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Summary 1 

 2 

The use of oxygen therapy (high doses of oxygen - hyperoxia) in the treatment of premature 3 

infants results in their survival. However, it also results in a high incidence of chronic lung disease 4 

known as bronchopulmonary dysplasia, a disease in which airway hyper-responsiveness and 5 

pulmonary hypertension are well known as consequences. In our previous studies, we have shown 6 

that hyperoxia causes airway hyper-reactivity, characterized by an increased constrictive and 7 

impaired airway smooth muscle relaxation due to a reduced release of relaxant molecules such as 8 

nitric oxide, measured under in vivo and in vitro conditions (extra- and intrapulmonary) airways. 9 

In addition, the relaxation pathway of the vasoactive intestinal peptide (VIP) and/or pituitary 10 

adenylate cyclase activating peptide (PACAP) is another part of this system that plays an important 11 

role in the airway caliber. Peptide, which activates VIP cyclase and pituitary adenylate cyclase, 12 

has prolonged airway smooth muscle activity. It has long been known that VIP inhibits airway 13 

smooth muscle cell proliferation in a mouse model of asthma, but there is no data about its role in 14 

the regulation of airway and tracheal smooth muscle contractility during hyperoxic exposure of 15 

preterm newborns.  16 

 17 

Key words: lung; bronchopulmonary dysplasia; hyperoxia; vasoactive intestinal peptide; 18 

pituitary adenylate cyclase-activating polypeptide; preterm newborns. 19 

 20 
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Introduction 1 

 2 

Bronchopulmonary dysplasia 3 

Bronchopulmonary dysplasia (BPD) was first described in 1967 by Northway et al. as a 4 

chronic lung disease in premature infants, (usually those treated with high oxygen partial pressure), 5 

because their alveoli are not enough developed to perform respiration (Jobe & Bancalari 2001). 6 

Airway hyper-responsiveness and pulmonary hypertension (PH) are well known consequences of 7 

BPD (Hershenson et al. 1994). Previous studies have shown that hyperoxia (treatment with high 8 

doses of oxygen) causes airway smooth muscle (ASM) hyperreactivity due to the reduced release 9 

of relaxant molecules such as nitric oxide (NO), changes in prostaglandin E2 (PGE2) levels, etc 10 

(Sopi et al. 2012; Stamenkovska et al. 2020). The data published through last few decades indicates 11 

that hyperreactivity involves many different molecular signaling mechanisms, among which the 12 

non-adrenergic-noncholinergic inhibitory system (iNANC) (Anaid et al. 2007), is one of the 13 

mainly affected systems. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating 14 

polypeptide (VIP/PACAP) relaxation pathway, is considered to be another part of this system and 15 

plays an important role in the airway caliber (Ao et al. 2011). 16 

The hyperoxic exposure leads to generation of reactive oxygen species (ROS) in the lungs, 17 

such as superoxide radical anion (O2
.-), peroxyl radicals (ROO.), and hydroxyl radical (HO.). The 18 

non-radical derivatives of molecular oxygen (O2), like hydrogen peroxide (H2O2), hypochlorous 19 

acid (HOCl), singlet oxygen (1O2), and peroxynitrite (ONOO.), are all strongly associated with the 20 

pathophysiology of BPD (Berkelhamer et al. 2013). Another major risk factor for developing BPD 21 

is pneumonia, which occurs when pro-inflammatory cytokines such as tumor necrosis factor alpha 22 

(TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), receptor of chemokine 2 (CXCR2), and 23 

interleukin 11 (IL-11), are released in response to prenatal and neonatal trigger factors such as 24 
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mechanical ventilation (Federico et al. 2007). Мany of these pro-inflammatory cytokines have 1 

been detected in aspirated fluids of neonates with BPD (Bose et al. 2008). 2 

 3 

VIP/PACAP (Vasoactive Intestinal Peptide/Pituitary Adenylate Cyclase-Activating 4 

Polypeptide) 5 

 6 

The vasoactive intestinal peptide (VIP), also known as the vasoactive intestinal 7 

polypeptide, is a 28-amino acid peptide first isolated from the upper intestine in 1975 by Said and 8 

later found in many mammalian organs and tissues including the intestines (Costa & Furness 9 

