Optimisation of the lowest eigenvalue for surface δ -interactions and for Robin Laplacians

Vladimir Lotoreichik

in collaboration with Pavel Exner and David Krejčiřík

Nuclear Physics Institute, Czech Academy of Sciences

Mathematical Challenges of Zero-Range Physics Trieste, 09.11.2016

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

The self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\rm D}^{\Omega}$ is discrete. $\lambda_1^{\rm D}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\rm D}^{\Omega}$.

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

The self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

Isoperimetric inequalities

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \begin{cases} |\Omega| < |\mathcal{B}| & \text{(geometric)} \\ \lambda_1^{\mathrm{D}}(\Omega) > \lambda_1^{\mathrm{D}}(\mathcal{B}) & \text{(spectral)} \end{cases}$$

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

The self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

Isoperimetric inequalities

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \begin{cases} |\Omega| < |\mathcal{B}| & \text{(geometric)} \\ \lambda_1^{\mathrm{D}}(\Omega) > \lambda_1^{\mathrm{D}}(\mathcal{B}) & \text{(spectral)} \end{cases}$$

Geometric: STEINER-1842, HURWITZ-1902 (d = 2), FEDERER-69 ($d \ge 3$). Spectral: FABER-1923 and KRAHN-1926.

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

The self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

Isoperimetric inequalities

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \begin{cases} |\Omega| < |\mathcal{B}| & (\text{geometric}) \\ \lambda_1^{\mathrm{D}}(\Omega) > \lambda_1^{\mathrm{D}}(\mathcal{B}) & (\text{spectral}) \end{cases}$$

Geometric: STEINER-1842, HURWITZ-1902 (d = 2), FEDERER-69 ($d \ge 3$). Spectral: FABER-1923 and KRAHN-1926.

The Neumann Laplacian: similar spectral inequality is trivial: $\lambda_1^N(\Omega) = 0$. Non-trivial for the Robin Laplacian and for δ -interactions on surfaces.

Part I. Schrödinger operators with δ -interactions on hypersurfaces

- P. Exner and V. L., A spectral isoperimetric inequality for cones, arXiv:1512.01970, 2015, to appear in Lett. Math. Phys.
- V. L., Spectral isoperimetric inequalities for δ-interactions on open arcs and for the Robin Laplacian on planes with slits, arXiv:1609.07598, 2016.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$ $H^1(\mathbb{R}^d) \ni u \mapsto \mathfrak{h}^{\Sigma}_{\alpha}[u] := \|\nabla u\|^2_{L^2(\mathbb{R}^d;\mathbb{C}^d)} - \alpha \|u|_{\Sigma}\|^2_{L^2(\Sigma)}$ for $\alpha > 0$.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$

$$H^{1}(\mathbb{R}^{d}) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u] := \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} - \alpha \|u|_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \text{ for } \alpha > 0.$$

The quadratic from $\mathfrak{h}^{\Sigma}_{\alpha}$ is closed, densely defined, and semi-bounded.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$

$$H^{1}(\mathbb{R}^{d}) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u] := \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} - \alpha \|u|_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \text{ for } \alpha > 0.$$

The quadratic from $\mathfrak{h}_{\alpha}^{\Sigma}$ is closed, densely defined, and semi-bounded.

Schrödinger operator with δ -interaction on Σ of strength α

 $\mathsf{H}^{\Sigma}_{\alpha}$ – self-adjoint operator in $L^{2}(\mathbb{R}^{d})$ associated to the form $\mathfrak{h}^{\Sigma}_{\alpha}$.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$

$$H^{1}(\mathbb{R}^{d}) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u] := \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} - \alpha \|u|_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \text{ for } \alpha > 0.$$

The quadratic from $\mathfrak{h}_{\alpha}^{\Sigma}$ is closed, densely defined, and semi-bounded.

Schrödinger operator with δ -interaction on Σ of strength α

 $\mathsf{H}^{\Sigma}_{\alpha}$ – self-adjoint operator in $L^{2}(\mathbb{R}^{d})$ associated to the form $\mathfrak{h}^{\Sigma}_{\alpha}$.

The lowest spectral point for H^{Σ}_{α}

 $\mu_1^{\alpha}(\Sigma) := \inf \sigma(\mathsf{H}_{\alpha}^{\Sigma}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Motivations

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

< □ > < □ > < □ > < □ > < □ >

Motivation from physics

- (i) H^{Σ}_{α} models a 'leaky' quantum system wherein a particle is confined to Σ but the tunnelling between different parts of Σ is not neglected.
- (ii) Quantum graphs and waveguides do not explain the tunnelling!

Motivation from physics

V. Lotoreichik (NPI CAS)

- (i) H^{Σ}_{α} models a 'leaky' quantum system wherein a particle is confined to Σ but the tunnelling between different parts of Σ is not neglected.
- (ii) Quantum graphs and waveguides do not explain the tunnelling!

Motivation from spectral geometry

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

Motivation from physics

- (i) H^{Σ}_{α} models a 'leaky' quantum system wherein a particle is confined to Σ but the tunnelling between different parts of Σ is not neglected.
- (ii) Quantum graphs and waveguides do not explain the tunnelling!

Motivation from spectral geometry

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

This question can be asked for various shapes of Σ

(i) EXNER-KOVAŘIK-15 and the references therein.

(ii) Universal description of spectrum for general Σ can hardly be found!

δ -interactions on loops

V. Lotoreichik (NPI CAS)

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

δ -interactions on loops

V. Lotoreichik (NPI CAS)

∃ >

δ -interactions on loops

Proposition

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset \text{ for all } \alpha > 0.$$

★ ∃ ▶

$\delta\text{-interactions}$ on loops

Proposition

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \varnothing \text{ for all } \alpha > 0.$$

Theorem (Exner-05, Exner-Harrell-Loss-06)

$$\begin{cases} |\Sigma| = |\mathcal{C}| \\ \Sigma \ncong \mathcal{C} \end{cases} \implies \quad \mu_1^{\alpha}(\mathcal{C}) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

09.11.2016 6 / 23

ŝ.

V. Lotoreichik (NPI CAS)

A topic of recent interest: Dittrich, Exner, Jex, Kondej, Kühn, VL, Mantile, Pankrashkin, Posilicano, Rohleder, Sini, ...

A topic of recent interest: Dittrich, Exner, Jex, Kondej, Kühn, VL, Mantile, Pankrashkin, Posilicano, Rohleder, Sini, ...

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\Upsilon \subset \mathbb{R}^2$ – a line segment.

A topic of recent interest: Dittrich, Exner, Jex, Kondej, Kühn, VL, Mantile, Pankrashkin, Posilicano, Rohleder, Sini, ...

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\Upsilon \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset \text{ for all } \alpha > 0.$$

A topic of recent interest: Dittrich, Exner, Jex, Kondej, Kühn, VL, Mantile, Pankrashkin, Posilicano, Rohleder, Sini, ...

