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Abstract. Pavel Cmorej has argued that the existence of unverifiable and unfalsifiable empirical
propositions follows from certain plausible assumptions concerning the notions of possibility and ver-
ification. Cmorej proves, it the context of a bi-modal alethic-epistemic axiom system AM4, that (1)
‘p and it is not verified that p’ is unverifiable; (2) ‘p or it is falsified that p’ is unfalsifiable; (3) every
unverifiable p is logically equivalent to ‘p and it is not verifiable that p’; (4) every unverifiable p entails
that p is unverifiable. This article elaborates on Cmorej’s results in three ways. Firstly, we formulate
a version of neighbourhood semantics for AM4 and prove completeness. This allows us to replace
Cmorej’s axiomatic derivations with simple model-theoretic arguments. Secondly, we link Cmorej’s
results to two well-known paradoxes, namely Moore’s Paradox and the Knowability Paradox. Thirdly,
we generalise Cmorej’s results, show them to be independent of each other and argue that results (3)
and (4) are independent of any assumptions concerning the notion of verification.
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1 Introduction

Cmorej (1988, 1990) argues that the existence of unverifiable and unfalsifiable em-
pirical propositions is a consequence of certain plausible assumptions concerning the
notions of possibility and verification.1 His argument is proof-theoretic and employs

∗This work has been supported by the VEGA grant no. 2/0019/12, Language and the Determi-
nation of Meaning in Communication. I am grateful to Pavel Cmorej for clarification, comments and
encouragement.

1(Cmorej, 1990) is a translation of the Slovak original (Cmorej, 1988). I’ll refer to the internation-
ally accessible (Cmorej, 1990) for the rest of the article.



an alethic-epistemic axiom system. Cmorej’s main result is that schemas

∼MV (α ∧ ∼Vα)(1)

∼MF (α ∨ Fα),(2)

are provable in the axiom system in question, where M stands for ‘it is possible that’,
V stands for ‘it is verified that’ and F stands for ‘it is falsified that’ (Fα is defined as
V∼α). If α is a hitherto unverified empirical proposition, then α ∧ ∼Vα is empirical
as well. Yet, according to (1), it is unverifiable. Similarly, if α is empirical and not
falsified, then α ∨ Fα is empirical and, according to (2), not falsifiable.

Cmorej then goes on to establish two further results concerning unverifiable propo-
sitions. Firstly, each unverifiable proposition α is necessarily equivalent to α ∧ ∼Vα.
In other words,

(3) ∼MVα ⊃ L(α ≡ (α ∧ ∼Vα))

is provable (where L stands for ‘it is necessary that’). Secondly, each unverifiable
proposition α entails a proposition saying that α is unverifiable, i.e.

(4) ∼MVα ⊃ L(α ⊃ ∼MVα)

is provable. (Similar results are established for falsifiability, but these are easily deriv-
able form the results stated above by applying the definition of F.)

This article elaborates on Cmorej’s results and sets them into a wider philosoph-
ical context. Firstly, Cmorej’s arguments are simplified by replacing the complex
axiomatic proofs of the results concerning (1) – (4) by simple model-theoretic argu-
ments. Secondly, Cmorej’s result concerning (1) is linked to two well-known para-
doxes, namely Moore’s Paradox (Green & Williams, 2007; Moore, 1942) and the
Knowability Paradox (Fitch, 1963; Salerno, 2009). Thirdly, the results are generalised
and shown to be independent. In particular, we set up a weak bi-modal logic that val-
idates (1) and (2) without validating (3), (4) and most Cmorej’s assumptions concern-
ing V and M . We also formulate a bi-modal logic that validates (3) and (4) without
validating (1) or (2). The precise nature of the latter logic suggests that the results
concerning (3) and (4) are independent of any assumptions concerning the notion of
verification.

The article is organised as follows. Section 2 introduces Cmorej’s axiom system
AM4 and establishes completeness with respect to a specific class of modal neigh-
bourhood frames (Chellas, 1980; Segerberg, 1971). This allows us to formulate sim-
ple model-theoretic arguments establishing (1) – (4). Section 3 relates Cmorej’s result
concerning (1) to Moore’s Paradox and the Knowability Paradox. Section 4 shows that
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the results concerning (1) and (2) are independent from the results concerning (3) and
(4), and that the latter two are independent of any assumptions concerning the notion
of verification. The final section 5 sums up the main points of the article.

2 Semantic Arguments

This section introduces the axiom system AM4 (2.1) discusses models (2.2), proves
completeness (2.3) and provides simple model-theoretic arguments establishing (1) –
(4) (2.4).

2.1 AM4

Let us fix a denumerable set V ar of propositional variables. Every propositional vari-
able p,q, . . . is a formula. If α and β are formulas, then so are ∼α, α∧ β, Lα and Vα.
Other Boolean connectives are defined in the usual fashion. Lα is read as ‘it is neces-
sary that α’ (or ‘α is necessary’) and Vα as ‘it is verified that α’ (or ‘α is verified’).
Mα is defined as ∼L∼α and is read as ‘it is possible that α’ (or ‘α is possible’). Fα
is defined as V∼α and is read as ‘it is falsified that α’ (or ‘α is falsified’). A formula
is tautologous if it is a substitution instance of a tautology of classical propositional
logic.

