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SHORT TITLE 

Effect of isoquercitrin on ovarian cells in vitro 

SUMMARY 

This study aimed to examine the effect of dietary flavonoid isoquercitrin on ovarian granulosa 

cells using the immortalized human cell line HGL5. Cell viability, survival, apoptosis, release 

of steroid hormones 17β-estradiol and progesterone, and human transforming growth factor-



β2 (TGF-β2) and TGF-β2 receptor as well as intracellular ROS generation were investigated 

after isoquercitrin treatment at the concentration range of 5 – 100 μg.ml-1. It did not cause 

any significant change (p>0.05) in cell viability as studied by AlamarBlue assay in comparison 

to control. No significant change was observed (p>0.05) in the proportion of live, dead and 

apoptotic cells as revealed by apoptotic assay using flow cytometry. Similarly, the release of 

17β-estradiol, progesterone, TGF-β2 and its receptor were not affected significantly (p>0.05) 

by isoquercitrin as detected by ELISA, in comparison to control. Except for the highest 

concentration of 100 μg.ml-1, which led to oxidative stress, isoquercitrin exhibited 

antioxidative activity at lower concentration used in the study (5, 10, 25, and 50 μg.ml-1) by 

hampering the production of intracellular reactive oxygen species (ROS), in comparison to 

control, as detected by chemiluminescence assay (p<0.05). Findings of the present study 

indicate an existence of the antioxidative pathway that involves inhibition of intracellular ROS 

generation by isoquercitrin in human ovarian granulosa cells. 
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Introduction  

Flavonoid glucosides such as quercetin and isoquercitrin occur widely in the plant kingdom 

and are among the most common flavonoids in the human diet. Isoquercitrin (quercetin-3-O-

β-D-glucopyranoside) is commonly found in fruits, vegetables, cereals, various plant-derived 

foods and beverages such as tea and wine, as well as in medicinal herbs such as St. John’s 

wort (Hypericum perforatum L.) (Paulke et al., 2006; Hasumura et al., 2004; Valentová et 

al., 2014). It has been reported in comprehensive database Phenol-Explorer, which notes 

polyphenol content in foods, that content of isoquercitrin ranges between 0.0067 mg 



isoquercitrin/100 g (kiwi juice) and 41.95 mg isoquercitrin/100 g (fresh black chokeberries – 

fruits of Aronia melanocarpa) (Neveu et al., 2010). Although this phytonutrient is widely 

distributed, it is very difficult to obtain a sufficient amount in a pure state for the food 

technology and pharmaceutical industry since isoquercitrin contents in plant materials are 

extremely low (Lu et al., 2013). In addition, considering the recommended daily dose of fruits 

and vegetables (5x100 g) average daily intake of isoquercitrin could be estimated at 3-12 mg 

(Valentová et al., 2014). Water soluble enzymatically modified isoquercitrin is generally 

regarded as safe for ingestion by the United States Food and Drug Administration (FDA 2007) 

and is also approved in Japan as a food additive (JFA 2007). On a daily basis, up to 4.9 mg.kg-

1 per day of enzymatically modified (-glucosylated) isoquercitrin is acceptable (Valentová et 

al. 2014).  

Dietary flavonoids, including isoquercitrin, possess neuroprotective, cardioprotective, 

chemopreventive, antiallergic, anti-inflammatory, and antioxidant properties (Appleton 

2010). Its screening for clinical purposes has recently attracted a great deal of interest for a 

number of health issues including inflammation, atherosclerosis (Reuter et al. 2010) cancers 

of pancreas (Chen et al. 2015), liver (Huang et al. 2014), kidney (Buonerba et al. 2018), 

colon (Amado et al. 2014), bladder (Wu et al. 2017), ovary (Michalcova et al. 2019) as well 

as ROS-induced diseases particularly for mesenchymal stem cell transplantation therapy (Li 

et al. 2016).  

Granulosa cells involved in the process of ovarian steroidogenesis and folliculogenesis are of 

clinical importance during oocyte development, and mainly secrete progesterone and 

estradiol, among various other factors. During menstrual cycle they turn into granulosa lutein 

(hGL) cells at the time of the luteinizing hormone (LH) surge. The hGL cells predominantly 

start secreting progesterone which is accompanied by a decline in estradiol production 

(Vander et al. 2001). HGL5 is an immortalized cell line derived from primary hGL cells after 



transformation with the E6 and E7 regions of human papillomavirus 16 (Rainey et al. 1994). 

