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Summary 

Lithium is used in the treatment of bipolar disorder.  We previously demonstrated that 

two types of transporters mediate the tubular reabsorption of lithium in rats, and suggested 

that sodium-dependent phosphate transporters play a role in lithium reabsorption with high 

affinity.  In the present study, we examined sex differences in lithium reabsorption in rats.  

When lithium chloride was infused at 60 µg/min, creatinine clearance and the renal 

clearance of lithium were lower, and the plasma concentration of lithium was higher in 

female rats.  These values reflected the higher fractional reabsorption of lithium in female 

rats.  In rats infused with lithium chloride at 6 µg/min, the pharmacokinetic parameters of 

lithium examined were all similar in both sexes.  The fractional reabsorption of lithium 

was decreased by foscarnet, a representative inhibitor of sodium-dependent phosphate 

transporters, in male and female rats when lithium chloride was infused at the low rate.  

Among the candidate transporters mediating lithium reabsorption examined herein, the 

mRNA expression of only PiT2, a sodium-dependent phosphate transporter, exhibited 

sexual dimorphism.  The present results demonstrated sex differences in the tubular 

reabsorption of lithium with low affinity in rats.   

 

Key words: lithium; tubular reabsorption; sex difference; sodium-dependent phosphate 

transporter; rats.   
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Lithium is the gold standard treatment for bipolar disorder (Won and Kim 2017).  Its 

therapeutic range is narrow, and plasma concentration of lithium is clinically monitored.  

Clinicians consider steady-state concentrations of between 0.6 and 1.2 mEq/l to be optimal 

for the maintenance of bipolar disorder and between 0.8 and 1.5 mEq/l to be ideal for the 

acute management of manic episodes (Finley et al. 1995).  After glomerular filtration, 75% 

of lithium is reabsorbed by renal tubules, mainly the proximal tubules (Finley 2016).  

Previously, we intravenously injected lithium chloride at 25 mg/kg and 2.5 mg/kg as a bolus 

to rats, and showed that at least two types of transporters mediate the tubular reabsorption of 

lithium in rats: a low-affinity type and a high-affinity type (Uwai et al. 2018).  Lithium 

reabsorption with low and high affinities was inhibited by acetazolamide and foscarnet, a 

typical inhibitor for sodium-dependent phosphate transporters, respectively (Uwai et al. 

2018; Uwai et al., 2020).  The molecular mechanisms underlying lithium reabsorption 

have not yet been elucidated in detail.  In the present study, we examined sex differences 

in the reabsorption of lithium using Wistar/ST rats.  The mRNA expression levels of the 

candidate transporters that mediate lithium reabsorption in the kidney cortex were also 

compared between both sexes. 

Animals were treated in accordance with regulations of the Institutional Animal Use 

and Care Committee of School of Pharmacy, Aichi Gakuin University.  Male and female 

Wistar/ST rats were from Chubu Kagaku Shizai (Nagoya, Japan).  Rats were anesthetized 

with ethyl carbamate and -chloralose.  Catheters were inserted into the femoral artery and 

femoral vein with polyethylene tubes (SP-31; Natsume Seisakusho, Tokyo, Japan) filled 

with heparin solution (50 IU/mL) for blood sampling and drug administration, respectively.  

Urine was collected from the urinary bladder catheterized with SP-31 polyethylene tubes.  

Lithium chloride (Wako Pure Chemical Industries, Osaka, Japan) in saline was infused at 

60 µg/min or 6 µg/min for 2 h.  At the slow infusion of lithium chloride, mannitol (Wako 

Pure Chemical Industries) was infused at 750 µg/min to achieve a sufficient urine flow.  

Sodium foscarnet (Cayman Chemical Company, Ann Arbor, MI, USA) was infused at 600 

µg/min to examine the contribution of sodium-dependent phosphate transporters to lithium 

reabsorption.  

