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Porous medium

Porous medium — formed by a solid matrix and a void space

(pore space), which is occupied by one or more fluids.

Constituent (or phase) — a part of the porous medium that is separated

from other such parts by sharp interfaces (e.g., a solid, water, oil, air).
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Micro- and macro-scales of a porous medium

In the continuum approach to porous media, two levels of description

can be distinguished:

Micro-scale

• Subdomains occupied by each constituent are identified within the

porous medium domain. State variables that describe the behaviour

of a particular constituent are defined only within the corresponding

subdomain.

• Impractical for modelling due to possibly complex configurations

of particular constituents.

Macro-scale

• The inner constitution of the porous medium is ignored.

The variables and quantities are defined at every point in the porous

medium domain.
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Upscaling

Two major approaches for passing from the micro- to the macro-scale:

• the volume fraction concept,

• homogenisation (requires a periodic structure).
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Representative elementary volumes

dv

dvm

In the volume fraction concept, each point of a control space of a porous

medium is considered to be a centroid of a so-called representative

elementary volume or average volume element dv :

• small enough (“infinitesimal”),

• composed representatively of microscopic volume elements dvm
of the constituents.

The partial volume element dvπ

≡ the volume of a constituent π within dv .
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The microstructure in the macroscale

To describe the microstructure of a porous medium at the macroscopic

level, neglecting the real topology of the pore structure and the exact

location of the individual constituents, one defines the following variables

for measuring local fractions of the constituents:

ηπ ≡ dvπ

dv
— the volume fraction of constituent π,

φ ≡ dv − dv s

dv
— the porosity (s — the solid),

Sf ≡
dv f

dv − dv s
=
ηf
φ

— the saturation of fluid f .
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Averaging operators

Macroscopic quantities can be derived from microscopic ones

by averaging: taking a microscopic variable ξ, one can introduce

volume averages as

1

dv

∫
dvπ

ξ dvm,

1

dvπ

∫
dvπ

ξ dvm,∫
dvπ ρξ dvm∫
dvπ ρdvm

, ρ — the microscopic mass density,

. . . ,

area averages, ensemble averages over the number of particles,. . .
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Overlapping partial continua

Associating the average volumes dv with each point of the control space

in the previous definitions, one obtains macroscopic quantities which are

defined in the total control space, and which can be interpreted as local

statistical averages of values at the underlying microscale.

Within this context, the porous material is theoretically substituted

by a model where each constituent is “smeared” over the control space,

and it occupies the total volume simultaneously with the other

constituents. One then speaks of overlapping partial continua.
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Macroscopic description

Two strategies are used to arrive at a macroscopic description of the

mechanical and thermodynamic behaviour of these substitute continua:

• Mixture theory treats the porous medium as a mixture of all

constituents directly from a macromechanics viewpoint.

• In averaging theories, averaging is used for introducing

the macroscopic description (typically by equations) from

a microscopic one.

Example: Darcy’s law

• obtained empirically at the macroscopic level first,

• can also be derived from the microscopic momentum balance

equation for a fluid in the void space.
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Macroscopic description – the main message

No matter how the macroscopic description is obtained, it should be

chosen such that it is relevant for all the physical phenomena involved

in the intended applications!
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Multi-scale approach to EDZ

Three scales of a porous medium can be distinguished in the

continuum-fracture approach to EDZ (excavation damage zones):

• micro-scale — continuum location of individual constituents,

• meso-scale — overlapping partial continua + a fine discrete

fracture network,

• macro-scale — overlapping partial continua over the total volume

(only main discrete fractures excluded in case of potential

preferential pathways).

Tomáš Ligurský Micro-Macro Continuum Approach to Porous Media 10/10



Multi-scale approach to EDZ

Three scales of a porous medium can be distinguished in the

continuum-fracture approach to EDZ (excavation damage zones):

• micro-scale — continuum location of individual constituents,

• meso-scale — overlapping partial continua + a fine discrete

fracture network,

• macro-scale — overlapping partial continua over the total volume

(only main discrete fractures excluded in case of potential

preferential pathways).
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Eulerian versus Lagrangian Approach to Poroelasticity under

Small Strains

T. Ligurský

The model

• non-stationary isothermal saturated water flow in a deformable porous medium

• isotropic elastic skeleton

• negligible inertial effects

• the assumption of small perturbations

• compressive-positive pore pressures, tensile-positive stresses

• [Cou04], [LS98]

Continuum approach, continuity assumption

The porous medium is treated as the superimposition of continua of its constituents where each
point is simultaneously occupied by points of all constituents. It is assumed that there exists
a macroscopic scale at which the inner constitution of the medium can be ignored but which
is relevant for all the physical phenomena involved in the intended applications. The physics is
supposed to vary continuously at this scale.

