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Summary 

Chronic kidney disease (CKD) leads to profound metabolic and hemodynamic 

changes, which damage other organs, such as heart and brain. The brain 

abnormalities and cognitive deficit progress with the severity of the CKD and 

are mostly expressed among hemodialysis patients. They have great socio-

economic impact. In this review, we present the current knowledge of involved 

mechanisms. 
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Introduction 

„Insidious” is an adjective that in a simple way describes many complications of 

chronic kidney disease (CKD). CKD leads to profound metabolic and 

hemodynamic changes, that damage other organs, such as heart and brain. CKD 

is defined as a decreased kidney function shown by glomerular filtration rate of 

less than 60 mL/min per 1.73 m2, or markers of kidney damage, or both, of at 

least 3 months duration (Webster et al. 2017).  

       CKD is an emerging problem. In Europe, it affects between 3.3% 

and 17.3% (Bruck et al. 2016) and its prevalence tends to increase (Hill et al. 

2016). This occurs especially due to increased prevalence of two main causes of 

renal failure: diabetes mellitus and arterial hypertension (Jha et al. 2013). The 

progression of the disease is slow, but gradual decline of the kidney function 

can lead to renal failure and necessity to initiate renal replacement therapy.  

       Cardiovascular and neurological CKD complications bring most morbidity 

and mortality. Stroke is the second leading cause of death worldwide (Masson 

et al. 2015). Among the CKD patients its incidence is 5–30 times higher 

(Nayak-Rao and Shenoy 2017) than in non-CKD population and is strongly 

associated with higher prevalence of atrial fibrillation, especially after the 

initiation of dialysis (Reinecke et al. 2009). Also, as the glomerular filtration 

declines, the kidneys are unable to eliminate all uremic metabolites. Retention 

of neurotoxins leads to neuronal damage and to uremic encephalopathy 

(Bugnicourt et al. 2013). The symptoms range from mild cognitive impairment 
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to severe symptoms such as seizures and coma (McQuillan and Jassal 2010).  

       Uremic toxins, anemia, oxidative stress, inflammation and 

hyperhomocysteinemia are the non-traditional cardiovascular risk factors 

specific to CKD. They contribute to vascular injury along with traditional 

cardiovascular risk factors such as arterial hypertension, smoking and diabetes 

(Brouns and De Deyn 2004; Malyszko 2010), causing endothelial dysfunction 

and thus acceleration of atherosclerosis (Arnold et al. 2016; Malyszko 2010) 

that affects also cerebral arteries. These risk factors play a significant role in the 

development of dementia (Arnold et al. 2016). Cognitive impairment of any 

level affects up to 80% of CKD patients (Krishnan and Kiernan 2009). As the 

cognition worsens, the quality of patient´s and his/her relatives’ lives decline 

and mortality increases (Griva et al. 2010). Socioeconomic impact of central 

nervous system (CNS) impairment is profound. 

       In end stage renal disease (ESRD), renal replacement therapy is necessary 

for survival. Hemodialysis (HD) is the most frequent method. On the other 

hand, HD per se has many effects on the CNS. The dialysis disequilibrium 

syndrome is one of the most menacing and still poorly understood condition 

(Zepeda-Orozco and Quigley 2012). Prevalence of dementia among HD patients 

is more than three times higher than in non-dialysis population aged ≥ 65 years 

(Murray et al. 2006). Cognitive impairment is positively correlated with HD 

duration (and also positively correlated with age of the patient and negatively 

correlated with years of education as in the general population) (Gesualdo et al. 



5 
 

2017). Although many mechanisms have probably not been revealed, the 

presence of ESRD and the hemodialysis therapy itself have strong detrimental 

effects on the brain (Etgen et al. 2012). These effects often prevail over other 

mechanisms, such as hypertension or diabetes mellitus. 

       The etiology of CNS changes in CKD patients is complex and the 

understanding of them is the first step in their prevention and therapy. The aim 

of this manuscript is to review known mechanisms and methods necessary for 

understanding these changes, their causes, and their impact.  

