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Abstract 

ZAG (zinc-α2-glycoprotein) - adipokine, may participate in the mechanism of malnutrition in 

chronic kidney disease (CKD) as cachexia factor. The transmembrane protein of the 

endoplasmic reticulum - lipase maturation factor 1 (LMF1) is necessary for the secretion and 

enzymatic activity of  lipases and lowering triglycerides level. 

The aim of the study was to evaluate these markers - ZAG and LMF1, their potential 

importance in CKD in children. 

The study included 59 children and adolescents aged 10.7±5.0 years with CKD. Compared 

with healthy children, serum and urine ZAG levels were higher in children with CKD. A similar 

relationship was obtained in the comparison of girls and boys between the above groups. 

We showed a reduced serum and urine concentration of LMF1 in children with CKD. 

Additionally, ZAG and LMF1 levels in children below 10 years of age and above 10  were no 

different. There was also no correlation between these markers and serum creatinine 

(except negative correlation of urinary ZAG), albumin, cholesterol, triglycerides. LMF1 

concentration correlated positively with vitamin D level in dialyzed patients. 

To conclude, elevated serum ZAG levels in children with CKD document that selective kidney 

damage results in the rise of ZAG concentration, however the specific role of this marker in 

malnutrition was not documented. Reduced serum LMF1 concentration in children with 

CKD, did not correlate with standard parameters used to assess lipid metabolism and 

severity of CKD. The usefulness of LMF1 as the marker of the lipid metabolism disturbances 

in children with CKD was not proven. 
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Introduction 

The main function of the kidneys is to ensure, through homeostasis of the extracellular fluid, 

an adequate and stable internal environment for the body's cells. Progressive chronic kidney 

disease (CKD) results in increasing disturbances in the volume and composition of this 

environment, with further clinical disorders, including the alterations of the cardiovascular 

system, and biochemical variations with the final clinical expression as  uremic status. 

Despite spectacular advances in renal replacement therapy as well as in transplantation we 

are still far from being able to completely replace all complex kidney functions. Despite 

optimal therapy, the phenotype of patients with end-stage renal disease (ESRD) resembles 

the accelerated aging process (Kooman et al. 2013, Kooman et al.2014). 

The accumulation of uremic toxins causes, among others, chronic oxidative stress and the 

release of proinflammatory cytokines, which results in a predominance of biochemical 

catabolic pathways over anabolic, exhaustion of anti-aging mechanisms (e.g. decrease in 

fetuin and Klotho protein), and promotion of processes that stimulate senescence (such as 

hyperphosphatemia and activation of angiotensin II pathway) (Kooman et al. 2014). The 

effect of these complex and yet unrecognized disorders is a common phenotype for many 

serious chronic diseases, which consists of such changes as cachexia (e.g. reduction of 

muscle mass), a tendency to tissue fibrosis, calcium deposition in vessels with their 

hardening and endothelial dysfunction. A lot of evidence confirms this observation at CKD, 

including  telomere shortening and accumulation of advanced glycation (AGE) products in 

this disease [Kooman et al. 2014, Carrero et al. 2008, Stenvinkel et al. 2013]. 

Accordingly, the life expectancy of a CKD patient is significantly shorter than that of the 

general population, in dialysis children the reduction is even 40-60 years! Mortality in the 

group of patients with end-stage renal disease (ESRD) is about 30x higher than in healthy 

children, and the survival rate after 10 years is 80%, while after 20 years - 66%. [Collins et al. 

2008, Grothoff et al. 2002, McDonald and Craig 2004, Oh et al. 2002]. 

Since the publication of KDOQI recommendations for CKD [National Kidney Foundation 

2002], and the dissemination of routine laboratory calculations for eGFR, there has been a 

significant increase in awareness of the growing incidence and prevalence of CKD, and its 

increasing public health burden. Better recognition and awareness of the problem were 

reflected in a large number of studies devoted to, among others biomarkers in CKD. They 

allow for the early recognition of the disease and its individual components, as well as 
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stratify the risk of its occurrence and therefore optimize prophylactic treatment. A 

biomarker is defined as a measurable and rational biological parameter that is an indicator 

of a physiological or pathological biological process or response to therapeutic intervention. 