They are capable of a quick growth and formation of large cultures apart from other qualities 

consistent with primary ovarian granulosa cells. HGL5 cell line forms an attractive model not 

only for investigating the mechanisms relating to steroid biosynthesis but also other pathways 

involved with hGL function (Rainey et al. 1994; Havelock et al. 2004; Bouraki et al. 2012). 

The present study aimed at examining the viability, survival, apoptosis, release of 17β-

estradiol, progesterone, human transforming growth factor-β2 (TGF-β2) and TGF-β2 receptor, 

and intracellular ROS generation by HGL5 cells after isoquercitrin treatment at the 

concentrations of 5, 10, 25, 50, and 100 μg.ml-1. 

Methods 

Cell culture and treatment 

Isoquercitrin (quercetin 3-O-β-D-glucopyranoside, purity 96.5 %) was prepared by selective 

enzymatic derhamnosylation of rutin using recombinant -L-rhamnosidase from Aspergillus 

terreus (Weignerová et al. 2012). Purity of quercetin 3-O-β-D-glucopyranoside (isoquercitrin) 

was determined by HPLC by the method described in detail in the papers Weignerová et al. 

(2012) and Gerstorferová et al. (2012). Authenticity of this compound was determined by 1H 

and 13C NMR spectroscopy as detailed in the above papers. Immortalized human ovarian 

granulosa cells HGL5 (ABM®, BC, Canada) were cultured in Dulbecco's modified Eagle 

medium (Sigma-Aldrich, MO, USA) supplemented with 10% fetal bovine serum (Sigma-

Aldrich, MO, USA), 1 % antibiotics/antimycotic solution (Invitrogen, CA, USA). Cells were 

cultured in plates without (control group) or with isoquercitrin at concentrations of 5, 10, 25, 

50, and 100 μg.ml-1 for 24 hours. As a positive control 0.1% DMSO (dimethyl sulfoxide, Sigma 

Aldrich, St. Louis, MO, USA, ≥99.5% purity) was used, as previously described (Baldovská et 

al. 2020). All the procedures followed were in accordance with institutional guidelines.  

Cell viability 



Cell viability was examined using AlamarBlue (BioSource International, Nivelles, Belgium) 

assay (Michalcova et al. 2019). Human ovarian granulosa cells were seeded into 96-well 

microplates (100µl well−1) at a concentration of 1,5 x 104 cells.ml-1 at standard culture 

conditions of 5% CO2 in air at 37°C. Cells were grown in culture for 24 hours without (control 

group) or with isoquercitrin (5, 10, 25, 50, and 100 μg.ml-1), or with 0.1 % DMSO (as positive 

control). Resazurin reduction (oxidized indigo blue state into the reduced pink state) was 

measured by recording the absorbance at 560 nm using a microplate reader (Multiskan FC, 

ThermoFisher Scientific, Finland) and expressed as percentage.  

Live, dead and apoptosis assay by flow cytometry 

Numbers of live, apoptotic and dead cells were detected by the rate of uptake and retention 

of certain dyes as described previously (Michalcova et al. 2019). Cells were seeded in 6-well 

culture plates at a density of 0.5 × 106 cells per well in culture medium (control) and/or 

supplemented with isoquercitrin (at concentrations 5, 10, 25, 50, and 100 μg.ml-1) for 24 

hours, whereas positive control received 0.1% DMSO. Apoptotic cells were measured by 

staining with specific nuclear fluorochrome Yo-Pro-1 (Molecular Probes, Lucerne, Switzerland) 

and specific membrane marker Annexin V-FITC (AnV; Annexin V Apoptosis Detection Kit, 

Canvax, Cordoba, Spain). Dead cells were measured by staining with propidium iodide (PI; 

Molecular Probes, Lucerne, Switzerland). Briefly, after centrifugation (300× g for 5 min), cell 

pellets were adjusted to 1 × 106 cells per ml in PBS (without Ca and Mg) and stained with 1 

μl of Yo-Pro-1 solution (100 μmol.l-1) for 15 min in dark at room temperature. Annexin V 

staining was done according to manufacturer’s instructions. Cells were stained with 4 μl of 

propidium iodide (50 μg.ml-1) in each tube just prior to the analysis using flow cytometer 

(FACS Calibur, BD Biosciences, USA). At least 50 000 events (cells) were analyzed in each 

sample and data analysis was done using Cell Quest Pro software (BD Biosciences, USA). 