Cognitive impairment  

General population 

By definition, cognitive impairment is present when there is evidence of decline 

in one or more of the following domains: memory, executive functioning, 

attention, speed of information processing, perceptual motor ability, or language 

(Van Sandwijk et al. 2016). Some degree of cognitive slowing is, however, 

typical of normal aging. Dementia is diagnosed when acquired cognitive 

impairment has become severe enough to compromise social and/or 

occupational functioning. The most common types of dementia are Alzheimer’s 

disease, vascular dementia, Lewy body dementia and frontotemporal dementia. 

These conditions and others, such as Parkinson’s disease, Huntington’s disease, 

Creutzfeldt-Jakob’s disease, and Pick’s disease lead to progressive irreversible 

dementia. Among conditions which can lead to reversible dementia are brain 
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tumors, head injuries, metabolic changes, nutritional deficiencies, chronic 

alcohol abuse and many others (Tripathi and Vibha 2009). Mild cognitive 

impairment (MCI) is an intermediate state between normal cognition and 

dementia, with essentially preserved functional abilities (Hugo and Ganguli 

2014). 

       Prevalence of dementia increases exponentially with increasing age, and 

doubles with every five years of age after the age of 65. In higher income 

countries, its prevalence is 5–10% in patients aged 65 years and more and 

affects more frequently women than men. The prevalence of MCI is at this point 

difficult to determine as it depends on the precise definitions and subtypes of 

MCI being studied (Hugo and Ganguli 2014). 

       To diagnose these entities, clinicians use a standardized framework such as 

the fifth edition of the American Psychiatric Association’s Diagnostic and 

Statistical Manual (DSM-5). In accordance with the terminology of DSM-5, 

Major Neurocognitive Disorder corresponds to dementia and Mild 

Neurocognitive Disorder corresponds to MCI. The substantial (in the case of 

dementia) or modest (in the case of MCI) impairment should be both observed 

by clinician or a reliable informant and documented by objective cognitive 

assessment (Association 2013). 

       The worldwide number of persons affected by dementia and MCI is 

increasing (Fratiglioni and Qiu 2011). In contrast to dementia, MCI does not 

interfere notably with activities of daily life, but its diagnosis permits early 
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identification of high-risk patients. This opens a potentially larger therapeutic 

window and increases the significance of identification, diagnosis and treatment 

of modifiable risk factors (Fratiglioni and Qiu 2011). CKD is one of them. 

Chronic kidney disease 

CKD appears to be a significant and independent somatic risk factor for the 

development of cognitive decline. The prevalence of MCI is estimated to be 7-

26% in general population. The prevalence of MCI in patients with advanced 

CKD (stages 4 and 5) is 16-38% (Viggiano et al. 2020). Hemodialysis patients 

have even higher prevalence of MCI: “26-60%” (Viggiano et al. 2020). 

       A meta-analysis comprising 54,779 participants revealed increased risk of 

MCI with the gradual decreasing estimated glomerular filtration rate (eGFR), 

i.e. with the severity of CKD (Etgen et al. 2012). In general, pre-dialysis and 

pre-transplant occurrence of cognitive deficit is relatively modest in well cared 

for, dementia- and stroke-free community samples (Elias et al. 2013), but 

among patients that reach ESRD, the rates of dementia are already 

approximately three times higher than in age-matched general population 

(Tamura and Yaffe 2011). 

Renal replacement methods 

Renal replacement methods include HD, peritoneal dialysis (PD) and kidney 

transplantation. HD is most frequent. Up to 70% of HD patients aged 55 and 

older suffer from moderate to severe chronic cognitive impairment (Murray 
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2008). Cognitive decline is faster in HD patients compared to non-dialysis 

patients with advanced CKD. Cognitive functions also deteriorates faster in HD 

patients compared to PD patients. (Iyasere et al. 2017). Why is the cognitive 

impairment the greatest in patients treated with HD?  