The skeleton deformation

When subjected to external forces and to variations in pressure of the water, the skeleton deforms.
We introduce:
X — the position vector of a skeleton particle in an initial configuration, i.e., at time t = 0

x — the position vector in the current (deformed) configuration:

x = X + u (1)

u — the displacement vector

and

F ≡ I + ∇u — the deformation gradient

E ≡ 1

2
(F>F − I) =

1

2

(
∇u+ (∇u)> + (∇u)>∇u

)
— the Green-Lagrange strain tensor

J ≡ detF — the Jacobian of the deformation

Any initial infinitesimal volume dV0 transforms into a current infinitesimal volume dVt through
the relation:

dVt = J dV0 (2)

Eulerian and Lagrangian porosities

n — the Eulerian porosity: ndVt is the volume of the void space in the current volume dVt
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φ — the Lagrangian porosity, referring the current porous volume to the initial volume dV0
according to:

φdV0 = ndVt
(2)
= nJ dV0

φ = Jn (3)

Balance equations

Let Ω0 be an initial total volume which deforms into a current total volume Ωt, and let V0 ⊂ Ω0

be an arbitrary initial material volume which transforms into a current volume Vt ⊂ Ωt.

Water mass balance

The Eulerian form in the current configuration:

Dw

Dt

∫
Vt

ρwndVt = 0

Dw

Dt
— the total (or material or particle) time derivative with respect to water

ρw — the water mass density

or equivalently: ∫
Vt

(
∂(ρwn)

∂t
+ div(ρwnvw)

)
dVt = 0 vw — the water velocity∫

Vt

(
Ds(ρwn)

Dt
+ ρwndiv vs + div(ρwqrw)

)
dVt = 0

vs — the solid velocity

Ds

Dt
— the total time derivative with respect to the solid(

for a field G:
DsG
Dt

=
∂G
∂t

+ vs · ∇G
)

qrw ≡ n(vw − vs) — the water specific discharge relative to the solid

(also called Darcy velocity or filtration vector)

and in the local form:

Ds(ρwn)

Dt
+ ρwn div vs + div(ρwqrw) = 0 in Ωt (4)

Use of the transformations∫
Vt

(
Ds(ρwn)

Dt
+ ρwn div vs

)
dVt =

∫
V0

(
∂(ρwn)

∂t
+ div(ρwnvs)

)
J dV0

=

∫
V0

d(ρwnJ)

dt
dV0

(3)
=

∫
V0

d(ρwφ)

dt
dV0∫

Vt

div(ρwqrw) dVt =

∫
V0

divM dV0

M ≡ JF−1(ρwqrw) — the Lagrangian relative flow vector of water mass
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provides the Lagrangian continuity equations in the initial (reference) configuration:∫
V0

(
d(ρwφ)

dt
+ divM

)
dV0 = 0

d(ρwφ)

dt
+ divM = 0 in Ω0 (5)

Solid mass balance

The Eulerian form:

Ds

Dt

∫
Vt

ρs(1− n) dVt = 0 (6)

ρs — the solid mass density

or equivalently ∫
Vt

(
Ds(ρs(1− n))

Dt
+ ρs(1− n) div vs

)
dVt = 0

Ds(ρs(1− n))

Dt
+ ρs(1− n) div vs = 0 in Ωt (7)

Integration of (6) gives the Lagrangian alternative:

Ds

Dt

∫
Vt

ρs(1− n) dVt =
d

dt

∫
V0

ρs(1− n)J dV0 = 0∫
V0

ρs(1− n)J dV0 =

∫
V0

ρs0(1− n0) dV0 =

∫
V0

ρs0(1− φ0) dV0 (8)

ρs0 — the initial solid mass density n0 = φ0 — the initial porosity

ρs(1− n)J = ρs0(1− φ0) in Ω0 (9)

Equilibrium equation

The Eulerian form:

divσ + (ρs(1− n) + ρwn)f = 0 in Ωt (10)

σ — the Cauchy stress tensor f — a body force density

Using the transport formulae∫
Vt

divσ dVt =

∫
V0

div(FΠ) dV0 Π ≡ JF−1σF−> — the Piola-Kirchhoff stress tensor∫
Vt

ρs(1− n)f dVt =

∫
V0

ρs(1− n)fJ dV0
(9)
=

∫
V0

ρs0(1− φ0)f dV0∫
Vt

ρwnf dVt =

∫
V0

ρwnfJ dV0
(3)
=

∫
V0

ρwφf dV0

one derives the Lagrangian form:

div(FΠ) + (ρs0(1− φ0) + ρwφ)f = 0 in Ω0 (11)
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Constitutive relationships

