Leaky conical surfaces: spectral asymptotics and isoperimetric properties

V. Lotoreichik

in collaboration with

J. Behrndt, P. Exner, and T. Ourmiéres-Bonafos

Nuclear Physics Institute, Czech Academy of Sciences, Řež

Berlin, NewMET, 14.07.2016

Part I. Hamiltonian

Geometric setting: circular conical surfaces

Circular conical surface in \mathbb{R}^d with opening angle $\phi \in (0,\pi/2]$

$$
\Sigma_{\phi} := \{ (x_1, \ldots, x_d) \in \mathbb{R}^d \colon x_d^2 = \cot^2 \phi (x_1^2 + x_2^2 + \cdots + x_{d-1}^2), x_d > 0 \}
$$

$$
\Sigma_{\pi/2}
$$
 – hyperplane; Σ_{ϕ} for $d > 3$ – hypercone.

V. Lotoreichik (NPI CAS) [Leaky conical surfaces](#page-0-0) 14.07.2016 3 / 21

Geometric setting: general conical surfaces in \mathbb{R}^3

General conical surface in \mathbb{R}^3

•
$$
\mathcal{T} - C^2
$$
-smooth loop on the unit sphere \mathbb{S}^2 .

•
$$
\Sigma_{\mathcal{T}} := \{r\mathcal{T}: r > 0\}
$$
 – conical surface with base \mathcal{T} .

$$
\mathcal{T}-\mathsf{a}\,\,\text{circle of length}\,\,L\in (0,2\pi] \Longrightarrow \Sigma_{\mathcal{T}}=\Sigma_{\phi}\,\,\text{with}\,\,\phi=\arcsin(\tfrac{L}{2\pi}).
$$

V. Lotoreichik (NPI CAS) [Leaky conical surfaces](#page-0-0) 14.07.2016 4 / 21

Hamiltonian

Notations

(i) $d \geq 3$ – space dimension and $\Sigma \subset \mathbb{R}^d$ – a conical surface.

(ii) $\alpha > 0$ – coupling constant.

Schrödinger operator with *δ*-interaction of strength *α* supported on Σ

$$
\mathsf{H}_{\alpha,\Sigma}:=-\Delta-\alpha\delta(x-\Sigma) \text{ on } \mathbb{R}^d.
$$

Two ways of a rigorous definition for H*α,*^Σ

- $\mathsf{Semibounded} \text{ form } H^1(\mathbb{R}^d) \ni u \mapsto \|\nabla u\|_{L^2(\mathbb{R}^d)}^2 \alpha \|u|_{\Sigma}\|_{L^2(\Sigma)}^2$ in $L^2(\mathbb{R}^d)$ is represented by H_{α,Σ}; $u|_Σ$ – the restriction of *u* onto Σ.
- Self-adjoint extension of S $u = -\Delta u$, dom S $=$ { $u \in H^2(\mathbb{R}^d)$: $u|_{\Sigma} = 0$ }

 $\textsf{Conical structure of } \Sigma \ \Rightarrow \ \mathsf{H}_{\alpha,\Sigma} \cong \frac{\alpha^2}{4} \mathsf{H}_{2,\Sigma}. \text{ Set } \alpha = 2 \text{ and drop the index.}$

Motivation from physics

- (i) H_{Σ} models a 'leaky' quantum system wherein a particle is confined to Σ but the tunnelling between different parts of Σ is not neglected.
- (ii) Quantum graphs and waveguides do not explain the tunnelling!

Motivation from spectral geometry

Characterise the spectrum of H_{Σ} in terms of $\Sigma!$

This question can be asked for various shapes of Σ

- (i) See Exner-Kovařik-15 and the references therein.
- (ii) Universal description of spectrum for general Σ can hardly be found!

Why conical surfaces?

General surfaces ⊃ asymptotically flat surfaces

Exner-Ichinose-01, Exner-Kondej-02, Brown-Eastham-Wood-08, Duchene-Raymond-14, Pankrashkin-16,...

Asymptotically flat = unbounded surface with vanishing curvatures at ∞ .

 \checkmark Local deformation of the hyperplane.

 \times Graph of $x \mapsto \sin x$.

Description of spectra for asymptotically flat Σ – still a hard task!

