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Abstract. We introduce a general representation of unary hyperin-
tensional modalities and study various hyperintensional modal logics
based on the representation. It is shown that the major approaches
to hyperintensionality known from the literature, that is state-based,
syntactic and structuralist approaches, all correspond to special cases
of the general framework. Completeness results pertaining to our hy-
perintensional modal logics are established.
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1 Introduction

The possible-worlds framework has provided semantics for various formal
languages as well as large portions of natural language. The general strategy
is to represent semantic contents of expressions by intensions, i.e. functions
from possible worlds (usually taken as unanalysed indices) to extensions.
The specific kind of extension depends on the kind of expression at hand.
For instance, extensions are truth-values 0, 1 in the case of sentences, indi-
viduals (from some fixed domain) in the case of names and n-ary relations in
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the case of n-ary predicates. Modalities are seen as expressing properties of
(or relations between) intensions; the corresponding intensions are functions
from possible worlds to relations on intensions. In the case of unary sen-
tential modalities, an equivalent approach is to take functions from possible
worlds to sets of propositions (i.e. to sets of sets of possible worlds).

A prominent example of this approach is the Montague–Scott semantics
for modal logic [38, 46, 47, 11, 40]. In the MS semantics, a modal formula 2F
says that JF K, the proposition expressed by the formula F , has the property
expressed by 2. This property is represented by a function N from possible
worlds to sets of propositions. So, 2F is true in a world w iff JF K ∈ N(w).

The problem with this picture is that some natural-language modalities
do not express properties of propositions. Take epistemic modalities, for
example. Sentences ‘2 + 3 = 5’ and ‘110119 is a prime number’ express the
same proposition (the set of all possible worlds), but mutual substitution of
these sentences in the scope of an epistemic modality is not guaranteed to
preserve truth value. Simply put, it is possible for some agent, say John, to
believe that 2+3 = 5 without also believing that 110119 is a prime number.
This would be impossible if ‘John believes that’ expressed a property of
propositions.

Modalities that express properties of sentential contents grained finer
than sentential intensions are known as hyperintensional modalities. Se-
mantic frameworks where hyperintensional modalities can be represented
are clearly of both practical and theoretical value. Although research in the
area dates back at least to the 1970s (see [14], for example), it is still quite
active today (see [27, 30], for example).1 Central among such frameworks—
and ones of interest not only to philosophers, but also to computer scientists,
for example—are models for formal modal languages.

A framework of this kind is developed in this article. What sets it aside
from earlier approaches is that it represents fine-grained sentential contents
explicitly without assuming a specific theory of sentential content. In our
framework, hyperintensional modalities express properties of abstract con-
tents, represented by members of an arbitrary set. In addition, it is shown
that frameworks of all three major kinds known from the literature—state-
based, syntactic and structuralist frameworks—are special cases obtained
from our framework by replacing the abstract representation of content by
a more specific class of objects.

The benefits of studying the general framework in addition to the more
specific ones are twofold. The framework allows to develop hyperinten-

1For a brief historical overview, see Chap. 1.1 of [17], for example.
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sional modal logics independently of any specific theory of semantic content.
Hence, it is useful for those who want to use such logics without commit-
ting to any one particular theory of content. At the same time, however,
our framework offers a relatively simple common ground for proponents
of rival semantic theories. Logics developed within the framework are for
everyone—‘engineers’ who need a formalization of hyperintensional modal-
ities, but are uninterested in philosophical questions, and ‘philosophers’ of
various denominations who wish to add to their specific theory of content
a formalization of modal reasoning that is also readily comprehensible to
their semantic rivals. For the latter, the framework might also be a help-
ful tool for distinguishing questions of logic from questions of philosophical
semantics.

The article also takes first steps in the investigation of hyperintensional
modal logics based on the general framework. Our main technical result is
a general completeness theorem for hyperintensional modal logics with an
equivalence connective representing identity of content. These logics can be
seen as modal extensions of the ‘sentential calculus with identity’ studied
by Bloom and Suzsko [9, 10]. It is also shown that two versions of the
compositionality principle correspond to two classes of axioms. We shall
concentrate on the propositional fragment of the framework, both for the
sake of simplicity and because the issue of hyperintensionality arises already
on the propositional level. Extensions to first order and beyond are a natural
research topic, yet one that is left for another occasion.

The article is structured as follows. Section 2 discusses MS semantics
in more detail and Section 3 outlines the state of the art in the research
on hyperintensional semantic frameworks. Section 4 introduces a hyperin-
tensional generalisation of the MS semantics and the modal logic generated
by the framework. The logic is virtually identical to classical propositional
logic. Section 5 shows that hyperintensional frameworks of all three major
kinds known from the literature are special cases of the general framework.
It is also shown that special variants of these approaches generate the same
modal logic as the general framework. Hyperintensional modal logics with
an equivalence connective representing identity of content are studied in
Section 6.

2 Montague–Scott semantics

For now, we use the ordinary propositional modal language L compris-
ing a denumerable set At of atomic formulas (representing propositionally
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simple sentences such as ‘John is happy’), the set of Boolean connectives
{¬,∧,∨,→,↔} and a pair of modal operators 2 and 3; the set of connec-
tives of L is denoted ConL.2 Symbols ‘p’, ‘q’ etc. stand for arbitrary atomic
formulas and ‘F ’, ‘G’ etc. (possibly with subscripts) for arbitrary formulas.
The set of L-formulas is defined as usual and denoted FmL (or just Fm).

Montague–Scott models (MS models) are tuples M = 〈W,N, J·K〉. The
components are as follows. W is a non-empty set, informally seen as a
set of possible worlds. N is a function from W to sets of propositions on
W (i.e. sets of subsets of W ). Informally, N corresponds to a property of
propositions and N(w) is the extension of this property in world w. Distinct
informal interpretations of the framework differ in the reading of N . Speak-
ing generally, we say that propositions X ∈ N(w) are ‘distinguished’ in w.
Finally, J·K is a function that assigns to every formula F a proposition JF K
on W . Informally, JF K is the proposition expressed by ‘F ’. The function is
required to satisfy the following conditions:

• J¬F K = W \ JF K
• JF ∧GK = JF K ∩ JGK
• JF ∨GK = JF K ∪ JGK
• JF → GK = (W \ JF K) ∪ JGK
• JF ↔ GK = ((W \ JF K) ∪ JGK) ∩ ((W \ JGK) ∪ JF K)
• J2F K = {w ; JF K ∈ N(w)}
• J3F K = {w ; (W \ JF K) 6∈ N(w)}

Hence, Boolean connectives correspond to the usual set-theoretic operations
on the set of propositions. Importantly, w ∈ J2F K iff JF K is distinguished
in w, so 2F may generally be read as ‘the proposition expressed by “F” is
distinguished’. Similarly, w ∈ J3F K iff (W \JF K) is not distinguished, so 3F
generally means that the complement of the proposition expressed by ‘F ’ is
not distinguished. A formula F is valid in a class {Mi ; i ∈ I} of MS models
iff JF K = Wi for every model Mi in the class. Note that F → G is valid in
a class of models iff JF K ⊆ JGK in every model in the class; and F ↔ G is
valid in a class of models iff JF K = JGK in every model in the class.