Definition 2.1 (AM4, Cmorej (1990)). The axiom system AM4 is given by the fol-
lowing axiom schemas and rules of inference. Every tautologous formula is an axiom.
Other axioms are all formulas of the form:

(A1) Lα ⊃ α

(A2) L(α ⊃ β) ⊃ (Lα ⊃ L β)

(A3) ∼Lα ⊃ L∼Lα

(B1) Vα ⊃ α

(B2) V (α ∧ β) ⊃ (Vα ∧ V β)

(B3) (Vα ∧ V β) ⊃ V (α ∧ β)

(B4) Vα ⊃ VVα

(C) L(α ⊃ β) ⊃ (Vα ⊃ V β)

There are two rules of inference, namely Modus Ponens and L-Necessitation (‘If ⊢ α,
then ⊢ Lα’). Proofs and derivations are defined as usual. �

The choice of ‘alethic’ L-axioms and rules and ‘methodological’ V -axioms makes
it clear that L is a normal modality governed by axioms of the system S5 (see Hughes
& Cresswell, 1996), while V is a regular modality governed at least by the axioms of
the system RT4 (see Chellas, 1980). We shall see later on that, in fact, V is a non-
normal modality as the rule of V -Necessitation is not a derivable rule. In other words,
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verification is not closed under admissible zero-premise inference rules. However,
as the ‘interaction axiom’ (C) suggests, verification is closed under admissible one-
premise rules. In fact, a consequence of the inclusion of (B3) among axioms entails
that verification is closed under admissible multi-premise rules as well.

Lemma 2.2. Lα ⊃ LLα is derivable in AM4.

Proof. Folklore (see Hughes & Cresswell, 1996, 58). �

Lemma 2.3. If α ≡ β is provable in AM4, then so is Vα ≡ V β.

Proof. We make use of some obviously admissible S5-rules. If ⊢ α ≡ β, then ⊢ L(α ≡
β), then ⊢ L(α ⊃ β) ∧ L(β ⊃ α), then ⊢ (Vα ⊃ V β) ∧ (V β ⊃ Vα). �

2.2 Models

The models of our choice are neighbourhood models, where neighbourhoods (to be
defined shortly) are closed under intersection. The assumption of closure under su-
persets, standard when regular systems are dealt with, is simulated by a non-standard
truth-condition for Vα. L is treated as a universal modality.

Definition 2.4 (Frames). A frame is a couple

F = ⟨W ,N ⟩

where W is a non-empty set (‘states’, ‘(possible) worlds’) and N is a function from
W to subsets of the power-set of W (‘neighbourhood function’). Hence, N (w) is a
set of sets of worlds (‘neighbourhoods of w’). It is assumed that

• (c) If X,Y ∈ N (w), then X ∩ Y ∈ N (w);

• (t) If X ∈ N (w), then w ∈ X ;

• (iv) If X ∈ N (w), then {v | X ∈ N (v)} ∈ N (w). �

Sets X ∈ N (w) can be thought of as propositions ‘directly’ verified at w. The as-
sumption (c) guarantees that (B3) is valid in every frame (to be defined shortly); (t)
ensures (B1) and (iv) ensures (B4), (see Chellas, 1980).

Definition 2.5 (Models and Truth-Sets). A model based on F is a couple

M = ⟨F ,V⟩

where V is a function from V ar to subsets of W (‘valuation’). The truth-set |α |M of
a formula α in model M is defined recursively as follows:
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• |p|M = V (p);

• |∼α |M =W \ |α |M;

• |α ∧ β |M = |α |M ∩ | β |M;

• |Vα |M = {w | X ⊆ |α |M for some X ∈ N (w)};

• |Lα |M =W if |α |M =W; |Lα |M = ∅ otherwise. �

w ∈ |α |M is read as ‘α is true in w (in the context of M)’. This will be written also
as M,w |= α. Informally, Vα is true in w iff there is a proposition directly verified
at w that ‘entails’ α. Lα is true at any world iff α is true in every world. M will not
be mentioned when the identity of the model in question is clear from the context or
immaterial.

Definition 2.6 (Consequence). α is a M-consequence of a set of formulas Γ iff∩
β∈Γ
| β |M ⊆ |α |M

(‘ΓM-entails α’). α is M-valid iff it is a M-consequence of the empty set. α is a
F-consequence of Γ iff it is a M-consequence of Γ for every M based on F . If C is
a class of frames (models), then α is a C-consequence of Γ iff it is a F-consequence
(M-consequence) of Γ for every F (M) in C. Similarly for C-validity. �

ΓM-entails α iff there is no world in M where all the ‘assumptions’ in Γ are true,
but α is false. α is M-valid iff it is true ‘throughout the model M’.