To organize this dynamic field of scientific research and create a common conceptual 

framework, it was proposed to separate four categories of biomarkers in CKD [Shlipak and 

Day 2013]: 

- systemic biomarkers, indicating e.g. inflammation or activation of the renin-angiotensin, 

aldosterone system (RAAS). 

- increased risk of CKD (susceptibility biomarkers), such as age, gender, ethnicity, genetic 

polymorphisms, or environmental factors such as low birth weight or exposure to toxins. 

- kidney injury biomarkers, such as NGAL, KIM-1, FABP, uromodulin or TGF-β. 

- evidence of loss of GFR (markers of early loss of GFR), such as creatinine or cystatin C. 

In addition to the aforementioned phenotype of premature senescence and cachexia 

associated with advanced CKD, an important and characteristic for pediatric age aspects of 

renal failure are early growth and nutrition disorders requiring major therapeutic challenges. 

ZAG (zinc-α2-glycoprotein) - adipokine, which consists of one glycopolypeptide chain made 

up of 278 amino acids with a molecular mass of 43kDa, may participate in the mechanism of 

malnutrition in CKD as cachexia factor. ZAG induces lipolysis through cAMP and stimulation 

of adenyl cyclase, followed by activation of hormone-dependent lipase (HSL) [Bing et al. 

2010, Bouchara et al. 2018]. ZAG is produced and secreted by adipocytes and epithelial cells 

in different organs [Tada et al. 1991] and is simultaneously a member of the family of 

proteins of the major class I tissue compatibility complex. Leal et al. in their study observed 

the relationship between ZAG and factors of inflammatory response and atherogenic 

molecules: adiponectin, LDL, TNF-a, interleukin-6 in adult CKD patients on hemodialysis [Leal 

et al. 2012]. Adipose tissue dysfunction resulting in enhanced production of 

proinflammatory factors has a direct impact on the endothelium with the increase its 

adhesiveness to monocytes [Poledne et al. 2015]. The transmembrane protein of the 

endoplasmic reticulum known as lipase maturation factor 1 (LMF1) is necessary for the 

secretion and normal enzymatic activity of LPL, hepatic lipase (HL) and endothelial lipase (EL) 

[Babilonia-Rosa and Neher 2014] which protects again malnutrition-inflammation-

atherosclerosis syndrome, frequently described in CKD patients [Mak et al. 2011].  
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The aim of this study is to evaluate mentioned above new markers and their potential 

importance in chronic kidney disease in children including the problems of enhancing lipid 

disturbances and cachexia. We hypothetise if ZAG (Zinc- alfa2 glycoprotein)/LMF (Lipid 

Mobilizing Factor) and LMF1 (Lipase Maturation Factor) could play the role in worsening of 

these conditions. 

Material 

The study included 59 children and adolescents aged 10.7 ± 5.0 years (2.4 to 18 years) with 

chronic kidney disease, diagnosed and treated in the Department of Children's Nephrology 

and the Children's Nephrology Outpatient Clinic of Independent Public Clinical Hospital No. 1 

in Zabrze, SUM in Katowice, Poland. Children and adolescents who were included in the 

study group did not experience inflammation or infectious disease during the month 

preceding the sampling. Among the causes of CKD were: congenital kidney and urinary tract 

defects (CAKUT) in 33 children (55.9%), in 12 (20.3%) - cystic kidney disease and 

nephronophtisis, in 6 (10.2%) - glomerulonephritis, in 4 (6.8%) ) tubulointerstitial nephritis / 

drug-induced kidney damage, in 2 (3.4%) - hemolytic uremic syndrome, in 2 (3.4%) - 

tubulopathies. Eleven children were treated with renal replacement therapy. In order to 

conduct analyzes, the studied group of children with CKD was divided into the following 

subgroups: by sex, age, and stage of kidney disease. The study group had been interviewed 

on the subject past medical history and a physical examination performed, including 

anthropometric measurements and blood pressure evaluation. Body mass index (BMI) was 

calculated using the formula [BMI = body weight (kg) / height (m2)]. The estimated 

glomerular filtration rate (eGFR) was calculated according to the Schwartz formula 

(ml/min/1.73m2) [Mian and Schwartz 2017]. Left ventricular mass index (LVMI) was 

calculated from LVM indexed to height (in m) raised to the power of 2.7 [de Simone et al. 