Now consider the following four inference rules:

F

2F
(RN) F1 ∧ F2 → G

2F1 ∧2F2 → 2G
(RR) F → G

2F → 2G
(RM) F ↔ G

2F ↔ 2G
(RE)

2It is natural in a hyperintensional setting to consider all the usual Boolean connectives
as primitive. For the sake of simplicity, we do this already when discussing MS models.
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Only (RE) preserves validity in every class of MS models. This is clear—if
JF K = JGK, then JF K ∈ N(w) iff JGK ∈ N(w) for each w. (RM) preserves
validity in every class of models where N(w) is closed under supersets for
all w; (RR) requires, in addition, that N(w) be closed under (binary and
hence finitary) intersections; and (RN) requires that W ∈ N(w) for all w.
Hence, all four rules together preserve validity in every class of MS models
where every N(w) is a non-empty filter on W .3 The set of formulas valid
in the class of all such models is the basic normal modal logic K.4 The set
of formulas valid in the class of all MS models is the basic classical modal
logic E. Other classical logics between these two are defined in the obvious
way, but we shall not discuss them. The interested reader is referred to
[47, 11, 40].

MS models offer a rich and versatile framework that can be adjusted for
specific interpretations of ‘2’, ‘3’ and ‘distinguished’. For instance, if 2 is
read as ‘John believes that’, then N(w) is seen as the set of propositions
believed by John in w and 2F , ‘John believes that F ’, is true in w iff the
proposition expressed by F is among the propositions believed by John in
w. On this picture, the logic K comes with the assumption that John’s
beliefs are always closed under arbitrary consequence. This is quite a strong
assumption, so relaxing some of the closure conditions seems appropriate.
For instance, lifting the assumption that W ∈ N(w) means that John is
not always required to believe all valid F ; lifting closure under intersections
means that John is not always required to ‘pool’ his beliefs together (as
2F ∧2G→ 2(F ∧G) is in general not valid in models without the closure
condition). However, (RE) is an immutable feature of the framework. As a
result, the MS framework cannot represent hyperintensional modalities.

3 Three major hyperintensional frameworks

MS semantics incorporates three important assumptions:

(A1) Modalities express properties of semantic contents of sentences.
3The definition of logical consequence over a class of models is standard: Γ entails F

iff, for all models in the class,
⋂

G∈Γ JGK ⊆ JF K. Using L, consequence relations over all
classes of MS models have the property that Γ entails F iff there is a finite Γ′ ⊆ Γ such
that (

∧
G∈Γ′ G)→ F is valid in the given class. For such classes, (RR) entails that N(w)

is closed under consequence. (RM) says that every N(w) is closed under single-premise
consequence and (RN) entails closure under zero-premise consequence, i.e. validity.

4Stronger normal modal logics correspond to adding more assumptions. For instance,
the logic T is determined by models where w ∈ N(w) for all w. Obviously, 2F → F is
valid in any such model.
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(A2) Semantic contents of sentences are sets of states.
(A3) All semantically relevant states are possible worlds.

(A similar list appears in [49].)
Semantic frameworks for hyperintensional modalities divide, roughly,

into three categories that can be characterised by reference to (A1) – (A3).
Firstly, state-based approaches retain (A1) and (A2), but lift the assump-
tion (A3). Hence, sentential contents are sets of states that may contain out-
landish states, or impossible worlds, that invalidate some of our dear logical,
mathematical, or metaphysical principles [41, 42, 2, 43, 12, 13, 26, 36]. On
this approach, John may believe that 2 + 3 = 5 without also believing that
110119 is a prime number because the two sentences may be assigned two
different sets of states, the union of which contains a state where 2 + 3 = 5
but 110119 is composite, or a state where 110119 is prime but 2 + 3 6= 5
(the sets contain the same possible worlds, they differ only with respect to
the impossible ones).5 The state-based approaches have found a number of
interesting applications and the logical theory arising from the framework
is both simple and fairly well-understood.6

Secondly, syntactic approaches retain (A2) and (A3), but lift (A1). Hy-
perintensional modalities are explained not (only) by reference to sentential
contents, but (also) to sentences themselves. A good example is the frame-
work of [20]. On their view, epistemic modalities pertain to properties of
propositions and properties of sentences. Intuitively, if John believes that
110119 is a prime number, then he has to be in some kind of cognitive rela-
tion (‘awareness’) to the sentence ‘110119 is a prime number’. This leads to
a natural explanation of why John may very well believe that 2+3 = 5 with-
out also believing that 110119 is prime—he is aware of ‘2+3 = 5’ but not of
‘110119 is a prime number’ (the reason might be that he lacks the concept of
primeness or that he has never thought of 110119, for example). Justification
logics [1, 25] are another example of this approach. They build on the idea
that, in order to know that 2 + 3 = 5, John has to be in a certain relation
to the proposition expressed by ‘2 + 3 = 5’ but, in addition, he must have
access to a reliable justification of the fact that the proposition expressed by
‘2 + 3 = 5’ is true. As with the state-based approaches, the logical theory
arising from the syntactical approaches is simple and well-understood.

5For instance, assume that different arithmetical laws hold in these states.
6An account of hyperintensionality using impossible worlds has been put forward re-

cently by [27]; see also [44]. [3, 4] gives a general overview of the most important topics
related to impossible worlds.
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MS State-based Syntactic Structuralist
(A1) • • •
(A2) • • •
(A3) • • •

Figure 1: MS and the major hyperintensional frameworks.

Thirdly, structuralist approaches retain (A1) and (A3), but lift (A2).7
On the structuralist picture, semantic contents of sentences are structured
abstract entities quite unlike sets of states or sentences. Such contents (i)
correspond, to some degree, to the structure of sentences expressing them,
but are not syntactic in nature; and (ii) determine, but are not identical with,
intensions of these sentences. One and the same intension may be deter-
mined by various distinct structured contents and several distinct sentences
(for instance, synonymous sentences of different languages) may express the
same structured content. Hence, John may believe that 2 + 3 = 5 without
believing that 110119 is prime because the two corresponding sentences ex-
press different structured contents and so he may be in the belief-relation
with the former content without being in the relation with the latter one as
well. Specific structuralist theories disagree as to the exact nature of struc-
tured contents. Some take them to be Russellian propositions, i.e. ordered
tuples consisting of individuals, properties, and relations [45, 49, 33]; some
see them as tuples of intensions [37, 15]; others claim that structured con-
tents correspond to repeated applications of certain basic logical functions
[54]; and yet others argue that contents are not set-theoretical in nature,
but procedural [50, 17].

Figure 1 illustrates the differences between the three approaches to hy-
perintensions with respect to (A1) – (A3). Relations between the state-
based approach on one side and the syntactic approach on the other are
well-understood; see [53, 48], but also [21, chapter 9], for example. Simi-
lar observations connecting the state-based and syntactic approaches to the
structuralist ones have not been provided yet. In what follows, we generalise
MS semantics to a framework that enables such a comparison—prominent
state-based, syntactic and structuralist approaches are special cases of the
general framework.

