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Abstract 

Cancer is a complex, multifactorial disease that modern medicine ultimately aims to 

overcome. DOK2 is a well-known tumor suppressor gene, and a member of the 

downstream protein Dok family of tyrosine kinases. Through a search of original 

literature indexed in Pubmed and other databases, the present review aims to extricate 

the mechanisms by which DOK2 acts on cancer, thereby identifying more reliable and 

effective therapeutic targets to promote enhanced methods of cancer prevention and 

treatment. The review focuses on the role of DOK2 in multiple tumor types in the 

lungs, intestines, liver, and breast. Additionally, we discuss the potential mechanisms 

of action of DOK2 and the downstream consequences via the Ras/MPAK/ERK or 

PI3K/AKT/mTOR signaling pathways. 
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1. Introduction to DOK2 



There are seven members of the DOK family of proteins downstream of tyrosine 

kinase, namely DOK1-7. DOK1 and DOK2 are able to recruit p120rasGAP, thereby 

inhibiting the Ras-MAPK-ERK pathway, playing important roles in cell growth and 

development. DOK3 can negatively regulate activation of c-Jun N-terminal kinase 

(JNK) and Ca2+ mobilization. In addition, DOK3 also binds the structural domains, 

inositol-5-phosphatase (SHIP-1) and growth factor receptor-bound protein2 (Grb2), 

which are involved in cellular regulation. Although DOK4, DOK5, and DOK6 do not 

modify the Ras pathway, they are expressed in a variety of nerve tissues, together with 

Glial cell-derived neurotrophic factor receptor C (c-Ret), playing an important role in 

the growth and development of nerve cells. Additionally, DOK7 has been shown to be 

important in the formation of neuromuscular synapses (Grimm et al.2001; Mashima et 

al.2009; Ueta et al.2017). The principal focus of the present manuscript is DOK2, also 

known as DOKR and FRIP, a member of the DOK family located on human 

chromosome 8p21.3 and a well-known tumor suppressor gene. As a member of the 

joint protein tyrosine kinase family, DOK2 acts through tyrosine kinase epidermal 

growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), and 

human epidermal growth factor receptor (Her-2/NEU-8) via negative feedback 

modulation of the signal transduction of protein tyrosine kinase (PTK). In addition, 

DOK2 can also suppress the activity of receptor tyrosine kinases. Src family kinases 

recruit C-Src tyrosine kinase (Csk), which inhibits mitogen-activated protein kinase 

(MAPK) and Akt (also known as Protein Kinase B) phosphorylation, which influence 

DOK2 and which can be stimulated by EGF (Mashima et al.2013; Jones et al.1999; 

Suzu et al.2000; Berger et al.2013; Van et al.2005). The DOK family has a common 

topological structure, namely a homologous domain (PH) at the N-terminal, a central 

tyrosine phosphorylation binding domain (PTB), and c-terminal SH2 and SH3 target 

sequences (PRR). The PH sequence is mainly involved with tyrosine phosphorylation 

and cell membrane localization of proteins (Suzu et al.2000). The PTB is not only 

associated with tyrosine phosphorylation but also binds to the PTB sequence on 

EGFR, resulting in a series of cascade reactions (Jones et al.1999). The PTB domain is 

an intracytoplasmic portion of the DOK protein. PTB contains NPXY and NXXY 



motifs through which it can bind to cell surface receptors (Smith et al.2006). SH2 and 

SH3 domains at the C-terminal have seven PXXP motifs containing not only tyrosine 

phosphorylation residues and proline, but also RasGAP, Nck, Csk, and SHIP-1 sites, 

producing a cascade reaction (Di et al.1998 ). When undergoing stimulation by a 

growth factor, DOK proteins become localized to the membrane signaling complex 

under the influence of PH and PTB domains, with increasing numbers of proteins that 

are recruited to participate in cascade reactions under the action of the PXXP motif 

and tyrosine phosphorylation residues on SH2 and SH3 (Berger et al.2013). The 

present study will focus on the relationship between DOK2 and cancer, and so 

introduce the functions of DOK2, as displayed in Figure 1. 