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\Upsilon \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}_{\alpha}^{\Sigma}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\Sigma}) \neq \emptyset \text{ for all } \alpha > 0.$$

Theorem (V.L.-16)

$$\begin{cases} |\Sigma| = |\Upsilon| \\ \Sigma \ncong \Upsilon \end{cases} \implies \quad \mu_1^{\alpha}(\Upsilon) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

< /⊒ ► < Ξ ► <

A topic of recent interest: Dittrich, Exner, Jex, Kondej, Kühn, VL, Mantile, Pankrashkin, Posilicano, Rohleder, Sini, ...

 $\Sigma \subset \mathbb{R}^2$ – a $\mathit{C}^\infty\text{-smooth}$ open arc. $\Upsilon \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}_{\alpha}^{\boldsymbol{\Sigma}}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\boldsymbol{\Sigma}}) \neq \varnothing \text{ for all } \alpha > 0.$$

Theorem (V.L.-16)

$$\begin{cases} |\Sigma| = |\Upsilon| \\ \Sigma \ncong \Upsilon \end{cases} \implies \mu_1^{\alpha}(\Upsilon) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

1) Birman-Schwinger principle; 2) the line segment is the shortest path connecting two fixed points; 3) strict monotonous decay of $K_0(\cdot)$.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

09.11.2016 7 / 23

(日)

V. Lotoreichik (NPI CAS)

 $\Lambda: [0, L] \mapsto \mathbb{R}^2$ – arc-length parameterization of an arc $\Lambda \subset \mathbb{R}^2$. $\kappa > 0$.

▲ 同 ▶ → 三 ▶

V. Lotoreichik (NPI CAS)

 $\Lambda: [0, L] \mapsto \mathbb{R}^2$ – arc-length parameterization of an arc $\Lambda \subset \mathbb{R}^2$. $\kappa > 0$.

$$\mathsf{Q}^{\mathsf{A}}_{\kappa} \colon L^{2}(\mathsf{A}) \to L^{2}(\mathsf{A}), \quad (\mathsf{Q}^{\mathsf{A}}_{\kappa}\psi)(s) = \int_{0}^{L} K_{0}(\kappa|\mathsf{A}(s) - \mathsf{A}(t)|)\psi(t) \mathrm{d}t$$

▲ 同 ▶ → 三 ▶

 $\Lambda: [0, L] \mapsto \mathbb{R}^2$ – arc-length parameterization of an arc $\Lambda \subset \mathbb{R}^2$. $\kappa > 0$.

$$\mathsf{Q}^{\mathsf{\Lambda}}_{\kappa} \colon L^2(\mathsf{\Lambda}) o L^2(\mathsf{\Lambda}), \quad (\mathsf{Q}^{\mathsf{\Lambda}}_{\kappa}\psi)(s) = \int_0^L \mathcal{K}_0(\kappa|\mathsf{\Lambda}(s) - \mathsf{\Lambda}(t)|)\psi(t)\mathsf{d}t$$

a) $\mathsf{Q}^{\mathsf{A}}_{\kappa} = (\mathsf{Q}^{\mathsf{A}}_{\kappa})^*$. b) $\mathsf{Q}^{\mathsf{A}}_{\kappa} \geq 0$. c) $\mathsf{Q}^{\mathsf{A}}_{\kappa} \in \mathfrak{S}_{\infty}$. d) $m^{\mathsf{A}}_{\kappa} := \sup \sigma(\mathsf{Q}^{\mathsf{A}}_{\kappa})$.

▲ 御 ▶ ▲ 国 ▶ ▲

 $\Lambda: [0, L] \mapsto \mathbb{R}^2$ – arc-length parameterization of an arc $\Lambda \subset \mathbb{R}^2$. $\kappa > 0$.

$$\mathbb{Q}^{\Lambda}_{\kappa} \colon L^{2}(\Lambda) \to L^{2}(\Lambda), \quad (\mathbb{Q}^{\Lambda}_{\kappa}\psi)(s) = \int_{0}^{L} \mathcal{K}_{0}(\kappa|\Lambda(s) - \Lambda(t)|)\psi(t)dt$$

a) $\mathsf{Q}^{\Lambda}_{\kappa} = (\mathsf{Q}^{\Lambda}_{\kappa})^*$. b) $\mathsf{Q}^{\Lambda}_{\kappa} \ge 0$. c) $\mathsf{Q}^{\Lambda}_{\kappa} \in \mathfrak{S}_{\infty}$. d) $m^{\Lambda}_{\kappa} := \sup \sigma(\mathsf{Q}^{\Lambda}_{\kappa})$.

(i) $m_{\kappa}^{\Sigma} > m_{\kappa}^{\Upsilon}$, $\forall \kappa > 0 \implies \mu_{1}^{\alpha}(\Upsilon) > \mu_{1}^{\alpha}(\Sigma)$, $\forall \alpha > 0$; (BS-principle).

 $\Lambda: [0, L] \mapsto \mathbb{R}^2$ – arc-length parameterization of an arc $\Lambda \subset \mathbb{R}^2$. $\kappa > 0$.

$$\mathsf{Q}^{\mathsf{A}}_{\kappa} \colon L^2(\mathsf{A}) o L^2(\mathsf{A}), \quad (\mathsf{Q}^{\mathsf{A}}_{\kappa}\psi)(s) = \int_0^L \mathcal{K}_0(\kappa|\mathsf{A}(s) - \mathsf{A}(t)|)\psi(t)\mathsf{d}t$$

a) $\mathsf{Q}^{\Lambda}_{\kappa} = (\mathsf{Q}^{\Lambda}_{\kappa})^*$. b) $\mathsf{Q}^{\Lambda}_{\kappa} \ge 0$. c) $\mathsf{Q}^{\Lambda}_{\kappa} \in \mathfrak{S}_{\infty}$. d) $m^{\Lambda}_{\kappa} := \sup \sigma(\mathsf{Q}^{\Lambda}_{\kappa})$.

(i) $m_{\kappa}^{\Sigma} > m_{\kappa}^{\Upsilon}$, $\forall \kappa > 0 \implies \mu_{1}^{\alpha}(\Upsilon) > \mu_{1}^{\alpha}(\Sigma)$, $\forall \alpha > 0$; (BS-principle). (ii) m_{κ}^{Υ} – simple eigenval. of Q_{κ}^{Υ} with normalized eigenfunct. $\psi_{\kappa}^{\Upsilon} > 0$.

8 / 23

 $\Lambda: [0, L] \mapsto \mathbb{R}^2$ – arc-length parameterization of an arc $\Lambda \subset \mathbb{R}^2$. $\kappa > 0$.

$$\mathsf{Q}^{\boldsymbol{\Lambda}}_{\kappa} \colon L^2(\boldsymbol{\Lambda}) o L^2(\boldsymbol{\Lambda}), \quad (\mathsf{Q}^{\boldsymbol{\Lambda}}_{\kappa}\psi)(s) = \int_0^L \mathcal{K}_0(\kappa|\boldsymbol{\Lambda}(s) - \boldsymbol{\Lambda}(t)|)\psi(t)\mathsf{d}t$$

a) $\mathsf{Q}^{\Lambda}_{\kappa} = (\mathsf{Q}^{\Lambda}_{\kappa})^*$. b) $\mathsf{Q}^{\Lambda}_{\kappa} \ge 0$. c) $\mathsf{Q}^{\Lambda}_{\kappa} \in \mathfrak{S}_{\infty}$. d) $m^{\Lambda}_{\kappa} := \sup \sigma(\mathsf{Q}^{\Lambda}_{\kappa})$.