       One explanation is in the levels of the uremic toxins, small molecules, 

which concentrations rise with decreasing kidney function. Indoxyl-sulfate, p-

cresyl sulfate, asymmetric and symmetric dimethylarginine (SDMA, ADMA) 

and trimethylamine N-oxide (TMAO) are examples (Stubbs et al. 2016; Oliva-

Damaso et al. 2019; Dobrian 2012; Liu et al. 2018c). The blood concentration 

of asymmetric dimethylarginine (ADMA, a small water-soluble uremic toxin) 

was increased in CKD patients approximately 2 to 8-fold, more in HD than in 

PD patients (Vanholder et al. 2003). ADMA is an endogenous inhibitor of nitric 

oxide synthase, so its increased levels lead to endothelial dysfunction. Higher 

serum levels of another toxin, indol-3 acetic acid, were associated with 

cognitive impairment (Lin et al. 2019). The small uremic toxins could easily 

cross the blood-brain barrier and their increased serum levels would probably 

drive such crossing. 

       Modern HD provides better clearance of large solutes and protein-bound 

solutes than PD (Meyer and Hostetter 2014). However, the plasma levels of 

protein-bound uremic toxins were lower in PD patients compared to HD 

patients (Lameire et al. 2001; Vanholder et al. 2009). The plasma concentration 

of glycation free adducts is increased 18-fold in PD patients and 40-fold in HD 
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patients (Lisowska-Myjak 2014). This might be explained due to better residual 

kidney function among PD patients (Pham et al. 2008; Lee et al. 2010a). Other 

possible explanation is in the change of the intestinal microbiome in HD 

patients and increased production of toxins (Vanholder et al. 2009). 

       Additional possible mechanism, by which conventional HD can contribute 

to cognitive decline, is intradialytic hypotension that affects especially anuric 

patients and subjects with increased arterial stiffness and heart failure (Malik 

2018). The changes of blood pressure can cause episodes of acute cerebral 

ischemia. However, blood pressure per se is a poor predictor of cerebral 

ischemia. This is because of variable lower limits of cerebral autoregulation and 

varying ability to increase oxygen extraction (MacEwen et al. 2017). 

       Hemodialysis sessions also bring the risk of states of acute cognitive 

decline – i.e. delirium, which, although reversible, often have a negative impact 

on long-term cognitive performance (Murray 2008). The cause of delirium is 

probably due to electrolyte disbalances, that occur during dialysis (Yasui-

Furukori et al. 2017).  

       Cognitive performance improves after kidney transplantation (Gupta et al. 

2016; Findlay et al. 2019; Joshee et al. 2018). However, cognition of these post-

transplanted patients remains worse when compared to a healthy group. Some 

of the cognitive functions such as attention, executive functions, verbal fluency 

and language do not improve at all (Joshee et al. 2018).  
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Cerebral oxygenation and blood flow 

Determinants and measurement of cerebral oxygenation and 

cerebral blood flow  

The brain has a remarkably high metabolic rate – it utilizes approximately 50 

mL of oxygen per minute, which equals 20 % of the total oxygen consumption 

of the human body at rest. Most of the energy is used for maintaining the ion 

homeostasis with sodium-potassium ATPase, proteosynthesis and synthesis of 

neurotransmitters. The brain, therefore, depends on aerobic metabolism and on 

glucose and oxygen supply. This makes it very vulnerable to hypoxia, and the 

metabolic demand of the tissue is one of the factors that affect the cerebral 

blood flow (CBF). The main determinants of cerebral oxygenation (CrSO2) are 

arterial oxygen concentration, blood oxygen carrying capacity (hemoglobin 

concentration), cerebral blood flow and cerebral oxygen consumption. 

Traditional determinants of cerebral energy metabolism are cerebral metabolic 

rate of oxygen (CMRO2), CBF and venous blood oxygenation (Catchlove et al. 