The debate about the ‘right’ theory of fine-grained sentential content
is one of the ongoing philosophical battles of today. As we show in the
remainder of the article, hyperintensional modal logic—logic with opera-

7(A3) is retained in the sense that structuralist frameworks typically do not include
other kinds of states in addition to possible worlds.
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tors representing modalities pertaining to these fine-grained contents—can
be developed without taking sides in the battle. The semantic framework
introduced in the next section represents fine-grained sentential content ex-
plicitly, but does not subscribe to any of the rival theories of content. What
is more, as shown in Section 5, the logic generated by special cases of the
framework corresponding to specific state-based, syntactic and structuralist
approaches to content is identical to the logic generated by the most general
version of the framework. Nevertheless, (special cases of) the framework
can be used by proponents of specific theories of content to articulate log-
ics arising from their semantic views in a manner comprehensible to their
philosophical rivals. The study of such special cases can lead proponents of
specific theories of content to postulate various relations and operations on
the contents that are to be reflected in the formal modal language. First
steps in a general study of such modal logics are carried out in Section 6,
where hyperintensional modal logics with an equivalence connective repre-
senting identity of content are investigated.

Remark 3.1. Hyperintensional frameworks based on versions of the truth-
maker semantics (see [22, 23, 24] and also [35], for example) can be seen as
instances of state-based approaches. They are not discussed in detail here
since their primary aim is not a hyperintensional formalisation of modali-
ties. The theory of topic-sensitive intensional modals developed by Berto
(see [6, 7, 5, 8]) yields a framework for hyperintensional modalities. How-
ever, it falls outside the scope of our framework—‘topics’ are not seen as
proposition-determining contents. In Berto’s framework, for example, the
topic of p is identical to the topic of ¬p. Nevertheless, a generalization of our
framework that covers the topic-sensitive framework, and also some modal
extensions of truthmaker frameworks, is a topic of ongoing work.

4 MS generalised

In this section we study a hyperinensional generalisation of the MS frame-
work.

4.1 From MS models to pre-models and back

A pre-model is a tuple

P = 〈W,C,O,NC , I〉
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F
formula

O(F )
content

I(O(F ))
propositionJ·K

NC(w)

Figure 2: MS models generalised.

specified as follows. W and C are non-empty sets. O is a function from
formulas to C. NC is a function that assigns to every w ∈W a subset of C.
Finally, I is a function that assigns to every c ∈ C a proposition I(c) ⊆W .

Every MS model is a pre-model. To see this, let us take any MS model
and define C to be the power set 2W of W , O as J·K and I as the identity
function on 2W . NC is just N .

To get an intuitive grasp on pre-models, C can be seen as the set of se-
mantic contents of sentences represented by formulas and O as the function
that assigns contents to sentences (‘content function’). NC is a function that
assigns a set of contents distinguished in w to every possible world w ∈ W
(hence, NC represents a property of contents). Finally, I is a function that
assigns propositions to contents, not to formulas directly (‘intension func-
tion’). The function represents the intuitive idea that propositions are deter-
mined by contents. The function J·K assigning propositions to formulas may
be defined as the composition of O and I. Figure 2 provides an illustration.

Seeing MS models as a special case of pre-models underlines their ad-
herence to the assumptions (A1) – (A3). The set W is seen as a set of
possible worlds, (A3), and C is the power set of W , (A2). Moreover, truth
conditions of modal formulas are stated in terms of the function NC , (A1).
At the same time, the general framework of pre-models allows to dispense
with (combinations of) (A1) – (A3) easily. Before studying such variations,
let us focus on some specific sub-classes of pre-models.

4.2 Hyperintensional models

A hyperintensional model (or model, for short) is a pre-model M where the
function J·KM, defined by JF KM = I(O(F )), satisfies the semantic conditions
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assumed in MS models for all Boolean connectives and, moreover,

J2F KM = {w ; O(F ) ∈ NC(w)}(IB)
J3F KM = {w ; O(¬F ) 6∈ NC(w)}(ID)

We will often omit the subscript and write only JF K if the model is clear
from the context. The set of L-formulas valid in all hyperintensional models
will be denoted as H.

A hyperintensional model is weakly compositional iff it satisfies the

Weak Compositionality Principle (wCP). If G results from replacing
an occurrence of a direct subformula F ′ of F by an occurrence of G′, then
O(F ′) = O(G′) only if O(F ) = O(G).

A hyperintensional model is strongly compositional iff it satisfies the

Strong Compositionality Principle (sCP). If G results from replacing
an occurrence of a direct subformula F ′ of F by an occurrence of G′, then
O(F ) = O(G) iff O(F ′) = O(G′).

The weaker (wCP) implies that O(p) = O(q) only if O(r → p) = O(r →
q); (sCP) entails also that O(r → p) = O(r → q) only if O(p) = O(q). Since
injectivity of O is consistent with both (wCP) and (sCP)—see the proof
of Theorem 4.2 below, for example—neither principle entails that O(p) =
O(p ∧ p) or that O(p ∧ q) = O(q ∧ p).8

It can be shown that every weakly compositional model represents ‘the
meaning of a compound expression as a function of the meanings of its parts’.
This dictum is often cited as a vague statement of the compositionality
principle; see [28], for example.

Proposition 4.1. In every weakly compositional model, O(F1) = O(F2) iff,
for every G, O(G(F1)) = O(G(F2)) (where G(F2) is the result of replacing
an occurrence of F1 in G by an occurrence of F2).

Proof. The right-to-left implication is trivial (let G = F1). The left-to-right
implication is established as follows. If G does not contain any occurrences
of F1, then we are done. So assume that G contains some occurrences of F1
and let G(F2) be the result of replacing one of the occurrences by F2. Let

8We note that even though neither compositionality principle excludes the possibility
that, say O(¬p) = O(p), there is no hyperintensional model where O(¬p) = O(p) = c. If
this were the case, then I(c) = W \ I(c), but this is not possible if W is non-empty.
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H be the subformula of G such that the replaced occurrence of F1 was a
direct subformula occurrence of H. The claim follows from (wCP).

In fact, a hyperintensional model is weakly compositional if, and only if it
satisfies the equivalence expressed in Proposition 4.1.

It is clear that MS models correspond to weakly compositional hyperin-
tensional models. They are not strongly compositional, though; it is possible
to have JF K ∩ JG1K = JF K ∩ JG2K without JG1K = JG2K, or J2F K = J2GK
without JF K = JGK.

Nevertheless, strong compositionality (sCP) might seem plausible as a
principle governing meaning since it embodies an assumption of ‘no sur-
prises’ – if a substitution is made in a statement without change in meaning,
then the substituted expressions must have had the same meaning.9 Equiv-
alently, substituting an expression in a sentence with an expression having
a different meaning gives you a sentence with a different meaning. We do
not, however, commit to either compositionality principle.

Theorem 4.2. A complete axiomatization of H is obtained by adding to any
axiomatization of classical propositional logic (based on axiom schemata) the
Duality Axiom

(DA) 3F ↔ ¬2¬F

The same holds for the set of L-formulas valid in every weakly compositional
model and every strongly compositional model.