Three different populations were identified using this assay: live unstained cells (Yo-Pro-1-



/PI- and AnV-/PI-), apoptotic cells (Yo-Pro-1+/PI- and AnV+/PI-), and dead cells (only PI+) 

(Figure 1). 

ELISA (enzyme-linked immunosorbent assay) 

Concentrations of secreted 17β-estradiol, progesterone, TGF-β2 and TGF-β2 receptor were 

determined using ELISA kit (CUSABIO, Houston, USA) as described previously (Michalcova et 

al. 2019; Baldovská et al. 2020). Cells were re-seeded in 24-well culture plates at a density 

of 1 x 105 cells per well and then incubated in culture medium (control) and/or with 

isoquercitrin (at concentrations 5, 10, 25, 50, and 100 μg.ml-1) for 24 hours and the release 

of 17β-estradiol, progesterone, TGF-β2 and TGF-β2 receptor was measured. Briefly, antibody 

specific for 17β-estradiol, progesterone, TGF-β2 and/or TGF-β2 receptor was pre-coated on a 

microplate. Standards and samples were pipetted into the wells and any TGF-β2 and/or TGF-

β2 receptor present was bound by the immobilized antibody. After removal of any unbound 

substances, abiotin-conjugated antibody specific for 17β-estradiol, progesterone, TGF-β2 and 

TGF-β2 receptor was added to the wells. After washing, avidin conjugated horseradish 

peroxidase was added to the wells. Washing was done to remove any unbound avidin-enzyme 

reagent, and substrate solution was added to the wells and colour was developed in proportion 

to the amount of TGF-β2 bound in the initial step. Colour development was stopped and the 

intensity of the colour was measured spectrophotometrically. 

ROS assay 

Intracellular ROS generation was assessed by chemiluminescence assay using luminol (5-

amino-2,3-dihydro-1,4-phthalazinedione; Sigma-Aldrich) as a probe (Michalcova et al. 2019; 

Sharma et al. 2017). Test samples consisted of 10 μl luminol each (5 mM) and 400 μl 

experimental sample or control. Negative controls were prepared by replacing the HGL5 cell 

suspension with 400 μl of culture medium each. Positive controls included 400 μl of each 

medium, 10 μl luminol and 50 μl hydrogen peroxide (30 %; 8.8 M; Sigma-Aldrich). 



Chemiluminescence was measured on 48-well plates in 15 cycles of 1 minute using the 

Glomax Multi+ Combined Spectro-Fluoro Luminometer (Promega Corporation, WI, USA). 

Results were expressed as relative light units (RLU).s-1.10-6 cells (Michalcova et al. 2019; 

Tvrdá et al. 2016). 

Statistical analysis 

For statistical analysis, data were expressed as means with standard errors of means. All 

experiments were done in triplicate. One-way ANOVA along with Dunnett’s tests were used 

to establish statistically significant differences at p<0.05. 

Results 

In culture, HGL5 cells did not lose viability after isoquercitrin supplementation. As examined 

by AlamarBlue assay, isoquercitrin treatment did not cause any significant change (p>0.05) 

in the viability of human ovarian granulosa cells HGL5 at all the concentrations used in the 

study, as compared with control (Figure 2). Similarly, as shown by flow cytometry analysis, 

isoquercitrin treatment did not cause any significant change (p>0.05) in the proportion of 

live, dead and apoptotic HGL5 cells at all the concentrations used in the study (Table 1). 

As detected by ELISA, isoquercitrin treatment did not cause any significant change (p>0.05) 

neither in the release of steroid hormones 17β-estradiol and progesterone by HGL5 cells 

(Figure 3) as well as nor in the release of human TGF-β2 and binding TGF-β2 receptor (Figure 

4) at all of the concentrations used in the study. On the other hand, isoquercitrin treatment 

was capable of reducing intracellular ROS generation at concentrations of 5, 10, 25 μg.ml-1 

(p<0.001) and 50 μg.ml-1 (p<0.01) used in the study, as determined by chemiluminescence 

assay. However, the highest concentration of 100 μg.ml-1 isoquercitrin led to oxidative stress 

resulting in an increase (p<0.05) in intracellular production of ROS (Figure 5). 

