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Summary 

Application of knowledge about ischemic tolerance to clinic requires the solid understanding of 

mechanism of creation of this phenomenon. This review summarizes research that has been carried 

out in many laboratories over a long period of time, but the main focus will be on own experimental 

research. The main emphasis is devoted to the possibility of preparing full tolerance in the donor's 

body and its transfer to the patient in the form of activated blood plasma. Such plasma could be 

administered as soon as the patient is transported to the hospital and would take effect immediately 

after administration to the patient's bloodstream. One chapter is also devoted to anticonditioning, 

i.e. the possibility of preventing the activation of tolerance. Anticonditioning could be used to treat

oncologic patients. We expect that this method could increase effectiveness of cancer treatment. 

Cross-tolerance with a wide range of diverse stressors gives us the courage to assume that activated 

plasma can significantly help with a wide range of pathological events. 
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Introduction 

 

The study of adaptability has undergone significant evolution since Darwin, from the 

species through tissues, cells and molecules to genes (Gidday 2006). One of the forms of 

adaptability is the phenomenon of ischemic tolerance. This surprisingly strong body defence 

mechanism gives cells which have survived metabolic stress, or have undergone planned sublethal 

stress (preconditioning), the ability to become transiently resistant to subsequent, in other 

circumstances lethal stress.  

This phenomenon was described for the first time in modern literature by Murry and 

colleagues, looking at the heart (Murry et al. 1986), and later by Kirino and colleagues in the brain  

(Kirino et al. 1991).  Back in the 16th century though, the toxicologist Paracelsus described for the 

first time the possibility that a serious noxious event might produce a state of tolerance (Pignataro 

et al. 2020). Equally, if we replace the term "tolerance" with "resistance", we find that the "multi-

resistance" known from the works of Paul Ehrlich, more than 100 years ago, is very close to "cross-

tolerance". The existence of the phenomenon of tolerance has been demonstrated in all kinds of 

tissues, and for all species of the animal kingdom studied so far, including of course humans. It can 

be conceived as an evolutionary conserved form of defence mechanism (Dirnagl et al. 2003, 

Gidday 2006). 

The decisive factor for activation of ischemic tolerance is a combination of two metabolic 

stresses (Burda et al. 2005, Burda et al. 2006). This phenomenon is a two-stage process: the first 

stress is absolutely necessary, but for full tolerance activation the occurrence of the second stress 

must also happen.  A great advantage is that the two stresses do not have to be of the same nature 

(cross tolerance), and it does not matter whether they are applied to the whole body or only locally 

(remote tolerance).  

Tolerance occurs in two modes: 

- mild stress may be deliberately induced as the first stress (preconditioning), serving as 

protection against possible damage during surgery with planned ischemia of part of the organism; 

- or the first stress is a pathological condition (heart attack, rupture or blockage of a blood 

vessel in the brain, whole-body ischemia or hypoxia, action of some poisons) and the second stress 

is therapeutic mild stress, i.e. postconditioning (as evidenced in hundreds of publications). 



The strength of ischemic tolerance is documented in the following results: five minutes of 

global cerebral ischemia (four vessel occlusion (Pulsinelli and Brierley 1979)) in rats kills almost 

40% of the most sensitive brain cells (CA1 of hippocampus) and ten minutes of brain ischemia 

leads to the death of almost 70 % of these cells. A combination of these stresses, however, whether 

in an arrangement where the weaker ischemia comes first (as preconditioning) or, conversely, the 

stronger one is followed by the weaker (postconditioning), does not cause an accumulation of 

damage but, on the contrary, saves almost all of these cells (Burda et al. 2005, Burda et al. 2009, 

Burda et al. 2006). 

The timing of the use of stress is extremely important. It is imperative to perform the second 

stress within the therapeutic window. This window is surprisingly long-lasting in the brain. 

Neurons die by apoptosis-like death, the onset and speed of which depends on the duration of 

previous ischemia, but also on body temperature. It has been documented that neurons can be 

rescued two days after the end of ischemia. This is made possible by so-called delayed death of 

neurons (Kirino 1982). 

Two kinds of tolerance have been distinguished: “early” and “late”. The early type starts 

just three to five minutes after preconditioning and lasts for approximately one hour (Perez-Pinzon 

et al. 1997), whereas “late” tolerance is activated two days  after  preconditioning and continues 

functioning for  one week after its onset (Dirnagl et al. 2003). Rapid preconditioning induces 

transient and less strong neuroprotection than delayed preconditioning, and in addition, rapid 

preconditioning is not associated with “de-novo” protein synthesis (Barone et al. 1998, Burda et 

al. 2006, Dirnagl and Meisel 2008, Nishio et al. 1999). Delayed preconditioning is associated with 

longer molecular changes (Durukan and Tatlisumak 2010), including the de-novo synthesis of 

proteins, induction of transcription factors, and activation of anti-apoptotic and antioxidant proteins 

(Brambrink et al. 2000, Toyoda et al. 1997). This 'delayed preconditioning' requires synthesis of 

new proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and 

heat-shock proteins (Burda et al. 2003, Riksen et al. 2004). 