1992], where LVM(g) = 0.8 x{1.04 x [(LVEDD+PWT+IVST)3 - (LVEDD)3] + 0.6} according to 

Devereux equation [Devereux  et al. 1986].  

The control group included outpatient patients treated for bedwetting or preparing for "one 

day" surgery who agreed to additional examinations, taken during routine tests. 

Anthropometric measurements as well as age and blood pressure values of the examined 

children and children from the control group are presented in Table 1. The average age, 

body weight, height and BMI in the examined and control groups did not differ significantly. 

The value of SDS for body weight and height was significantly higher in the group of healthy 
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children. 

The study was approved by the Bioethical Committee of the Silesian Medical University in 

Katowice (Resolution No. KNW / 0022 / KB1 / 75/16 of 5.07.2016). Written informed consent 

of the parents / guardians of the examined person and in the case of adolescents over 16 

years of age - the examined patient was obtained for participation in the study. 

Methods 

Laboratory tests performed in patients with chronic kidney disease were as follows: 

morphology, serum creatinine, urea, uric acid, total protein, albumin, iron, total iron binding 

capacity (TIBC), ferritin, cholesterol, triglycerides. Performing the tests was associated with 

taking blood in the amount of about 3-5ml and 50-100ml of urine, during check-ups, to 

assess the concentration of proteins: ZAG andLMF1 in serum and urine. The blood sample 

was taken from a single injection. Sera and urine samples for determination were stored at -

20 degrees until the time of determination. The determinations were made in the 

Department and Department of Medical and Molecular Biology in Zabrze, Faculty of Medical 

Sciences in Zabrze, SUM in Katowice, in accordance with the manufacturer's protocol using 

commercial kits. 

Determination of Human Zinc-Alpha-2-Glycoprotein (ZAG) concentration 

ZA2G concentrations in blood serum and urine were determined by the enzyme-linked 

enzyme method using the Bio-Vendor LLC test (BioVendor–Laboratorní medicínaa.s. Czech 

Republic) cat. No. RD 191093100R, according to the manufacturer's instructions. Detection 

of immunocomplexes was based on the reaction with a polyclonal anti-human ZA2G 

antibody conjugated to horseradish peroxidase, followed by TMB solution as a substrate 

(TMB Substrate, slowkinetic, Sigma, USA). 

Determination of Lipase Maturation Factor 1 (LMF1) concentration 

LMF1 serum and urine concentrations were determined by enzyme immunoassay 

using the Cloud-Clone Corp. test. (Houston USA) catalog number SEE177 Hu, according to 

the manufacturer's instructions. 

To determine the concentrations of the samples tested, a calibration curve was prepared 

using the standards contained in the kit. Absorbance readings were carried out using the 

Universal Microplate Spectrophotometer - µQUANT from BIO-TEK INC (Bio-Tek World 

Headquarters, California, USA), at 450 nm for LMF1 and 620 nm for ZAG2, and the results 

were developed using the KCJunior computer program (Bio-Tek, USA). The sensitivity of the 
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kit for ZAG2 was 0.673 ng / ml, the intra-serial error 4.7% and the extracurricular error 6.6 %. 

The sensitivity of the kit for LMF1 was 0.055ng / ml, intra-serial error <10% and extra-serial 

error <12%. 

Statistical analysis 

The database was prepared in a Microsoft Excel spreadsheet. STATISTICA software licensed 

for ver. 10.0 (StatSoft Inc, Tulsa, USA). The level of statistical significance was assumed at p 

<0.05. As parameters of descriptive statistics, the arithmetic mean, median, minimum and 

maximum values, lower and upper quartiles and standard deviation were selected. The 

compliance of their distributions with the normal distribution was checked for all 

parameters using the Shapiro-Wilk test. For variables with normal distribution, the 

parametric test was used (t test for independent variables in comparative analyzes and 

Pearson's test for correlation analyzes). For other variables, a non-parametric test was used 

(Mann-Whitney U test for comparisons and Spearman rank correlation test for correlation 

analyzes). 