  

2. DOK2 and physiological cellular function 

2.1. DOK2 and cell fusion and proliferation   

Shuhei Kajikawa et al. demonstrated that DOK2 is expressed in both macrophages 

and monocytes in blood, with DOK2 regulating multiple signaling pathways via 

negative feedback which affects osteoclast proliferation. In a mouse model in which 

the DOK1 and DOK2 genes had been knocked out, animals were found to have larger 

numbers of osteoclasts and were more likely to develop symptoms of bone deficiency 

than wild-type mice (Kajikawa et al.2018). In addition to bone, the downregulation or 

deletion of DOK l and DOK2 from blood has been shown to increase the incidence of 

chronic myelogenous leukemia and myeloproliferative diseases. The deletion or low 

expression of the DOK2 gene promotes the fusion and proliferation of a number of 

cell types. DOK1 and DOK2 regulate the development and function of natural killer 

(NK) cells, which play an important role in the immune response and tumor inhibition. 

Overexpression of DOK proteins in human NK cells can stimulate the activation of 

receptors on NK cells and thus inhibit their activity. In mice, the deletion of DOK1 

and DOK2 genes has been shown to cause maturation defects in NK cells and 

increase the release of the cytokine interferon gamma (IFN-γ) (Celis-Gutierrez et 

al.2014). Furthermore, cell proliferation and differentiation are regulated by cytokines 

that bind to their corresponding receptors, which activate a variety of tyrosine kinases, 



including JAK kinases and Src family kinases. In turn, cytokines can also stimulate 

DOK2 phosphorylation. Studies have demonstrated that the expression of DOK2 in 

M-NFS-60 cells causes the release of a large number of cytokines that inhibit cellular 

proliferation and differentiation (Suzu et al.2000). 

2.2. DOK2 and regulation of the cell cycle of hematopoietic stem and progenitor cells 

Emile Coppin et al. demonstrated that DOK1 and DOK2 play significant roles in the 

proliferation of myeloid cells (Coppin et al.2016). In elderly mice, the downregulation 

or deletion of DOK1 and DOK2 induces myeloproliferative disease. Greater graft 

survival and transient medullary amplification capability have been observed in 

hematopoietic stem cells after the knockout of DOK1 and DOK2 genes. In 

hematopoietic progenitor cells, the expression of DOK l and DOK2 inhibits the cell 

cycling of hematopoietic progenitor cells, thus affecting their proliferation. Therefore, 

DOK1 and DOK2 can regulate the signaling pathways of hematopoietic cell growth 

and differentiation and therefore, they affect the growth of myeloid hematopoietic 

cells. 

2.3. DOK2 and platelet regulation 

Hughan et al. confirmed that DOK2 plays an important role in integrin-induced signal 

transduction from extracellular stimuli to intracellular signaling (Hughan et al.2000). 

In addition, immune complexes formed by DOK2 and integrin αIIβ3 are also 

expressed downstream of Src family kinases. DOK2 plays an important role in 

regulating the physiological function of platelets since thrombin and αIIβ3 receptors 

on platelets can stimulate the phosphorylation of platelet tyrosine residues. It has been 

shown that DOK2 is regulated in platelet-derived microparticles (PMPs) following 

stimulation by other platelets (Bidkhori et al.2013). In addition, DOK2, a 

platelet-specific collagen receptor glycoprotein V1 (GPVI) signaling protein, has been 

found to undergo a higher level of tyrosine phosphorylation in response to the 

GPV1-specific agonist CRP (collagen-related peptide), a significant factor at sites of 

coronary artery occlusion (Vélez et al.2016). 