1983),  lungs (Dey et al. 1981), kidneys (Barajas et al. 1983), heart (Weihe & Remecke 1981), skin 10 

(Bloom & Polak, 1983), pancreas, suprachiasmatic nuclei of the hypothalamus, and widely 11 

distributed in the central and peripheral nervous systems (Said 1986), with approximately two 12 

minutes of blood half-life (Henning & Sawmiller 2001). The human VIP gene located in the 13 

chromosome 6q24 contains 7 introns and 6 exons, of which 5 are encoded (Hahm & Eidem 1998), 14 

whereas this gene in the rat is located in the chromosome 1p11 (Lamperti et al. 1991). VIP belongs 15 

to the super-family of structurally related peptide hormones which includes glucagon, glucagon-16 

like peptide (GLP), helodermin, secretin, gastric inhibitory polypeptide (GIP), growth hormone 17 

releasing factor (GRF), and ligand II protein-receptors (Umetsu et al. 2011). VIPs may also contain 18 

sequences, encoding several additional biological neuroendocrine peptides, including the peptide 19 

histidine isoleucine [PHI; in low mammals] (Tatemoto & Mutt 1981), peptide histidine methionine 20 

[PHM]; the human equivalent of PHI (Itoh 1983), histidine valine peptide [PHV] and C-terminal 21 

extended form of the PHI and PHM (Yiangou 1987). PHI, PHM, and PHV presumably perform 22 

their biological function through the same receptors as VIP (Fahrenkrug 1993). 23 
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The pituitary adenylate cyclase (AC), activating polypeptide (PACAP) was firstly isolated 1 

from ovine hypothalamic tissue in the 1980s as a new member of the glucagon vazoactive/secretin 2 

superfamily, and shows high homology to VIP, sharing 68% similarities in the amino acid 3 

sequence (Sherwood 2000). PACAP is also found in a variety of peripheral tissues, including the 4 

gastrointestinal tract, adrenal glands, and testes, which are involved in a variety of biological 5 

functions, such as anterior pituitary secretion control, vasodilation, adrenaline secretion, insulin 6 

secretion, and immunosuppression (Arimura & Shioda 1995, Ghatei et al. 1993). Its half-life in 7 

human blood ranges between 5 and 10 min (Mentlein 1999). PACAP in humans is encoded by the 8 

ADCYAP1 gene and is located in the chromosome 18p11 (Hosoya et al. 1992). Two types of this 9 

peptide have been identified to date: 38 amino acid peptides (PACAP-38) isolated from the sheep 10 

hypothalamus that stimulates AC in rat anterior pituitary cells in culture (Miyata et al. 1989) and 11 

27 amino acid peptide (PACAP-27), isolated from the same source (Miyata et al. 1990) (Table 1). 12 

 13 

VIP/PACAP receptors in the airways 14 

The biological effects of VIP and PACAP are mediated by three types of G-protein-coupled 15 

receptors (GPCR), VPAC1, VPAC2 and PAC1. VPAC1 and VPAC2 receptors are binding sites 16 

for both VIP and PACAP, while PAC1 is a binding site for PACAP only (Laburthe et al. 2002; Ito 17 

et al. 2001) (Fig. 1). The G protein receptor family is classified into 3 groups (A, B and C), 18 

generally as 7-pass trans-membrane protein receptors. The VIP/PACAP receptor belongs to group 19 

B from the GPCR family, which consists of 437-459 amino acid residues (Ulrich et al. 1998). 20 

VPAC1 was the first VIP and PACAP receptor isolated from rat lungs by (Ishihara et al. 1992). 21 

VPAC1 is also found in the central nervous system (CNS), predominantly in the cerebral cortex 22 

and hippocampus (Ishihara et al. 1992; Usdin et al. 1994), in peripheral tissues including the liver, 23 

lungs, intestines [Usdin et al. 1994, Sreedharan et al. 1995), as well as in T lymphocytes (Delgado 24 
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et al. 1996). VPAC2 is the second receptor to respond to VIP and PACAP, cloned by Harmar and 1 

coworkers (1995), from a rat’s odor bulb and later confirmed by (Usdin et al. 1994). Messenger 2 