2018). A novel method of measuring brain tissue oxygenation is near-infrared 

spectroscopy (NIRS). It employs a non-invasive transcutaneous approach. The 

resulting value, regional oxygen saturation (rSO2), combines venous, arterial, 

and microcirculatory oxygen saturation. This method is widely used for 

monitoring in intensive care units or during anesthesia (Moerman and Wouters 

2010).  
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General population 

CBF is about 50 mL/100 g/min at birth, peaks around the age of 5 with average 

value of 70 mL/100 g/min (Tasker 2013). Then CBF slowly decreases to the 

normal average adult value of 50 mL/100 g/min, reaching it at around 19 years 

of age (Lassen 1985; Tasker 2013).The average CBF of the white matter is 

approximately 20 mL/100 g/min, perfusion of the grey matter is higher, about 

80 mL/100 g/min (Vavilala et al. 2002). During healthy aging the CBF 

progressively decreases, mainly in cortical regions (Chen et al. 2011). 

Decreased brain metabolism (Leenders et al. 1990), elevation of the blood 

pressure (Tarumi and Zhang 2018) and/or pathologic changes of brain vessels 

could be the underlying causes (Wagner et al. 2012). 

       A recent study (Catchlove et al. 2018) reported higher oxygen extraction 

rate in older subjects with no age-dependent change in CMRO2; this finding 

suggests that there is certain disproportion between oxygen demands and supply 

in the brain in elderly population 

Chronic kidney disease 

Recent studies have shown that patients with CKD have significantly lower 

cerebral oxygenation when measured by the non-invasive near-infrared 

spectroscopy (NIRS) (Malik et al. 2016; Prohovnik et al. 2007; Ito et al. 2015; 

Hoshino et al. 2014) than the healthy population; the results are summarized in 

Table 1. Patients treated with HD have even lower regional oxygen saturation 
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(rSO2) than patients treated with PD (Papadopoulos et al. 2013). There is no 

significant difference in rSO2 before vs. after hemodialysis session (Hoshino et 

al. 2014; Valerianova et al. 2019). However, brain oxygenation is not stable 

during hemodialysis; our previous study showed that rSO2 values drop after the 

beginning of hemodialysis and reach their minimum in 35th minute (Malik et al. 

2016). Furthermore, CBF can decline by 10-15% during hemodialysis cycle 

(Polinder-Bos et al. 2018). These hemodynamic changes occurring during fast 

fluid removal could be responsible for brain hypoxia (Malik et al. 2016) and 

participate on cognitive decline. 

       Lower rSO2 is independently associated with higher pH, longer HD 

duration and lower serum albumin concentration, rSO2 is also lower in patients 

with diabetes mellitus (Ito et al. 2015) and heart failure (Valerianova et al. 

2019). Decrease of pH induces dilation of cerebral arteries (Kontos et al. 1977) 

resulting in cerebral blood flow increase. The association of rSO2 with changes 

of pH could thus be explained by changes in oxygen delivery (Ito et al. 2015).  

       Prohovnik et al. (2007) reported lower rSO2 and lower cerebral blood flow 

in ESRD patients before HD. CBF declined to 60% of its normal level during 

interdialytic interval and was once again restored by HD procedure. The recent 

study demonstrated that lower eGFR was associated with lower CBF (Sedaghat 

et al. 2016). This could be due to impaired cerebral autoregulation and/or 

accumulation of vasoactive substances, such as ADMA, what can lead to 

vasoconstriction of cerebral vessels (Sedaghat et al. 2016; Zoccali et al. 2002).  
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        Nonetheless, not all studies are in accordance with these observations. 

Some observed increased and not decreased CBF in CKD patients, both in non-

dialysis (Jiang et al. 2016; Tamura et al. 2016) and in those undergoing the 

dialysis treatment (Vorstrup et al. 1992; Mathew et al. 1985; Jiang et al. 2016; 

Cheng et al. 2019). Increased CBF is most likely the result of decreased oxygen 

carrying capacity of the blood due to anemia (Liu et al. 2018b). This 

explanation is supported by CBF correction after anemia treatment (Hirakata et 

al. 1992). Other possible explanation includes impaired cerebrovascular 

autoregulation (Tamura et al. 2016). Alternatively, the brain “overperfusion” 

could be just a presentation of hyperkinetic circulation typical for CKD patients 

because of water retention, anemia and arteriovenous access (Malik 2018). 