- (i) Existence of geometrically induced bound states is completely understood only in 2-D (EXNER-ICHINOSE-01).
- (ii) Partial results for $3-D$ (EXNER-KONDEJ-02).

asymptotically flat surfaces ⊃ conical surfaces ⊃ circular conical surfaces

Part II. Spectral properties for circular conical surfaces

- **J.** Behrndt, P. Exner, and V. L., Schrödinger operators with δ-interactions supported on conical surfaces, J. Phys. A: Math. Theor. **47** (2014), 355202, 16 p.
- V. L. and T. Ourmières-Bonafos, On the bound states of Schrödinger operators with *δ*-interactions on conical surfaces, Comm. in PDE **41** (2016), 999–1028.

V. Lotoreichik (NPI CAS) [Leaky conical surfaces](#page-0-0) 14.07.2016 8 / 21

Continuous spectrum

We agree that ${\sf H}_\phi := {\sf H}_{\Sigma_\phi}$.

Theorem (BEHRNDT-EXNER-L-14, $d = 3$)

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

Variables can be almost separated far away from the vertex of $\Sigma_{\phi} \Rightarrow$ $\sigma_{\operatorname{ess}}(\mathsf{H}_{\phi}) = \sigma_{\operatorname{ess}}(\mathsf{H}_{\pi/2}) = [-1,\infty).$

Making this observation rigorous

•
$$
\sigma_{\operatorname{ess}}(\mathsf{H}_{\phi}) \supset [-1,\infty)
$$
 – Weyl's singular sequences.

 $\bullet \ \sigma_{\text{ess}}(\mathsf{H}_{\phi}) \subset [-1,\infty)$ – Neumann bracketing.

$Theorem (B_{RUNEAU-POPOFF-15, d > 3)$

 $\sigma_{\rm ess}(\mathsf{H}_{\phi}) = [-1,\infty).$

Different method of the proof.

Discrete spectrum

Theorem (BEHRNDT-EXNER-L-14, $d = 3$)

 $\#\sigma_d(H_\phi) = \infty$ if $\phi \in (0, \pi/2)$ and $\#\sigma_d(H_\phi) = 0$ if $\phi = \pi/2$.

These eigenvalues accumulate to $E = -1$.

Proof via construction of test functions & min-max principle

- Make use of functions which are employed in BREZIS-MARCUS-97 to show sharpness of Hardy inequality.
- The strategy goes back to the proof of $\#\sigma_d = \infty$ for 2He in KATO-51.

Theorem (L-Ourmieres-Bonafos-16, d *>* 3)

$$
\sigma(\mathsf{H}_{\phi})=\sigma_{\text{ess}}(\mathsf{H}_{\phi})=[-1,\infty)\,\,\text{and}\,\,\#\sigma_{\text{d}}(\mathsf{H}_{\phi})=0.
$$

Proof relies on rotational invariance of Σ*^φ* & separation of variables

•
$$
\sigma(H_{\phi}) = \bigcup_{m=0}^{\infty} \sigma(H_{\phi,m}); H_{\phi,m}
$$
 – fibre operators on \mathbb{R}^2_+ .

•
$$
\inf \sigma(H_{\phi,m}) \geq -1.
$$

Eigenvalue counting function

Eigenvalues of H*^φ* repeated with multiplicities

 $E_1(H_{\phi}) \le E_2(H_{\phi}) \le \cdots \le E_k(H_{\phi}) \le \cdots < -1$

 $\mathcal{N}_{-1-E}(H_{\phi})$ = number of eigenvalues of H_φ below the point $-1-E$.

$$
\mathcal{N}_{-1-E}(H_{\phi}):=\#\{k\in\mathbb{N}\colon E_{k}(H_{\phi})<-1-E\}.
$$

Behaviour of $\mathcal{N}_{-1-E}(H_{\phi})$ is non-trivial for $d=3$

 $\bullet \# \sigma_d(H_\phi) = \infty \Rightarrow \lim_{F \to 0^+} \mathcal{N}_{-1-F}(H_\phi) = \infty.$

• How fast is $\mathcal{N}_{-1-F}(H_{\phi})$ growing?

• BEHRNDT-EXNER-L-14 – an estimate for $\mathcal{N}_{-1-E}(H_{\phi})$ from one side.

 \bullet Aim of L-OURMIERES-BONAFOS-16 – to obtain more on $\mathcal{N}_{-1-E}(H_{\phi})$.