2.4. DOK2 is a negative regulator of T-cell receptor signaling 

It has been proposed by Yasuda et al. that DOK2 functions as a negative regulator of 



T-cell receptor signaling. The interaction between a TCR complex and an antigenic 

peptide is a central event in the immune response. It has been observed that the 

response in mice to thymo-dependent antigens and the response of T-cells to TCR 

stimulation is enhanced in the absence of DOK1 and DOK2, principally manifested as 

the tyrosine phosphorylation activation of ZAP-70, the proliferation of T-cells, and 

production of cytokines (Yasuda et al.2007). DOK proteins play key roles in 

establishing a T-cell signal negative feedback loop. These structure-related adaptor 

molecules contain a Pleckstrin homology (PH) domain, usually a lipid/protein 

interaction module. Experiments conducted by Guittard et al. demonstrated that the 

PH domain is required for DOK phosphorylation which triggered DOK1 and DOK2 

inhibition in activated T-cells, while it has been found that the tyrosine 

phosphorylation of DOK1 and DOK2 proteins can be induced by inositol 

5-phosphatase containing SH2 domains produced by T-cells, triggered by TCR 

(Guittard et al.2009). DOK1 and DOK2 play key roles in the linker for activation of 

T-cells (LAT)-dependent negative feedback loop, which attenuates early TCR 

signaling. However, TCR can induce polymolecular complexes, including DOK2, 

SHI-1, and GRB-2, which assemble into LAT. LAT and SHI-1 also mediate tyrosine 

phosphorylation in DOK2. When DOK1 and DOK2 are inhibited, TCR-mediated IL-2 

production and signaling transduction have been found to be enhanced (Dong et 

al.2006). CD4 can enhance the sensitivity of the T-cell interaction with antigen 

peptide/MHC Ⅱ molecular complexes. Waterman et al. demonstrated that CD4 

aggregation leads to LCk-dependent phosphorylation of the RasGAP adaptor 

downstream of DOK-1/2 and inositol 5-phosphatase-1 (SHIP-1), leading to the 

binding of these two molecules. They hypothesized that the loss of function in CD4⁺ 

T-cells in HIV-1 may be due to the aggregation of gp120 with CD4 and subsequent 

inhibition of TCR activation in SHIP-1 and DOK1/2 pathways. It has been established 

that the SHIP pathway is necessary for CD4-mediated inhibition of calcium 

mobilization and proliferation of TCR stimulation activation (Waterman et al.2012). 

Retrovirus-mediated expression of DOK2 kinase-related protein, also known as 

DOK-R, in bone marrow cells has been shown by Gugasyan et al. to significantly 



inhibit the cytokine-dependent colony formation of hematopoietic progenitor cells, 

reduce the proliferation of thymus cells, and selectively inhibit the development of 

T-lymphocytes (Gugasyan et al.2002). 

2.5. DOK2 and tyrosine channels 

DOK2, a downstream product of tyrosine kinase negatively regulates the signaling 

pathway of tyrosine kinase. DOK2 inhibits MAPK and Akt signaling, thus inhibiting 

cell proliferation and migration via two forms of inhibitory mechanism. It has been 

shown that DOK2 recruitment of the negative regulator of Ras signaling in the 

Ras-Raf-MAPK pathway inhibits MAPK activity, while DOK2 inhibits Akt 

phosphorylation through the phospholipinositol 3-carboxykinase (PI3K)-Akt pathway 

(Niki et al.2004). In T-cells, for example, it has been found that DOK2 inhibits 

tyrosine phosphorylation and the Ras signaling pathway, thereby participating in the 

negative feedback regulation of Tec (Gérard et al.2004). In human bone marrow cells, 

CD200R directly recruits DOK2 and activates RasGAP, thereby inhibiting bone 

marrow cells to become activated (Mihrshahi et al.2009). Toll-like receptor II (TLR-2) 

strengthens DOK2 phosphorylation, with negative feedback modulating Ras-ERK 

activation (Downer et al.2013). After stimulation by EGF, DOK2 becomes 

phosphorylated, directly combining with EGFR tyrosine phosphate, then with Src 

family kinase (SFK) under the action of Csk, which inhibits MAPK, ERK, and Ras 

pathways, exacerbated by EGF (Berger et al.2013; Van et al.2005;Asati et al.2016). The 

combination of platelet-derived growth factor (PDGF) and PDGFR facilitates the 

phosphorylation of DOK2, thereby inhibiting the PI3K-Akt signaling pathway. Like 

DOK2, insulin, and insulin-like growth factor expression suppress the 

PI3K-Akt-mTOR and Ras-MAPK pathways (Solarek et al.2019). Early research 

demonstrated that Lck tyrosine kinase participates in signal transduction through 