RNA encoding the VPAC2 receptor is also found in the central nervous system (CNS), and most 3 

commonly in the thalamus and supra chiasmic nucleus, as well as in the lower parts like 4 

hippocampus, brainstem, spinal cord, and dorsal root ganglia (Ito et al. 2001). The receptor is also 5 

present in many peripheral tissues, including the smooth muscles of the cardiovascular, 6 

gastrointestinal, and reproductive system (Adamou et al. 1995, Wei & Mojsov 1996). The PAC1 7 

receptor for the first time was cloned by Pisegna and Wank in 1993, from the acinar pancreatic 8 

carcinoma cell line (AR4-2J) in rats, with a much greater ability to bind to PACAP-27 and 9 

PACAP-38 in comparison to VIP. The DNA sequences of the related mouse (Hashimoto et al. 10 

1996a), bovine (Miyamoto et al. 1994), human (Ogi et al. 1993) and a series of rat receptors were 11 

published independently by several groups of authors (Hashimoto et al. 1993, Svoboda et al. 12 

1993). PAC1 is highly expressed in the CNS, in the olfactory bulb, thalamus, hypothalamus, 13 

hippocampus, granular cells of the cerebellum [Hashimoto et al. 1996b, Shioda et al. 1997)] and 14 

in a number of peripheral tissues, most commonly in the adrenal medulla (Moller et al. 1996) (Fig. 15 

1). 16 

 17 

VIP/PACAP signaling pathway in the airways 18 

High-density VIP and PACAP expressing nerve fibers are found in the tracheobronchial 19 

tree, especially in the smooth muscle layer around submucosal, mucousal and serousal glands, in 20 

the lamina propria, and the walls of pulmonary and bronchial arteries (Dey et al. 1981). As 21 

mentioned before the physiological effects of VIP and PACAP are mediated by three types of G-22 

protein-coupled receptors VPAC1, VPAC2, and PAC1. These physiological actions include 23 

relaxation of the  airways smooth muscle, bronchodilation (Diamond et al. 1983, Kanazawa et al. 24 
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1996), and pulmonary vasodilation (Linden et al. 1999). In different in vivo and in vitro studies, 1 

with various subjects including guinea pigs, rabbits, dogs and humans, VIP was shown to cause a 2 

reduction of the constrictive effects of histamine, prostaglandin F2α, kallikrein, leukotriene D4, 3 

neurokinins A and B and endothelin in isolated tracheal or bronchial segments (Hamasaki et al. 4 

1983, Boomsma et al. 1990). On the other hand, calcium (Ca2+) ions as an important player in the 5 

mechanisms of the muscle contraction/relaxation processes, may be released by the sarcoplasmic 6 

reticulum (SR), or transported from extracellular space (Groneberg et al. 2001, Kuo et al. 2003). 7 

After Ca2+ binding to the calmodulin, the myosin light chain kinase (MLCK) activates-8 

(phosphorylate) myosin light chains (MLC), and allows the myosin cross-bridge to bind to the 9 

actin filaments, leading to contraction (Roux et al. 1997). In relation to VIP/PACAP, it was found 10 

that after their binding to corresponding receptors, they causes activation of the membrane-bound 11 

AC, which further generates cyclic adenosine monophosphate (cAMP) from adenosine 12 

triphosphate (ATP) (Robinson & Colbran 2013, Ganz et al. 1986). The intracellular accumulation 13 

of cAMP on the level of the airways causes activation of a group of cAMP-dependent protein 14 

kinases A (PKA) (Francis et al. 1988, Hedlund et al. 1995). PKA phosphorylates phospholamban 15 

(PLN), a protein that normally interferes with the Ca2+ pump within the membrane of the SR. 16 

Reducing the level of free cytoplasmic Ca2+ or increasing Ca2+ uptake by internal stores like SR 17 

or mitochondria, results with smooth muscle relaxation (Mueller et al. 1979, Somlyo & Somlyo 18 