Main theorem on spectral asymptotics

Theorem (L-Ourmiéres-Bonafos-16)

$$
\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})\sim \frac{\cot \phi}{4\pi}|\ln E|\ \text{as}\ E\to 0+
$$

$$
S_c = -\frac{d^2}{dx^2} - \frac{c}{x^2}
$$
 on $(1, \infty)$ + Dirichlet BC at $x = 1$

Spectral properties of S_c (KIRSCH-SIMON-87)

$$
\bullet\ \sigma_{\rm ess}(\mathsf{S}_c)=[0,\infty).
$$

•
$$
\#\sigma_{\rm d}(S_c) = \infty
$$
 for $c > 1/4$.

•
$$
\mathcal{N}_{-E}(S_c) = \#\{k \in \mathbb{N} : E_k(S_c) < -E\} \sim \frac{1}{2\pi} \sqrt{c - \frac{1}{4}} |\ln E|,
$$

Spectral asymptotics of H_φ and of S_c are related

$$
\mathcal{N}_{-1-E}(\mathsf{H}_{\phi})\sim \mathcal{N}_{-E}(\mathsf{S}_{1/(4\sin^2\phi)})\sim \tfrac{1}{2\pi}\sqrt{\tfrac{1}{4\sin^2\phi}-\tfrac{1}{4}}|\ln E|=\tfrac{\cot\phi}{4\pi}|\ln E|.
$$

V. Lotoreichik (NPI CAS) [Leaky conical surfaces](#page-0-0) 14.07.2016 12 / 21

Proof by domain decomposition methods

Comparison operators via Dirichlet-Neumann bracketing

 ${\sf H}_{\phi,E}^- \leq {\sf H}_\phi \leq {\sf H}_{\phi,E}^+$

The geometry of the bracketings depends on the spectral parameter.

$$
\mathcal{N}_{-1-E}(H_{\phi,E}^-) \geq \mathcal{N}_{-1-E}(H_{\phi}) \geq \mathcal{N}_{-1-E}(H_{\phi,E}^+).
$$

Technical estimates for

\n
$$
\mathcal{N}_{-1-E}(H_{\phi,E}^{\pm})
$$
\n
$$
\frac{\cot \phi}{4\pi} \leq \liminf_{E \to 0+} \frac{\mathcal{N}_{-1-E}(H_{\phi,E}^{\pm})}{|\ln E|} \leq \limsup_{E \to 0+} \frac{\mathcal{N}_{-1-E}(H_{\phi,E}^-)}{|\ln E|} \leq \frac{\cot \phi}{4\pi}.
$$

In these estimates spectral asymptotics by Kirsch and Simon is used.

Main difficulty

To invent a suitable domain decomposition for $\mathsf{H}^\pm_{\phi, E}.$

V. Lotoreichik (NPI CAS) [Leaky conical surfaces](#page-0-0) 14.07.2016 13 / 21

Maya-pyramid-like tiling

To get the decomposition that is used for H[−] *φ,*E rotate the figure around Γ. The number of the boxes $\rightarrow +\infty$ as $E \nearrow -1$, their sizes vary appropriately, and on their boundaries Neumann b.c. is imposed.

Part III. Spectral properties for general conical surfaces

P. Exner and V. L., A spectral isoperimetric inequality for cones, arXiv:1512.01970.

Qualitative spectral properties

We agree that ${\sf H}_{\mathcal T} := {\sf H}_{{\Sigma}_{\mathcal T}}.$

Theorem (BRUNEAU-POPOFF-15)

 $\sigma_{\rm ess}(\mathsf{H}_{\mathcal{T}}) = [-1,\infty)$

 $\inf \sigma_\mathrm{ess}(\mathsf{H}_\mathcal{T}) < -1$ if $\mathcal T$ has corner points; *e.g.* a polygon on $\mathbb{S}^2.$

Theorem (EXNER-L-15)

 $\sigma_{\rm d}(\mathsf{H}_{\mathcal{T}}) \neq \varnothing$ if $|\mathcal{T}| < 2\pi$.

If
$$
|T| = 2\pi
$$
 then $\sigma_d(H_T) = \emptyset$ for T being equator of \mathbb{S}^2 .

Open questions

(i)
$$
\#\sigma_d(H_{\mathcal{T}}) = \infty
$$
, $|\mathcal{T}| < 2\pi$, as for circular case?

(ii) $|\mathcal{T}| \geq 2\pi$, \mathcal{T} not equator, $\sigma_d(H_{\mathcal{T}}) \neq \varnothing$?