Proof. Soundness follows from the definition of a hyperintensional model.
Completeness is established by means of a canonical model construction.
Consider a structure M = 〈W,C,O,NC , I〉 where W is the set of maximal
consistent theories (with respect to the selected axiomatisation of classical
logic extended with (DA)) and

• C = FmL

• O is the identity relation on FmL

• NC(Γ) = {F ; 2F ∈ Γ}
• I(F ) = {Γ ; F ∈ Γ}

9Consider, for example, the sentences ‘John is not a bachelor’ and ‘John is not an
unmarried man’. One might be inclined to say that they have the same meaning because
‘John is a bachelor’ and ‘John is an unmarried man’ have the same meaning.
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It is easily established that M is a strongly compositional model. In partic-
ular (ID) is established as follows:

J3F K = I(3F ) = {Γ ; 3F ∈ Γ} =
= {Γ ; ¬2¬F ∈ Γ} = {Γ ; 2¬F 6∈ Γ} =
= {Γ ; ¬F 6∈ NC(Γ)} = {Γ ; O(¬F ) 6∈ NC(Γ)}

Theorem 4.2 shows that, unsurprisingly, the logic of all hyperintensional
models is not very interesting—it is classical propositional logic extended
by the Duality Axiom.10 It is noteworthy, however, that neither version
of the compositionality principle affects the modal logic of the given class
of models. This follows from the fact that, in L, we cannot express that
O(F ) = O(G) in a given model.11

One might argue that the hyperintensional logic based on one’s inter-
pretation of the modalities needs to add some interesting modal axioms to
classical propositional logic. If the interpretation is epistemic, for instance,
one might want to represent the idea that the hyperintensional epistemic
attitudes represented by 2 are ‘closed under’ certain simple inference rules.
One way to achieve this is to take a set Λ of inference rules (pairs 〈Γ, F 〉
where Γ ⊆ Fm) and require that, for all w, NC(w) be closed under the rules
in Λ, i.e. if 〈Γ, F 〉 ∈ Λ and O(G) ∈ NC(w) for allG ∈ Γ, then O(F ) ∈ NC(w).
For every such Λ with only finite Γs, the hyperintensional Λ-logic (the set
of formulas valid in every hyperintensional model where NC is closed under
Λ) can be axiomatised by adding

∧
G∈Γ 2G → 2F as axioms; such a logic,

of course, will no longer be closed under substitution.12

Another way to get non-trivial hyperintensional modal logics is to as-
sume some relations on C and extend the language L accordingly. We shall
return to this in Section 6. Before that, we show that the approaches to
hyperintensionality known from the literature can be formalised using hy-
perintensional models.

10Note that a related schema 2F ↔ ¬3¬F is not valid. The reason is that we may
have models where O(F ) 6= O(¬¬F ).

11Note that it is possible to have J2F K = J2GK while O(F ) 6= O(G).
12The completeness argument utilises a canonical model similar to the one presented in

the proof of Theorem 4.2. The only difference is that the universe of the model is the set
of maximal consistent theories with respect to the extended axiomatisation.
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5 The three major hyperintensional frameworks
as special cases

This section shows that special classes of hyperintensional models subsume
state-based, syntactic and structuralist approaches to hyperintensionality.

5.1 State-based approaches

Let us define a state-based model as a hyperintensional model where C ⊆ 2S
for some set S ⊇W and I(c) = c∩W for all c ∈ C. Validity and entailment
are defined as for MS models.

It is not hard to see that the logic of all state-based models is identical
to the logic of all hyperintensional models.

Proposition 5.1. The set of L-formulas valid in all state-based models is
H.

Proof. We have to show only that if a formula has a hyperintensional coun-
termodel, then it has a state-based countermodel. Assume that F has a hy-
perintensional countermodel. By Theorem 4.2 and the Lindenbaum Lemma,
there is a maximal consistent theory (relatively to the axiomatisation of H)
not containing F . Now consider the following variant of the canonical model
defined in the proof of Theorem 4.2:

• W is the set of all maximally consistent theories
• C is the set of all subsets of the power set of FmL, that is, 22F mL

• O(F ) = {Σ ⊆ FmL ; F ∈ Σ}
• NC(Γ) = {O(F ) ; 2F ∈ Γ}
• I({Σi ; i ∈ I}) = {Γ ∈W ; Γ ∈ {Σi ; i ∈ I}}

(Hence, I(O(F )) is the set of Γ ∈ W such that F ∈ Γ.) It is clear that
this is a state-based hyperintensional model and that F is not valid in this
model.

Let us define a Rantala model as a tuple M = 〈W,S,R, V 〉, where W ⊆
S, R ⊆ S2 and V : Fm → 2S such that V (F ) ∩W behaves like JF K in MS
models and, in addition, for all w ∈W ,

w ∈ V (2F ) ⇐⇒ ∀s ∈ S(Rws =⇒ s ∈ V (F ))
w ∈ V (3F ) ⇐⇒ ∃s ∈ S(Rws & s 6∈ V (¬F ))
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Let JF K = W ∩ V (F ). F is valid in a Rantala model iff JF K = W . Rantala
models are a generalisation of the models used by [41, 42], due to [52, 53].13

Every Rantala model corresponds to a state-based hyperintensional model.
To see this, take any Rantala model M and define M∗ = 〈W,C,O,NC , I〉
such that C = 2S , O = V , NC(w) = {S′ ⊆ S ; ∀s : Rws =⇒ s ∈ S′} and
I(c) = c ∩W . It is clear that M∗ is a state-based hyperintensional model
and that JF KM = JF KM∗ for all F . In a sense, we may even say that M is
a state-based hyperintensional model, that is, we may view M and M∗ as
the same model viewed from two perspectives.14

A Kripke state-based model is a state-based model such that C = 2S and
every NC(w) is a principal filter on 2S , i.e. for every w there is wC ∈ C such
that X ∈ NC(w) iff wC ⊆ X. Every Kripke state-based model is a Rantala
model. To see this, define Rws iff s ∈ wC and V = O. We may stipulate
that {x ; Rsx} = ∅ for s ∈ S \W .

[53] has shown that Rantala models simulate various kinds of models for
hyperintensional epistemic modalities.15 The observations of this section
imply that, by the same token, this holds for hyperintensional models.

We note that one of the main applications of the models introduced by
[41] is to provide semantics for modal logics with a restricted necessitation
rule. The idea is to take a normal modal logic and restrict necessitation so
that it applies only to formulas from a given set Ω:

F

2F
if F ∈ Ω

We conclude this section by showing how such restrictions can be achieved
using hyperintensional state-based models.

An Ω-model is a state-based model such that

• If F ∈ Ω, then O(F ) ⊆W∪{ω} and ω ∈ O(F ), for some fixed ω ∈ (S\W );
and
• W ∪ {ω} ∈ NC(w) for all w ∈W .

13Wansing defines these models over a language where only ¬,∧,2 are primitive, a
detail we will pass over.

14Observe that M∗ is not necessarily weakly compositional. The reason is that V (F )\W
in Rantala models does not depend on the structure of F . This may be a reason for pro-
ponents of weak compositionality to refute Rantala models as an adequate representation
of hyperintensional modalities.

15In particular, Wansing proves this for Levesque’s logic of implicit and explicit belief
[36], Fagin and Halpern’s logic of awareness, logic of general awareness and logic of local
reasoning [20] and van der Hoek and Meyer’s logic of awareness and principles [51].
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It is clear that if F ∈ Ω is valid in an Ω-model, i.e. JF K = W , then O(F ) =
W ∪ {ω}. Hence, O(F ) ∈ NC(w) for all w and 2F is valid in the model.
Observe also that validity in Ω-models is preserved by a restricted version
of (RE):

F ↔ G

2F ↔ 2G
if F,G ∈ Ω

If F ↔ G is valid, then JF K = JGK, so if F,G ∈ Ω, then O(F ) = O(G) =
X ∪ {ω} for some X ⊆W .