Example 2.7. Let us consider an example. Let the set of worlds be {v,u} and assume
that the truth-set of p is {v}, while the truth-set of q is {v,u}. In addition, let N (v) =
{{v}} and N (u) = ∅. It is easy to check that this model satisfies the conditions (c), (t)
and (iv). q is valid in the model and, hence, Lq holds in both worlds. So does does
∼L(p ∧ q). V q holds in v, because {v} ∈ N (v) and {v} ⊆ {v,u}, the truth-set of p.
However, V q does not hold in u. Note that even V∼q is false in u. The truth-set of ∼q
is ∅, but, obviously, ∅ < ∅. In fact, ∼Vα holds in u for every formula α. In conjunction
with our completeness proof of Section 2.3, this example shows that Cmorej’s V is
not a normal modality (as such, it would have to satisfy V -necessitation). �

Neighbourhood semantics has a wide range of applications, including models of
coalitions within games (Pauly, 2002). Neighbourhood models have recently been
applied to an epistemic language with both normal an non-normal modalities within
the project of evidence logics (see van Benthem, Fernández-Duque, & Pacuit, 2014;
van Benthem & Pacuit, 2011). In view of our completeness result established below,
Cmorej may be credited with an early contribution to evidence logic.
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2.3 Completeness

The goal of the present subsection is to show that α is derivable from a set of assump-
tions Γ in AM4 iff Γ F-entails α in every F . One half of the claim is established
easily.

Proposition 2.8 (Soundness). If α is derivable from a set of assumptions Γ in AM4,
then Γ F-entails α in every F .

Proof. It is sufficient to show that every axiom is valid in every frame and that the rules
of inference preserve validity. All cases are straightforward. Nevertheless, let us prove
the validity of (B3) and (B4). First, (B3). Consider any M,w. If M,w |= Vα ∧ V β,
then there is X ∈ N (w) such that X ⊆ |α | and there is Y ∈ N (w) such that Y ⊆ | β |.
But then X∩Y ∈ N (w) by (c). Obviously, X∩Y ⊆ |α∧ β |. Hence, M,w |= V (α∧ β).
Next, (B4). If M,w |= Vα, then there is X ∈ N (w) such that X ⊆ |α |. By (iv),
{v | X ∈ N (v)} ∈ N (w). It is plain that {v | X ∈ N (v)} ⊆ |Vα |. In other words,
there is Y ∈ N (w) such that Y ⊆ |Vα |. Consequently, M,w |= VVα. �

To establish the other half of the main claim, we employ the standard canonical
model technique (see Chellas, 1980). A specific feature of our situation is the presence
of the universal modality L. To deal with this extra machinery, we combine the stan-
dard completeness argument for regular systems with a simple strategy that is used
within completeness proofs for normal systems with the universal modality (Black-
burn, de Rijke, & Venema, 2001, ch. 7.1). But first, let us re-capitulate some standard
terminology.2

Definition 2.9 (AM4-sets). A set Γ of formulas is maximal AM4-consistent (‘an AM4-
set’) iff

• Γ is consistent, i.e. there is no {α1, . . . ,αn, β} ⊆ Γ such that α1∧ . . .∧αn ⊃ ∼β
is provable in AM4; and

• Γ is maximal, i.e. if α < Γ, then Γ ∪ {α} is not consistent. �

Lemma 2.10. Some well-known properties of maximal consistent sets:

• If Γ is an AM4-set, ∆ ⊆ Γ and α is derivable form ∆ in AM4, then α ∈ Γ;

2More details on maximal consistent sets and modal completeness proofs are provided by Blackburn
et al. (2001, ch. 4), Chellas (1980, ch. 2.6–2.7, 4.5, 5.3) and Hughes and Cresswell (1996, ch. 6), who
discuss normal systems. Chellas (1980, ch. 9) discusses completeness proofs for some non-normal
systems.
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• If ∆ is consistent then there is an AM4-set Γ such that ∆ ⊆ Γ (Lindenbaum’s
Lemma);

Proof. Standard (see Chellas, 1980, ch. 2.6). �

Note that the above Lemma entails that if Γ is an AM4-set, then ∼α ∈ Γ iff α < Γ and
α ∧ β ∈ Γ iff α, β ∈ Γ.

Definition 2.11 (Pre-models). A pre-model is a tuple

M0 = ⟨W0,R,N0,V0⟩,

where

• W0 is the set of all AM4-sets, and |α |0 = {Γ ∈ W0 | α ∈ Γ};

• RΓ∆ iff {α | Lα ∈ Γ} ⊆ ∆, and R(Γ) = {∆ | RΓ∆};

• N0(Γ) = {|α |0 | Vα ∈ Γ};

• V0(p) = |p|0. �

Lemma 2.12. For all Γ ∈ W0, N0(Γ) is closed under (binary) intersections.

Proof. Assume that X,Y ∈ N0(Γ). By the definition of N0, X = |α |0 and Y = | β |0 for
some Vα,V β ∈ Γ. By Lemma 2.10, V (α ∧ β) ∈ Γ. Hence, |α ∧ β |0 ∈ N0. In other
words, |α |0 ∩ | β |0 ∈ N0(Γ). �

Lemma 2.13. If Γ ∈ W0 and Lα < Γ, then there is ∆ ∈ W0 such that

• RΓ∆ and

• ∼α ∈ ∆.

