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Summary 

Transforming growth factor beta 1 (TGF-β1) is a pro-fibrotic cytokine with a key role in 

wound repair and regeneration, including induction of fibroblast-to-myofibroblast transition. 

Genistein is a naturally occurring selective estrogen receptor modulator with promising anti-

fibrotic properties. In the present study we aimed to investigate whether genistein modulates 

TGF-β1 (canonical and non-canonical) signaling in normal dermal fibroblasts at the protein 

level (western blot and immunofluorescence). We demonstrated that TGF-β1 induces the 

myofibroblast-like phenotype in the studied fibroblast signaling via canonical (SMAD) and 

non-canonical (AKT, ERK1/2, ROCK) pathways. Genistein induced only ERK1/2 expression, 

whereas the combination of TGF-β1 and genistein attenuated the ERK1/2 and ROCK 

signaling. Of note, the other studied pathways remained almost unaffected. From this point of 

view, genistein does not impair conversion of normal fibroblasts to myofibroblast-like cells. 
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Introduction 

Ageing is associated with deterioration in physical condition (Hill et al. 2020) also related to 

estrogen deprivation during menopause. Estrogens have been shown to modulate a variety of 

biological processes (Herichova et al. 2019; Herichova et al. 2020) including wound healing 

(Ashcroft et al. 1997). In particular the age-related reduced rate of wound healing is 

associated with improved quality of scarring and reduced levels of transforming growth factor 

beta 1 (TGF-β1). TGF-β1 is a pro-fibrotic cytokine with a key role in wound repair and 

regeneration (Klass et al. 2009). TGF-β1 is transiently up-regulated in normal skin wounds, 

whereas its ability to induce fibroblast-to-myofibroblast conversion is crucial for the wound 

closure (Lichtman et al. 2016), even though myofibroblasts never represent the dominating 

cell population in contracting human wounds (Berry et al. 1998). Characteristically, these 

cells express α-smooth muscle actin (α-SMA) and secrete a variety of regulatory/signaling 

molecules, and they also actively participate in production and organization of the 

extracellular matrix (ECM) (Pakshir et al. 2020). TGF-β1 signaling occurs either via 

canonical (SMAD) or non-canonical (phosphoinositide-3-kinase (PI3K / AKT), mitogen 

activated protein kinases (MAPK / ERK1/2), Rho GTPase (ROCK) and p53) pathways (Shi et 

al. 2020) with the presence of further possible cross-talks (Derynck et Zhang 2003).  

 It has been shown that genistein (GEN), a naturally occurring isoflavone and selective 

estrogen receptor modulator (Diel et al. 2001), may act as an anti-fibrotic agent (Andugulapati 

et al. 2020; Ning et al. 2020) and effective skin wound healing modulator (Emmerson et al. 

2010; Marini et al. 2010). Estrogen receptor (ER) signaling attenuates TGF-β1-induced 

activation of Sma and MAD-related protein 3 (SMAD3), whereas TGF-β1 signaling increases 

ER-mediated transcription activity (Matsuda et al. 2001). Since myofibroblasts persist in 

chronic inflammatory and fibroproliferative diseases, they contribute to the disease progress 

(Cannito et al. 2017). Thus, we were interested to answer the question whether genistein as a 



potential anti-fibrotic molecule also modulates the TGF-β1-induced fibroblast-to-

myofibroblast conversion in cells isolated from the normal healthy skin.  

 

Methods 

Isolation of Human Dermal Fibroblasts (HDFs) 

HDFs were isolated (Dvorankova et al. 2019) from two healthy donors with the informed 

consent of the patient and Ethical Committee of the Third Faculty of Medicine, Charles 

University in Prague approval following the Helsinki declaration. Briefly, small pieces of 

residual skin specimens were enzymatically treated with 0.25% trypsin (Sigma-Aldrich, St. 

Louis, MO, USA) at 37°C for 30 min. Epidermis was peeled off and dermis specimens were 

cut into small pieces and seeded on cultivation dishes containing Dulbecco's medium 

(DMEM) with 10% fetal bovine serum (FBS) and antibiotics (all from Biochrom, Berlin, 

Germany) at 37°C and 5% CO2/95% air atmosphere. After 18/15 (donor 1/2) days, migrating 

cells were collected and further expanded by culturing. For the experiment passage 10 was 

used. 