Results 

Table 2 presents the results of laboratory tests in the group of children with CKD. There were 

no differences between girls and boys. The concentration of albumin, total protein, PTH-1-

84, total vitamin D, total cholesterol, HDL cholesterol, creatinine and urea, hemoglobin 

differed in the study groups of predialysis children and children on RRT. The mean value of 

serum creatinine level in healthy children was 61.4  17.3 μmol/l and eGFR 89.3  24.7 

ml/min/1.73m2 and they were significantly different than in CKD group (p<0.0001). The 

mean left ventricular mass index (LVMI) in whole study group was 33.6  13.3 g/m2,7, and did 

not differ between children treated conservatively and on dialysis (33.8  14.2 vs. 32.6  8.8 

respectively, p=0.3576). The mean ejection fraction (EF) in whole CKD children was 69.3  

4.3% and was not different in predialysis and dialyzed children (69.54.2 vs. 68.14,6 

respectively, p=0.3134). Table 3 illustrates ZAG and LMF1 levels in children with CKD 

depending on sex and type of therapy. Compared with healthy children, serum and urine 

ZAG levels were higher in children with CKD. A similar relationship was obtained in the 

comparison of girls and boys between the above groups. In our studies, we showed a 

reduced concentration of LMF1 in both serum and urine in children with CKD. We compared 

the values of ZAG and LMF1 levels also in children below 10 years of age and above 10. 



8 

 

There were no differences between younger and older children (data not shown). There 

were no differences in ZAG and LMF1 levels according to sex between healthy girls and boys. 

In the conducted correlation analysis in the studied group of children with CKD, no 

relationship between the values of the analyzed markers ZAG and LMF1 and the values of 

anthropometric measurements, blood pressure measurements expressed as absolute values 

and SDS values were found. There was also no correlation between these markers and 

serum creatinine(except negative correlation of urinary ZAG r=-0.3005, p=0.038), albumin, 

cholesterol, triglycerides. Urine ZAG level correlated positively with eGFR in whole examined 

group and in predialysis children (r=0.2752, p=0.046; r=0.3189, p=0.027 respectively) . Urine 

LMF1 correlated negatively with serum vitamin D concentration in whole examined group 

and in predialysis children (r=-0.3221, p=0.019, r=-0.3405, p=0.018 respectively). Serum 

LMF1 concentration correlated positively with vitamin D level in dialyzed patients (r=0.8268, 

p=0.003). 

Discussion 

A review of the latest literature, including reports in adult patients with CKD, allows us to 

state that ZAG is a promising indicator that finds application in diagnostic methods of 

chronic kidney disease [Woźny et al. 2019]. Current data showed that adults with 

nephropathy in the course of type 2 diabetes mellitus with impaired renal function had 

significantly higher levels of ZAG determined in both urine and peripheral blood compared 

to the control group [Wang et al. 2016]. In the group of children with CKD we analyzed, we 

obtained similar results which documents that selective kidney damage leads to an increase 

in ZAG concentration and also occurs in CKD on the basis of e.g. malformations of the 

kidneys and urinary system, in which early kidney interstitial fibrosis occurs. Additionally in 

our study there was no correlation with the concentration of total cholesterol, triglycerides, 

HDL and LDL cholesterol, CRP and BMI. We have not confirmed the influence of ZAG on 

malnutrition in children with CKD. Contrary to our results, the concentration of ZAG in serum 

positively correlated with serum creatinine and eGFR in their results [Wang et al. 2016].  