1994). However, it is important to note that Ca2+ uptake by mitochondria is not cAMP regulated 19 

(Borie 1981). Other previous studies in rats, guinea pigs and humans, suggests that cAMP induces 20 

relaxation of ASM by interacting with various signaling pathways, including K+ channels, more 21 

likely by membrane hyperpolarisation followed by a reduction in the Ca2+ influx via voltage-22 

dependent Ca2+ channels (Nuttle & Farley 1996, Prakash et al. 1997). In addition, there is evidence 23 

that the reduction in the intracellular Na+ by the Na+/K+ ATPase, caused increased Ca2+ efflux via 24 
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Na+/Ca2+ exchanger; (the exchanger could be activated by PKA or directly by cAMP). The 1 

interaction of these channels would therefore be expected to induce ASM relaxation (Hall 2000, 2 

McGrogan et al. 1995, Gunst & Strop 1988). Additional mechanisms may contribute to the 3 

decreasing in the intracellular Ca2+ concentration, like inositol 1,4,5-triphosphate (IP3)-gated Ca2+ 4 

release channels in the membrane of SR. IP3 plays a substantial role in the opening of these 5 

channels, and different studies suggest for PKA prevented formation of the intracellular IP3, 6 

consequently followed by a reduced concentration of the intracellular Ca2+ (Yang et al. 1996, Ding 7 

et al. 1997). Moreover, activated PKA usually causes MLCK inactivation and reduces its ability 8 

to activate the MLCs, which is essential for ASM contraction, and bronchodilatation (Giembicz & 9 

Newton 2006).  10 

In addition, VIP is degraded by proteases that are present at/or near the airway mucosa, 11 

including mast-cell tryptase and chymase and by neutral endopeptidase ("enkephalinase") 12 

(Caughey et al. 1988, Goetzl et al. 1989), whereas, PACAP is metabolized by dipeptidyl peptidase 13 

IV (Li et al. 2007). 14 

 15 

Involvement of the VIP/PACAP signalling in the inflammation 16 

As indicated before, another major risk factor for the development of BPD is inflammation. 17 

Particular types of pro-inflammatory cytokines and chemokines such as TNFα, IL-1β, IL-6, 18 

chemokine receptor 2 (CXCR2) and CXCL8, IL-11 and IL-12 are related to inflammation. 19 

Numerous studies, in animal and human models, showed that VIP/PACAP signaling plays a key 20 

role in the balance between pro- and anti-inflammatory factors and possesses essential role in the 21 

successful control of inflammation (Gomariz et al. 2006, Ambalavanan et al. 2009). Transcription 22 

of the nuclear factor B (NF-B), leads to increased production of TNF-α, IL-1β and IL-6. 23 

VIP/PACAP on the other hand is able to inhibit NF-B translocation through a cAMP independent 24 
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mechanism, further stimulating production of anti-inflammatory cytokines, such as IL-10, IL-11 1 

and transforming growth factor-β (TGF-β), and at the same time prevent inflammation (Delgado 2 

et al. 1998; Trepicchio et al. 1996; Tsunawaki et al. 1988; Delgado et al. 1999). The VIP/PACAP 3 

cause inhibition of the production of pro-inflammatory cytokines mainly by involvement of the 4 

VPAC1-receptor, and lesser involvement of the VPAC2-receptor too (Delgado & Genea 1999, Di 5 

Benedetto et al. 2019). The main producers of cytokines are macrophages (Laskin & Pendino 6 

1995, Juarranz et al. 2004). Moreover, VIP/PACAP was found to modulate inflammatory 7 

responses by regulation of the different functions in other cells, including the mast cells, microglia, 8 

dendritic cells and synovial fibroblasts (Tuncel et al. 2000, Abad et al. 2003). VIP also reduces 9 

the pro-inflammatory T helper1 (Th1) and T helper 17 (Th17) responses (Delgado et al. 2001, 10 