Discussion  



In the ovarian follicle, granulosa cells constitute the principal somatic cell type, which is 

involved in the process of steroidogenesis and folliculogenesis (Ai et al. 2019). Based on the 

phase of development, granulosa cells secrete a number of factors. These cells express follicle 

stimulating hormone (FSH) receptors during the first half of the menstrual cycle. Under the 

influence of FSH granulosa cells further express aromatase that converts androgens, produced 

in theca cells, to estradiol. Thereafter the granulosa cells start predominantly secreting 

progesterone during the LH surge as they turn into hGL cells (Vander et al. 2001). In the 

present study, we used HGL5 cells a suitable cellular model to investigate the effect of dietary 

bioflavonoid isoquercitrin at the concentrations ranging from 5 - 100 μg.ml-1 on cell viability, 

survival, apoptosis, release of 17β-estradiol, progesterone and human transforming growth 

factor-β2 (TGF-β2) and TGF-β2 receptor as well as the ROS production. To our knowledge, 

this is the first report which has looked into the influence of isoquercitrin on ovarian granulosa 

cells. 

Similar to our findings, treatment with isoquercitrin did not affect the viability of human 

ovarian cancer cells OVCAR-3 as determined by AlamarBlue assay (Michalcova et al. 2019). 

Furthermore, concentrations of 25, 50, and 100 µmol.l-1 isoquercitrin isolated from the aerial 

parts of Hyptis fasciculata did not cause any change in the viability of human brain cancer 

cells after 24, 48, and 72 hours (Amado et al. 2009). When cultured with isoquercitrin at 50, 

100 and 200 µM concentrations for 72 hours, MTT assay also showed no change of viability 

in rat hepatoma cells H4IIE (Zhou et al. 2014). Isolated from Acer okamotoanum, 

isoquercitrin at the concentration range of 1-10 µg.ml-1 did not affect the viability of SH-SY5Y 

human neuronal cells, too. On the other hand, isoquercitrin was capable of protecting the 

cells by increasing their viability against hydrogen peroxide (H2O2)-induced oxidative stress 

(Kim et al. 2019).  

Similar to the findings of the present study, isoquercitrin, isolated from the aerial parts of 

Hyptis fasciculata, did not affect caspase-3 dependent apoptosis at concentrations up to 100 

mmol.l-1 in human brain cancer cells (Amado et al. 2009). In another previous study, 



isoquercitrin was found to cause down-regulation of apoptotic protein expression such as 

cleaved caspase-9, -3, PARP, and p53. It also inhibited H2O2-induced apoptosis in the cellular 

system and the treatment further showed attenuation of apoptotic rate in the Hoechst 

33342/PI double staining and AnnexinV-FITC/PI staining. Anti-apoptotic effect was further 

associated with the Akt/GSK3b signaling pathway, and isoquercitrin was recommended for 

clinical use owing to its capability to interfere with the progression of endothelial injury-

associated cardiovascular disease (Zhu et al. 2016). On the other hand, potential clinical use 

of isoquercitrin in cancer cells is believed to be mediated by its pro-apoptotic property. 

Therapeutic doses of isoquercitrin extracted from Bidens pilosa L. retarded proliferation, 

induced apoptosis, and the cell cycle was arrested in the G1 phase in human bladder cancer 

cells 5637 and T24 (Chen et al. 2016). Isolated from Bidens bipinnata L. extract, it also 

promoted apoptosis, inhibited cell proliferation, and blocked the cell cycle via the mitogen-

activated protein kinase (MAPK) signaling pathway in human liver cancer cells HepG2 and 

Hep3B (Huang et al. 2014).  

Recently, our research group has reported the production of steroid hormones by HGL5 cells 

and that dry pomegranate extract affected the release of 17β-estradiol when cultured for 24 

hours (Baldovska et al. 2019). Similarly, previous studies also showed secretion of estradiol 

and progesterone by HGL cells (Rainey et al. 1994; Havelock et al. 2004). However, it has 

been reported, that the HGL5 cell line is not responsive to FSH because of the lack of 

gonadotropin receptors (Rainey et al. 1994). As a potent luteinizing granulosa cell survival 

factor, progesterone was earlier found to promote the expression of epidermal growth factor 

family member amphiregulin and epiregulin thereby helping maintain the viability of 

luteinizing granulosa cells in primates (Puttabyatappa et al. 2013). Members of the TGF-β 

superfamily are expressed by ovarian somatic cells and oocytes are involved in 

folliculogenesis, including intraovarian control mechanisms, follicular assembly, growth, 

differentiation and progression, and thus fertility (Knight et al. 2006; Trombly et al. 2009). 

