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Equity derivatives pricing
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With the equity derivatives market being a multiple of global
GDP, the availability of efficient pricing and hedging techniques
of derivatives (in particular European options) is essential for
financial intermediaries around the world.
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Fundamental question: How to model instantaneous stochas-
tic volatility consistently across all strikes and maturities?

Expiry

Figure 1: SPX Implied vol surface on 14/08/14. Figure 2: SPX ATM vol skew on 20/08/14.

B Model needs to reproduce empirical implied volatility sur-

face (Fig. 1)! Implied volatility: Volatility parameter o Vol skew: Let log-strike £ and time to maturity T,
ace (Fig. 1)!

needed in Black-Scholes formula in or- then:

OPTION PRICING
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B An important Proxy for the surface is given by the term der to match market or model price_ ¢(7_> _ _OBS(kp ,7_)

structure of the at-the-money (ATM) volatility skew (Fig. 2). ok k=0

Background on VIX

Two common problems

Diffusive stochastic volatility models commonly have two deficiencies:

. | o B Realized variance: w; 7 = ftT V.dS
B They lack a good agreement with market data under both the physical as well as the pricing measure.

B Forward variance: &(u) = Ey, for t < u may
In essence be observed in the markets via vari-
ance swaps.

Revelation: Volatility is rough B CBOE introduced volatility index

B They fail to reproduce the power-law behaviour of the volatilitly skew for small times to maturity (Fig. 2).

THEORY

There is strong empirical evidence that log realized volatility has Hoelder regularity much less than 1/2 (typically \/ 1
V]Xt ~

—Eiwi o n & /0y

around 0.1). This is a ubiquitous phenomenon observed across thousands of equities and indices [GJR14, A

BLP16]. Hence, model log-volatility as a fractional Brownian motion with Hurst parameter H < 1/2.

The rough Bergomi model Non-Markovianity resolved

For S; the S&P 500 Index, (Z, W) a two-dim. BM with d{Z, W) = p € (—1,1) and The instantaneous variance v; inherits non-Markovianity from fBM:
Riemann-Liouville fBm W given by W; = v2H fot(t — 5)H=12qW,, consider

§i(u) = Elvy | Fi] # Efvy | vy

R for u > t which is very bad from a simulation point of view. Fortunately,
v = &olt)€ (nWt) &:(u) may be observed in the market (via variance swaps).

. Simulation results

%’V’ Figure 3: SPX smiles Rough Bergomi achieves a fantastic fit to real data! It captures
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represent bid and

,L g.\r ; offer SPX implied B the geometry of SPX smiles (Fig. 3)
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B the SPX ATM implied volatility term structure

EMPIRICS
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Two ongoing projects in rough vol framework

B Development of small-time asymptotic formulae for the implied volatility term structure etc. (with A. Gulisashvili (Ohio) and B. Horvath (Imperial))

B A novel pricing algorithm via the theory of regularity structures (with P. Gassiat (Dauphine) and J. Martin (Berlin))
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