Abad et al. 2011, Benitez et al. 2018, Austin & Loyd 2014). 11 

 12 

Involvement of the VIP/PACAP signaling in the pulmonary hypertension  13 

Another well-known consequence of BPD is pulmonary hypertension (PH), which 14 

pathobiology is not yet completely clear. PH represents high blood pressure in the arteries of the 15 

lungs, which occurs when blood vessels in the lungs are narrowed, blocked or destroyed, and as a 16 

consequence blood flow through the lungs slows (Lau et al. 2017, Maarman et al. 2017). Other 17 

major determinants in the prognosis of the PH, are pulmonary artery pressure greater than 25 18 

mmHg and right ventricular hypertrophy (Maarman et al. 2017). Several abnormal signaling 19 

pathways related to the PH have been identified, including reduced synthesis of prostacyclin and 20 

nitric oxide, and increased production of thromboxane and endothelin-1 (Giaida & Saleh 1995, 21 

Petkov et al. 2003). The recent studies have focused on the possible implication of the VIP/PACAP 22 

system in patients with PH. A low level of VIP in the lungs is found in patients suffering from PH 23 

with an over-expression of both types VPAC receptors. Conversely, Said et al. (2007), have shown 24 
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that VIP inhalation improves hemodynamics and lung capacity in the patients suffering from PH, 1 

proposing the peptide as a potential new treatment for PH. Previous observations in mice suggested 2 

that genetic knockout of the VIP gene, led to hemodynamic and histomorphological features of 3 

arterial PH, whereas intraperitoneal injections of VIP, has been shown to improve vascular 4 

pulmonary and right ventricular remodeling (Busto et al. 2000). Same as in other organs and 5 

tissues, the effect of VIP/PACAP in human pulmonary artery smooth muscle cells is mediated by 6 

VIP receptors VPAC1, VPAC2 and PAC1, which are primarily Gαs-coupled receptors (Said et al. 7 

2007). The VPAC2 receptor is highly expressed in human pulmonary artery smooth muscle cells 8 

(Said et al. 2007). Gαs-coupled receptor activation causes an increase in cAMP, by activating AC, 9 

which can increase the activity of downstream mediators such as PKA, or induce expression of the 10 

protein directly activated by cAMP. PKA also phosphorylates targets such as MLCK to decrease 11 

its activity, resulting with vasodilatation and decreased proliferation of pulmonary artery smooth 12 

muscle cells (Fig. 2). 13 

 14 

Conclusion 15 

This review describes the physiological importance of VIP and PACAP in pulmonary 16 

diseases including BPD and PH. VIP/PACAP expresses a variety of actions, including potent 17 

dilatory actions in the pulmonary blood vessels and ASM and a potent anti-inflammatory and anti-18 

proliferative actions. Based on all mentioned above, our opinion is that VIP/PACAP signaling 19 

might have an important role in the regulation of airway and tracheal smooth muscle contractility 20 

during hyperoxic exposure of preterm newborns.  21 

 22 

Directions for future research 23 
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The need for additional investigation may be suggested, that will lead VIP/PACAP or some 1 

other player from their airway/tracheal signaling to be classified as a medication in the potential 2 

treatment of BPD and PH.  3 

 4 
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 5 

Table: 6 

Table 1. The amino acid sequences of VIP/PACAP and its related peptides 7 

 8 

Figure legends 9 

Figure 1: Schematic representation of the signal transduction pathways of vasoactive intestinal 10 

peptide (VIP) / pituitary adenylate cyclase activating polipeptide (PACAP) receptors. Three 11 

receptors to PACAP have been described: VPAC1, VPAC2 and PAC1. VIP and PACAP show 12 

similar affinity for VPAC1 and VPAC2, whereas PACAP is more selective for PAC1 receptor. 13 

 14 

Figure 2: Molecular actions of VIP/PACAP in induction of relaxation in airway smooth muscle 15 

cells. AC- adenylyl cyclase; cAMP - cyclic adenosine monophosphate; ATP - adenosine 16 

triphosphate; PKA - protein kinases A; IP3 -inositol 1,4,5-triphosphate; PLN - phospholamban; 17 

MLCK - myosin light chain kinase. 18 

 19 

 20 

 21 

 22 

 23 

 24 



Page 25 of 25 
 

Table 1.  1 

 2 

Fig. 1 3 

 4 

Fig. 2 5 

 6 