T-cell surface receptors, such as TCR/CD3, CD2, and CD28. Ne'Morin et al. found 

that the cell surface receptor CD2 mediates Lck activation leading to specific 

phosphorylation of RasGAP, P56DOK (DOK2), and P62DOK (DOK1) (Némorin et 

al.2000). In addition, they also demonstrated that phosphorylation of Ras GAP, DOK2, 

and DOK1 is associated with increased intracellular Ca2+ concentration and that the 



association between Lck and DOK1 is formed through an SH2-mediated interaction. 

They also found that the phosphorylated tyrosine (PTB) binding domain of DOK2 and 

DOK1 mediates their isotypic and heterologous interactions. PTB-mediated 

oligomerization of Dok-1 and Dok-2 has been shown to be a requirement for DOK 

tyrosine phosphorylation and functionality (Boulay et al.2005). 

2.6. DOK2 is a negative regulator of lipopolysaccharide-induced signaling 

Endotoxin is a form of bacterial lipopolysaccharide (LPS). Shinohara et al. 

demonstrated that DOK1 and DOK2 are negative regulators of tumor necrosis factor 

α (TNF-α) and nitric oxide (NO) produced after treatment of macrophages with LPS. 

DOK1 and DOK2 are known to be important adapters of the negative regulation of 

ERK. Shinohara verified that forced expression of DOK1 and DOK2 inhibits 

LPS-induced ERK activation and TNF-α production. It was also found that mice 

lacking DOK1 and DOK2 are allergic to LPS (Guittard et al.2009). 

2.7. DOK2 and type I Fc receptors 

The expression of type I Fc receptors (FcIR) on mast cells causes activation of a 

biochemical cascade reaction, leading eventually to the release of inflammatory 

cytokines and a change in cell morphology and adhesion. It has been found that 

DOK1 and DOK2 are involved in an FcIR cascade in mucosal-type cells in RBL-2H3 

rats. FcIR has also been shown to stimulate the phosphorylation of DOK1 and DOK2 

through tyrosine (Abramson et al.2007). In addition, DOK1 and DOK2 may also be 

key to cell cytoskeletal rearrangements following FcIR stimulation. 

2.8. DOK2 regulates memory CD8+ T-cells 

The strength and nature of TCR signaling affect the differentiation and function of 

effector and memory CD8+ T-cells. DOK1 and DOK2 are expressed on T-cells and 

negatively regulate the TCR signaling pathway in vitro. Laroche et al. investigated the 

role of DOKl and DOK2 proteins in the regulatory response of CD8+ T-cells to 

vaccinia viral infection (Laroche et al.2016). The response of wild-type cells to 

cowpox virus expressing the OVA peptide SIIFEKL was compared to that of CD84 

OT-1 cells in which both DOK1 and DOK2 were silenced. They found that CD8- 

T-cell proliferation was inhibited because the T-cells displayed serious survival 



defects. In addition, CD8+ T-cells expressing DOK1 and DOK2 were also found to 

express TCR on their cell surface following stimulation by viral antigens in vivo, thus 

promoting the expression of granzyme B and TNF in vitro. This indicates that DOK1 

and DOK2 negatively regulate the overactivation of CD8+ T-cells and promote the 

formation of memory cells. 