(i) $m_{\kappa}^{\Sigma} > m_{\kappa}^{\Upsilon}$, $\forall \kappa > 0 \implies \mu_{1}^{\alpha}(\Upsilon) > \mu_{1}^{\alpha}(\Sigma)$, $\forall \alpha > 0$; (BS-principle). (ii) m_{κ}^{Υ} - simple eigenval. of Q_{κ}^{Υ} with normalized eigenfunct. $\psi_{\kappa}^{\Upsilon} > 0$. (iii) $|\Sigma(s) - \Sigma(t)| \le |\Upsilon(s) - \Upsilon(t)|$, $\forall s, t \in [0, L]$ and $\exists \mathcal{M} \subset [0, L]^{2}$, $|\mathcal{M}| > 0$ where this inequality is strict.

 $\Lambda \colon [0, L] \mapsto \mathbb{R}^2 - \text{arc-length parameterization of an arc } \Lambda \subset \mathbb{R}^2. \ \kappa > 0.$

$$\mathbb{Q}^{\Lambda}_{\kappa}$$
: $L^{2}(\Lambda) \to L^{2}(\Lambda), \quad (\mathbb{Q}^{\Lambda}_{\kappa}\psi)(s) = \int_{0}^{L} K_{0}(\kappa|\Lambda(s) - \Lambda(t)|)\psi(t)dt$

a) $\mathsf{Q}^{\Lambda}_{\kappa} = (\mathsf{Q}^{\Lambda}_{\kappa})^*$. b) $\mathsf{Q}^{\Lambda}_{\kappa} \ge 0$. c) $\mathsf{Q}^{\Lambda}_{\kappa} \in \mathfrak{S}_{\infty}$. d) $m^{\Lambda}_{\kappa} := \sup \sigma(\mathsf{Q}^{\Lambda}_{\kappa})$.

(i) $m_{\kappa}^{\Sigma} > m_{\kappa}^{\Upsilon}$, $\forall \kappa > 0 \implies \mu_{1}^{\alpha}(\Upsilon) > \mu_{1}^{\alpha}(\Sigma)$, $\forall \alpha > 0$; (BS-principle). (ii) m_{κ}^{Υ} - simple eigenval. of Q_{κ}^{Υ} with normalized eigenfunct. $\psi_{\kappa}^{\Upsilon} > 0$. (iii) $|\Sigma(s) - \Sigma(t)| \le |\Upsilon(s) - \Upsilon(t)|$, $\forall s, t \in [0, L]$ and $\exists \mathcal{M} \subset [0, L]^{2}$, $|\mathcal{M}| > 0$ where this inequality is strict.

$$egin{aligned} & m_\kappa^{oldsymbol{\Sigma}} \geq (\mathsf{Q}_\kappa^{oldsymbol{\Sigma}}\psi_\kappa^{\Upsilon},\psi_\kappa^{\Upsilon})_{L^2(\Sigma)} = \int_0^L \int_0^L \mathcal{K}_0(\kappa|\Sigma(s)-\Sigma(t)|)\psi_\kappa^{\Upsilon}(s)\psi_\kappa^{\Upsilon}(t)\mathrm{d}s\mathrm{d}t \ & > \int_0^L \int_0^L \mathcal{K}_0(\kappa|\Upsilon(s)-\Upsilon(t)|)\psi_\kappa^{\Upsilon}(s)\psi_\kappa^{\Upsilon}(t)\mathrm{d}s\mathrm{d}t = m_\kappa^{\Upsilon}. \end{aligned}$$
V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

・ロト ・ 日 ト ・ 目 ト ・

$$P, Q \in \mathbb{R}^2$$
 – points. $P \neq Q$.

Image: A matched black

V. Lotoreichik (NPI CAS)

V. Lotoreichik (NPI CAS)

$$P, Q \in \mathbb{R}^2$$
 – points. $P \neq Q$.

 $\Upsilon \subset \mathbb{R}^2$ – the line segment connecting P and Q.

$$P, Q \in \mathbb{R}^2$$
 – points. $P \neq Q$.

 $\Upsilon \subset \mathbb{R}^2$ – the line segment connecting P and Q.

Proposition

$$\begin{cases} \partial \Sigma = \{P, Q\} \\ \Sigma \not\cong \Upsilon \end{cases} \implies \mu_1^{\alpha}(\Upsilon) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

▲ 夏 ▶ ▲

$$P, Q \in \mathbb{R}^2$$
 – points. $P \neq Q$.

 $\Upsilon \subset \mathbb{R}^2$ – the line segment connecting P and Q.

Proposition

$$\begin{cases} \partial \Sigma = \{P, Q\} \\ \Sigma \ncong \Upsilon \end{cases} \implies \mu_1^{\alpha}(\Upsilon) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

Open question

The shape of the optimizer under two constraints simultaneously: 1) fixed endpoints $P, Q \in \mathbb{R}^2$; 2) fixed length $L \in (|P - Q|, \infty)$?

< /⊒ ► < Ξ ► <

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

 ▶ < ≣ ▶ ≡ </th>
 ≫ < <</th>

 09.11.2016
 10 / 23

V. Lotoreichik (NPI CAS)

 $\Sigma \subset \mathbb{R}^3$ – a (closed) compact Lipschitz surface.

 $\Sigma \subset \mathbb{R}^3$ – a (closed) compact Lipschitz surface.

Proposition

V. Lotoreichik (NPI CAS)

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+}$$
 and $\sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \varnothing$ iff $\alpha > \alpha_{*}(\Sigma)$ with $\alpha_{*}(\Sigma) > 0$.

 $\Sigma \subset \mathbb{R}^3$ – a (closed) compact Lipschitz surface.

Proposition

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{lpha}) = \mathbb{R}_{+}$$
 and $\sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{lpha})
eq arnothing$ iff $lpha > lpha_{*}(\Sigma)$ with $lpha_{*}(\Sigma) > 0$.

 $f\in \mathcal{C}^\infty((-1,1);\mathbb{R}_+)$, $f(\pm 1)=0$, $f'(\pm 1)=\mp\infty$ and $2\pi\int_{-1}^1 f(x)\mathsf{d}x=1$

A (1) < A (1) < A (1) </p>

 $\Sigma \subset \mathbb{R}^3$ – a (closed) compact Lipschitz surface.