Water density

dρw
ρw

=
dpw
Kw

(12)

pw — the water pressure Kw — the water bulk modulus

Considering Kw constant (over some range of pressures), one can integrate (12) into the form:

ρw = ρw0e
(pw−pw0)/Kw (13)

ρw0, pw0 — initial values of the water density and pressure

Darcy’s law

qrw =
k

µw
(−∇pw + ρwf) (14)

k — the (intrinsic) permeability tensor of the porous medium

µw — the dynamic viscosity of water

Assumption 1 (Small transformations). The displacement gradient is small:

‖∇u‖ � 1

− Under this assumption:

E ≈ ε ≡ 1

2

(
∇u+ (∇u)>

)
— the linear strain tensor

J ≈ 1 + divu = 1 + εv (15)

εv ≡ tr ε = divu — the volumetric strain

Π ≈ σ

Stress tensor

dσ + αdpwI = Ddε (16)

α — Biot’s coefficient D — a tangent elastic stiffness tensor of the solid skeleton

Solid mass content
−With regard to the solid mass balance equations, a constitutive equation either for the porosity
or for the solid density is needed

Porosity

dφ = αdεv +
dpw
N

(17)

N — Biot’s modulus

Considering α and N constant (over some range of strains and pressures), one can integrate (17)
into the form:

φ = φ0 + αεv +
pw − pw0

N
(18)

Moreover, assuming that the skeleton bulk modulus K is constant as well and that the solid grains
(matrix) are linearly elastic, one can derive:

α = 1− K

Ks

1

N
=
α− φ0
Ks

(19)

Ks — the bulk modulus of the solid grains
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Solid density
By assuming ρs = ρs(pw, trσ

′) for Terzaghi’s effective stress σ′ ≡ σ+pwI and using α = 1−K/Ks

from (19), one can obtain

1

ρs

Dsρs
Dt

=
1

ρs

∂ρs
∂pw

Dspw
Dt

+
1

ρs

∂ρs
∂(trσ′)

Ds(trσ
′)

Dt

=
1

1− n

(α− n
Ks

Dspw
Dt

− (1− α) div vs

)
(20)

Complete equations

The small perturbation assumption

= Assumptions 1–4.

Assumption 2 (Small displacements). The displacements of the skeleton particles are small:

‖u/L‖ � 1

L — the length scaling the dimensions of the porous structure

− This assumption allows us to merge the initial configuration and the current one:

x ≈X Ωt ≈ Ω0 =: Ω

Assumptions 1 and 2 constitute together the small strain assumption.

Assumption 3. Small variations of the porosity:∣∣∣∣φ− φ0φ0

∣∣∣∣� 1 or

∣∣∣∣n− n0n0

∣∣∣∣� 1

Assumption 4. Small variations of the water mass density:∣∣∣∣ρw − ρw0

ρw0

∣∣∣∣� 1

− Assumptions 3 and 4 allow us to take:

φ ≈ φ0 n ≈ n0 ρw ≈ ρw0

and together with Assumption 1:

ρs
(8)
=
ρs0(1− n0)

(1− n)J

(15)
≈ ρs0(1− n0)

(1− n0)(1 + εv)
≈ ρs0

Lagrangian approach [Cou04]

When adopting the small perturbation assumption,

∂(ρwφ)

∂t
= ρw

∂φ

∂t
+ φ

∂ρw
∂t

(17),(12)
= ρw

(
α
∂εv
∂t

+
1

N

∂pw
∂t

)
+ φ

ρw
Kw

∂pw
∂t

≈ ρw0

(
1

N
+

φ0
Kw

)
∂pw
∂t

+ ρw0α
∂εv
∂t

divM ≈ div(ρwqrw)
(14)
= div

(
ρw

k

µw
(−∇pw + ρwf)

)
≈ div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
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and the Lagrangian water mass balance equation (5) leads to:

ρw0

(
1

N
+

φ0
Kw

)
∂pw
∂t

+ ρw0α
∂εv
∂t

= − div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
in Ω (21)

Furthermore
div(FΠ) ≈ divσ ρwφ ≈ ρw0φ0

and the Lagrangian equilibrium equation (11) becomes:

divσ +
(
ρs0(1− φ0) + ρw0φ0

)
f = 0 in Ω (22)

Time discretisation
With regard to the approximations made above, when the system (21)&(22) is discretised in time,
one can update the values of ρw0 and φ0 according to (13) and (18):

ρw0 := ρw0e
(pw−pw0)/Kw φ0 := φ0 + αεv +

pw − pw0

N

and potentially also the coefficients Kw, α and N in the discretised (21)&(22) at the end of each
time step. However, the term ρs0(1− φ0) in (22) and the computational domain Ω (with a mesh
from space discretisation) remain fixed to their initial states at time t = 0.