Proof. Standard (see Hughes & Cresswell, 1996, 115–117). �

It is clear that, in pre-models, we can have some Γ,∆,α such that Lα ∈ Γ, but α < ∆
(if not RΓ∆). Hence, in the context of pre-models, L is not a universal modality. To
fix this, we use a standard ‘trick’.

Definition 2.14 (Canonical Λ-model). Let Λ ∈ W0. A canonical Λ-model is a tuple

MΛ = ⟨WΛ,NΛ,VΛ⟩

where

• WΛ = R(Λ) and |α |Λ = |α |0 ∩WΛ;
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• NΛ(Γ) = {X ⊆ WΛ | X = X0 ∩WΛ for some X0 ∈ N0(Γ)};

• VΛ(p) = |p|Λ. �

Λ is seen as the ‘centre’ of the model, which universe is the set of AM4-sets reachable
from the centre via R. Crucially, every Λ-neighbourhood of any Γ ∈ W0 is a ‘pre-
neighbourhood’ of Γ with every AM4-set not reachable from the centre ‘bitten off’.

Now the goal is to show that, for every Λ, MΛ is indeed a model.

Lemma 2.15. |α |Λ ⊆ | β |Λ iff L(α ⊃ β) ∈ Λ.

Proof. We omit the simple argument establishing the right-to-left direction. To prove
the converse, assume that L(α ⊃ β) < Λ. By Lemma 2.13, there is Γ ∈ R(Λ) such
that α ∈ Γ and β < Γ. Hence, Γ ∈ |α |0 ∩WΛ, but Γ < | β |0 ∩WΛ. In other words,
|α |Λ * | β |Λ. �

Lemma 2.16. If Γ ∈ WΛ and Lα ∈ Λ, then Lα ∈ Γ.

Proof. Follows from Lemmas 2.2 and 2.10. �

Lemma 2.17 (Frame Lemma). For all Λ ∈ W0 and Γ ∈ WΛ:

• (c) If X,Y ∈ NΛ(Γ), then X ∩ Y ∈ NΛ(Γ);

• (t) If X ∈ NΛ(Γ), then Γ ∈ X;

• (iv) If X ∈ NΛ(Γ), then {∆ | X ∈ NΛ(∆)} ∈ NΛ(Γ).

Proof. (c) Assume that X,Y ∈ NΛ(Γ). Then X = |α |Λ and Y = | β |Λ for some
Vα,V β ∈ Γ. By Lemma 2.12, |α |0∩| β |0 ∈ N0(Γ). Hence, X∩Y = |α |0∩| β |0∩WΛ ∈
NΛ(Γ).

(t) Assume that X ∈ NΛ(Γ). Then X = |α |0 ∩W0 for some Vα ∈ Γ. By Lemma
2.10 and axiom (B1), α ∈ Γ, i.e. Γ ∈ |α |0. Consequently, Γ ∈ X .

(iv) Assume that X ∈ NΛ(Γ). Then X = |α |0 ∩WΛ for some Vα ∈ Γ. By Lemma
2.10 and axiom (B4), VVα ∈ Γ. Now assume that {∆ | X ∈ NΛ(∆)} < NΛ(Γ). This
means that {∆ | X ∈ NΛ(∆)} , | β |0 ∩WΛ for no V β ∈ Γ. In particular, then, this
holds for VVα. In other words,

{∆ | X ∈ NΛ(∆)} , |Vα |0 ∩WΛ

Now there are two cases to check.

1. There is ∆ ∈ WΛ such that ∆ ∈ |Vα |0 ∩WΛ but |Vα |0 ∩WΛ < NΛ(∆). The
latter means that |α |Λ , | β |Λ for no V β ∈ ∆. But Vα ∈ ∆, so the assumption
entails that |α |Λ , |α |Λ. Contradiction.
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2. There is ∆ ∈ WΛ such that |Vα |0 ∩WΛ ∈ NΛ(∆) but ∆ < |Vα |0 ∩WΛ. In
other words, |α |Λ = | β |Λ for some V β ∈ ∆, but Vα < ∆. The former entails, by
Lemma 2.15, that L(α ⊃ β) ∧ L(β ⊃ α) ∈ Λ. By Lemma 2.16, L(β ⊃ α) ∈ ∆.
But then, by Lemma 2.10 and axiom (C), V β ⊃ Vα ∈ ∆. Consequently, Vα ∈
∆. Contradiction.

�

Lemma 2.18 (Model Lemma). For all Λ ∈ W0 and Γ ∈ WΛ, α ∈ Γ iffMΛ,Γ |= α.

Proof. We need to check that α ∈ Γ iff the truth-condition for α is satisfied with
respect to Γ. The proof is by induction on the complexity of α. The base case α = p
holds by definition. The cases of ∼ and ∧ are easy (and standard) and we omit them.
Only the ‘modal’ cases are checked explicitly.