5.2 Syntactic approaches

A purely syntactic model is a hyperintensional model where C = Fm, i.e.
O(F ) is a formula. The informal interpretation of such models may use
the idea that O(F ) is a ‘canonical’ representation of the content of F (so
contents are not represented directly). As an example, take O(p) = q ∧ ¬r,
where p represents ‘John is a bachelor’, q represents ‘John is a man’ and r
represents ‘John is married’. Another interpretation could build on the idea
that O(F ) is a ground, a reason or a justification for adopting the belief that
F recognized by some fixed agent. On this reading, if O(p) = q ∧ ¬r, then
the agent will believe p only if she is in some kind of a cognitive relation,
represented by NC , to q ∧ ¬r.

An identity model is a purely syntactic model where O is the identity
relation on Fm. Identity models build on the idea that modalities express
properties of formulas. Accounts of (mostly epistemic) natural language
modalities along these lines were put forward by [39], [34] and [19], for
example.
Proposition 5.2. The set of L-formulas valid in all purely syntactic models
is H.

The syntactic framework that has had perhaps the most impact are
awareness models of [20]. The language L2 contains two box operators
21,22 and two diamond operators 31 and 32; the set of L2-formulas is
denoted as Fm2. A Fagin–Halpern model is M = 〈W,R,A, V 〉, where R ⊆
W 2, A : W → 2Fm2 and V : Fm2 → 2W such that V (F ) satisfies the
MS-conditions for Boolean F and

w ∈ V (21F ) ⇐⇒ ∀v ∈W (Rwv =⇒ v ∈ V (F ))
w ∈ V (31F ) ⇐⇒ ∃v ∈W (Rwv & v 6∈ V (F ))
w ∈ V (22F ) ⇐⇒ F ∈ A(w)
w ∈ V (32F ) ⇐⇒ ¬F 6∈ A(w)
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The generalisation of this framework to MS models is straightforward—take
N instead of R and assume

w ∈ V (21F ) ⇐⇒ V (F ) ∈ N(w)
w ∈ V (31F ) ⇐⇒ V (¬F ) 6∈ N(w)

Taking inspiration from the interpretation put froward in [20], the operator
21 represents a property of propositions (‘implicit belief’) and the operator
22 represents a property of formulas (‘awareness’); similarly for 31 and 32.
The ‘official’ hyperintensional box modality of Fagin and Halpern is defined
by 2F = 21F ∧22F ; we may define also 3F = 31F ∧32F .

An identity model for L2 is M = 〈W,C,O,NC , NI , I〉 where C = Fm2,
O = Id(Fm2) and the new component NI : W → 22W . We write ‘I’ instead
of the subscript ‘1’ and ‘C’ instead of ‘2’. The definitions of J2CF K and
J3CF K are as before and

J2IF K = {w ; JF K ∈ NI(w)}
J3IF K = {w ; J¬F K 6∈ NI(w)}

It is clear that every Fagin–Halpern model corresponds to an identity model
for L2. Conversely, every identity model for L2 where NI is a principal filter
on 2W corresponds to a Fagin–Halpern model. Note that every identity
model is strongly compositional.

5.3 Structuralist approaches

The common feature of structuralist approaches to semantic content is the
idea that contents are structured entities of some kind. It is clear that such
approaches can be formalised using hyperintensional models—just take as C
the set of structured entities of your favourite kind. We illustrate this point
on simplified versions of two structuralist approaches to sentential content,
namely, the neo-Russelian approach [49, 31, 32] and the procedural approach
of Transparent Intensional Logic [50, 17].16

We first outline a simplified neo-Russelian approach to sentential content
and show that it is embodied in a special class of hyperintensional models.
Let IND be a set of ‘individuals’ and PRP a set of ‘individual properties’,
where each P ∈ PRP is assigned a fixed number r(P ) ≥ 1, called the

16A full discussion of these structuralist approaches is not provided mainly because
of space limitations and proportionality considerations. Nevertheless, a more detailed
account of how (fragments of) these structuralist accounts of sentential content can be
formalised using hyperintensional models is an interesting topic of future research.
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‘arity’ of P . Let a, b, . . . range over IND. In addition, we distinguish unary
‘modal properties’ box and dia. (Properties in PRP are individual properties
while box and dia are properties of sentential contents.) To retain our level
of generality, you can think of box as a generic property along the lines
of ‘distinguished’; if a more specific interpretation is desired, we can take
‘is believed by John’ for some specific John. Similar interpretations apply
to dia. We do not need to provide a detailed account of properties and
individuals; we only point out that they are generally thought of as distinct
from individual and predicate intensions. Finally, let OPR be the set of
Boolean truth functions (on {0, 1}), neg, con etc.

This machinery can be used to define a special ‘structuralist’ kind of
hyperintensional model. The set of neo-Russellian contents NRC is the
smallest set such that

1.
〈
P,
〈
a1, . . . , ar(P )

〉〉
∈ NRC if P ∈ PRP and

{
a1, . . . , ar(P )

}
⊆ IND

(such members of NRC are called ‘atomic’);
2. 〈neg, c〉 ∈ NRC if c ∈ NRC ; and 〈op, 〈c1, c2〉〉 if c ∈ NRC and op ∈ OPR

is binary;
3. 〈mod, c〉 ∈ NRC if c ∈ NRC for mod ∈ {box, dia}.

A hyperintensional model is neo-Russellian iff C = NRC and O satisfies the
following conditions: 1. O(p) is atomic; 2. O(¬F ) = 〈neg, O(F )〉, O(F ∧
G) = 〈con, 〈O(F ), O(G)〉〉 etc.; 3. O(2F ) = 〈box, O(F )〉 and O(3F ) =
〈dia, O(F )〉.17

A similar strategy can be applied to a neo-Fregean structuralist account
of sentential meaning along the lines of the procedural semantics of Transpar-
ent Intensional Logic [50, 17]; for some recent discussions of the framework,
see [16, 29, 18]. In TIL, sentential meanings are identified with abstract
structured procedures called constructions which, when ‘executed’, ‘con-
struct’ possible-world propositions (constructions of propositions or propo-
sitional constructions). The framework is hyperintensional as one propo-
sition may be constructed by multiple distinct constructions. Meanings of
sentential connectives such as negation ¬ or conjunction ∧ are constructions
of Boolean functions. On the other hand, meanings of hyperintensional
sentential modalities, such as ‘John believes that’, are constructions of func-
tions from sentential constructions to propositions. The idea is that ‘John
believes that’ expresses a property of sentential constructions (meanings of

17We need to be careful here as, for instance, if mod would be identical to the intension
of the modal operator, i.e. to NC , then the present definition of neo-Russelian models
would be circular.

17



sentences), not of truth values or propositions. The proposition constructed
by applying the meaning of ‘John believes that’ to the meaning of ‘Jim is
a bachelor’, for instance, is the set of possible worlds in which John is in
the cognitive relation of belief to the construction expressed by ‘Jim is a
bachelor’. For a more detailed discussion of TIL, we refer the reader to [17]
and the articles [16, 29, 18].

Taking inspiration from TIL, one may outline the following represen-
tation of sentential meaning. Take an algebra P =

〈
P,
{
◦P ; ◦ ∈ ConL

}〉
of ‘procedures’ containing a subset AP of atomic procedures. Informally,
procedures ξ ∈ P are seen as abstract structured entities that ‘produce’
possible-world propositions; moreover, the operations ◦P correspond to pro-
cedures yielding members of P when applied to (an appropriate number of)
members of P .