Bladder urine samples were collected in the final 20 minutes of the lithium infusion, 

and blood sampling was performed at its midpoint.  Creatinine and phosphate 

concentrations in urine and plasma samples were assessed using assay kits from Wako Pure 

Chemical Industries.  We calculated creatinine clearance (Ccr) by dividing the amount of 

creatinine excreted into urine samples by its plasma concentration.  After an appropriate 
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dilution with 0.1% nitric acid, the concentrations of lithium in plasma (Li Cp) and urine 

were determined using the atomic absorption spectrometry Agilent 280Z AA (Agilent 

Technologies, Santa Clara, CA, USA).  The renal clearance of lithium (Li CLr) was 

calculated by dividing the urinary excretion rate of lithium by its plasma concentration.  

The fractional excretion of lithium was calculated by dividing Li CLr by Ccr, and its 

fractional reabsorption was evaluated by subtracting the ratio from one.  The urinary ratio 

of lithium to creatinine was calculated by dividing the amounts of lithium by those of 

creatinine in urine samples.   

Total RNA was extracted from the rat kidney cortex using TRIzol™ reagent (Thermo 

Fisher Scientific, Waltham, MA, USA).  First-strand cDNA was synthesized from 100 ng 

of RNA using PrimeScript™ RT Master Mix (Takara Bio, Kusatsu, Japan).  Real-time 

quantitative PCR was performed using TB Green® on a Thermal Cycler Dice Real Time 

System (Takara Bio, Kusatsu, Japan).  Both reactions were conducted according to each 

manufacturer.  The relative quantity of each sample was normalized to GAPDH expression 

levels, and each cDNA sample was tested in duplicate.  The program used for quantitative 

PCR amplification consisted of a 30 s activation of Ex Taq DNA polymerase at 95 °C, a 15 

s denaturation step at 95 °C, a 30 s annealing, and an extension step at 60 °C (for 40 cycles), 

along with a final dissociation step (15 s at 95 °C, 30 s at 60 °C, and 15 s at 95 °C).  The 

oligonucleotide sequences of primers specific for NHE3, NaPi-IIa, NaPi-IIc, 

PiT-2, and GAPDH are: CACAGCCCTTGAAGCATTTGTC (forward), 

AAGCACAGCCTGCCTTGGA (reverse), CGGATTTGGTGTCAACCAGAGA (forward), 

GCAGCCCAGTATCCACGAAGA (reverse), CCAGCCCTGCAGACACGTTA (forward), 

GCAGTCTCAAGACAGGCACCA (reverse), GCTCTGACACGGATATGGTCCTC 

(forward), GAAGATGAACTGTGGCCTGGGTA (reverse), and 

GGCACAGTCAAGGCTGAGAATG (forward), ATGGTGGTGAAGACGCCAGTA 

(reverse), respectively.   

Data were expressed as mean ± SD, and were analyzed by unpaired t-test or one-way 

analysis of variance followed by Scheffé’s test using KaleidaGraph (Synergy Software, 

Reading, PA, USA).  Differences were considered to be significant at p < 0.05.   

Table 1 shows the pharmacokinetic parameters of lithium in rats infused with lithium 

chloride at 60 µg/min.  Li Cp was significantly higher in female rats (1.66 ± 0.08 mEq/l) 

than in male rats (1.33 ± 0.10 mEq/l).  Furthermore, Ccr and Li CLr were significantly 

lower, and the fractional reabsorption of lithium was significantly higher in female rats.  

Urinary Li/creatinine was also significantly lower in female rats.  These results suggest 
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superior lithium reabsorption in female rats at this plasma range of lithium.  The plasma 

concentrations of lithium in rats infused with lithium chloride at 60 µg/min resemble those 

used in clinical settings.  These sex differences in lithium reabsorption may also be 

observed under clinical conditions. 