2.9. DOK2 with CD200 and CD200R 

It has been shown that the interaction between membrane glycoprotein CD200 and its 

homologous receptor CD200R plays an important role in the static maintenance of 

microglia (Lyons et al.2012). DOK2 phosphorylation is a key event that mediates the 

role of CD200 fusion protein (CD200FC) because DOK2 deletion blocks the 

activation of CD200FC on microglia cells and the production of cellular inflammatory 

cytokines. CD200R is located in the cytoplasm and has 67 amino acids, containing 3 

tyrosine residues and an NPXY motif. The interaction between CD200 and CD200R 

induces phosphorylation of these residues, initiating a signaling cascade and 

recruitment of DOK1 and DOK2 proteins, which activate RasGAP and SHIP, 

SH2-containing proteins. CD200R and DOK2 can stimulate microglia proliferation, 

and so CD200R and DOK2 may play roles in neurodegenerative diseases. The 

CD200/CD200R pathway is also of great significance for the treatment of leukemias. 

Viruses can mimic host proteins that produce CD200 and suppress the host antiviral 

response. Therefore, CD200 is also a marker of human cancer or cancer stem cells. 

Viruses suppress immune recognition, leading to immune escape by inhibition of 

activated white blood cells bearing CD200R (Mihrshahi et al.2010). In human 

medullary cells, CD200R is able to recruit DOK1 and DOK2, thereby inhibiting the 

Ras pathway. Furthermore, it has also been found that DOK2 can directly interact 

with the NPXY motif in human CD200R, leading to the activation of RasGAP, 

thereby inhibiting the activation of human medullary cells (Rijkers et al.2007). In 

mouse medullary mast cells, CD200R is phosphorylated on tyrosine residues 

following the binding with its ligand, followed by binding to DOK1 and DOK2. It has 

been found that DOK1 binds to SHIP, and both DOK1 and DOK2 recruit RasGAP, 

leading to the inhibition of the Ras-MAPK signaling pathway (Zhang et al.2004; Zhang 



et al.2006). Studies have also shown that CD200R1 may also be associated with head 

and neck squamous cell carcinoma due to the action of DOK2, as shown in Table 1 

(Chang et al.2020). 

 

3. DOK2 and pathology 

3.1. DOK2 and herpes simplex virus 1 

After herpes simplex virus-1 (HSV-1) infection, viral envelope protein vp11 / 12 can 

bind to DOK2 through its SHC-binding motif, inducing tyrosine phosphorylation and 

selective degradation of DOK2. Lahmidi et al. speculated that this may be an immune 

escape mechanism through inactivation of T-cells or inhibition of T-cell immune 

function (Lahmidi et al.2017). When HSV-1 becomes a latent infection, DOK2 can 

promote the survival of HSV-1-specific CD8+ T-cells in lymphoid tissues, such as the 

spleen and draining lymph nodes, and also non-lymphoid tissues, such as the cornea 

and trigeminal ganglion (TG). Its deficiency has been shown to promote activation of 

latent HSV-1 in vitro (Lahmidi et al.2017). 

3.2. DOK2 and glial inflammation 

Toll-like receptor 2 (TLR-2) is a bridge between specific and nonspecific immunity, 

through recognition of pathogen-related molecular patterns, triggering signal 

transduction and leading to the release of inflammatory mediators. Studies by Downer 

and others have shown that TLR-2 enhances tyrosine phosphorylation of DOK1 and 

DOK2 in astrocytes and microglia. In astrocytes transfected with DOK1 and DOK2 

siRNA, the production of NF-κB and IL-6 induced by TLR-2 was found to be 

enhanced, indicating that DOK1 and DOK2 proteins affect the release of 

inflammatory mediators induced by TLR-2 through negative feedback regulation 

(Solarek et al.2019). 

3.3. DOK2 and leishmaniasis infection 

Previous studies have shown that DOK1, DOK2, and DOK3 are targets of GP63, a 

metalloprotein associated with Leishmania. Álvarez de Celis et al. found that tumor 

necrosis factor and nitric oxide expression declined in macrophages lacking Dok1 and 

Dok2 expression treated with Δgp63 protein or wild type L. major promastigotes 



compared with wild-type macrophages, indicating that DOK proteins may be an 

important regulatory factor in macrophages infected with Leishmania (Álvarez et 

al.2015).  