Another study conducted to explore the effects of the TGF-β superfamily members and their 



receptors on human granulosa cells during folliculogenesis showed expression of TGF-β 

superfamily members and their receptors in a human nonluteinized granulosa cell line HGrC1, 

including the type I and II receptors (Iwase et al. 2012). Previous studies have reported the 

production of TGF-β1 and TGF-β2 by ovarian cells (Puttabyatappa et al. 2013; Roy et al. 

1994; Bristol et al. 2004). In the present study, HGL5 cells have also been able to release 

both TGF-β2 and TGF-β2 receptor although isoquercitrin did not have any impact on their 

expression. Furthermore, Michalcova et al. (2019) has reported, that the release of human 

TGF-β1 and binding of TGF-β1 receptor by ovarian cancer cells was not affected by 

isoquercitrin.  

Notably, the results of the present study on the effect of isoquercitrin on human granulosa 

cells indicate, that isoquercitrin could scavenge intracellular ROS production at lower 

concentrations and is able to decrease oxidative stress in HGL5 cells in vitro. Isoquercitrin 

isolated from Thuja orientalis was able to scavenge reactive oxygen species (H2O2, •OH and 

O2•-) as demonstrated by staining of cultures as well as the generation of individual radical 

species at 50 µM concentration (Jung et al. 2010). Isolated from Acer okamotoanum, 

isoquercitrin was able to ameliorate H2O2-induced oxidative stress by successfully inhibiting 

the production of ROS in human neuronal cells at a concentration of 10 µg.ml-1. The 

antioxidant property of isoquercitrin molecule was believed to be attributed by its catechol 

moiety in B ring as the biological activity of flavonoids depend on the number and position of 

–OH as well as the presence of sugar. Based on the findings, isoquercitrin has been considered 

useful as a preventive and therapeutic agent for neurodegenerative diseases including 

Alzheimer’s disease (Kim et al. 2019). On the other hand, in rat hippocampal neuronal cells 

pretreatment with isoquercitrin at 25, 50 and 100 µg.ml-1 for 24 hours prior to 4 hours of 

oxygen glucose deprivation and 24 hours of normoxia was not sufficient to reduce the 

generation of ROS although a concentration-dependent trend of decline was noted (Chen et 

al. 2017). Antioxidant activity of isoquercitrin at 10–100 µM concentration range was also 

evident by the activation of glutathione peroxidase enzyme apart from the reduction of 



malondiadehyde levels in 6-hydroxydopamine-induced PC-12 cells and the reduction of 

superoxide dismutase activity (Magalingam et al. 2016), which, in turn, is believed to catalyze 

the detoxification of detrimental superoxide radicals to less toxic molecules thus leading to 

attenuation of oxidative stress (Duong et al. 2008).  

 

In the light of the previous findings on the role of isoquercitrin on various cells, tissues and 

cell lines of both healthy and disease models, the findings of the present study on human 

ovarian granulosa cells HGL5 indicate that isoquercitrin may be able to protect the ovarian 

functions from oxidative stress through a pathway involving the inhibition of intracellular ROS 

generation. Further investigations may prove very useful in confirming the hypothesis of the 

protective role of isoquercitrin at proper therapeutic concentrations against ovarian aging as 

well as other pathologies of the ovary whose etiology involves oxidative stress. 
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Figure legends 

 

 

 

 

 

 

Figure 1. Flow cytometry dot plots used for measuring the live, dead and apoptotic 

cells: R1 – Live unstained cells (Yo-Pro-1-/PI- and AnV-/PI-), apoptotic cells (Yo-Pro-1+/PI- 

and AnV+/PI-), and dead cells (only PI+). 

 

 

 

 

 

 

 

Figure 2. Viability of human ovarian granulosa cells HGL5 without (Control) or with 

isoquercitrin treatment (5, 10, 25, 50, 100 µg.ml-1). Positive control (+Control) with 0.1 

% DMSO. Significance of differences between the groups was evaluated by One-way ANOVA 

followed by Dunnett’s multiple comparison tests. The data are expressed as means ± SEM. 