Proposition

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{lpha}) = \mathbb{R}_{+}$$
 and $\sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{lpha})
eq arnothing$ iff $lpha > lpha_{*}(\Sigma)$ with $lpha_{*}(\Sigma) > 0$.

$$f\in \mathcal{C}^\infty((-1,1);\mathbb{R}_+)$$
, $f(\pm 1)=0$, $f'(\pm 1)=\mp\infty$ and $2\pi\int_{-1}^1 f(x)\mathsf{d}x=1$

 $\Gamma_{\varepsilon}: \ [0,2\pi) \times [-1,1] \ni (u,v) \mapsto (\varepsilon f(v) \cos u, \varepsilon f(v) \sin u, \varepsilon^{-1} v) \in \mathbb{R}^3$

Dumbbell – a counterexample in \mathbb{R}^3 (EXNER-FRAAS-09).

< 同 ト < 三 ト < 三 ト

 $\Sigma \subset \mathbb{R}^3$ – a (closed) compact Lipschitz surface.

Proposition

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\mathbf{\Sigma}}_{lpha}) = \mathbb{R}_+ ext{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\mathbf{\Sigma}}_{lpha})
eq arnothing ext{ of } iff \ lpha > lpha_*(\mathbf{\Sigma}) ext{ with } lpha_*(\mathbf{\Sigma}) > \mathsf{0}.$$

$$f\in \mathcal{C}^\infty((-1,1);\mathbb{R}_+)$$
, $f(\pm 1)=$ 0, $f'(\pm 1)=\mp\infty$ and $2\pi\int_{-1}^1f(x)\mathsf{d}x=1$

 $\Gamma_{\varepsilon}: \ [0,2\pi) \times [-1,1] \ni (u,v) \mapsto (\varepsilon f(v) \cos u, \varepsilon f(v) \sin u, \varepsilon^{-1} v) \in \mathbb{R}^3$

Dumbbell – a counterexample in \mathbb{R}^3 (EXNER-FRAAS-09).

For all $\alpha > 0$ and all sufficiently small $\varepsilon > 0$ holds $\sigma_{d}(\mathsf{H}_{\alpha}^{\Sigma_{\varepsilon}}) = \varnothing$.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS)

 $\mathcal{T} \subset \mathbb{S}^2$ – a $\mathcal{C}^2\text{-smooth}$ loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

• • = • •

V. Lotoreichik (NPI CAS)

 $\mathcal{T}\subset\mathbb{S}^2$ – a \mathcal{C}^2 -smooth loop on the unit sphere. $\mathcal{C}\subset\mathbb{S}^2$ – a circle.

 $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

 $\mathcal{T} \subset \mathbb{S}^2$ – a $\mathcal{C}^2\text{-smooth}$ loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

$$\begin{cases} |\mathcal{C}| = |\mathcal{T}| \\ \mathcal{C} \ncong \mathcal{T} \end{cases} \implies \mu_1^{\alpha}(\Sigma_R(\mathcal{C})) > \mu_1^{\alpha}(\Sigma_R(\mathcal{T})), \quad \forall \alpha \ge \alpha_*(\Sigma_R(\mathcal{C})). \end{cases}$$

 $\mathcal{T} \subset \mathbb{S}^2$ – a $\mathcal{C}^2\text{-smooth}$ loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

$$\begin{cases} |\mathcal{C}| = |\mathcal{T}| \\ \mathcal{C} \ncong \mathcal{T} \end{cases} \implies \mu_1^{\alpha}(\Sigma_{\mathcal{R}}(\mathcal{C})) > \mu_1^{\alpha}(\Sigma_{\mathcal{R}}(\mathcal{T})), \quad \forall \alpha \ge \alpha_*(\Sigma_{\mathcal{R}}(\mathcal{C})). \end{cases}$$

1) Birman-Schwinger principle. 2) Mean chord length inequality (LÜKŐ-66). 3) Convexity/decay of $r \mapsto \frac{e^{-a\sqrt{br^2+c}}}{\sqrt{br^2+c}}$ for a, b, c > 0.

 $\mathcal{T} \subset \mathbb{S}^2$ – a $\mathcal{C}^2\text{-smooth}$ loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

$$\begin{array}{ll} |\mathcal{C}| = |\mathcal{T}| \\ \mathcal{C} \ncong \mathcal{T} \end{array} \implies \mu_1^{\alpha}(\Sigma_R(\mathcal{C})) > \mu_1^{\alpha}(\Sigma_R(\mathcal{T})), \quad \forall \, \alpha \ge \alpha_*(\Sigma_R(\mathcal{C})). \end{array}$$

1) Birman-Schwinger principle. 2) Mean chord length inequality (LÜKŐ-66). 3) Convexity/decay of $r \mapsto \frac{e^{-a\sqrt{br^2+c}}}{\sqrt{br^2+c}}$ for a, b, c > 0. The borderline case $\alpha = \alpha_*(\Sigma_R(\mathcal{C}))$: $\mu_1^{\alpha}(\Sigma_R(\mathcal{C})) = 0$ and $\mu_1^{\alpha}(\Sigma_R(\mathcal{T})) < 0$. V. Lotoreichik (NPLCAS) Optimisation of the lowest eigenvalue for... 09.11.2016 11/23

$\delta\text{-interactions}$ on infinite cones

V. Lotoreichik (NPI CAS)

.

$\delta\text{-interactions}$ on infinite cones

V. Lotoreichik (NPI CAS)

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a C^2 -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

.

$\delta\text{-interactions}$ on infinite cones

V. Lotoreichik (NPI CAS)

 $\mathcal{T} \subset \mathbb{S}^2$ – a C^2 -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, \infty) \} \subset \mathbb{R}^3$ – infinite cone of with the base \mathcal{T} .

(4) (1) (4) (4)

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a C^2 -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} \colon r \in [0,\infty) \} \subset \mathbb{R}^3 \text{ - infinite cone of with the base } \mathcal{T}.$

Proposition (Behrndt-VL-Exner-14, Bruneau-Popoff-15)

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\boldsymbol{\Sigma}(\mathcal{T})}_{\alpha}) = [-\alpha^2/4, +\infty) \text{ and } \#\sigma_{\mathrm{d}}(\mathsf{H}^{\boldsymbol{\Sigma}(\mathcal{C})}_{\alpha}) = \infty$$

▶ < ∃ > < ∃ >

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a C^2 -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma(\mathcal{T}) \!=\! \{ r\mathcal{T} \colon r \in [0,\infty) \} \subset \mathbb{R}^3 - \text{infinite cone of with the base } \mathcal{T}.$

Proposition (Behrndt-VL-Exner-14, Bruneau-Popoff-15)

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\boldsymbol{\Sigma}(\mathcal{T})}_{\alpha}) = [-\alpha^2/4, +\infty) \text{ and } \#\sigma_{\mathrm{d}}(\mathsf{H}^{\boldsymbol{\Sigma}(\mathcal{C})}_{\alpha}) = \infty$$

Further analysis VL-OURMIÈRES-BONAFOS-16

・ 回 ト ・ ヨ ト ・ ヨ ト

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a \mathcal{C}^2 -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0,\infty) \} \subset \mathbb{R}^3$ – infinite cone of with the base \mathcal{T} .