We check that Lα ∈ Γ iffMΛ,∆ |= α for all ∆ ∈ WΛ. The right-hand side is
equivalent to the claim that α ∈ ∆ for all ∆ ∈ WΛ by the induction hypothesis. Now
the left-to-right implication is an obvious consequence the definition of WΛ. The
right-to-left implication follows from Lemma 2.13 and the definition of WΛ.

Next, we check that Vα ∈ Γ iff there is a X ∈ NΛ(Γ) such that X ⊆ |α |Λ. If
Vα ∈ Γ, then |α |0 ∈ N0(Γ) and, hence, |α |0 ∩WΛ ∈ NΛ(Γ). Conversely, if there is
X ∈ NΛ(Γ) such that X ⊆ |α |Λ, then X = | β |Λ for some V β ∈ Γ. Vα ∈ Γ follows by
Lemmas 2.15 and 2.16. �

The Frame and Model Lemmas ensure that every canonical Λ-model is a model
and that membership in Γ is equivalent to truth in Γ. Completeness follows immedi-
ately.

Theorem 2.19 (Strong Completeness). Let Θ be any set of formulas. If Θ F-entails
α for every F , then α is derivable from Θ in AM4.

Proof. Assume that α is not derivable from Θ. Then the set Θ∪{∼α} is consistent. By
Lindenbaum’s Lemma, there is an AM4-set Λ ⊇ Θ∪{∼α}. Construct the Λ-canonical
model MΛ. By Lemmas 2.17 and 2.18, there is a model M (namely MΛ) and a world
w (namely Λ) such that M,w |= β for every β ∈ Θ, but M,w ̸ |= α. Hence, Θ does
not F-entail α for all F . �

2.4 Cmorej’s Results, Semantically

A direct consequence of the Completeness Theorem is that Cmorej’s results may be
established by using simple model-theoretic arguments.
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Assume that (1) is not provable. Then, by the Completeness Theorem, there is a
model M and a world w such that MV (α ∧ ∼Vα) is true in w. But then, by the truth-
condition for L, V (α ∧ ∼Vα) is true in some u in the model M. Soundness and (B2)
imply that Vα ∧ V∼Vα holds in u and (B1) leads to the contradiction that Vα ∧ ∼Vα
holds in u.

The provability of (2) is a direct consequence of the provability of (1). If the
schema (1) is valid then so is ∼MV (∼α ∧ ∼V∼α) and, by Lemma 2.3, ∼MV∼(α ∨
V∼α) is valid as well.

Now assume that (3) is false in some M,w. Hence, L∼Vα∧M∼(α ≡ (α∧∼Vα))
is true in w. This means that there is some u in M such that ∼Vα∧∼(α ≡ (α∧∼Vα))
holds in u. But this is impossible, since the latter formula is a substitution instance of
a contradiction of classical propositional logic.

Finally, assume that (4) is false in M,w. Then L∼Vα ∧ M (α ∧ MVα) in w. By
Lemma 2.2 and Soundness, L∼Vα ∧ α ∧ MVα in u. Contradiction. The nature of the
latter two arguments suggests that the results concerning (3) and (4) are independent
of any assumptions concerning V . We will return to this point in Section 4.

3 Unverifiability, Absurdity, and Unknowability

This section links Cmorej’s results to two well-known philosophical problems, Moore’s
Paradox and the Knowability Paradox. Our sole aim is to point out some similarities
between Cmorej’s findings and the two paradoxes without going into philosophical
detail.

Cmorej’s main result is that

(5) p ∧ ∼V p,

as well as all its substitution instances, is provably unverifiable. (5) is similar in form
to so-called (omissive) moorean sentences, i.e. sentences of the form

(6) p and I do not believe that p,

with ‘I believe that’ replaced by ‘It is verified that’. Moorean sentences and the air of
absurdity surrounding them are at the heart of a famous problem, known as Moore’s
Paradox. Green and Williams (2007, 3) explain that

G. E. Moore observed that to say, ‘I went to the pictures last Tuesday but I don’t
believe that I did’ would be ‘absurd’ (1942, 543). Over half a century later,
such sayings continue to perplex philosophers and other students of language,
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logic, and cognition. On the one hand, such sayings seem distinct from seman-
tically odd Liar-type sayings such as ‘What I’m now saying is not true’. Unlike
Liar-type sentences, what Moore said might be true: One can readily imagine a
situation in which Moore went to the pictures last Tuesday but does not believe
that he did so. On the other hand, it does seem absurd to assert a proposition
while, with no apparent change of mind, or aside to a different audience, going
on to deny that one believes it. It seems no less absurd to judge true the following
proposition: p and I do not believe that p. (Original emphasis.)

(5) may itself be labelled as ‘absurd to utter’ or ‘absurd to judge true’. Assume that
I assert that p and that p is not verified at the same time. It seems, then, that my
assertion implies that it lacks appropriate grounds: If the assertion is true, then one of
the statements being asserted is unverified. But on what grounds is it asserted, then?