ZAG was also examined as the index of malnutrition in girls with anorexia nervosa and its 

serum concentration was higher as compared to control group. Jarzumbek concludes that it 

could play a role in exploitation of lipolysis products.  In that group the  values of ZAG 

correlated negatively with body weight and BMI opposing to our results [Jarzumbek 2017]. 
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Pelletier et al. in the study on adult patients with CKD treated conservatively reported no 

correlation of plasma ZAG with decreasing eGFR [Pelletier et al. 2014]. In examined by us 

children only urine concentration of ZAG correlated positively with eGFR in predialysis 

children and all children with CKD and negatively with serum creatinine concentration in 

predialysis children. It means that ZAG accumulation is caused by its reduced excretion with 

declining kidney function. The lack of the correlations of serum ZAG levels with eGFR in 

children with CKD may be due to the relatively short duration of CKD compared to adults 

who have been ill for many years and the small size of the group we study. Our study did not 

analyze the correlation of ZAG in urine with the albumin/creatinine index, however, all 

children except children with anuria presented explicit overt proteinuria. 

Another interesting problem is the role of ZAG in cardiovascular complications as it was 

documented by Zhou et al. that ZAG could promote endothelial alteration and change the 

structure of vessels [Zhou and QIN 2012]. ZAG is also considered as the factor contributing to 

hypertension [Zhu et al. 2014, Kurita et al. 2015]. We have not confirmed the relationship of 

ZAG with blood pressure determinants and EF or LVMI, which could be the result of only 

mild involvement of cardiovascular system in children with CKD. Bouchara’s et al. 

investigation performed in adult hemodialysis patient showed that ZAG was strong 

predictive factor of cardiovascular events but also was positively related to age which is 

consistent with our findings [Bouchara et al. 2018]. They suggested that the lipolytic 

properties were mediated by local ZAG appearance in adipose tissue. 

Lipoprotein lipase (LPL) plays a key role in lipid metabolism. This protein hydrolyses 

triglycerides for the distribution of free fatty acids to peripheral tissues. Biochemical 

deficiency of LPL activity is one of the well-known causes of hypertriglyceridemia underlying 

atherosclerosis, a complication already found in the early stages of CKD. Plengpanich et al. 

detected 2 common and 12 rare variants in the LMF1 gene responsible for LPL activity in 101 

Thai patients with severe hypertriglyceridemia [Plengpanich et al. 2020].   

At present, there are no data in the literature regarding the concentration of LMF1 protein in 

the population of adults and children with CKD and reports on its impact on lipid metabolism 

in patients with kidney damage. In our study, we showed a reduced concentration of LMF1 

in both serum and urine in children with CKD, which confirms that lipid metabolism 

alteration starts early in children with CKD in whom other metabolic diseases were not 

detected. 
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However, we did not confirm significant correlations of serum LMF1 levels with the 

concentrations of determined lipid metabolism parameters and parameters of cardiac 

function. The lack of significant correlations may be caused by the low number of patients 

from the dialysis group in whom lipid metabolism disorders were more severe than in 

children with CKD treated conservatively. Moreover, we showed, that serum LMF1 

concentration correlated positively with vitamin D level in dialyzed patients and both values 

were significantly low in this group. It was highlighted by Arfian et al. that application of 

vitamin D plays a role in attenuating vascular remodeling with upregulating endothelial 

nitrite oxide synthase (eNOS) expression in kidneys of patients with CKD, thus having 

beneficial effect on the disease progression [Arfian et al. 2018]. 

In previous our manuscript on the role of FGF21 in children with CKD we also did not show 

the relationship of the examined marker with lipid metabolism [Gamrot et al. 2020].  

We have either not document the difference in ZAG and LMF1 levels between children 

below 10 years old and adolescents with CKD. The subgroups were selected to investigate if 

there are any differences connected with puberty and acceleration of statural growth. 

 

To conclude, elevated serum ZAG levels in children with CKD document that selective kidney 

damage results in the rise of ZAG concentration, however the specific role of this  marker in 

malnutrition was not documented. Reduced LMF1 concentrations in children with CKD, did 

not correlate with standard parameters used to assess lipid metabolism and severity of CKD. 

The usefulness of LMF1 as the marker of the disturbances of lipid metabolism in children 

with CKD was not proven. Further research is needed on larger groups of children with CKD 

to clarify the specific role of the above markers in this age population. 