Proposition (Behrndt-VL-Exner-14, Bruneau-Popoff-15)

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\mathbf{\Sigma}(\mathcal{T})}_{lpha}) = [-lpha^2/4, +\infty)$$
 and $\#\sigma_{\mathrm{d}}(\mathsf{H}^{\mathbf{\Sigma}(\mathcal{C})}_{lpha}) = \infty$

Further analysis VL-OURMIÈRES-BONAFOS-16

Theorem (Exner-V.L.-15)

$$\begin{cases} |\mathcal{C}| = |\mathcal{T}| \neq 2\pi \\ \mathcal{C} \ncong \mathcal{T} \end{cases} \implies \begin{cases} \sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\boldsymbol{\Sigma}(\mathcal{T})}) \neq \varnothing \\ \mu_{1}^{\alpha}(\boldsymbol{\Sigma}(\mathcal{C})) \geq \mu_{1}^{\alpha}(\boldsymbol{\Sigma}(\mathcal{T})), \quad \forall \alpha > 0. \end{cases}$$

ヘロト 人間ト 人間ト 人間ト

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a \mathcal{C}^2 -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle.

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0,\infty) \} \subset \mathbb{R}^3$ – infinite cone of with the base \mathcal{T} .

Proposition (Behrndt-VL-Exner-14, Bruneau-Popoff-15)

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\mathbf{\Sigma}(\mathcal{T})}_{lpha}) = [-lpha^2/4, +\infty)$$
 and $\#\sigma_{\mathrm{d}}(\mathsf{H}^{\mathbf{\Sigma}(\mathcal{C})}_{lpha}) = \infty$

Further analysis VL-OURMIÈRES-BONAFOS-16

Theorem (Exner-V.L.-15)

$$\begin{cases} |\mathcal{C}| = |\mathcal{T}| \neq 2\pi \\ \mathcal{C} \ncong \mathcal{T} \end{cases} \implies \begin{cases} \sigma_{\mathrm{d}}(\mathsf{H}^{\boldsymbol{\Sigma}(\mathcal{T})}_{\alpha}) \neq \varnothing \\ \mu_{1}^{\alpha}(\boldsymbol{\Sigma}(\mathcal{C})) \geq \mu_{1}^{\alpha}(\boldsymbol{\Sigma}(\mathcal{T})), \quad \forall \alpha > 0. \end{cases}$$

<ロト < 四ト < 三ト < 三ト = 三

12 / 23

Passing in the result for truncated cones to the limit $R \to +\infty$.

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for... 09.11.2016

Part II. The Robin Laplacian

- D. Krejčiřík and V. L., Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, arXiv:1608.04896, 2016.
- V. L., Spectral isoperimetric inequalities for δ-interactions on open arcs and for the Robin Laplacian on planes with slits, arXiv:1609.07598, 2016.

13 / 23

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS)

 $\Omega \subset \mathbb{R}^d$ – a Lipschitz domain with compact boundary $\partial \Omega$.

V. Lotoreichik (NPI CAS)

 $\Omega \subset \mathbb{R}^d$ – a Lipschitz domain with compact boundary $\partial \Omega$.

• Bounded domains. • Exterior domains. • Complements of hypersurfaces.

 $\Omega \subset \mathbb{R}^d$ – a Lipschitz domain with compact boundary $\partial \Omega$.

• Bounded domains. • Exterior domains. • Complements of hypersurfaces.

Symmetric quadratic form in $L^2(\Omega)$

 $H^{1}(\Omega) \ni u \mapsto \mathfrak{h}^{\Omega}_{\beta}[u] := \|\nabla u\|^{2}_{L^{2}(\Omega;\mathbb{C}^{d})} + \beta \|u|_{\partial\Omega}\|^{2}_{L^{2}(\partial\Omega)} \text{ for } \beta \in \mathbb{R}.$

 $\Omega \subset \mathbb{R}^d$ – a Lipschitz domain with compact boundary $\partial \Omega$.

• Bounded domains. • Exterior domains. • Complements of hypersurfaces.

Symmetric quadratic form in $L^2(\Omega)$

 $H^{1}(\Omega) \ni u \mapsto \mathfrak{h}^{\Omega}_{\beta}[u] := \|\nabla u\|^{2}_{L^{2}(\Omega; \mathbb{C}^{d})} + \beta \|u|_{\partial\Omega}\|^{2}_{L^{2}(\partial\Omega)} \text{ for } \beta \in \mathbb{R}.$

The quadratic from $\mathfrak{h}^{\Omega}_{\beta}$ is closed, densely defined, and semi-bounded.

14 / 23

 $\Omega \subset \mathbb{R}^d$ – a Lipschitz domain with compact boundary $\partial \Omega$.

• Bounded domains. • Exterior domains. • Complements of hypersurfaces.

Symmetric quadratic form in $L^2(\Omega)$

 $H^{1}(\Omega) \ni u \mapsto \mathfrak{h}^{\Omega}_{\beta}[u] := \|\nabla u\|^{2}_{L^{2}(\Omega; \mathbb{C}^{d})} + \beta \|u|_{\partial\Omega}\|^{2}_{L^{2}(\partial\Omega)} \text{ for } \beta \in \mathbb{R}.$

The quadratic from $\mathfrak{h}^{\Omega}_{\beta}$ is closed, densely defined, and semi-bounded.

The Robin Laplacian on Ω with the boundary parameter β

 $\mathsf{H}^{\Omega}_{\beta}$ – the self-adjoint operator in $L^2(\Omega)$ associated with the form $\mathfrak{h}^{\Omega}_{\beta}$.

 $\Omega \subset \mathbb{R}^d$ – a Lipschitz domain with compact boundary $\partial \Omega$.

• Bounded domains. • Exterior domains. • Complements of hypersurfaces.

Symmetric quadratic form in $L^2(\Omega)$

 $H^{1}(\Omega) \ni u \mapsto \mathfrak{h}^{\Omega}_{\beta}[u] := \|\nabla u\|^{2}_{L^{2}(\Omega; \mathbb{C}^{d})} + \beta \|u|_{\partial\Omega}\|^{2}_{L^{2}(\partial\Omega)} \text{ for } \beta \in \mathbb{R}.$

The quadratic from $\mathfrak{h}^{\Omega}_{\beta}$ is closed, densely defined, and semi-bounded.

The Robin Laplacian on Ω with the boundary parameter β

 $\mathsf{H}^{\Omega}_{\beta}$ – the self-adjoint operator in $L^{2}(\Omega)$ associated with the form $\mathfrak{h}^{\Omega}_{\beta}$.

The lowest spectral point for H^{Ω}_{β}

 $\nu_1^\beta(\Omega) := \inf \sigma(\mathsf{H}^\Omega_\beta).$

Motivations

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

 ▶ < ≣ ▶ ≣ </th>
 > ○ < ○</th>

 09.11.2016
 15 / 23

< □ > < □ > < □ > < □ > < □ >

Motivation from physics

- (i) H^{Ω}_{β} describes oscillating, elastically supported membranes.
- (ii) H^{Ω}_{β} arises in superconductivity.