A special case of this general framework, one that might be considered
close in spirit to the approach of TIL, is as follows.18 Take a countable set of
unary function symbols {αi}i∈N ∪ {Hyp} and the set of (unary and binary)
functor symbols

{
¬f ,∧f ,∨f ,→f ,↔f

}
. The sets of function expressions and

construction expressions are defined by mutual induction as follows (x is a
fixed variable):

• λx.αi(x) is a function expression for all αi
• If λx.ϕ(x) and λx.ψ(x) are function expressions, then so are λx.(¬fϕ)(x)

and λx.(ϕ ◦f ψ)(x) for all ◦ ∈ {∧,∨,→,↔}
• If λx.ϕ(x) is a function expression, then 0[λx.ϕ(x)] is a construction ex-

pression
• If ξ is a construction expression, then λx.(Hypξ)(x) is a function expres-

sion

For example,

0[λx.(Hyp0[λx.(α1 ∧f α2)(x)] ∧f ¬fα2)(x)]

is a construction expression.
Informally, function expressions express, in usual lambda notation, func-

tions from a fixed set of possible worlds to the truth values true and false.
The function symbols in {αi}i∈N give rise to a set of ‘basic’ functions of

18We reiterate that it is not our intention here to provide a faithful account of (a
fragment of) TIL. The special case discussed in the text aims at providing only a hint of
how TIL might be represented within our framework. Developing this hint to a complete
account is a task that needs to be carried out in a separate article.
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this kind and the functor symbols give rise to descriptions of ‘Boolean com-
binations’ of functions; for instance λx.(¬fϕ)(x) is a function that assigns
true to an argument iff λx.ϕ(x) assigns false to the argument (similarly for
other ‘Boolean’ functors). Construction expressions are seen as representing
abstract procedures that ‘lead to’ or ‘construct’ functions expressed by func-
tion expressions. Most informal explanations of TIL constructions can be
used to make sense of these procedures (as our notation suggests), but we do
not claim that the procedures are TIL constructions as defined in [17]. Fi-
nally, Hyp represents hyperintensional sentential modalities in the following
sense. For each construction expression 0[λx.ϕ(x)], λx.(Hyp0[λx.ϕ(x)])(x)
represents the function that assigns true to worlds in which the abstract
procedure expressed by the construction expression 0[λx.ϕ(x)] has the prop-
erty associated with the hyperintensional modality in question. For example,
if we want to represent the modality expressed by ‘John believes that’, then

(λx.(Hyp0[λx.ϕ(x)])(x))(w) = true

iff John believes that 0[λx.ϕ(x)] in w. In turn, 0[λx.ϕ(x)] can be seen as
expressing the meaning of some natural-language sentence such as ‘Jim is a
bachelor’.

To simplify notation, we may omit the original superscripts, indicate the
function/construction distinction by round/square brackets, write the vari-
able x in a subscript and λx in a superscript after the corresponding closing
round bracket. Hence, 0[λx.(Hyp0[λx.(α1 ∧f α2)(x)] ∧f ¬fα2)(x)] simplifies
to

(1) [(Hyp[(α1 ∧ α2)λxx ] ∧ ¬α2)λxx ]

It is clear that the set of construction expressions can be seen as an
algebra of procedures in the sense defined above. In order to demonstrate
this, we need to define the operations ◦P for ◦ ∈ ConL. We do this as
follows:

¬P[ϕλxx ] = [(¬ϕ)λxx ]
[ϕλxx ] ◦P [ψλxx ] = [(ϕ ◦ ψ)λxx ] for all binary connectives of L

2P[ϕλxx ] = [(Hyp[ϕλxx ])λxx ]
3P[ϕλxx ] = [(¬Hyp[(¬ϕ)λxx ])λxx ]

A hyperintensional P-model is a hyperintensional model where C = P ,
O(P ) ∈ AP and O is a homomorphism from the L-formula algebra to P.

19



Informally, formulas of L represent sentences of a (fragment of a) natural
language, O(F ) is the procedure expressed by the sentence represented by
F (we may say ‘the procedure expressed by F ’ for the sake of simplicity)
and I(ξ) for ξ ∈ P is the proposition produced by the procedure ξ. Hence,
I(O(F )) = JF K is the proposition produced by the procedure expressed by
F .

A procedural model is a P-model where P is the special case discussed
above and O(pi) = [(αi)λxx ] for all i ∈ N. Hence, in a procedural model,
O(2(p1 ∧ p2) ∧ ¬p2) is (1).

Instead of proving that H is the logic of all procedural models and all
P-models, we prove a general result about a class of hyperintensional models
in the next subsection.

5.4 A note on fully distinguishing models

Let X be any set and let o : FmL → X be an injective function. A fully
distinguishing model is a structure M = 〈W,X, o,NX , I〉 such that

• W is the set of maximally consistent theories with respect to some ax-
iomatisation of classical propositional logic with the Duality Axiom
• NX(Γ) = {o(F ) ; 2F ∈ Γ}
• I(o(F )) = {Γ ; F ∈ Γ} and I(x) = ∅ for x 6∈ Rng(o)

Lemma 5.3. Each fully distinguishing model is a strongly compositional
hyperintensional model such that the set of formulas valid in the model is
H.

Proof. I is well-defined since o(F ) = o(G) only if F = G. The fact that
I(o(·)) satisfies the conditions required for J·K in hyperintensional models
follows from the fact that members of W are maximally consistent theories
of CPL+DA. The model is strongly compositional since, again, o(F ) = o(G)
only if F = G. The rest follows from Theorem 4.2 as it implies that F ∈ H
iff F ∈ Γ for all Γ ∈W .

Theorem 5.4. If a class of hyperintensional models contains a fully distin-
guishing model, then the set of formulas valid in each model in the class is
H.

Proof. By Lemma 5.3, if M is fully distinguishing and F 6∈ H, then F is not
valid in M.
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Corollary 5.5. H is the set of formulas valid in all P-models, all procedural
models and all neo-Russelian models, but also in all state-based models and
all purely syntactic models.

This section has shown that approaches to modelling hyperintensional
modalities based on quite distinct assumptions and intuitions are all special
cases of our general framework. Moreover, we have shown that, even if rather
different ‘philosophically’, these approaches are equivalent from a ‘logical’
point of view.

6 Modal logics with strong equivalence

We have seen that the classes of all hyperintensional models, all weakly
compositional models and all strongly compositional models have the same
class of valid L-formulas, namely, H. This section introduces logics over
an extended language L≡ and shows that the three classes of models yield
distinct extensions of H. Some logics introduced in this section can be seen
as modal non-Fregean logics, i.e. modal extensions of the ‘sentential calculus
with identity’ studied by [9, 10].19

The language L≡ extends L with a binary connective ‘≡’ and a unary op-
erator ‘2U ’. Formulas F ≡ G say that F and G have the same content. The
operator 2U , interpreted as the universal modality, is included for techni-
cal reasons, see the proof of Theorem 6.1. Nevertheless, formulas 2UF can
be interpreted informally as stating that F is necessary in the sense that
JF K = W . The fact that 2 is a hyperintensional modality corresponds to
satisfiability of 2U (F ↔ G) ∧ ¬(2F ↔ 2G).

We require from now on that every hyperintensional model for L≡ sat-
isfies the conditions

JF ≡ GK =
{
W if O(F ) = O(G);
∅ otherwise.

J2UF K =
{
W if JF K = W ;
∅ otherwise.