       Both cerebral hypoperfusion and hyperperfusion could contribute to brain 

damage. The former can cause ischemia and the latter can be involved in the 

disruption of the blood brain barrier (BBB) and subsequent white matter (WM) 

degeneration (Mansour et al. 2019). 

Blood brain barrier 

Physiology of the blood brain barrier 

The human brain weighs approximately 2 % of the body mass, but receives 12-

15 % of the cardiac output at rest (Williams and Leggett 1989). This 

disproportion demonstrates that the brain is a highly perfused organ, immensely 

dependent on the supply of nutrients and oxygen. The function of the blood 
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brain barrier (BBB) (Fig.1) is to maintain the CNS microenvironment stable and 

to prevent the entry of neurotoxic metabolites, blood cells and pathogens 

(Daneman and Prat 2015). 

       The BBB is formed by the endothelial cells, pericytes, astrocyte end-feet, 

interneurons and immune cells. Endothelial cells are the core component. They 

possess specific attributes that ensure BBB integrity and homeostasis. Unlike 

other parts of the human body, the capillaries here are non-fenestrated and the 

adjacent cells are sealed together by protein complexes forming the tight 

junctions (Fig.1). Endothelial cells have low pinocytic activity, which 

significantly reduces the vesicle-mediated transcellular passage of the molecules 

through the BBB (Engelhardt and Liebner 2014). However, endothelial cells 

possess high amount of specific transporters that regulate the transcellular influx 

of nutrients and ensure the efflux of waste products (Stamatovic et al. 2008). 

Higher concentration of mitochondria within endothelial cells provides energy 

for transporters and the maintaining of CNS homeostasis (Daneman and Prat 

2015).  

       The extraluminal surface of the endothelial cells is surrounded by a 

vascular basement membrane. It is an extracellular network of proteins secreted 

by the endothelial cells, pericytes and astrocytes (Hallmann et al. 2005; 

Daneman and Prat 2015). Pericytes (Fig.1), embedded in the basement 

membrane, are cells that incompletely cover the abluminal surface of the blood 

vessels. They communicate with adjacent cells by both direct physical contact 
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and paracrine signaling, and thus they participate in BBB regulation (Liu et al. 

2012). 

       Astrocytes (Fig.1) represent the supporting cells of the CNS. These 

specialized glial cells have foot-like extensions of their cell membranes, called 

end-feet. The end-feet ensheath both the endothelial cells and the neuronal 

processes. Therefore, astrocytes serve as a „bridge”, physically and functionally 

connecting the neurons and vessels (Liu et al. 2018a). 

       These structures, along with neurons, interneurons and immune cells 

(microglia and perivascular macrophages), form a dynamic multicellular 

structure called the neurovascular unit (Sharif et al. 2018) (Fig.1). The complex 

interaction within results in a highly effective system, essential for the normal 

function of the brain (Netto et al. 2018). Disruption of the neurovascular unit on 

any level could have direct consequences on neuronal functions (Keaney and 

Campbell 2015). Disruption of the BBB is associated with numerous diseases, 

such as ischemic stroke, epilepsy and neurodegenerative disorders (Palmer 

2010; Obermeier et al. 2013). 

Chronic kidney disease and blood brain barrier  

The data about the association of BBB disruption and CKD is limited. 

Mice model of CKD was developed to study BBB integrity and behavioral 

abnormalities (Mazumder et al. 2016). Albumin-bound Evans blue was 

administered to the mice circulation and later observed in the brain parenchyma 
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due to BBB disruption. Moreover, the mice with CKD presented psychomotor 

and behavioral abnormalities. Other animal model study showed erosion of the 

tight-junction proteins among uremic CKD rats (Jing et al. 2018). Urea in 

concentration like in dialysis patients damaged the actin cytoskeleton and 

decreased expression of claudin-5 (protein of tight junctions) (Lau et al. 2020). 

