## SEMINÁŘ OTF

## **Avraham GAL**

The Hebrew University, Jerusalem

## Traces of $\Theta^+$ pentaquark in $K^+$ - nucleus dynamics

## **ABSTRACT**

Long-standing anomalies in  $K^+$ -nucleus integral cross sections could be resolved by extending the impulse-approximation  $t\rho$  optical-potential framework to incorporate  $K^+$  absorption on pairs of nucleons. Substantially improved fits to the data at  $p_{\text{lab}}\sim500\text{-}700$  MeV/c are obtained. An upper bound on the absorption cross section per nucleon is derived,  $\sigma_{\text{abs}}(K^+)/A \sim 3.5$  mb. We conjecture that the underlying microscopic absorption process is  $K^+nN \to \Theta^+N$ , where  $\Theta^+(1540)$  is the newly discovered exotic Y=2, I=0, Z=1 pentaquark baryon, and extimate that  $\sigma(K^+d\to\Theta^+p)$  is a fraction of milibarn. Comments are made on  $\Theta^+$  production reactions on nuclei.

Seminář se koná *výjimečně* v úterý 26. 04. 2005 ve 14:00 v zasedací místnosti ÚJF Řež

J. Hošek/otf