Table 2 represents the pharmacokinetic parameters of lithium in rats infused with 

lithium chloride at 6 µg/min.  No significant differences were observed in any of the 

parameters examined between the sexes in rats not infused with foscarnet.  Plasma lithium 

concentrations in rats infused with lithium chloride at 60 and 6 µg/min were similar to those 

in rats that received lithium chloride injections at 25 and 2.5 mg/kg, respectively, as a bolus 

(Uwai et al. 2018, 2020).  Fractional lithium reabsorption (excretion) in male rats infused 

with lithium chloride at 60 and 6 µg/min in the present study was similar to that by the 

low-affinity type and high-affinity type, respectively (Uwai et al. 2018, 2020).  these 

results suggested that lithium reabsorption with low affinity was superior in female rats than 

in male rats. 

Table 2 also shows the effects of foscarnet on the pharmacokinetic parameters of 

lithium.  Foscarnet significantly decreased the plasma concentration of lithium and 

increased Li CLr in each sex.  The fractional reabsorption of lithium was reduced by 

foscarnet from 0.720 to 0.233 in male rats (p < 0.001) and from 0.726 to 0.196 in female 

rats (p < 0.001).  Urinary Li/creatinine in both sexes was increased by foscarnet.  These 

results indicate the inhibition of lithium reabsorption by foscarnet in male and female rats.  

The fractional excretion of phosphate in rats infused with foscarnet was 0.887 ± 0.122 in 

males and 0.839 ± 0.115 in females.  Eiam-ong et al. estimated that the fractional excretion 

of phosphate in rats infused with the Ringer-mannitol solution was 0.146 (1995), suggesting 

the strong inhibition of sodium-dependent phosphate transporters in rats infused with 

sodium foscarnet at 600 µg/min.  Using the values for the fractional reabsorption of 

lithium with or without foscarnet, the contribution of sodium-dependent phosphate 

transporters to lithium reabsorption was calculated as 67.7% in male rats and 73.0% in 

female rats.  These values were consistent with our previous findings obtained from a 

bolus injection of lithium chloride at 3 mg/kg (Uwai et al. 2014).  Furthermore, no sexual 

dimorphism was observed in the effects of foscarnet on the renal handling of lithium. 

Figure 1 shows the mRNA expression levels of the candidate transporters that reabsorb 

lithium at the proximal tubules.  Our previous findings revealed a good correlation 

between Li CLr and the urinary excretion rate of phosphate in addition to increases in 

fractional lithium excretion by foscarnet and parathyroid hormone, inactivators of 
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sodium-dependent phosphate transporters, at the low plasma level of lithium in male 

Wistar/ST rats, suggesting that sodium-dependent phosphate transporter(s) mediate lithium 

reabsorption with high affinity (Uwai et al. 2014, 2018).  At the proximal tubules, the 

sodium-dependent phosphate transporters NaPi-IIa, NaPi-IIc, and PiT-2 reabsorb phosphate 

filtered through the glomeruli (Biber et al. 2013).  Since the mRNA expression level of 

PiT-2 was higher in female rats (Fig. 1) and the fractional reabsorption of lithium was 

similar in both sexes (Table 2), PiT-2 did not appear to significantly contribute to lithium 

reabsorption.  It was accepted that the sodium-proton exchanger NHE3 should reabsorb 

lithium (Timmer and Sands 1999), and we assumed its role for the lithium reabsorption with 

the low affinity.  Amiloride was previously shown to inhibit NHE3 as well as the epithelial 

sodium channel ENaC in the collecting duct, and its inhibitory effects on NHE3 were 

weaker than those on ENaC (Khadilkar et al. 2001; Yamamura et al. 2005).  Fransen et al. 

(1992) reported that amiloride inhibited the reabsorption of sodium and lithium between the 

early distal tubules and urine, but not between the glomeruli and late proximal tubules in 

rats using a micropuncture experiment, suggesting the contribution of ENaC to lithium 

reabsorption.  Therefore, the role of NHE3 in lithium reabsorption may be examined by 

administering amiloride at a markedly higher dose.  A recent study demonstrated that 

NHE3 was not involved in lithium reabsorption using its knockout mice (Thomas et al. 