       However, uremia is not the only factor that can damage BBB. Various 

CKD-associated comorbidities causing systemic inflammation (such as arterial 

hypertension, type 2 diabetes, dyslipidemia) and chronic cerebral hypoperfusion 

can be involved in the process (Varatharaj and Galea 2017; Setiadi et al. 2018; 

Malkiewicz et al. 2019; Ueno et al. 2002). Increased permeability of the BBB 

allows infiltration of noxious agents, cytokines and immune cells into CNS 

(Jabbari and Vaziri 2018; Malkiewicz et al. 2019) what can contribute to 

neuroinflammation. Dysfunction of the neurovascular unit could impair CBF 

autoregulation, lead to reduction in CBF and cause ischemic injury (Iadecola 

2017). Jin M. et al. (2020) reported neurovascular coupling impairments in HD 

patients. Furthermore, dysfunction of the neurovascular unit can decrease 

production of trophic factors by neurovascular unit cells and alter clearance of 

neurotoxic molecules and some proteins, such as β amyloid and tau protein 

(Iadecola 2017).            

       Accumulated uremic toxins in the brain inhibit brain-blood efflux 

transporter (Organic anion transporter 3). This transporter provides efflux of 

indoxyl sulfate (possibly some other uremic toxins such as: hippuric acid and 3-
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Carboxy-4-methyl-5-propyl-2-furanpropionate, indoleacetate) and 

neurotransmitter metabolites (Ohtsuki et al. 2002; Deguchi et al. 2006). The 

cerebrospinal fluid-blood efflux transporter (Organic cation transporter 3) is 

also inhibited by increased concentrations of uremic toxins in brain. This 

transporter provides efflux of creatinine (Hosoya and Tachikawa 2011).  

       Some guanidino compounds can activate glutamatergic pathways and are 

involved in GABAergic inhibition (De Deyn et al. 2001). This pathological 

process, excitotoxicity, can lead to nerve cell death. Indoxyl sulfate induces 

oxidative stress and inflammatory mediators in glial cells. Indoxyl sulfate also 

alters function of glial cells (astrocytes and mixed glial cells) and increases 

production of various cytokines and pro-inflammatory enzymes with toxic 

effect on CNS (Adesso et al. 2017). Methylguanidine contributes to 

neurodegeneration most likely via alteration in mitochondrial calcium 

homeostasis and pro-apoptotic effect of H2O2 in astrocytes (Marzocco et al. 

2010). Quinolinic acid (uremic toxin and brain endogenous excitotoxin) is a 

neurotoxin, proinflammatory mediator and alters the BBB integrity (Ting et al. 

2009; Guillemin 2012). Moreover, quinolinic acid is a gliotoxin and can induce 

astrocyte apoptosis via excessive stimulation of N-methyl-D-aspartate receptors 

(NMDARs) (Lee et al. 2010b). The increase of neurotransmitter metabolites in 

the brain impairs metabolism of neurotransmitters and causes accumulation of 

neurotoxic intermediate metabolites (Ohtsuki et al. 2002). 

       The deficits in cholinergic function is associated with cognitive decline. In 
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a recent study, the activity of the acetylcholinesterase was globally reduced in 

the brain of the CKD mice (Mazumder et al. 2019) Furthermore, the study 

reported reduction of neuronal arborization in hippocampus and loss of 

dendritic spines in the cortex and hippocampus. CKD mice had increased 

superoxide dismutase activity and decreased catalase activity (markers of 

oxidative stress) in the cortex and hippocampus. The study also showed 

mitochondrial dysfunction and increase in reactive glial cells (indicator of 

inflammation). Increase of inflammation and oxidative stress can be an 

explanation for reduced acetylcholinesterase activity, loss of dendritic 

arborization and spines, and cognitive decline observed in these mice 

(Mazumder et al. 2019). 

 Structural brain changes and imaging methods 

CKD can affect brain structure on many levels and the morphologic alterations 

can be both acute and chronic. The most valuable method to assess the cerebral 

changes is magnetic resonance imaging (MRI). However, imaging modality of 

choice in the acute setting is computed tomography (CT). The advantages of CT 

include shorter scanning time, better availability and lower cost. 