AlamarBlue assay. 



 

 

 

 

 

Figure 3. Release of 17β-estradiol (A) and progesterone (B) by human ovarian 

granulosa cells HGL5 after treatment with isoquercitrin (5, 10, 25, 50, 100 µg.ml-1). 

Control represents culture medium without isoquercitrin; positive control (+Control) means 

culture medium enriched by 0.1% DMSO. Significance of differences between the groups was 

evaluated by One-way ANOVA followed by Dunnett’s multiple comparison tests. The data are 

expressed as means ± SEM. ELISA. 

 

 

 

 

 

 

Figure 4. Release of TGF-β2 (A) and TGF-β2 receptor (B) by human ovarian 

granulosa cells HGL5 after treatment with isoquercitrin (5, 10, 25, 50, 100 µg.ml-1). 

Control represents culture medium without isoquercitrin; positive control (+Control) means 

culture medium enriched by 0.1% DMSO. Significance of differences between the groups was 

evaluated by One-way ANOVA followed by Dunnett’s multiple comparison tests. The data are 

expressed as means ± SEM. ELISA. 



 

 

 

 

 

 

Figure 5. Intracellular ROS generation by human ovarian granulosa cells HGL5 after 

treatment with isoquercitrin (5, 10, 25, 50, 100 µg.ml-1). Control represents culture 

medium without isoquercitrin; positive control (+Control) means culture medium enriched by 

0.1% DMSO. Significance of differences between the groups was evaluated by One-way 

ANOVA followed by Dunnett’s multiple comparison tests. The data are expressed as means ± 

SEM. Chemiluminescence assay. *p<0.05, **p<0.01, ***p<0.001. 

 



Table 1. Proportion of live, dead and apoptotic HGL5 cells after isoquercitrin 

treatment at 5, 10, 25, 50, and 100 μg.ml-1 concentrations for 24 hours. Live cells 

remained unstained by specific nuclear fluorochrome Yo-Pro-1 and propidium iodide (PI) and 

specific membrane marker Annexin V-FITC (Yo-Pro-1-/PI- and AnV-/PI-), whereas dead cells 

were stained by propidium iodide (only PI+) and apoptotic cells were stained by specific 

nuclear fluorochrome Yo-Pro-1 and specific membrane marker Annexin V-FITC but unstained 

by propidium iodide (Yo-Pro-1+/PI- and AnV+/PI-).   

Parameter 

Yo-Pro-1/PI 
Control 

5   

 
 

10   

 
 

25   

 
μg.ml-1 

50  

  
 

100 

 

 

Positive 
control 

Live (%) 79.98 

± 5.82 

80.94 

± 5.64 

83.11 

± 5.22 

82.63 

± 5.45 

89.86 

± 2.92 

84.96 

± 3.45 

85.73 

± 4.10 

 

Dead (%) 16.36 

± 1.21 

15.48  

± 1.38 

11.32  

± 3.95 

12.45  

± 3.04 

8.54  

± 2.69 

10.49  

± 2.97 

11.95  

± 3.91 

 

Apoptotic (%) 5.73  

± 1.88 

5.62  

± 1.80 

5.57  

± 1.95 

4.92  

± 1.92 

3.98  

± 1.20 

4.55  

± 1.48 

4.88  

± 1.31 

        

Parameter 

AnV/PI 
Control 

5   

 
 

10   

 
 

25  

  
μg.ml-1 

50   

 
 

100  

 

  

Positive 
control 

Live (%) 81.54  

± 7.65 

79.16  

± 6.6 

78.20  

± 9.80 

79.58  

± 9.80 

89.90  

± 2.81 

87.80  

± 3.65 

85.07  

± 3.75 

 

Dead (%) 18.85  

± 6.77 

19.75  

± 6.40 

25.14  

± 5.86 

24.12  

± 5.24 

10.18  

± 1.08 

10.61  

± 2.43 

12.91  

± 3.47 

 

Apoptotic (%) 1.75  

± 0.20 

1.89  

± 0.25 

2.04  

± 0.49 

1.52  

± 0.36 

1.55  

± 0.29 

1.60  

± 0.33 

2.02  

± 0.45 

        