2019), and no sex differences were observed in NHE3 mRNA expression levels.  

Therefore, further studies are needed to identify which transporter(s) reabsorb lithium at the 

proximal tubules. 

In conclusion, the present results demonstrated sexual dimorphism in the tubular 

reabsorption of lithium using Wistar/ST rats.  Sex differences in the renal handling of 

lithium in patients need to be investigated in the future. 
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Table 1.  Pharmacokinetic parameters of lithium in male and female Wistar/ST rats 

infused with lithium chloride at 60 µg/min. 

 

Parameter Male Female 

Number 6 6 

Weight (g) 197 ± 6 198 ± 5 

Pcr (mg/dl) 0.589 ± 0.046 0.681 ± 0.049** 

Ccr (ml/min/kg) 4.16 ± 0.48 2.72 ± 0.60** 

Li Cp (mEq/l) 1.33 ± 0.10 1.66 ± 0.08*** 

Li CLr (ml/min/kg) 1.75 ± 0.32 0.491 ± 0.208*** 

Fractional reabsorption of Li 0.571 ± 0.108 0.816 ± 0.075** 

Urinary Li/creatinine (µg/mg) 662 ± 118 309 ± 111*** 

 

Each parameter represents the mean ± SD.  Pcr: plasma creatinine concentration; Ccr: 

creatinine clearance; Li Cp: plasma concentration of lithium; Li CLr: renal clearance of 

lithium.  ** p < 0.01; *** p < 0.001; versus male.   
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Table 2.  Pharmacokinetic parameters of lithium in male and female Wistar/ST rats 

infused with lithium chloride at 6 µg/min in the absence or presence of sodium 

foscarnet at 600 µg/min. 

 

Parameter Male (-foscarnet) Female (-foscarnet) Male (+foscarnet) Female (+foscarnet) 

Number 6 6 6 6 

Weight (g) 186 ± 9 185 ± 7 191 ± 22 184 ± 8 

Pcr (mg/dl) 0.486 ± 0.059 0.555 ± 0.069 0.465 ± 0.062 0.524 ± 0.045 

Ccr (ml/min/kg) 3.70 ± 0.45 3.18 ± 0.77 4.00 ± 0.59 3.09 ± 0.33 

Li Cp (mEq/l) 0.145 ± 0.014 0.162 ± 0.020 0.111 ± 0.014*,††† 0.125 ± 0.019† 

Li CLr (ml/min/kg) 1.04 ± 0.45 0.898 ± 0.435 3.07 ± 0.62***,††† 2.48 ± 0.34***,††† 

Fractional reabsorption of Li 0.720 ± 0.103 0.726 ± 0.089 0.233 ± 0.105***,††† 0.196 ± 0.086***,††† 

Urinary Li/creatinine (µg/mg) 57.1 ± 17.9 55.2 ± 14.9 129 ± 28***,††† 135 ± 30***,††† 

 

Each parameter represents the mean ± SD.  Pcr: plasma creatinine concentration; Ccr: 

creatinine clearance; Li Cp: plasma concentration of lithium; Li CLr: renal clearance of 

lithium.  * p < 0.05; *** p < 0.001; versus male (-foscarnet).  † p < 0.05; ††† p < 0.001; 

versus female (-foscarnet). 

 

  



11 

Figure Legend 

Figure 1.  mRNA expression of candidate transporters that reabsorb lithium at 

proximal tubules in the kidney cortex of male and female Wistar/ST rats.  Relative 

mRNA to GAPDH was assessed by a quantitative RT-PCR analysis.  Each column 

represents the mean + SD of 6 rats.  NHE3: Na+/H+ exchanger 3; NaPi: Na/Pi cotransporter; 

PiT-2: phosphate (inorganic) transport-2; GAPDH: glyceraldehyde 3-phosphate 

dehydrogenase.  * p < 0.05; versus male. 

  



12 

Figure 1. 

 

 