Motivation from physics

V. Lotoreichik (NPI CAS)

(i) H^{Ω}_{β} describes oscillating, elastically supported membranes.

(ii) H^{Ω}_{β} arises in superconductivity.

Motivation from spectral geometry

Characterise the spectrum of H^{Ω}_{β} in terms of Ω !

Motivation from physics

(i) H^{Ω}_{β} describes oscillating, elastically supported membranes.

(ii) H^{Ω}_{β} arises in superconductivity.

Motivation from spectral geometry

Characterise the spectrum of H^{Ω}_{β} in terms of Ω !

- Methods and results are frequently very different from δ -interactions.
- Although, the spectral problems have much in common.
V. Lotoreichik (NPI CAS)

Theorem (Bossel-86 (d = 2), Daners-06 ($d \ge 3$))

$$egin{cases} |\Omega| = |\mathcal{B}| \ \Omega \ncong \mathcal{B} \ \end{pmatrix} \implies
u_1^eta(\mathcal{B}) <
u_1^eta(\Omega), \quad orall eta > 0.$$

V. Lotoreichik (NPI CAS)

∃ >

Theorem (Bossel-86 (d = 2), Daners-06 ($d \ge 3$))

$$egin{array}{lll} |\Omega| = |\mathcal{B}| \ \Omega \ncong \mathcal{B} & \Longrightarrow &
u_1^eta(\mathcal{B}) <
u_1^eta(\Omega), & orall eta > 0. \end{array}$$

Corollary

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \quad \nu_1^\beta(\mathcal{B}) < \nu_1^\beta(\Omega), \quad \forall \, \beta > 0. \end{cases}$$

Theorem (Bossel-86 (d = 2), Daners-06 ($d \ge 3$))

$$egin{array}{lll} \Omega| = |\mathcal{B}| \ \Omega \ncong \mathcal{B} & \Longrightarrow &
u_1^eta(\mathcal{B}) <
u_1^eta(\Omega), & orall eta > 0. \end{array}$$

Corollary

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \nu_1^\beta(\mathcal{B}) < \nu_1^\beta(\Omega), \quad \forall \beta > 0. \end{cases}$$

Theorem (Antunes-Freitas-Krejčiřík (d = 2))

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B}, C^2 \text{-smooth } \Omega \end{cases} \implies \nu_1^\beta(\mathcal{B}) \ge \nu_1^\beta(\Omega), \quad \forall \beta < \mathbf{0}. \end{cases}$$

▲ □ ▶ ▲ 三 ▶ ▲ 三

Theorem (Bossel-86 (d = 2), Daners-06 ($d \ge 3$))

$$egin{array}{ll} \Omega| = |\mathcal{B}| \ \Omega \ncong \mathcal{B} & \Longrightarrow &
u_1^eta(\mathcal{B}) <
u_1^eta(\Omega), & orall eta > 0. \end{array}$$

Corollary

$$egin{cases} |\partial\Omega| = |\partial\mathcal{B}| \ \Omega \ncong \mathcal{B} \ \implies \ \
u_1^eta(\mathcal{B}) <
u_1^eta(\Omega), \quad orall eta > 0. \end{cases}$$

Theorem (Antunes-Freitas-Krejčiřík (d = 2))

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B}, C^2 \text{-smooth } \Omega \end{cases} \implies \nu_1^\beta(\mathcal{B}) \ge \nu_1^\beta(\Omega), \quad \forall \, \beta < \mathbf{0}. \end{cases}$$

Open questions: generalisations of the last theorem for $d \ge 3$ and for d = 2 under the constraint $|\Omega| = |\mathcal{B}|$ for simply connected domains.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for ...

09.11.2016 16 / 23

V. Lotoreichik (NPI CAS)

An exterior domain

V. Lotoreichik (NPI CAS)

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

An exterior domain

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

Theorem	(Krejčiřík-VL-16,	d = 2)
---------	-------------------	--------

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{D}| \\ \Omega \ncong \mathcal{D}, \ \Omega \text{ convex} \end{cases} \implies \nu_1^\beta(\mathcal{D}^{\text{ext}}) > \nu_1^\beta(\Omega^{\text{ext}}), \quad \forall \beta < \mathbf{0}. \end{cases}$$

- **4 ∃ ≻** 4

An exterior domain

$$\Omega \subset \mathbb{R}^2$$
 – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

Theorem (Krejčiřík-VL-16,
$$d = 2$$
)

$$\begin{cases}
|\partial \Omega| = |\partial \mathcal{D}| \\
\Omega \ncong \mathcal{D}, \ \Omega \text{ convex}
\end{cases} \implies \nu_1^{\beta}(\mathcal{D}^{\text{ext}}) > \nu_1^{\beta}(\Omega^{\text{ext}}), \quad \forall \beta < \mathbf{0}.
\end{cases}$$

• Min-max principle. • Method of parallel coordinates. • $\int_{\partial\Omega} \kappa = 2\pi$.

★ ∃ ▶

An exterior domain

$$\Omega \subset \mathbb{R}^2$$
 – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

Theorem (Krejčiřík-VL-16, d = 2) $\begin{cases} |\partial \Omega| = |\partial \mathcal{D}| \implies \nu_{\alpha}^{\beta}(\mathcal{D}^{\text{ext}}) > \nu_{\alpha}^{\beta}(\mathcal{D}^{\text{ext}}) \end{cases} \forall d \in \mathcal{D}^{\text{ext}} \end{cases}$

$$\mathfrak{P} \ncong \mathcal{D}, \Omega \text{ convex} \qquad \Longrightarrow \quad \nu_1^{\mathcal{P}}(\mathcal{D}^{\text{ext}}) > \nu_1^{\mathcal{P}}(\Omega^{\text{ext}}), \quad \forall \beta < 0$$

• Min-max principle. • Method of parallel coordinates. • $\int_{\partial\Omega} \kappa = 2\pi$.

Non-convex case: joint work in progress with D. Krejčiřík.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS)

Lemma

V. Lotoreichik (NPI CAS)

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

Lemma

V. Lotoreichik (NPI CAS)

 \mathcal{D}_R – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_1^{\beta}(\mathcal{D}_R^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Lemma

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Theorem (Krejčiřík-VL-16, d = 2)

$$\begin{cases} |\Omega| = |\mathcal{D}| \\ \Omega \ncong \mathcal{D}, \ \Omega \text{ convex} \end{cases} \implies \nu_1^\beta(\mathcal{D}^{\text{ext}}) > \nu_1^\beta(\Omega^{\text{ext}}), \quad \forall \beta < \mathbf{0}. \end{cases}$$

Lemma

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Theorem (Krejčiřík-VL-16, d = 2) $\begin{cases} |\Omega| = |\mathcal{D}| \\ \Omega \ncong \mathcal{D}, \ \Omega \text{ convex} \end{cases} \implies \nu_1^{\beta}(\mathcal{D}^{\text{ext}}) > \nu_1^{\beta}(\Omega^{\text{ext}}), \quad \forall \beta < 0. \end{cases}$

Lemma

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Theorem (Krejčiřík-VL-16, d = 2)

$$\begin{cases} |\Omega| = |\mathcal{D}| \\ \Omega \ncong \mathcal{D}, \ \Omega \text{ convex} \end{cases} \implies \nu_1^\beta(\mathcal{D}^{\text{ext}}) > \nu_1^\beta(\Omega^{\text{ext}}), \quad \forall \beta < \mathbf{0}. \end{cases}$$

Proof.