The set of L≡ formulas valid in each hyperintensional model is denoted as
HI.

19Bloom and Suszko add to classical propositional logic a new equivalence connective
‘≡’ representing identity of content as opposed to mere identity of truth value represented
by classical equivalence. For details of their approach, the reader is referred to [9, 10].
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(PC) Propositional tautologies in L≡

(DA) 3F ↔ ¬2¬F

(E0) F ≡ F

(E1) F ≡ G→ G ≡ F

(E2) (F ≡ G ∧G ≡ H)→ F ≡ H

(E3) F ≡ G→ ((F ↔ G) ∧ (2F ↔ 2G))

(U1) 2UF → F

(U2) 2UF → 2U2UF

(U3) F → 2U¬2U¬F

(U4) 2U (F → G)→ (2UF → 2UG)

(U5) F

2UF
(EU) ¬2U (F ≡ G)→ 2U¬(F ≡ G)

(MP) Modus Ponens

Figure 3: The proof system HIP.

Figure 3 lists the axioms and rules of the proof system HIP. Proofs in
HIP are defined as usual.

Theorem 6.1. HIP is a complete axiomatisation of HI.

Proof. All the axioms of HIP are clearly valid. Take, for example, (E3).
If w ∈ JF ≡ GK, then O(F ) = O(G) by the definition of hyperintensional
model. But then, of course, JF K = JGK and O(F ) ∈ NC(v) iff O(G) ∈ NC(v)
for all v ∈W .

Completeness is established by a canonical model construction. Assume
that H is not provable. By the Lindenbaum Lemma, there is a maximal
consistent theory Γ0 containing ¬H. Let us define a relation ∼ on maximal
consistent theories by Γ1 ∼ Γ2 iff, for all F , 2UF ∈ Γ1 only if F ∈ Γ2.
Axioms (U1) – (U3) ensure that ∼ is an equivalence relation.

Now define the canonical model as follows. The set W is the equivalence
class, under ∼, of Γ0. Define a relation ≡W on Fm by

F ≡W G ⇐⇒ ∀Γ ∈W (F ≡ G ∈ Γ).

It is clear that ≡W is an equivalence relation; denote as [F ] the equivalence
class of F under ≡W . Now let C = {[F ] ; F ∈ Fm} and O : F 7→ [F ]. The
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intension function I is defined by I : [F ] 7→ {Γ ∈ W ; F ∈ Γ}. In addition,
let NC : Γ 7→ {[F ] ; 2F ∈ Γ}. Note that, thanks to (E3), both I and NC

are well-defined.
It remains to be shown that the canonical model is a hyperintensional

model. On Boolean inputs, the canonical J·K behaves as it should thanks to
(PC). Next, 2F ∈ Γ iff [F ] ∈ NC(Γ) by the definition of NC . Consequently,
J2F K = {Γ ; O(F ) ∈ NC(Γ)}. J3F K = {Γ ; O(¬F ) 6∈ NC(Γ)} holds thanks
to (DA). Next, assume O(F ) = O(G), i.e. [F ] = [G]. This means that
F ≡W G, so F ≡ G ∈ Γ for all Γ ∈ W . This means that JF ≡ GK = W .
If O(F ) 6= O(G), then F ≡ G 6∈ ∆ for some ∆ ∈ W . This means that
¬2U (F ≡ G) ∈ Γ0. By (EU), ¬(F ≡ G) ∈ Γ for all Γ ∈W , so JF ≡ GK = ∅.
Finally, assume that ¬F ∈ ∆ for some ∆ ∈ W . It follows that ¬2UF ∈
Γ0. Since ¬2UF → 2U¬2UF is a theorem,20 2U¬2UF ∈ Γ0. Hence,
¬2UF ∈ Γ for all Γ ∈ W , i.e. J2UF K = ∅. To show that JF K = W implies
J2UF K = W , assume that ¬2UF ∈ Γ. Note that

D = {G ; 2UG ∈ Γ0} ∪ {¬F}

is consistent. If not, then G1∧ . . .∧Gn → F is provable and so 2UG1∧ . . .∧
2UGn → 2UF is provable. But then, 2UF ∈ Γ0 and, by (U2), 2U2UF ∈
Γ0. But this would mean that 2UF ∈ Γ, which contradicts our assumption.
So, by the Lindenbaum Lemma, there is a maximally consistent ∆ ⊇ D in
W . Consequently, JF K 6= W .

Hence, the canonical model is a hyperintensional model such that JHK 6=
W for our unprovable H.

For each model M, define an equivalence relation on formulas by F ≡M G
iff F ≡ G is valid in M. We note that there are models M such that ≡M is
not a congruence on the set of formulas. This makes our framework more
general than a straightforward modal extension of the non-Fregean version
of classical propositional logic by [9, 10]; in the latter system, a related
relation on formulas is a congruence for each model. To obtain ‘proper’
modal non-Fregean logic, we have to focus on a narrower class of models,
namely, weakly compositional models.

Let H(F/G) denote the result of replacing an occurrence of F in H by an
occurrence of G. If H does not contain any occurrences of F , then H(F/G)
is H.

20Since F → G

2UF → 2UG
is an admissible rule, as can be shown using (U4) and (U5).
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Proposition 6.2. M is weakly compositional iff every formula of the form

(W) F ≡ G→ H ≡ H(F/G)

is valid in M.

Proof. Assume that M is weakly compositional. If w ∈ JF ≡ GK, then
O(F ) = O(G). The claim follows by repeated application of (wCP).

If M is not weakly compositional, then there is a formula H with a direct
subformula F such that O(F ) = O(G) for some G, but O(H) 6= O(H(F/G)).
But then JF ≡ GK = W and JH ≡ H(F/G)K = ∅.

Let us denote the set of formulas valid in all weakly compositional models
as HIW.

Theorem 6.3. F ∈ HIW iff F is a theorem of the proof system WHIP that
results from adding (W) as an axiom schema to HIP.

Proof. This can be shown using the canonical model construction from the
proof of Theorem 6.1 (but this time with (W) as an axiom). The canonical
model is weakly compositional by Proposition 6.2.

Proposition 6.4. M is strongly compositional iff every formula of the form

(S) F ≡ G↔ H ≡ H(F/G)

is valid in M.

Proof. Assume that M is strongly compositional. If w ∈ JF ≡ GK, then
O(F ) = O(G). The claim follows by repeated application of (sCP). If w ∈
JH ≡ H(F/G)K, then O(H) = O(H(F/G)). The claim again follows by
repeated application of (sCP).

If M is not strongly compositional, then either it is not weakly com-
positional or there is a formula H with a direct subformula F such that
O(H) = O(H(F/G)) for some G, but O(F ) 6= O(G). In the former case,
(W) is invalid and so is (S). In the latter case, JH ≡ H(F/G)K = W and
JF ≡ GK = ∅.

Let us denote the set of formulas valid in each strongly compositional
model as HIS.

Theorem 6.5. F ∈ HIS iff F is a theorem of the proof system SHIP that
results from adding (S) as an axiom schema to HIP.
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Proof. Similar to the proof of Theorem 6.3.

Proposition 6.6. HI ⊂ HIW ⊂ HIS.