Cmorej’s result concerning (1) can be construed as providing an explanation of the
air of absurdity surrounding (5): (5) is unverifiable and, therefore, un-X-able for every
X that requires verification.3 This explanation is similar in spirit to Hintikka’s (1962,
52–54) solution to Moore’s Paradox, who argues that it is impossible for the speaker
to believe (6).

Nevertheless, belief may be thought to be far too distant in nature from verification
to ground any comparisons of Cmorej’s (5) to the moorean (6). Verification, it might
be argued, is closer to (empirical) knowledge. Hence, it may seem more plausible to
construe (5) along the lines of

(7) p and it is not known that p

On this account, Cmorej’s result implies that propositions of the form (7) are un-
knowable. This observation is, of course, at the heart of another famous problem, the
Knowability Paradox due to Frederic Fitch and Alonzo Church (Fitch, 1963; Salerno,
2009). Its gist is that the plausible assumption that every truth is knowable entails the
ridiculous conclusion that every truth is known. For assume that every truth is know-
able. Then, given the fact that (7) is unknowable, (7) is false. In other words ‘If p,
then it is known that p’ is true. But p is arbitrary, so the claim holds for every p, i.e.
every truth is known.

4 Independence Results

This section is devoted to showing that the results concerning (1) and (2) are inde-
pendent of the results concerning (3) and (4), and that the latter two are independent

3In the sense that if some p is X-ed then p is verified.
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of any assumptions concerning the notion of verification. Consequently, the results
concerning (1) and (2) are generalised, i.e. shown to hold for weaker notions of ver-
ification, and the results concerning (3) and (4) are shown to hold for every unary
operator in place of V whatsoever.

The results are established as follows. Firstly, in section 4.1 we formulate AM1,
a bi-modal logic for L and V that is rather weaker than AM4, but validates (1) and
(2) without validating (3) or (4). Secondly, in section 4.2 we formulate another bi-
modal logic AM0 with some very weak assumptions concerning L and no assumptions
concerning V at all, and show that the logic validates (3) and (4) without validating
(1) or (2). Section 4.3 provides some additional remarks. We note that both AM1
and AM0 will be formulated semantically, i.e. as sets of formulas valid in a class
of frames. Axiom systems will be mentioned, but completeness will not be proved.
The reason is that both completeness arguments are simple exercises extending the
standard completeness proofs for ‘classical’ logics (see Chellas, 1980).

4.1 (1) and (2) without (3) or (4)

AM1 will be defined as a set of formulas valid in a special class of bi-neighbourhood
frames. Hence, we shall use neighbourhood models where both operators L and V are
given truth-conditions in terms of neighbourhood functions. As a result, L in AM1 is
a non-normal modality.

Definition 4.1 (AM1-Frames and Models). An AM1-frame is a triple

F = ⟨W ,NL,NV ⟩

where W is a non-empty set (interpreted as before) and both NL,NV are functions
from W to subsets of the power-set of W . It is assumed that (for all w)

• (l) W ∈ NL (w);

• (m) For all Z and all X ∈ NV (w), if X ⊆ Z , then for all Y ∈ NV (w), there is
u ∈ Y and some U ∈ NV (u) such that U ⊆ Z , for some U .

An AM1-model is an AM1-frame with a valuation, i.e. M = ⟨F ,V⟩. Truth-sets
are defined as before, with the exception of

• |Lα |M = {w | |α |M ∈ NL (w)}.

(Vα is dealt with as before, but in terms of NV .) Validity is defined as usual. AM1 is
the set of formulas valid in every AM1-frame. �
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NL (w), the set of L-neighbourhoods of w, is seen as the set of propositions nec-
essary at w. It is assumed only that the ‘maximal proposition’ W is always necessary
(l). The condition (m) might seem confusing, but its role is made clear by the proof of
the following fact.

Fact 4.2. If α ∈ AM1, then Lα ∈ AM1. Moreover, every formula of the form

V∼Vα ⊃ ∼Vα

belongs to AM1.

Proof. Assume that α ∈ AM1 and take any M,w. It follows that |α |M = W . Con-
sequently, |α |M ∈ NL (w) and, hence, Lα is true in w.

By propositional logic, V∼Vα ⊃ ∼Vα is equivalent to Vα ⊃ ∼V∼Vα. Now
assume that M,w |= Vα. We have to show that M,w |= ∼V∼Vα. Assume that this
is not the case (indirect assumption). The first assumption entails that there is X ∈
NV (w) such that X ⊆ |α |. The indirect assumption entails that there is Y ∈ NV (w)
such that Y ⊆ |∼Vα |. In other words, for all u ∈ Y and all U ∈ NV (u), U * |α |. But
this is precisely the negation of our condition (m). �

It is easy to show that the only non-tautologous axiom schema of AM4 that belongs
to AM1 is (B2). This is done by constructing countermodels for all other axiom
schemas. We give one example and leave the rest to the reader as an exercise.