Protection can be provided by applying short periods of ischemia, hypoxia (Gage and 

Stanton 1996), hyperthermia (Chopp et al. 1989, Kitagawa et al. 1991), hypothermia (Nishio et al. 

1999), cortical spreading depression (Kawahara et al. 1999,  Matsushima et al. 1998), oxidative 

stress (Ohtsuki et al. 1992), hyperbaric oxygenation (Wada et al. 1996, Wada et al. 2000), 

norepinephrine (Meng et al. 1996, Ravingerova et al. 1995, Ravingerova et al. 2002), 3-



nitropropionic acid (Brambrink et al. 2000, Kuroiwa et al. 2000, Riepe and Ludolph 1997, Sugino 

et al. 1999), lipopolysaccharide (Bordet et al. 2000, Puisieux et al. 2000, Tasaki et al. 1997), TNF-

a (Chen et al. 2001),  polyunsaturated fatty acids (Blondeau et al. 2002), volatile anaesthetics 

(Siracusano et al. 2006), repeated magnetic stimulation (Fujiki et al. 2003), sound waves 

(Krokowicz et al. 2012, Tobalem et al. 2013), ionizing radiation (Kokosova et al. 2014), physical 

exercise (Chen et al. 2007), atorvastatin (Atar et al. 2006, Birnbaum et al. 2005, Chang et al. 2010), 

bradykinin (Danielisova et al. 2008, Goto et al. 1995) and kainic acid (Nagy et al. 2011).  

Local stress application is fully sufficient for achieving whole body ischemic tolerance, for 

example stress in part of the body or part of an organ (Przyklenk et al. 1993), but also  local, short-

term ischemia by clamping a suitable artery or placing a tourniquet on the relevant limb (Dillon et 

al. 2006, Tsubota et al. 2010). Tolerance, after its activation, spreads to the whole body through 

the blood (Dickson et al. 1999, Wang et al. 2004). Moreover, Shimizu and colleagues (Shimizu et 

al. 2009) demonstrated cross-species tolerance transfer by means of blood plasma.  

Activation of first-degree tolerance should be eliminated if the first stress is applied together 

with an opioid receptor blocker such as naloxon  (Dickson et al. 2001), or if during activation of 

the first degree of tolerance, antioxidants or possibly scavengers of free oxygen radicals are 

administrated (Puisieux et al. 2004, Burda et al. 2009, Domorakova et al. 2009).  

The effectiveness of tolerance is surprisingly strong even when the first stress is a 

pathological event and the second consists of moderate stress (postconditioning) applied within the 

therapeutic  window, both in the heart (Zhao et al. 2003) and in the brain (Burda et al. 2006). The 

therapeutic window varies in different tissues, but it also depends on the kind of stress, its intensity 

and application time, and also on the temperature of the affected tissue.  

The transition to the second stage, i.e. “full tolerance”, occurs after a combination of two 

stresses, when the second occurs within 60 minutes of the first (rapid tolerance). However, the 

ability to activate full tolerance reappears again after two days of "maturing" of the first degree. If 

a second stress occurs during the activated first degree period, after about five hours, full tolerance 

proteins are synthesized (Burda et al. 2006). These proteins are able to penetrate into the brain from 

the blood through the blood-brain barrier (Burda et al. 2014), and they are universal, i.e. effective 

in the brain as well as muscles (Burda et al. 2019, Burda et al. 2020). Our preliminary results 

suggest that the duration of full tolerance is significantly shorter than that of the first degree. 



The mechanism of the origin of tolerance needs to be studied after postconditioning, 

because preconditioning induces only the first stage with the production of triggers or mediators, 

while effectors reveal themselves only after the second stress. Due to the multiple damage caused 

by ischemia, the effect of the tolerance effector(s) must also trigger a whole cascade of changes. 

 

The basic conditions of survival include: 

 

Restoration of mitochondrial function. Mitochondria are fundamental as sources of energy, but also 

as sustainers of life, being elements involved in cell survival and death. They produce adenosine 

triphosphate (ATP) essential for each cell function. ATP is needed to maintain ionic gradients, 

contractile mechanisms and cellular integrity. Insufficient oxygen supply during ischemia inhibits 

electron flow along the respiratory chain, induces depolarization of the inner mitochondrial 

membrane, and limits ATP production. 