 

 

The study was financially supported by Scientific Grant No. KNW-1-076 /N /7 / K of the 

Silesian Medical University in Katowice. 
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Table 1. Clinical characteristics of evaluated children (CKD and control group) 

Parameter 

 

CKD group Control Group 

Whole 

group (n=59) 

Girls 

(n=22) 

Boys 

(n=37) 

Total 

group (n=34) 

Girls 

(n=11) 

Boys 

(n=23) 

Age (years) 10.7±5.0 12.1± 5.1 9.9 ± 4.8 9.8± 4.3 10.1 ± 4.6 9.7 ± 4.2 

Height (cm) 134.3 ± 26.6 136.1 ± 25.1 133.3 ± 27.8 140.3 ± 25.0 138.2 ± 21.3 141.3 ± 27.0 

Height  SDS   -1.3 ± 1.2# -1.57± 1.44a -1.13± 1.04b 0.25 ± 1.07 0.16± 0.88 0.29 ± 1.16 

Body weight 
(kg) 

35.3 ± 18.8 35.5 ± 16.2 35.2 ± 20.4 36.9 ± 20.0 35.5 ± 17.3 37.6 ± 21.5 

Body  weight  
SDS   

-0.9 ± 1.3# -1.3± 1.41a -0.68 ± 1.23b -0.08 ± 1.05 -0.04 ± 1.11 -0.1 ± 1.04 

BMI (kg/m 2) 18.0 ± 4.0 17.9 ± 3.6 18.0 ± 4.2 17.3 ± 3.7 17.4 ± 3.4 17.2 ± 3.9 

BMI  SDS   -0.3± 1.1 -0.47 ± 1.06 -0.18± 1.09 -0.34 ± 1.19 -0.17 ± 1.12 -0.41 ± 1.24 

SBP (mm Hg) 111.8 ±14.3 112.1±13.0 111.7±15.1 114.3±12.1 108.8±10.6 116.9±12.1 

SBP SDS 1.0  ± 1.3 0.96 ±1.04 1.04 ± 1.42 1.06 ±1.04 0.66 ± 1.05 1.25±1.0 

DBP (mm Hg) 67.1±11.8 68.9±13.2 66.1±11.0 71.2 ±10.3 69.4 ±7.6 72±11.4 

DBP SDS 0.7 ± 1.1 0.73 ±1.25 0.65 ±0.98 0.95 ±0.93 0.81 ±0.62 1.02±1.05 

MAP (mm Hg) 82 ± 11.6 83.3±12.4 81.3±11.1 85.5 ±9.1 82.5 ±6.3 87.0±9.9 

Data are presented as mean ± standard deviation.  

CKD - chronic kidney disease; BMI - body mass index; SDS- standard deviation score. 

# p <0.05 total CKD vs. control group, a p<0.05 girls with CKD vs. girls from control group, 
b p<0.05 boys with CKD vs. boys from control group 
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Table 2. Biochemical parameters among the CKD group compared by sex and method of 
treatment. 

Parameter Whole group Girls Boys Predialysis RRT 

Serum albumin (g/l) 43.8 ± 7.2 41.8 ± 9.3 45.0 ± 5.4 44.6 ± 7.4# 40.2 ± 5.2 

Total proteins (g/l) 69.1 ± 6.6 68.6 ± 6.5 69.4 ± 6.8 70.5 ± 5.6# 62.7 ± 7.1 

Parathyroid hormone 
(pg/ml) 

151.5 ± 230.7 206.3 ± 324.8 118.9 ± 145.9 81.0 ± 66.9# 459.2 ± 399.6 

Total cholesterol 
(mmol/l) 

4.6 ± 1.0 4.8 ± 1.3 4.5 ± 0.8 4.5 ± 1.0# 4.7 ± 1.0 

Cholesterol HDL 
(mmol/l) 

1.4 ± 0.3 1.3 ± 0.3 1.4 ± 0.4 1.4 ± 0.3# 1.2 ± 0.3 

Cholesterol LDL 
(mmol/l) 