Example 4.3. Let W = {v,u} and |p| = {u}. Moreover, let {{v,u}, {u}} (∅) by the
value of NL (x) (NV (x)) for every x ∈ W . It is easily checked that both (l) and (m)
are satisfied. Moreover, Lp holds in v. However, p is false in v. The axiom schema
(A1) fails as p is necessary but not true in some world of some model. �

To facilitate comparison with AM4, we state (without proof) the following axiom-
atization result.

Proposition 4.4. AM1 is soundly and completely axiomatized by the following axiom
system. Every tautologous formula is an axiom and, moreover, every formula of the
form

(B1’) V∼Vα ⊃ ∼Vα

(B2) V (α ∧ β) ⊃ (Vα ∧ V β)

is an axiom as well. The rules of inference are Modus Ponens, L-Necessitation and

(RE) If ⊢ α ≡ β, then ⊢ Xα ≡ X β, where X is L or V.

13



Note that (B1’) is a weak version of the axiom (B1), which is stating that every verified
proposition is true. (B1’) requires only that every verified proposition of the form ∼Vα
be true. The main observation is that this suffices to validate (1) and (2), while there
are AM1-countermodels to both (3) and (4).

Proposition 4.5. (1) and (2) are valid in AM1, but (3) and (4) are not.

Proof. (1). Fact 4.2 and propositional logic entail that

(Vα ∧ V∼Vα) ⊃ ∼(Vα ∧ V∼Vα)

belongs to AM1. But (B2) is valid and, hence,

V (α ∧ ∼Vα) ⊃ ∼V (α ∧ ∼Vα)

is in AM1, which, by propositional logic, means that ∼V (α ∧ ∼Vα) belongs to AM1.
By Fact 4.2 again, L∼V (α ∧ ∼Vα) belongs to AM1.

(2). From the validity of (1) by propositional logic and repeated applications of
(semantic counterparts of) the rule (RE).

(3). Our countermodel is as follows. W = {v,u} and NV (x) = {{v}} for all x ∈ W;
NL (v) = {∅,W } and NL (u) = {W }; |p| = {v}. It is readily seen that this is indeed
an AM1-model (the key to (m) is that NV (x) is the same singleton for all x ∈ W).
Obviously, |V p| =W , |∼V p| = ∅ and |∼(p ∧ V p) | = {u}. Consequently, L∼V p holds
in v (as ∅ ∈ NL (v)), but L∼(p ∧ V p) does not hold in v (as {u} < NL (v)). But, as is
easily checked, L∼V p ∧ ∼L∼(p ∧ V p) entails the negation of (3).

(4). The countermodel is just like the countermodel to (3) except for |p| = {u,v}.
It is easily checked that, as before, |∼V p| = ∅ and, moreover, |∼L∼V p| = {u}. Hence,
|∼(p∧∼L∼V p) | = {v}. But this means that, as before, L∼V p holds in v. However, as
{v} < NL (v), L∼(p ∧ MV p) is false in v. Consequently, (4) is false in v. �

Proposition 4.5 generalises Cmorej’s results concerning (1) and (2). It shows that
the original results can be obtained by building on assumptions concerning the no-
tions of verification and necessity that are far weaker that the ones originally used by
Cmorej. The second upshot is that the results concerning (1) and (2) are independent
of those concerning (3) and (4). In other words, one may construe ‘verified’ and ‘nec-
essary’ in such a manner that α ∧ ∼Vα turns out to be ‘unverifiable’ (and α ∨ Fα to
be ‘unsatisfiable’), but not every ‘unverifiable’ α is logically equivalent to α ∧ ∼Vα
and not every ‘unverifiable’ α entails a proposition that says that α is ‘unverifiable’.
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4.2 (3) and (4) without (1) or (2)

The logic AM0 is defined similarly as AM1.

Definition 4.6 (AM0-Frames and Models). An AM0-frame is a couple F = ⟨W ,N ⟩
where all the components are as before, but only one condition is enforced:

• (iv) If X ∈ N (w), then {v | X ∈ N (v)} ∈ N (w).

An AM0-model M = ⟨F ,V⟩, as before. The truth-sets for Boolean formulas are
defined as usual. Moreover:

• |Vα |M is arbitrary;

• |Lα |M = {w | X ⊆ |α |M for some X ∈ N (w)}.

AM0 is defined as the set of formulas valid in every AM0-frame. �

In AM0, L takes the place of V and is given a truth-condition in terms of a neigh-
bourhood function. It is the same truth-condition that was given to V in the seman-
tics for AM4, but fewer restrictions ale placed on N . The absence of any specific
truth-condition for formulas of the form Vα reflects the absence of any assumptions
concerning the notion of verification. A formal consequence of this absence is that
formulas of the form Vα behave like propositional variables. Of course, substitution
of equivalents then fails. α is necessary in w iff it ‘follows from’ some proposition in
NL (w), the set of ‘core necessities’ of w.

Fact 4.7. The following schemas belong to AM0:

• M Mα ⊃ Mα

• M (α ∧ β) ⊃ Mα

Moreover, if α ⊃ β belongs to AM0, then so does Lα ⊃ L β.