•
$$\widetilde{\mathcal{D}} \subset \mathbb{R}^2$$
 – the disc such that $|\partial \Omega| = |\partial \widetilde{\mathcal{D}}|$.

09.11.2016 18 / 23

Lemma

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Theorem (Krejčiřík-VL-16, d = 2)

$$\begin{cases} |\Omega| = |\mathcal{D}| \\ \Omega \ncong \mathcal{D}, \ \Omega \text{ convex} \end{cases} \implies \nu_1^\beta(\mathcal{D}^{\text{ext}}) > \nu_1^\beta(\Omega^{\text{ext}}), \quad \forall \beta < \mathbf{0}. \end{cases}$$

- $\widetilde{\mathcal{D}} \subset \mathbb{R}^2$ the disc such that $|\partial \Omega| = |\partial \widetilde{\mathcal{D}}|$.
- Geometric isoperimetric inequality $\Rightarrow |\widetilde{\mathcal{D}}| > |\mathcal{D}|$.

Lemma

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Theorem (Krejčiřík-VL-16, d = 2)

$$egin{cases} |\Omega| = |\mathcal{D}| \ \Omega \ncong \mathcal{D}, \ \Omega \ ext{convex} \end{cases} \implies
u_1^eta(\mathcal{D}^{ ext{ext}}) >
u_1^eta(\Omega^{ ext{ext}}), \quad orall eta < \mathbf{0}. \end{cases}$$

- $\widetilde{\mathcal{D}} \subset \mathbb{R}^2$ the disc such that $|\partial \Omega| = |\partial \overline{\mathcal{D}}|$.
- Geometric isoperimetric inequality $\Rightarrow |\widetilde{\mathcal{D}}| > |\mathcal{D}|$. Spectral isoperimetric inequality $\Rightarrow \nu_1^{\beta}(\Omega^{\text{ext}}) < \nu_1^{\beta}(\widetilde{\mathcal{D}}^{\text{ext}})$.

Lemma

$$\mathcal{D}_{R}$$
 – a disc of radius R. $\beta < 0. \implies R \mapsto \nu_{1}^{\beta}(\mathcal{D}_{R}^{ext})$ is strictly decaying.

• Separation of variables. • Subtle properties of Bessel functions K_{ν} .

Theorem (Krejčiřík-VL-16, d = 2)

$$\begin{cases} |\Omega| = |\mathcal{D}| \\ \Omega \ncong \mathcal{D}, \ \Omega \text{ convex} \end{cases} \implies \nu_1^\beta(\mathcal{D}^{\text{ext}}) > \nu_1^\beta(\Omega^{\text{ext}}), \quad \forall \beta < \mathbf{0}. \end{cases}$$

- $\widetilde{\mathcal{D}} \subset \mathbb{R}^2$ the disc such that $|\partial \Omega| = |\partial \overline{\mathcal{D}}|$.
- Geometric isoperimetric inequality $\Rightarrow |\widetilde{\mathcal{D}}| > |\mathcal{D}|$. Spectral isoperimetric inequality $\Rightarrow \nu_1^{\beta}(\Omega^{\text{ext}}) < \nu_1^{\beta}(\widetilde{\mathcal{D}}^{\text{ext}})$.

• Lemma
$$\Rightarrow \nu_1^{\beta}(\widetilde{\mathcal{D}}^{\mathrm{ext}}) < \nu_1^{\beta}(\mathcal{D}^{\mathrm{ext}}).$$

A counterexample for d = 2

V. Lotoreichik (NPI CAS)

A counterexample for d = 2

Two discs

V. Lotoreichik (NPI CAS)

$$\Omega_r = \mathcal{D}'_r \cup \mathcal{D}''_r$$
 where $\overline{\mathcal{D}'_r} \cap \overline{\mathcal{D}''_r} = \varnothing$.

• • • • • • • • • • • •

A counterexample for d = 2

Two discs

$$\Omega_r = \mathcal{D}'_r \cup \mathcal{D}''_r$$
 where $\overline{\mathcal{D}'_r} \cap \overline{\mathcal{D}''_r} = \varnothing$.

A simple computation gives

$$\begin{aligned} |\Omega_r| &= |\mathcal{D}_R| &\implies r &= R/\sqrt{2}, \\ |\partial \Omega_r| &= |\partial \mathcal{D}_R| &\implies r &= R/2. \end{aligned}$$

→ ∃ →

Two discs

$$\Omega_r = \mathcal{D}'_r \cup \mathcal{D}''_r$$
 where $\overline{\mathcal{D}'_r} \cap \overline{\mathcal{D}''_r} = \varnothing$.

A simple computation gives

$$\begin{aligned} |\Omega_r| &= |\mathcal{D}_R| &\implies r &= R/\sqrt{2}, \\ |\partial \Omega_r| &= |\partial \mathcal{D}_R| &\implies r &= R/2. \end{aligned}$$

Strong coupling (Kovařík-Pankrashkin-16)

$$u_1^{\beta}(\Omega_r^{\text{ext}}) - u_1^{\beta}(\mathcal{D}_R^{\text{ext}}) = \beta\left(\frac{1}{R} - \frac{1}{r}\right) + o(\beta) \text{ as } \beta \to -\infty.$$

< ⊒ >

Two discs

$$\Omega_r = \mathcal{D}'_r \cup \mathcal{D}''_r$$
 where $\overline{\mathcal{D}'_r} \cap \overline{\mathcal{D}''_r} = \varnothing$.

A simple computation gives

$$|\Omega_r| = |\mathcal{D}_R| \implies r = R/\sqrt{2},$$

 $|\partial\Omega_r| = |\partial\mathcal{D}_R| \implies r = R/2.$

Strong coupling (Kovařík-Pankrashkin-16)

$$u_1^{eta}(\Omega_r^{\mathrm{ext}}) - \nu_1^{eta}(\mathcal{D}_R^{\mathrm{ext}}) = \beta\left(\frac{1}{R} - \frac{1}{r}\right) + o(\beta) \text{ as } \beta \to -\infty.$$

For all $\beta < 0$ with $|\beta|$ large enough

 $\nu_1^{\beta}(\Omega_r^{\mathrm{ext}}) > \nu_1^{\beta}(\mathcal{D}_R^{\mathrm{ext}}).$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

No direct analogue for $d \ge 3$

V. Lotoreichik (NPI CAS)

• • • • • • • • • • • •

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1))$$
 where $|x_0 - x_1| = s$.

