per experiment. No 675 

statistical difference between the values of Ctrl and treated cells was not recorded (P > 676 

0.05) (One-way ANOVA with Dunnett’s multiple comparison test).  677 
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