Optimization problem

$$
\mathcal{T} \mapsto E_1(H_{\mathcal{T}}) = \max! + \text{constraint } |\mathcal{T}| = L \in (0, 2\pi) \quad (*)
$$

Theorem (EXNER-L-15)

The optimizer for the problem (\star) is a circle on the unit sphere.

Circular cone maximizes the 1st eigenvalue among all cones with fixed base length!

This theorem belongs to a family of optimization results

Most famous: the ball minimizes the 1st eigenvalue of Dirichlet Laplacian among domains of fixed volume (FABER-23, KRAHN-25).

Isoperimetric inequality: method of the proof

$$
\mathcal{C},\mathcal{T}\!\subset\!\mathbb{S}^2,\,|\mathcal{C}|=|\mathcal{T}|<2\pi,\,\mathcal{C}-\mathsf{circle.}\,\,\gamma_\mathcal{C},\gamma_\mathcal{T}\!\!:\![0,|\mathcal{C}|]\!\!\;\rightarrow\mathbb{S}^2,\,|\dot\gamma_\mathcal{C}|=|\dot\gamma_\mathcal{T}|=1
$$

A bijection between Σ_{τ} and $\Sigma_{\mathcal{C}}$

$$
\mathcal{M}\colon \Sigma_{\mathcal{T}} \to \Sigma_{\mathcal{C}}, \quad \mathcal{M}(x) := |x| \cdot \gamma_{\mathcal{C}}(\gamma_{\mathcal{T}}^{-1}(x/|x|)).
$$

Spectral analysis of H_C, H_T reduces to analysis of operator-valued functions in $L^2(\Sigma_\mathcal{C})$ and $L^2(\Sigma_\mathcal{T})$, resp.

Next step inspired by $(EXNER-05, EXNER-HARRELL-Loss-06)$

Proving $E_1(H_T) \le E_1(H_C)$ reduces to showing for $k = (-E_1(H_C))^{1/2}$

$$
\int_{\Sigma_{\mathcal{T}}^2} \widetilde{\psi}(x) G_k(x-y) \widetilde{\psi}(y) d\sigma(x) d\sigma(y) \ge \int_{\Sigma_{\mathcal{C}}^2} \psi(x) G_k(x-y) \psi(y) d\sigma(x) d\sigma(y);
$$

$$
\psi-\text{trace on }\Sigma_{\mathcal{C}} \text{ of the ground-state of } H_{\mathcal{C}}, \widetilde{\psi}=\psi \circ \mathcal{M}, G_k(x)=\frac{e^{-k|x|}}{4\pi|x|}.
$$

The latter inequality follows from mean-chord inequality (Lükő-66).

Novelty: *ψ* is unknown, only its positivity and symmetry are used.

Three related spectral problems

Domains

\n- \n
$$
\mathcal{C}_{\phi} = \{(x, y, z) \in \mathbb{R}^3 : z > \cot \phi \left(x^2 + y^2 \right)^{1/2} \},
$$
\n
\n- \n $\mathcal{L}_{\phi} = \{(x, y, z) \in \mathbb{R}^3 : z - \cot \phi \left(x^2 + y^2 \right)^{1/2} \in (0, 1) \}$ \n
\n

(magnetic) Laplace operator on \mathcal{L}_{ϕ} + Dirichlet B.C.

Duclos-Krejčiřík-Exner-01, Exner-Tater-10, Dauge-Raymond-Ourmiéres-Bonafos-15, Krejčiřík-VL-Ourmiéres-Bonafos-16,...

Laplace operator on C_{ϕ} + Robin B.C.

Levitin-Parnovski-08, Pankrashkin-15, Bruneau-Popoff-15,

Bruneau-Pankrashkin-Popoff-16

Magnetic Laplace operator on C_{ϕ} + Neumann B.C.

Bonnaillie-Noël-Dauge-Popoff-16, Raymond-16 and the references therein.

V. Lotoreichik (NPI CAS) [Leaky conical surfaces](#page-0-0) 14.07.2016 19 / 21

.

Circular conical surface

- **•** Spectrum is described on the qualitative level.
- Spectral asymptotics.

General conical surfaces

- Spectrum is partially described on the qualitative level.
- Isoperimetric inequality.

Next challenges

- A lot of open questions for general conical surfaces.
- Other classes of asymptotically flat surfaces much less understood.

Thank you for your attention!