       Freedman et al. 2017, performed MRI structural analysis of the brain in the 

early stages of CKD caused by type 2 diabetes mellitus. The mildly higher urine 

albumin-creatine ratio and lower eGFR correlated with decreased gray matter 

(GM) volume. White matter (WM) lesions volume were increased, which was 
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associated with the cerebral microvascular disease. The CKD patients had 

poorer digit symbol coding performance. These findings suggest that the 

structural brain changes begin in the early stages of the CKD and affect 

cognition. Several other studies associated reduced kidney function with smaller 

GM volume (Tsuruya and Yoshida 2018) and higher WM disease burden (Sink 

et al. 2015; Tamura et al. 2016; Khatri et al. 2007). Decreased GM volume (in 

bilateral medial orbito-prefrontal cortex, left middle temporal gyrus, left dorsal 

lateral prefrontal cortex and right dorsal lateral prefrontal cortex) of the ESRD 

patients was related to the functional brain deficits. Regions with GM volume 

reduction had altered functional connectivity with other brain regions (Qiu et al. 

2014).        

       Tract based spatial statistics of the diffusion tensor imaging (an advanced 

MRI technique) has allowed visualization of the structural interconnectivity of 

the WM tracts by measurement of anisotropic diffusion of water. ESRD patients 

had lower fractional anisotropy and increased mean (Drew et al. 2017; Kong et 

al. 2014) and radial diffusivity (Zhang et al. 2015; Chou et al. 2013; Yin et al. 

2018). These findings can be interpreted as the loss of the WM integrity, 

demyelination and diffuse interstitial brain edema. 

       Silent brain infarction (SBI) (Fig. 2) is characterized as a cerebral infarction 

detected by imaging method, but without clinical correlate. Shima et. al. (2011) 

reported SBI in 31.8% of predialysis CKD patients. Their typical localization is 

in the deep brain structures (Kobayashi et al. 2009; Kobayashi et al. 2004; 
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Shima et al. 2011). Likewise, the prevalence of the brain microhemorrhages 

(Fig. 2) is higher among CKD population (Vemuri et al. 2017). These are 

presumably caused by structural abnormalities of the small vessels and are 

typically found infratentorially and in the deep brain regions (Ovbiagele et al. 

2013; Peng et al. 2016). Both cerebral microbleeds and silent brain infarction 

are associated with increased risk of stroke and their incidence rises with the 

progression of the CKD. (Akoudad et al. 2015; Kobayashi et al. 2009; Shima et 

al. 2011; Shima et al. 2016). 

       Xiao L. et al. investigated the relationship between chronic kidney disease 

and enlarged perivascular spaces (Fig. 2) using the FLAIR MRI sequence. As 

the eGFR decreased, the severity of the enlarged perivascular spaces increased 

together with the cerebral small vessel disease (Xiao et al. 2015). 

     In summary, it is possible to detect cerebral structural changes from the early 

stages of the CKD, both in the GM and the WM. Brain abnormalities and 

cognitive deficit progress with the severity of the CKD and are most expressed 

among hemodialyzed patients (Pi et al. 2016). The neurocognitive decline is 

most likely a result of the WM damage (Fig.2), reflecting small vessel disease 

(Vogels et al. 2012; Wada et al. 2008; Knopman et al. 2008). Integrity of WM 

tract, structural and functional connectivity of brain networks and cognitive 

performance can improve after renal transplantation (Gupta et al. 2016; Findlay 

et al. 2019; Chen et al. 2020; Joshee et al. 2018). 
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Conclusion 

Structural and functional brain changes can be observed since the early stages of 

CKD and the executive functions are affected first. The cognitive decline has 

progressive character, can eventually lead to dementia and is positively 

correlated with renal functions. The presence of ESRD and the hemodialysis 

therapy itself have detrimental effects on the brain, probably stronger than the 

general risk factors (Etgen et al. 2012). 

     Increased levels of pro-inflammatory cytokines, increased oxidative stress 

and other traditional and non-traditional vascular risk factors (which can be 

accented in CKD) accelerate CNS damage through vascular endothelial 

dysfunction. Findings on imaging methods confirm this hypothesis. The 

hallmark of CKD is degeneration and damage of WM, thus findings typical for 

vascular dementia. The BBB dysfunction can be the starting point of the WM 

lesions (Huang et al. 2018). 