3.4. DOK2 and peritoneal fibrosis 

Peritoneal fibrosis (PF) is a recognized complication associated with continuous 

peritoneal dialysis, characterized by early reversible epithelial to mesenchymal 

transition (EMT) (Zhang et al.2019). The long noncoding RNA AK089579 inhibits 

EMT in peritoneal stromal cells (PMC) by the competitive binding of 

microRNA-296-3p to DOK2. As is well known, DOK2 is a target gene of miRNA296, 

so AK089579 can regulate the expression of DOK2 by regulation of miRNA296 

through the JAK2-STAT3 signaling pathway. AK089579 can inhibit the activation of 

the JAK2-STAT3 signaling pathway, and indirectly upregulate the expression of 

DOK2 by combining with miRNA296, thus inhibiting migration, invasion, and EMT 

in the PMC in a murine model of PF. In addition, upregulation of miRNA296 and 

down-regulation of DOK2 were found to display opposite effects. In conclusion, 

DOK2 may play a key role in PF, as shown in Table 2. 

 

4. DOK2 and tumors 

4.1. DOK2 and colorectal cancer 

Colorectal cancer is the most common malignant tumor of the digestive system. Its 

morbidity and mortality are on the rise, currently ranking third among malignant 

tumors. Although many forms of treatment can improve the postoperative survival of 

patients with colorectal cancer, biomarkers for early diagnosis and poor prognosis of 

colorectal cancer remain lacking. Thus, it remains an important goal to identify new 

biomarkers for the disease. Research by Xianmei Wen et al. indicates that of 102 

patients with postoperative colorectal cancer, 33.3% did not express DOK2, a 

subgroup that generally displayed poor prognosis, with a five-year survival rate of 

only 59.1%. In comparison, the five-year survival rate of patients expressing DOK2 

was as high as 76.4% (P=0.0328). The expression of DOK2 was found to be low in 

34 patients with poorly differentiated colorectal cancer. Compared with colon cancer 



tissue which is generally observed to have high DOK2 expression, highly 

differentiated and chronically differentiated adenomas lacked the expression of DOK2 

(Wen et al.2015). These observations suggest that low DOK2 expression may be a 

biomarker of poor prognosis in patients undergoing colorectal cancer resection. 

Moreover, DOK2 may also play an important role in its early diagnosis and treatment. 

However, at present, the consequences of low expression of DOK2 are not been fully 

understood, and additional studies are required to confirm the mechanism of DOK2 in 

the treatment of colorectal cancer and other cancers. 

4.2. DOK2 and leukemia  

The combined loss of DOK1 and DOK2 can trigger chronic myeloid leukemia 

(CML)-like myeloproliferative disease (MPD) when completely explicit. Their lack 

results in the proliferation or survival of hematopoietic cells in the presence or 

absence of growth factors, respectively. This indicates that both DOK1 and DOK2 

play key synergistic roles in the homeostasis of hematopoiesis and inhibition of 

tumors, allowing resistance to p210 BCR-ABL-driven leukemia and lymph node 

formation (Niki et al.2004). In a study published by Yasuda et al., it was revealed that 

DOK1 and DOK2 play synergistic roles in the negative regulation of a number of 

cytokines, except G-CSF (Yasuda et al.2004). They also synergistically inhibit 

extracellular-regulated protein kinase (ERK) and protein kinase B (PKB) when 

stimulated synergistically by cytokines. In addition, DOK1 and DOK2 inhibit 

cytokine-mediated proliferation and anti-apoptotic signals in myeloid cells. In a study 

published by Niki et al., DOK1 and DOK2 were found to inhibit the development of 

myeloid leukemia and CML-like disease mutations in mice (Niki et al.2004; Yasuda et 

al.2004)). DOK1 and DOK2 were also shown to prevent HL-60 cells from losing 

viability following long-term exposure to high serum levels. When induced by 

trans-retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (VD3), ectopic expression of 

DOK2 was shown to increase in HL-60 cells following the arrest of growth, 

differentiation, and G0/G1 cell cycle arrest induced by RA and VD3, resulting in 

increased phosphorylation of extracellular regulated protein kinase (ERK1/2)( Lamkin 

et al.2006). 