Eventually the Eulerian porosity n, which quantifies appropriately the actual porosity, can be
obtained from the Lagrangian porosity φ by (3) and (15).

Eulerian approach [LS98]

By developing the time derivatives in the Eulerian mass balance equations (4) and (7) one obtains

ρw
Dsn

Dt
+ n

Dsρw
Dt

+ ρwn div vs = −div(ρwqrw) (23)

Ds(1− n)

Dt
+

1− n
ρs

Dsρs
Dt

+ (1− n) div vs = 0 (24)

Elimination of Dsρs/Dt from (24) by (20) gives

Dsn

Dt
=
α− n
Ks

Dspw
Dt

+ (α− n) div vs (25)

which inserted together with (12) and (14) into (23) yields

ρw

(
α− n
Ks

+
n

Kw

)
Dspw

Dt
+ ρwα div vs = −div

(
ρw

k

µw
(−∇pw + ρwf)

)
(26)

When adopting the small perturbation assumption,

Ωt ≈ Ω ρw ≈ ρw0 n ≈ n0

Assumption 5. The deformation velocity of the solid skeleton is small:

‖vs‖ � 1
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− Under Assumption 5 in addition to the small perturbation assumption,

Ds

Dt
=

∂

∂t
+ vs · ∇ ≈

∂

∂t

div vs = div
Dsu

Dt
= div

∂u

∂t
+ div((∇u)vs)

Assumptions 1,5
≈ div

∂u

∂t
=
∂εv
∂t

Hence (26) can be rewritten as:

ρw0

(
α− n0
Ks

+
n0
Kw

)
∂pw
∂t

+ ρw0α
∂εv
∂t

= −div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
in Ω (27)

Further
ρs(1− n) ≈ ρs0(1− n0) ρwn ≈ ρw0n0

and the Eulerian equilibrium equation (10) leads to:

divσ + (ρs0(1− n0) + ρw0n0)f = 0 in Ω (28)

In addition, the evolution equations (20) and (25) for ρs and n can be approximated by

1

ρs

∂ρs
∂t

=
1

1− n

(
α− n
Ks

∂pw
∂t
− (1− α)

∂εv
∂t

)
(29)

∂n

∂t
= (α− n)

(
1

Ks

∂pw
∂t

+
∂εv
∂t

)
(30)

Taking α and Ks constant, one can integrate (30) into

n = α+ (n0 − α) exp

(
−pw − pw0

Ks
− εv

)
with the first-order Taylor approximation

n ≈ α+ (n0 − α)

(
1− pw − pw0

Ks
− εv

)
= n0 + (α− n0)

(
pw − pw0

Ks
+ εv

)
(31)

Similarly from (29):

ρs = ρs0 exp

(∫ t

0

1

1− n

(α− n
Ks

∂pw
∂t
− (1− α)

∂εv
∂t

)
dτ

)
≈ ρs0 exp

(
1

1− n0

(α− n0
Ks

(pw − pw0)− (1− α)εv

))
≈ ρs0

(
1 +

1

1− n0

(α− n0
Ks

(pw − pw0)− (1− α)εv

))
(32)

Time discretisation
When the system (27)&(28) is discretised in time, one can update the computational domain Ω
(with a mesh from space discretisation) according to (1):

Ω := Ω + u(Ω)

the values of ρw0, ρs0 and n0 according to (13), (32) and (31):

ρw0 := ρw0e
(pw−pw0)/Kw ρs0 := ρs0

(
1 +

1

1− n0

(α− n0
Ks

(pw − pw0)− (1− α)εv

))
n0 := n0 + (α− n0)

(
pw − pw0

Ks
+ εv

)
and potentially also the coefficients Kw, Ks and α in the discretised (27)&(28) at the end of each
time step.
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Summary

• Since φ0 = n0 in the initial configuration at time t = 0, the systems (21)&(22) and (27)&(28)
are the same whenever the equality 1/N = (α− φ0)/Ks in (19) holds, despite different forms
of the Eulerian water mass balance equation (4) and the Lagrangian one (5), and different
sorts of approximations made in the Eulerian and Lagrangian equations.

• Differences occur only in the potential update of the initial states in successive time steps in
the case of time discretisation, mainly due to differences between the Lagrangian porosity φ
and the Eulerian one n. Note that then the computational domain Ω (with its mesh) has to be
updated together with the porosity n0 in the Eulerian approach so that n0 quantifies properly
the initial porosity at the beginning of the time steps!

• One can easily verify that the equations (18) and (31) for the increments of the porosities φ
and n are mutually related by (3) and (15) for small εv and small pw − pw0 although these
two equations have been introduced independently of one another.
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