 

HDFs treatment 

HDFs were seeded on Petri dishes / cover slips at the density of 3,000 cells/cm2 in standard 

cultivation medium. Next day, the medium was changed and cells were cultivated for nine 

days (medium was changed on day 3 and 7) in the presence (10, 100 and 1000 nM/mL) or 

absence (control) of genistein (Tocris Bioscience, Abingdon, UK). TGF-β1 (PeproTech, 

London, UK) at a final concentration of 30 ng/mL was used as positive control (Brenmoehl et 

al. 2009). To assess the genistein effect on TGF-β1-mediated myofibroblast differentiation, 

cells were treated with medium containing a combination of TGF-β1 and genistein.  

 



Western blot (WB) 

Cells cultivated on Petri dishes were scratched and collected in Laemmli lysis buffer (0.1 M 

Tris/HCl (pH ~ 6.8), 20% glycerol, 10% SDS (sodium dodecyl sulfate)) containing protease 

and phosphatase inhibitors (Sigma-Aldrich). Afterwards, samples were sonicated (QSonica, 

Newtown, CT, USA, 40% amplitude, 15 s) to ensure complete cell lysis. Before loading into 

SDS-PAGE gel (10% Bis-Tris), samples were shortly boiled (95 ⁰C, 5 min). Following 

separation, proteins were dry blotted to PVDF membrane using the iBlot 2 (Thermo Fisher 

Scientific) system and blocked in 5% NFDM/BSA (non-fat dry milk/bovine serum albumin) 

dissolved in TBS (tris-buffered saline) with 0.1% Tween at room temperature. After overnight 

incubation at 4 ⁰C with primary antibody, membranes were incubated with appropriate HRP-

conjugated secondary antibodies for 1 h at room temperature. Protein bands were detected as 

chemiluminescent signal from ECL (SuperSignal West Pico PLUS chemiluminescent 

Substrate, Thermo Fisher Scientific) acquired at MF-ChemiBis 2.0 (DNR Bio Imaging 

Systems, Israel). β-Actin was used to verify equal sample loading. The list of antibodies 

applied in western blotting is shown in Table 1. 

 

Immunofluorescence staining (IF) of HDFs  

Cells cultivated on cover slips were shortly fixed (2% buffered paraformaldehyde, pH ~ 7.2, 5 

min) and washed with phosphate-buffered saline (PBS). Afterwards, cell membranes were 

permeabilized by Triton X-100 (Sigma-Aldrich) and blocked by porcine serum albumin 

(DAKO, Glostrup, Denmark). Following 1h incubation at room temperature with primary 

antibody, samples were washed and incubated with appropriate secondary antibody. Cell 

nuclei were stained by 4', 6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich). All coverslips 

were mounted in Vectashield (Vector Laboratories, Burlingame, CA, USA) and investigated 

by a fluorescence microscope (Eclipse Ni-E, Nikon, Tokyo, Japan) equipped with filter cubes 



for fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), DAPI, 

digital camera C11440 ORCA-flash 4.0 (Hamamatsu, Hamamatsu City, Japan), and NIS-

Elements software (Nikon). The list of antibodies used for the immunofluorescent analysis is 

shown in Table 1. 

 

Results 

The capability of HDFs to differentiate into myofibroblasts following TGF-β1 exposure was 

affirmed by increased α-SMA and fibronectin expressions (Fig 1A) and further confirmed by 

immunofluorescence (Fig 1B). In detail, clearly visible SMA-positive stress fibers were 

present in TGF-β1 treated groups. Moreover, TGF-β1 treatment induced deposition of a more 

prominent fibronectin-rich ECM scaffold. In contrast, WB showed that GEN affects neither α-

SMA nor fibronectin expressions; thus, it did not induce fibroblast-to-myofibroblast 

differentiation. Instead ECM deposition was rather inhibited by GEN. Interestingly, this effect 

persisted also in the presence of TGF-β1.  

 WB analysis (Fig. 1A) further revealed that TGF-β1 activated each studied signaling 

pathway to a different level. In particular, pSMAD and pERK1/2 were affected the most. On 

the other hand, GEN induced only pERK1/2 expression. Interestingly, the combination of 

GEN and TGF-β1 attenuated the TGF-β1-induced pERK1/2 and ROCK1 protein levels. Of 

note, GEN slightly decreased MLCK expression, but the effect was abolished in the presence 

of TGF-β1. 