Proof. The first validity is a consequence of (iv). Note that M Mα ⊃ Mα belongs to
AM0 if Lα ⊃ LLα does. It is routine to check that (iv) ensures that the latter in fact
belongs to AM0. The second validity follows from the truth-conditions for Lα and
L(α∧ β). The final claim is a standard consequence of the truth-condition for Lα (see
Chellas, 1980). �

We skip the examples of AM0-models and the arguments that most AM4-axioms
are not valid in AM0. To facilitate comparison with AM4, however, we state (without
proof) the following axiomatization result.
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Proposition 4.8. AM0 is soundly and completely axiomatized by the following axiom
system. Every tautologous formula is an axiom and, moreover, every formula of the
form

(A2’) L(α ∧ β) ⊃ (Lα ∧ L β)

(A4) Lα ⊃ LLα

is an axiom as well. The rules of inference are Modus Ponens and

(REL) If ⊢ α ≡ β, then ⊢ Lα ≡ L β.

The main observation is that AM0 validates (3) and (4), but not so for (1) and (2).

Proposition 4.9. (3) and (4) are valid in AM0, but (1) and (2) are not.

Proof. (3) is quite easy. Note (again) that

∼Vα ⊃ (α ≡ (α ∧ ∼Vα))

is a tautologous formula. The rest follows by Fact 4.7.
(4). M MVα ⊃ MVα and M (α ∧ MVα) ⊃ M MVα are valid by Fact 4.7. It

follows by propositional logic that

M (p ∧ MV p) ⊃ MVα

is valid in AM0. The rest follows by propositional logic and the definition of M .
(1) and (2) are very easy. Formulas of the form Vα have arbitrary truth-sets.

Hence, we can easily construct a model over W = {v,u} such that |∼V (p∧∼V p) | = {v}
and |∼V∼(p ∨ V∼p) | = {u}, but N (v) = {{v,u}}, for example. But then both
L∼V (p ∧ ∼V p) and L∼V∼(p ∨ V∼p) are false in v. �

Proposition 4.9 shows that Cmorej’s results concerning (3) and (4) are obtainable
rather easily. In fact, they follow from two very weak assumptions concerning neces-
sity and are independent of any specific interpretation of the operator ‘V ’.

4.3 Additional Remarks

The results of the above two sections suggest that AM4 is not the weakest possible
logic of necessity and verification for which Cmorej’s results are derivable. Let us
consider AM2, the combination of AM0 and AM1. We could discuss its semantics in
terms of NL and NV , but we only mention the corresponding axiom system. As usual,
every tautologous formula is an axiom and Modus Ponens is a rule of inference. The
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additional axiom schemata are (B1’), (B2), (A2’) and (A4). Additional inference rules
are (RE) and L-necessitation. It is clear that AM2 is weaker that AM4, but all of (1)
– (4) are valid in AM4. Hence, Cmorej’s original system is not the weakest one for
which his main results hold.

Let us note that the converses of (3) and (4) are derivable in AM0.3, a system that
results from AM0 by adding (A1) and (B1). (Again, providing a semantics for this
system is easy.) Let us see why. Firstly, if both (A1) and (B1) are valid, then so is

Vα ⊃ (α ∧ MVα)

But then, by Fact 4.7 (which obviously holds for AM0.3 as well),

MVα ⊃ M (α ∧ MVα)

is valid. The validity of the converse of (4) follows by propositional logic and the
definition of M . Secondly, let us assume, that MVα holds in some world w for some
α. Then M (α ∧ Vα) holds in w by (B1). By propositional reasoning and (REL),
M (α ∧ ∼(α ∧ ∼Vα)). Consequently,

M ((α ∧ ∼(α ∧ ∼Vα)) ∨ ((α ∧ ∼Vα) ∧ ∼α))

in w. But the latter means that ∼L(α ≡ (α ∧ ∼Vα)) in w.
Hence, a system in which all of (1) – (4) plus the converses of (3) and (4) hold is

the combination of AM0.3 with AM2, which we can call AM3. (In an axiomatization
of AM3, (B1’) can be omitted in favour of (B1).) Again, it is rather clear that AM3 is
weaker that AM4. This could be shown rigorously by model-theoretic arguments, but
we shall not engage in this exercise here.

5 Conclusion

The present article has elaborated on Cmorej’s (1990) interesting results concerning
unverifiable and unfalsifiable empirical propositions in three ways. Firstly, we have
provided simple model-theoretic arguments establishing the main results with respect
to the logic AM4. This was made possible by our soundness and completeness results
for AM4 using a version of neighbourhood semantics. Secondly, we have pointed out
some striking similarities of Cmorej’s findings to aspects of two well-known philo-
sophical problems, Moore’s Paradox and the Knowability Paradox. Thirdly, we have
generalised Cmorej’s results and discussed logics weaker that AM4 in which some
combinations of the results hold. It has been argued that, in fact, AM4 is not the
weakest logic in which all of Cmorej’s original results hold. Perhaps AM4 is to be
preferred to such weaker logics on some other grounds, but we leave this issue open.
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