Proof. The non-strict inclusions are clearly true (each strongly composi-
tional model is weakly compositional). To prove HI ⊂ HIW, it is suf-
ficient to show that an instance of (W) is not valid in some hyperinten-
sional model. Take a state-based hyperintensional model where W = {w}
and S = {w, s1, s2}. Define O[At] = {{w, s1}}, O(r ∧ p) = {w, s1} and
O(r ∧ q) = {w, s2} (s1 is an ‘impossible world’ where r ∧ q holds but q
does not). Let O be defined on the rest of the arguments in an arbitrary
way that is consistent with the definition of a state-based hyperintensional
model (obviously there is at least one such way). Now p ≡ q is true in w,
but (r ∧ p) ≡ (r ∧ q) is not.

To prove HIW ⊂ HIS, it is sufficient to prove that an instance of the
right-to-left implication of (S) is not valid in some weakly compositional
hyperintensional model. Consider a MS model M = 〈W,N, J·K〉 with the
following property: JpK 6= JqK, but JpK ∈ N(w) iff JqK ∈ N(w) for all w ∈W .
Define a structureM∗ = 〈W,P(W ), J·K , N, id〉 where id is the identity func-
tion on P(W ). It can be easily checked that M∗ is a weakly compositional
hyperintensional model (where F ≡ G is equivalent to 2U (F ↔ G)) such
that 2p ≡ 2q is valid in M∗ and p ≡ q is not valid.

Let P be any of the proof systems discussed in this section. Derivations
of F from a set of assumptions Γ in P are defined in the standard way.
As expected, F is derivable from Γ in P iff it is derivable from a finite
{G1, . . . , Gn} ⊆ Γ (‘fin-derivable’ from Γ) iff (G1 ∧ . . . ∧ Gn) → F is a
theorem of P. We say that Γ is P-consistent iff p ∧ ¬p is not derivable from
Γ in P. We say that Γ is satisfiable in a class of models iff there is a model
M in the class such that

⋂
G∈Γ JGKM 6= ∅. It is easily seen that the proofs

of Theorems 6.1, 6.3 and 6.5 establish the following fact.

Theorem 6.7. Γ is HIP-consistent (WHIP-consistent, SHIP-consistent) iff it
is satisfiable in the class of all hyperintensional models (weakly compositional
models, strongly compositional models).

Proof. This is a version of the standard modal completeness argument. To
establish the left-to-right implication, it is sufficient to note that, in each
case, the canonical model belongs to the ‘right’ class of models. For the
right-to-left implication, use the fact that derivability is equivalent to fin-
derivability and then apply Theorems 6.1, 6.3 and 6.5.
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We say that F follows from Γ in HI, Γ �HI F , iff Γ∪{¬F} is not satisfi-
able in any hyperintensional model; and similarly for HIW and HIS on the
one hand and the class of weakly compositional and strongly compositional
models, respectively, on the other hand. Theorem 6.7 yields a form of strong
completeness of our proof systems: F follows from Γ in a class of models iff
it is derivable from Γ in the corresponding proof system.

Proposition 6.8. F ≡ G ∈ HIS only if F = G.

Proof. We will show that F ≡ G is a theorem of SHIP only if F = G. The
rest follows from Theorem 6.1. Let us define a function e : Fm → {0, 1} as
follows:

• e(p) = 1 for all propositional atoms p
• e(¬F ) = 1 iff e(F ) = 0
• e(F ∧G) = 1 iff e(F ) = e(G) = 1
• e(F ∨G) = 0 iff e(F ) = e(G) = 0
• e(F → G) = 0 iff e(F ) = 1 and e(G) = 0
• e(F ↔ G) = 1 iff e(F ) = e(G)
• e(2F ) = 1 for all F
• e(3F ) = 0 for all F
• e(F ≡ G) = 1 iff F = G

• e(2UF ) = 1 iff e(F ) = 1

It is easy to check that the set {F ; e(F ) = 1} contains all theorems of SHIP,
but no formula F ≡ G where F 6= G.

Proposition 6.8 may be seen as a form of a triviality result; it entails
that no ‘interesting’ formulas of the form F ≡ G are valid in either class
of models studied in this article. This is indeed not very surprising given
the fact that we do not rule out models where O is injective. On the other
hand our logics can be used to study arbitrary sets of assumptions. For
instance, the question whether some F is entailed by a set of ‘meaning
postulates’ (formulas of the form F ≡ G) together with additional ‘factual
assumptions’ (formulas of other forms) boils down questions of satisfiability
in classes of hyperintensional models and, via Theorem 6.7, to the question
of existence of derivations in the corresponding proof systems.

We conclude by considering a yet more general version of our semantics.
An equivalence model is M = 〈W,C,≈, O,NC , I〉 where 〈W,C,O,NC , I〉 is
a hyperintensional model and ≈ is an equivalence relation on C. Moreover,
we require that
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• JF ≡ GK =
{
W if O(F ) ≈ O(G);
∅ otherwise.

• O(F ) ≈ O(G) only if JF K = JGK
• every NC(w) is closed under ≈ (i.e. if c ≈ c′, then c ∈ NC(w) iff c′ ∈
NC(w)).

It is clear that equivalence models are a generalisation of hyperinten-
sional models. Informally, we may see ≈ as a relation of ‘strong equivalence’
on contents; equivalent contents determine the same intension and have the
same modal properties expressed by 2.21 Nevertheless, such a generalization
does not yield a different logic.

Theorem 6.9. The set of formulas valid in all equivalence models is HI.

Proof. It is sufficient to show that for every equivalence model there is a
hyperintensional model that validates precisely the same formulas. Thus
take an equivalence model M and define M′ by stipulating C ′ = {[c]≈ ;
c ∈ C} ([c]≈ is the equivalence class of c under ≈); O′(F ) = [O(F )]≈;
N ′C(w) = {[c]≈ ; c ∈ NC(w)} and I ′([c]≈) = I(c). Note that N ′C and I ′ are
well-defined since they do not depend on the choice of a representative of
[c]≈. Now w ∈ JF K iff w ∈ I(O(F )) iff w ∈ I ′([O(F )]≈) iff w ∈ I ′(O′(F )).
Hence, JF K = W iff JF K′ = W .

Nevertheless, ≈ adds some complexity in that Propositions 6.2 and 6.4
are not valid if M is assumed to be an equivalence model (then ≈ expresses
equivalence of content, not identity of content; but the latter is involved in
the compositionality principles). To avoid these issues, one would need to
extend L≡ by another binary operator that would differentiate between ≈
and = on C.

7 Conclusion

The aim of this article was to introduce a general semantic framework for
hyperintensional modal logics that subsumes the major approaches to hy-
perintensional modality known from the literature as special cases. To this

21As an example of such a relation, consider various conversion relations between the
denotations of λ-terms in Transparent Intensional Logic [17]. The relation of procedural
isomorphism on the set of constructions was defined to express a similar notion, see [18].
Another example, if 2 is assumed to correspond to epistemic attitudes of an agent, is
intensional equivalence ‘recognized’ by the agent.
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end, we generalised the Montague–Scott semantics for modal logics. The
generalisation builds on an explicit representation of fine-grained senten-
tial contents (to which modalities pertain) without assuming any specific
features of these contents. In fact, arbitrary objects may play the role of
contents in our semantics. This approach enables to develop hyperinten-
sional modal logic without taking sides in the philosophical debates about
the nature of sentential content. As such, the framework also provides a
common logical ground for the proponents of rival semantic theories and,
potentially, is suitable for introducing logics motivated by specific seman-
tic approaches that are comprehensible to proponents of rival theories of
content.
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