2.5 ± 0.8 1.5 ± 1.02 2.4 ± 0.7 2.4 ± 0.9 2.5 ± 0.6 

Triglycerides 
(mmol/l) 

1.7 ± 1.1 1.9 ± 1.3 1.5 ± 0.9 1.5 ± 1.0 2.2 ± 1.4 

Creatinine (µmol/l) 258.1 ± 251.1 327.8 ± 300.8 216.6 ± 209.9 158.7±118.1# 691.7 ± 214.4 

Urea (mmol/l) 12.35 ±6.3 12.7 ± 7.4 12.2 ± 5.6 11.1 ± 5.6# 17.9 ± 6.2 

Hemoglobin (g/dl) 12.3 ± 2.1 12.0 ± 2.5 12.5 ± 1.9 12.8 ± 1.9# 10.3 ± 1.6 

Ferritin (g/l) 108.2 ± 219.3 129.3 ± 291.8 95.2 ± 163.6 56.2 ± 64.3 330.3 ± 433.6 

CRP (mg/l) 1.5 ± 2.2 1.2 ± 1.2 1.7 ± 2.7 1.5 ± 2.4 1.7 ± 1.7 

Phosphate (mmol/l) 1.5 ± 0.3 1.5 ± 0.3 1.5 ± 0.3 1.5 ± 0.3 1.7 ± 0.4 

Vit. D (mg/ml) 38.2 ± 16.1 34.5 ± 16.6 40.4 ± 16.6 40.8 ± 16.4# 27.0 ± 8.6 

eGFR 
(ml/min/1.73m2) 

35.4 ± 21.2 32.7 ±22.7 30.7 ± 20.5 41.5 ± 18.6 / 

 
Data are presented as mean ± standard deviation. 

#P<0.05 predialysis vs. RRT, RRT- children on renal replacement therapy 
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Table 3. ZAG andLMF1 levels among the CKD group compared by gender and method of used 
treatment and in healthy children. 

 

Parameter 
Whole CKD 

group 
Girls Boys Predialysis RRT 

 Serum 

Human Zinc-Alpha-
2-Glycoprotein 
(mg/l) 

56.4 ± 19.9# 55.7 ± 18.2 a 56.8 ± 16.3 b 55.3 ± 14.6 61.2 ± 24.8 

Lipase Maturation 
Factor 1(ng/ml) 

1.5 ± 0.3# 1.4 ± 0.28 a 1.5 ± 0.3 b 1.5 ± 0.3 1.5 ± 0.3 

Urine 

Human Zinc-Alpha-
2-Glycoprotein 
(mg/l) 

66.8 ± 20.2# 65.7 ± 24.4 a 67.4 ± 18.1 b 66.9 ± 19.4 65.8 ± 28.3 

Lipase Maturation 
Factor 1 (ng/ml) 

1.0 ± 0.3# 0.9 ± 0.3 a 1.0 ± 0.3 b 1.0 ± 0.3 1.1 ± 0.2 

 
Whole 

healthy group 
Girls Boys  

Serum 

Human Zinc-Alpha-
2-Glycoprotein 
(mg/l) 

25.9 ± 7.5 24.2 ± 5.1 26.6 ± 8.4 
 

Lipase Maturation 
Factor 1(ng/ml) 

3.5 ± 0.5 3.5 ± 0.7 3.5 ± 0.5 

Urine 

Human Zinc-Alpha-
2-Glycoprotein 
(mg/l) 

32.1 ± 8.3 31.4 ± 5.7 32.4 ± 9.5 
 

Lipase Maturation 
Factor 1 (ng/ml) 

2.1 ± 0.9 2.2 ± 1.1 2.0 ± 0.8 

 
Data are presented as mean ± standard deviation. All comparisons between sex and mode of 
CKD treatment NS. 
RRT- children on renal replacement therapy 
 
# p <0.0001 whole CKD vs. control group, a p<0.0001 girls with CKD vs. girls from control 
group, 
b p<0.0001 boys with CKD vs. boys from control group 
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