Dasatinib has been found to inhibit the function of c-Abl by reducing the 

phosphorylation of DOK2, a downstream target of c-Abl, during the treatment of 

primary chronic lymphoblastic leukemia (CLL), inducing H2AX phosphorylation, 

causing CLL lymphocytes to be sensitive to chlorambucil and fludarabin (Amrein et 

al.2008). In chronic myeloid leukemia (CMML), DOK2 undergoes point mutation, 

affecting the DOK2 PTB domain. For example, the L238P mutation can modify the 

PTB domain, preventing binding to the phosphotyrosine peptide, and the 

tyrosine-phosphorylated DOK1 protein. It also leads to the loss of DOK2 

functionality and the failure to inhibit ERK activation (Coppin et al.2015). DOK2 and 

SHIP1 proteins are the most significant constitutive phosphorylation substrates of 

BCR-ABL kinase. In a study by Xiquan Liang et al., DOK2 was found to be 

phosphorylated at tyrosine 299, while imatinib was shown to inhibit the tyrosine 

phosphorylation of DOK2 (Liang et al.2006). In two groups of experiments by Takeo 

Ohsugi et al., it was first shown that, compared with uninfected T-cells, DOK2 

expression is significantly reduced in transformed T-cells (MT-2 and hut-102) infected 

with HTLV-1, and TL-Om1 cells from adult T-cell leukemia/lymphoma (ATLL) 

patients (Ohsugi et al.2016). They subsequently studied human T-cell leukemia virus 

type 1 transferred into mice. The HTLV-1 transgenic (TG) mice expressed DOK2 in 

mature thymocytes and peripheral lymphocytes. We have observed that DOK2 

expression in TG mice is significantly lower than in non-TG mice prior to exhibiting 

disease symptoms, with the downregulation of DOK2 expression the first step in the 

development of disease characterized by low DOK2 gene expression (Ohsugi et 

al.2017). Knockout of DOK2 mRNA in mouse erythrocytic leukemia cells with high 

DOK2 expression has been found to increase the expression of Kruppel like factor 

(KIf1). Experiments by Tanaka demonstrate that DOK2 binds directly to the KIf1 

promoter, controlling KIf1 expression through transcriptional regulation (Tanaka et 

al.2014). Pin Fang He et al. have also investigated the decreased expression of DOK1 

and DOK2, finding an association with hypermethylation of the promoters, allowing 

prediction of adverse prognosis of acute myeloid leukemia (AML) (He et al.2018). 

4.3. DOK2 and invasive histiosarcoma  



Mashima et al. obtained TKO mice by knockout of the DOK1/2/3 genes. The results 

demonstrate that invasive tissue sarcoma (HS) is significantly associated with a lethal 

phenotype in TKO mice, finding that the HS observed in the mice was highly invasive 

and transplantable. Abnormal aggregation of pulmonary macrophages in TKO mice 

was also observed, indicating that DOK1/2/3 are negative regulators of the 

macrophage response to macrophage colony-stimulating factor (G-CSF) and 

granulocyte macrophage colony-stimulating factor (GM-CSF) (Mashima et al.2010). 

4.4. DOK2 and lung cancer 

In a study by Chen et al., DOK2 and Dusp4 were found to display both tumor 

suppressive and MAPK inhibitory functionality due to haploid deficiency. The 

complex heterozygosity of DOK2 and Dusp4 enhance sensitivity to MEK inhibition, 

and both inhibit MAPK activation and cell proliferation. It was found that DOK2 and 