 Ischemia and reperfusion cause mitochondrial dysfunction that initiates the mitochondrial 

apoptosis pathway. The defining event in apoptosis is mitochondrial outer membrane 

permeabilization (MOMP), allowing apoptogen release. Bcl-2 family proteins Bax and Bak are the 

principal activators of MOMP and apoptosis. A series of pro-apoptotic proteins, including Bax, 

have been shown to increase mitochondrial outer membrane permeability. Under normal 

conditions, Bax is inactive in cytosol and is soluble or loosely attached to mitochondria. However, 

in response to apoptotic stimuli, Bax is translocated and inserted into the outer membrane, 

undergoes oligomerization, thereby inducing outer membrane permeability (Zhao et al. 2014). This 

pathway involves the release of cytochrome c and activation of the caspase cascade. The increase 

of cytochrome c in the cytosol is an indicator of cytochrome c release from mitochondria, activation 

of caspase-3 and facilitated apoptosis (Niquet et al. 2006). The preservation of mitochondrial 

function represents an attractive strategy to reduce I/R-induced damage. Delayed postconditioning 

can be used as an effective tool able to prevent mitochondrial failure leading to apoptosis-like 

delayed neuronal death in postischemic rat hippocampus.  Bradykinin as a postconditioner 

significantly attenuated ischemia-induced neuronal death, and also suppressed the release of 

MnSOD and cytochrome c from mitochondria, and prevented of caspase-3 activation (Danielisova 

et al. 2009). 

 



Intramitochondrial calcium accumulation triggers permeability transition in the inner 

mitochondrial membrane (MPT), leading to production of reactive oxygen species, release of 

calcium, and increase in cytosol calcium concentration (Kristian and Siesjo 1996).  Na+/Ca2+ 

exchanger (NCX) regulating the homeostasis of Na+ and Ca2+ plays a key role in the evolution of 

ischemic neuronal damage (Annunziato et al. 2004, Pignataro et al. 2020). Another important role 

is played by mitochondrial component connexin 43 and mitochondrial permeability transition pores 

(Pagliaro et al. 2018).  

In ischemia-vulnerable brain areas, such as the dorsolateral striatum or the CAl region, 

inhibition of protein synthesis is persistent (Bodsch et al. 1985, Dienel et al. 1980, Hu and Wieloch 

1993, Widmann et al. 1991). Inhibition is due to phosphorylation of the eIF2 alpha subunit (Burda 

et al. 1994). Without recovery of protein synthesis, survival of cells is impossible.   

Glutamate (Glu) levels in brain tissue and peripheral blood increase significantly following 

cerebral ischemia/reperfusion injury, and one of the basic actions of conditioning is to reduce its 

concentration (Paschen 1996, Saad et al. 2015, You et al. 2018, Zhang et al. 2011). 

The mechanisms of postconditioning are still not clear. We deal in more detail with the 

mechanism of changes in the process of ischemic tolerance in our work (Lehotsky et al. 2009). An 

excellent review on this subject was written by Zhao and colleagues (Zhao et al. 2012).  A good 

review focused on preconditioning was written by Hao and co-workers (Hao et al. 2020). 

When the phenomenon of ischemic tolerance is associated with the treatment of 

pathological conditions (e.g. cerebral and cardiac ischemic events, trauma), a particular problem is 

the use of appropriate stressors. From the full range of possible biological, chemical and physical 

stressors (substances or treatments), it is very difficult to choose an appropriate procedure if the 

patient has suffered a heart attack, stroke or polytrauma. The use of local atraumatic tourniquet 

ischemia shows potential as a suitable method, although this approach also has its drawbacks in 

that it increases the blood pressure and flow-rate, which rules out its use in cases of bleeding into 

the brain. 

Some other physical processes such as hyperthermia, hypothermia, sound waves and 

magnetic fields may be used as stressors. The good health of cold-hardened people can be attributed 

to hypothermia in the body, which upon subcooling triggers the first stage of the ischemic tolerance 

phenomenon, so that when they come into contact with some second stress they activate the second 

degree, allowing them to overcome otherwise devastating pathological events without more 



damage. Similar status can also be achieved through use of the sauna, or other heat sources (even 

local). 

Methods of local stress application started being used in clinical medicine as early as 2007 

(Loukogeorgakis et al. 2007). Published results of clinical trials using remote postconditioning in 

the case of traumatic brain injury are unambiguously positive (Joseph et al. 2015). 

However, the translation from numerous successful animal experiments to clinical practice 

has been disappointing to date. Most attempts have so far failed to reduce infarct size or improve 

clinical outcomes. (Heusch and Gersh 2017). There is a growing consensus that two risk factors 

are responsible for the failure of the IT mechanism, namely aging and comorbidity. The activity of 

enzymes as well as the effect of some drugs changes with age (Kaplan et al. 2019, Bartekova et al. 