     Increased levels of some uremic toxins have neurotoxic and/or gliotoxic 

effect and can contribute to brain damage. Other factors, known from the 

general population, such as education level, depression, psychiatric diseases, 

sleep disturbances, polypharmacy, malnutrition and superimposed 

neurodegenerative diseases could also alter cognitive functions of these patients.  
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Table 1. Results of the cerebral oxygenation in chronic kidney disease patients, 

measured by NIRS. 

 

  

Author Year Patients ESRD group Control group p-value 

Ito et al. 2015 54 50 ± 2 % 69 ± 2 % ˂ 0.001 

Hoshino et al. 2014 18 56 ± 1 % 70 ± 3 % ˂ 0.001 

Malik et al. 2016 27 52 ± 11 % 68 ± 7 % ˂ 0.0001 

Prohovnik et al. 2007 7 41 ± 13 % 70 ± 2 % ˂ 0.01 
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Figures 

Figure 1: Neurovascular unit. 

Figure 2: Structural brain changes 

 

 

 

 

Figure 1. Neurovascular unit 

1. Endothelial cells (EC) regulate the movement of the molecules, ions and cells through the BBB.  

2. Tight junctions of the EC limit the paracellular movement (passive diffusion) and cause 

polarization of the EC, what is necessary for the molecular transport in a polarized manner. 3. 

Vascular basement membrane provides additional barrier, maintains the integration of the 

endothelial cells with pericytes and astrocytes. Also, vascular basement membrane ensures cell-cell 

and cell-matrix interactions.  

4. Pericytes participate in the formation of the BBB during embryogenesis. Their contractive ability 

allows them to regulate blood flow at the capillary level. Other functions are: regulation of an 

angiogenesis, vascular stability, stem cell like activity and macrophage-like phagocytosis. 5. 

Astrocytes coordinates cerebral blood flow. Also, the astrocytes have many functions related to the 

maintenance of the neural microenviroment, such as the management of the extracellular pH, water 

transport, osmotic balance and antioxidant system. 6. Immune cells have two main populations in the 

CNS. Perivascular macrophages serve as phagocytes, providing first line immunity. Microglial 

cells, besides phagocytosis, participate in pro-inflammatory response as well as in the neurotrophic 
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pathways.  

7. Neurons detect altered concentrations of the oxygen and nutrients. Neurons transmit signal to 

vessels through interneurons and astrocytes, influencing the vascular response depending on supply 

requirements. 

 

 

 

Figure 2. Structural brain changes 

Source: Department of Radiology, Faculty hospital Kralovske Vinohrady 

(Images are only an illustration of the common pathologies among CKD patients) 

A. FLAIR T2WI MRI, chronic lacunar infarction - low intensity lesion with hyperintense rim of 

gliosis in the right lobe (basal ganglia) B. FLAIR T2WI MRI, degeneration and gliosis of the white 

matter appear as extensive periventricular hyperintense lesions C. T2WI MRI, enlarged perivascular 

spaces D. SWI MRI, cerebral microbleeds - small areas of signal loss 
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List of abbreviations                                           

Abbreviation    

ADMA  

BBB                          

CBF                          

CKD 

CMRO2 

CNS 

CrSO2 

CT 

DSM-5 

 

eGFR 

GM 

ESRD 

HD 

MCI 

MRI 

NIRS 

PD 

rSO2 

SBI 

WM 

 

 

 

 

 

 

Meaning 

Asymmetric dimethylarginine         

Blood brain barrier 

Cerebral blood flow 

Chronic kidney disease 

Cerebral metabolic rate of oxygen 

Central nervous system 

Cerebral oxygenation 

Computed tomography 

Diagnostic and statistical manual of 

mental disorders 

Estimated glomerular filtration rate 

Gray matter 

End stage renal disease 

Hemodialysis 

Mild cognitive impairment 

Magnetic resonance imaging 

Near-infrared spectroscopy 

Peritoneal dialysis 

Regional oxygen saturation 

Silent brain infarction 

White matter
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