 

Discussion 

In the present study, we demonstrated that TGF-β1 induces the myofibroblast-like phenotype 

in the studied primary culture of HDFs. It has been previously shown that GEN inhibits 

secretion of ECM proteins and expression of TGF-β1 at both protein and mRNA levels in 



renal mesangial cells (Yuan et al. 2009) and keloid fibroblasts (Jurzak et al. 2014). However, 

the GEN ability to decrease TGF-β1-induced α-SMA expression was not observed in the 

present study. In contrast to a previously shown inhibitory effect of GEN on MAPK signaling 

in keloid fibroblasts (Cao et al. 2008), we observed induction of the MAPK signaling 

pathway (phosphorylation of ERK1/2) in HDFs. Although we showed that TGF-β1 induced 

both canonical (SMAD) and non-canonical (MAPK, AKT, ROCK) signaling, a combination 

of GEN and TGF-β1 attenuated the ERK1/2 and ROCK signaling in HDFs, whereas the other 

studied pathways remained almost unaffected. From this point of view, GEN should not 

impair the wound contraction induced by TGF-β1 in normal/healthy subjects.  

 Even though the exact mechanism is still not fully understood, several cytokines have 

been identified (IL-6, IL-8, IL-10, and TGF-β) to play major regulatory roles in the 

pathophysiology of keloids and hypertrophic scar development (Berman et al. 2017). In 

particular, genistein at high concentration (100 µM) arrested hypertrophic fibroblasts 

proliferation and decreased collagen deposition, whereas normal skin fibroblasts remained 

rather unaffected (Cao et al. 2009). Our IF analysis of normal HDFs revealed decreased 

fibronectin ECM deposition indicating certain level of GEN action specificity. 

 In conclusion, our results indicate that genistein does not impair conversion of normal 

dermal fibroblasts to myofibroblast-like cells. Accordingly, further research using an 

experimental animal as in vivo model is warranted by present set of in vitro data.  
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Abbreviation 

ER - estrogen receptor; GEN, genistein; HDFs, human dermal fibroblasts; IL, interleukin; 

MAPK, mitogen activated protein kinases; MLCK, myosin light-chain kinase; ROCK, Rho 

GTPase; α-SMA, alpha smooth muscle actin; TGF-β1, transforming growth factor beta 1 
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Fig. 1 A) Western blot analysis of human dermal fibroblasts exposed to genistein (GEN – 1, 

10 and 100 nM) and/or TGF-β1 (30 ng/mL); A) Immunofluorescence analysis of human 

dermal fibroblasts (HDF) exposed to genistein (GEN – 100 nM) and/or TGF-β1 (30 ng/mL); 

α-SMA - alpha-smooth muscle actin (red signal); Fibr - fibronectin (green signal); nuclei were 

labeled with DAPI (blue signal) (magnification 600x). 

  



Table 1. Antibodies used for western blot and immunofluorescence. 

Antibodies used for western blot 

Primary Antibody Abbreviation Host Isotype Clonality Produced by 

α-Smooth muscle actin α-SMA rabbit IgG monoclonal CST, Danvers, MA, USA 

Fibronectin Fibr rabbit IgG monoclonal Abcam, Cambridge, UK 

Phospho-ERK1/2 pERK1/2 rabbit  polyclonal CST, Danvers, MA, USA 

Phospho-AKT pAKT rabbit IgG monoclonal CST, Danvers, MA, USA 

Phospho-SMAD3 pSMAD3 rabbit IgG monoclonal Abcam, Cambridge, UK 

ERK1/2 ERK1/2 rabbit IgG monoclonal CST, Danvers, MA, USA 

SMAD3 SMAD3 rabbit IgG monoclonal CST, Danvers, MA, USA 

AKT AKT rabbit  polyclonal CST, Danvers, MA, USA 

β-Actin β-actin rabbit IgG monoclonal CST, Danvers, MA, USA 

D-Glyceraldehyde 3-

phosphate 

GAPDH rabbit IgG monoclonal CST, Danvers, MA, USA 

Secondary Antibody  Host Isotype Produced by 

Anti-rabbit, HRP-linked goat IgG CST, Danvers, MA, USA 

Antibodies used for immunofluorescence 

Primary 

Antibody 

Abbreviation Host Produced by Secondary 

Antibody 

Produced by Channel 

α-Smooth 

muscle actin 

α-SMA mouse 

monoclonal 

DakoCytomati

on, Denmark 

goat anti-

mouse 

Sigma-Aldrich, 

St. Louis, MO, 

USA 

TRITC-

red 

Fibronectin Fibr rabbit 

polyclonal 

DakoCytomati

on, Denmark 

goat anti-

rabbit 

Sigma-Aldrich, 

St. Louis, MO, 

USA 

FITC-

green 

 