2016). The age-related diseases consist mainly of diabetes, hypertension and hyperlipidemia with 

concomitant comedication (statins, β-blockers, ACE inhibitors, angiotensin AT1 receptor 

antagonists (ARBs), calcium antagonists and nitrates). This situation is characteristic of patients 

with cardiovascular and cerebrovascular diseases (Ferdinandy et al. 2014, Przyklenk 2011, Tyagi 

et al. 2019). 

 

Blessing - possible uses of the ischemic tolerance phenomenon 

 

Uses of ischemic tolerance from the clinical point of view: 

1. – for planned operations during which temporary cessation of the blood supply occurs. 

It is possible to use sublethal stress (preconditioning) and optimally 2–4 days after that to do 

surgery without imminent damage to the body from reduction or cessation of the blood supply, and 

with a significantly better result. 

2. - as soon as possible after the pathological stress (hypoxia, ischemia, intoxication, 

trauma), to use reasonable moderate stress (postconditioning) if possible within the therapeutic 

window. A combination of other means of treatment can be used, with the exception of naloxon 

and antioxidants. It is possible to use local stress as postconditioning, e.g. short-term atraumatic 

ischemia of part of the limb. 

3. – a revolutionary invention or idea should be mentioned, i.e. the combining of two 

appropriate mild stressors (“preconditioning” and “postconditioning”) on an intact (young and 

healthy) donor. By applying these two stresses we can achieve full tolerance with the presence of 



end effectors in the donor's blood plasma. Active plasma, when administered to the endangered 

patient's blood, as opposed to conditioning, immediately begins to curtail the development of 

damage. 

The use of active blood plasma or substances derived from it will make it possible to have 

medicine prepared in advance which can be administered into the patient's blood and take effect 

immediately during transport to the hospital, which can greatly improve the chances of success, 

especially in conditions threatening brain or heart damage. Administration of “activated plasma” 

should also reduce patients' discomfort caused by postconditioning application.  Active plasma 

effectively prevents damage in skeletal muscle ischemia (Burda et al. 2020) as well as in ischemia 

and brain intoxication with trimethyltin (Burda et al. 2019). We expect activated plasma to be 

effective in the elderly and in patients with diabetes mellitus. 

 

The undesirable curse of ischemic tolerance  

 

Cancer treatment is exactly like the motto: what doesn't kill you makes you stronger. 

Chemotherapy and irradiation are also planned as lethal stress for target cells in cancer treatment. 

These treatments lead to death of the majority of target cells, but for the rest of cells and 

surrounding tissue they represent sublethal stress, which leads to activation of the first step of 

ischemic tolerance. If repeated doses of stress during the first degree of tolerance are used, 

activation of the full tolerance will occur. This will lead to transformation of some cancer cells 

transiently into resistant ones, which become inured to multiple lethal doses of chemotherapy or 

irradiation. In accordance with the cross-tolerance rule, activation will also occur if stressors of 

various types are used, e.g. a combination of chemotherapy with irradiation. 

However, it has been repeatedly shown that the administration of antioxidants or oxygen 

radical scavengers effectively prevents the development of tolerance (Puisieux et al. 2004, Burda 

et al. 2009, Domoráková et al. 2009). The repeated application of chemotherapy combined with 

antioxidants would lead to cumulative death of undesirable cells.  

We propose to take into account the knowledge gained in the study of ischemic tolerance 

and thus increase the effectiveness of cancer treatment. We expect that this technique could enable 

daily anticancer treatment and reduce the amount of drugs administered. 

Conclusion 



 

It should be emphasized that if an organism or part of an organism is exposed to stress 

which does not destroy it, the first phase of the defence mechanism will be temporarily activated. 

If this stress is lethal for one body part, it is usually only sublethal for the rest of the body. More 

precisely, the first stress initiates the first degree of tolerance, and the second stress full tolerance. 

The products of the first degree of activation circulate in the blood from a few days to two weeks, 

probably depending on the strength of the stress. If in this "window" there is a "collision" with the 

second stress, regardless of whether it is global or local, sublethal or lethal to some parts of the 

tissue, complete robust tolerance is activated. It then spreads to the whole body through the blood.  

By testing “activated plasma” we demonstrated that this plasma is able to stop cell apoptosis 

after brain ischemia and also after muscle ischemia. This finding gives us hope that application of 

activated plasma or substances derived from it will be fully functional in the treatment of ischemic 

lesions of the brain and heart. Cross-tolerance with a wide range of diverse stressors encourages us 

to assume that activated plasma can significantly help with a wide range of pathological events. 

Manufacturing of activated plasma in experimental animals is an easy procedure. 

Moreover, activated plasma is also fully functional in cross-species application, so we expect that 

it should be possible to produce it in animals without any need for killing them. Plasma does not 

lose activity either after freezing at -80°C or after lyophilisation.  The following steps are necessary: 

select a suitable donor, choose the optimal conditioning method, remove unnecessary proteins from 

the plasma, and isolate the active substances. 
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