∃ >

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1))$$
 where $|x_0 - x_1| = s$.

$$\forall r > 0 \exists s > 0$$
 such that $|\Omega_{r,s}| = |\mathcal{B}_R|$ or $|\partial \Omega_{r,s}| = |\partial \mathcal{B}_R|$

∃ >

V. Lotoreichik (NPI CAS)

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1))$$
 where $|x_0 - x_1| = s$.

$$\forall r > 0 \exists s > 0$$
 such that $|\Omega_{r,s}| = |\mathcal{B}_R|$ or $|\partial \Omega_{r,s}| = |\partial \mathcal{B}_R|$

Strong coupling (Kovařík-Pankrashkin-16)

$$\nu_1^\beta(\Omega_{r,s}^{\mathrm{ext}}) - \nu_1^\beta(\mathcal{B}_R^{\mathrm{ext}}) = \beta\left(\frac{(d-1)}{R} - \frac{(d-2)}{(d-1)r}\right) + o(\beta) \text{ as } \beta \to -\infty.$$

★ ∃ ►

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1))$$
 where $|x_0 - x_1| = s$.

$$\forall r > 0 \exists s > 0$$
 such that $|\Omega_{r,s}| = |\mathcal{B}_R|$ or $|\partial \Omega_{r,s}| = |\partial \mathcal{B}_R|$

Strong coupling (Kovařík-Pankrashkin-16)

$$u_1^{eta}(\Omega_{r,s}^{\mathrm{ext}}) - \nu_1^{eta}(\mathcal{B}_R^{\mathrm{ext}}) = eta\left(rac{(d-1)}{R} - rac{(d-2)}{(d-1)r}
ight) + o(eta) ext{ as } eta o -\infty.$$

For sufficiently small r and all $\beta < 0$ with $|\beta|$ large enough $\nu_1^{\beta}(\Omega_{r,s}^{\text{ext}}) > \nu_1^{\beta}(\mathcal{B}_R^{\text{ext}}).$

(本語) (本語) (本語)

V. Lotoreichik (NPI CAS)

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

09.11.2016 21 / 23

Theorem (VL-16)

V. Lotoreichik (NPI CAS)

$$egin{cases} |\Sigma| = |\Upsilon| \ \Sigma \ncong \Upsilon \end{pmatrix} \quad \implies \quad
u_1^eta(\mathbb{R}^2 \setminus \Upsilon) >
u_1^eta(\mathbb{R}^2 \setminus \Sigma), \quad orall eta < 0. \end{cases}$$

Theorem (VL-16)

$$egin{cases} |\Sigma| = |\Upsilon| \ \Sigma \ncong \Upsilon \end{pmatrix} \quad \implies \quad
u_1^eta(\mathbb{R}^2 \setminus \Upsilon) >
u_1^eta(\mathbb{R}^2 \setminus \Sigma), \quad orall eta < 0. \end{cases}$$

Proof.

• Symmetry
$$\Rightarrow \nu_1^{\beta}(\mathbb{R}^2 \setminus \Upsilon) = \mu_1^{2\beta}(\Upsilon).$$

09.11.2016 21 / 23

Theorem (VL-16)

$$egin{cases} |\Sigma| = |\Upsilon| \ \Sigma \ncong \Upsilon \end{pmatrix} \quad \implies \quad
u_1^eta(\mathbb{R}^2 \setminus \Upsilon) >
u_1^eta(\mathbb{R}^2 \setminus \Sigma), \quad orall eta < 0. \end{cases}$$

- Symmetry $\Rightarrow \nu_1^{\beta}(\mathbb{R}^2 \setminus \Upsilon) = \mu_1^{2\beta}(\Upsilon).$
- Min-max + form ordering $\Rightarrow \nu_1^{\beta}(\mathbb{R}^2 \setminus \Sigma) < \mu_1^{2\beta}(\Sigma).$

Theorem (VL-16)

$$egin{cases} |\Sigma| = |\Upsilon| \ \Sigma \ncong \Upsilon \end{pmatrix} \quad \implies \quad
u_1^eta(\mathbb{R}^2 \setminus \Upsilon) >
u_1^eta(\mathbb{R}^2 \setminus \Sigma), \quad orall eta < 0. \end{cases}$$

- Symmetry $\Rightarrow
 u_1^{eta}(\mathbb{R}^2 \setminus \Upsilon) = \mu_1^{2eta}(\Upsilon).$
- Min-max + form ordering $\Rightarrow \nu_1^{\beta}(\mathbb{R}^2 \setminus \Sigma) < \mu_1^{2\beta}(\Sigma)$.
- The claim follows from $\mu_1^{2\beta}(\Sigma) < \mu_1^{2\beta}(\Upsilon)$.

Summary of the results

(日)

V. Lotoreichik (NPI CAS)
V. Lotoreichik (NPI CAS)

The lowest eigenvalue of surface δ -interactions is optimized by:

V. Lotoreichik (NPI CAS)

The lowest eigenvalue of surface δ -interactions is optimized by:

• the line segment among open arcs of fixed length;

V. Lotoreichik (NPI CAS)

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

V. Lotoreichik (NPI CAS)

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

The lowest eigenvalue of the Robin Laplacian is optimized by:

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

The lowest eigenvalue of the Robin Laplacian is optimized by:

• the exterior of a disc among domains exterior to convex planar sets of fixed perimeter / area.

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

The lowest eigenvalue of the Robin Laplacian is optimized by:

- the exterior of a disc among domains exterior to convex planar sets of fixed perimeter / area.
- the exterior of a line segment among domains exterior to arcs of fixed length.

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

The lowest eigenvalue of the Robin Laplacian is optimized by:

- the exterior of a disc among domains exterior to convex planar sets of fixed perimeter / area.
- the exterior of a line segment among domains exterior to arcs of fixed length.

The lowest eigenvalue of the Robin Laplacian is **not** optimized by:

09.11.2016 22 / 23

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

The lowest eigenvalue of the Robin Laplacian is optimized by:

- the exterior of a disc among domains exterior to convex planar sets of fixed perimeter / area.
- the exterior of a line segment among domains exterior to arcs of fixed length.

The lowest eigenvalue of the Robin Laplacian is **not** optimized by:

 the exterior of a ball among domains exterior to a bounded set in ℝ^d (d ≥ 3) of fixed volume or fixed area of the boundary.

The lowest eigenvalue of surface δ -interactions is optimized by:

- the line segment among open arcs of fixed length;
- the circular conical surface among conical surfaces with fixed length of the base $\in (0, 2\pi)$.

The lowest eigenvalue of the Robin Laplacian is optimized by:

- the exterior of a disc among domains exterior to convex planar sets of fixed perimeter / area.
- the exterior of a line segment among domains exterior to arcs of fixed length.

The lowest eigenvalue of the Robin Laplacian is **not** optimized by:

- the exterior of a ball among domains exterior to a bounded set in ℝ^d (d ≥ 3) of fixed volume or fixed area of the boundary.
- the exterior of a disc among domains exterior to planar (not necessarily connected) sets of fixed area or fixed perimeter.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

Thank you for your attention!

→ ∃ →

< 47 ▶

V. Lotoreichik (NPI CAS)