Dusp4 heterozygosity synergistically promotes the occurrence of lung tumors (Chen et 

al.2019). It is well known that DOK2 is a human lung tumor suppressor, and Berger et 

al. further confirmed that DOK2 is a target for genomic deletion and down-regulation 

of human lung cancer, with DOK2 able to inhibit the proliferation of lung cancer both 

in vitro and in vivo. They also concluded that single or compound knockout of 

DOK1/2/3 can cause lung cancer in mice and that the rate of incidence of lung 

adenocarcinoma increases with the number of missing alleles. It has been found that 

DOK2 expression in lung cancer cell lines is very low or undetectable (Berger et 

al.2010). Berger has also demonstrated that DOK2 inhibits EGF-induced Ras and 

ERK activity, interacting with EGFR. In other words, the induction of EGFR 

activation by ligands or carcinogenic mutations induce DOK2 to recruit the EGF 

receptor complex and rasa1. In addition, DOK2 has been shown to inhibit the 

expansion of EGFR mutant lung adenocarcinoma cells (Berger et al.2013).       

4.5. DOK2 and renal cancer 

Globally, renal cancer is the 16th most common disease, with 403,262 new cases and 

175,098 deaths in 2018. Solarek et al. compared HEK293 renal cancer cells with 

PCS-400-010 normal renal cells and evaluated cell growth, viability, and mobility 

following hormone stimulation, also measuring insulin and insulin-like growth factor 



1 receptor (IGF-1) expression. The results indicate that insulin and IGF-1 promote the 

growth and migration of renal carcinoma cells (Solarek et al.2019; Kužma et al.2019). 

In addition, the expression of insulin and IGF-1 promote the expression of genes 

inhibitory to the PI3K-Akt-MTOR and RAS-MAPK signaling pathways, similar to 

the functions of genes such as DOK1, DOK2, INS, and FRS3. In addition, these genes 

also encode insulin receptor-related proteins, although they are not expressed in renal 

cancer cells. Therefore, this suggests that low DOK2 expression causes low insulin 

and IGF-1 expression, and so the rapid growth and migration of renal cancer. 

4.6. DOK2 and breast cancer 

Breast cancer is among the two most deadly cancers in women in Asia, with a very 

high incidence. Although the survival rate of patients with breast cancer is as high as 

65% with advanced treatment, the identification of novel biomarkers for its early 

diagnosis and poor prognosis remains a challenge(Jambor et al.2019). Huang et al. 

demonstrated that low expression of DOK2 and RASA1 is related to poor 

differentiation in breast cancer, and the deletion of DOK2 and RASA1 is related to 

increased tumor size, increased proportion of axillary lymph node metastasis, and 

higher clinical stage. The absence of DOK2 and RASA1 may cause activation of Ras 

extracellular signaling that regulates the kinase cascade, leading to cell cycle 

abnormalities that affect tumor size and metastasis (Huang et al.2017; Ghanem et 

al.2014; Zhang et al.2020). Ghanerm et al. found that decreased DOK2 mRNA 

expression in human breast cancer cells leads to higher TNM staging, while patients 

with high expression of DOK2 have a lower risk of recurrence and distant metastasis 

following surgical resection (Ghanem et al.2014). When treating breast cancer, the lack 

of the DOK2 gene reduces the level of apoptosis leading to drug resistance. In 

addition, DOK2 promotes the recycling of EGFR by the C-Src inhibitor Csk that 

inhibits the activation of MAPK, which is closely related to the occurrence and 

development of breast cancer (Van et al.2005). In summary, the deletion or low 

expression of DOK2 may represent low differentiation in breast cancer cells and 

related to poor prognosis in patients. Therefore, DOK2 may play an important role in 

the early diagnosis and treatment of breast cancer. 



4.7. DOK2 and glioma 

Glioma is the most common primary intracranial tumor, accounting for 27% of all 

tumors of the central nervous system(Herbet et al.2018). Pramod et al. confirmed that 

NC, a well-known anticancer drug, can recruit DOK2 and Caspase3 that affects the 

death of glioma in C6 mice and U87 human malignant glioma cells. Therefore, the 

overexpression of DOK2 protein may be related to poor prognosis in human glioma 

(Deshpande et al.2018).  

4.8. DOK2 and lymphoma 

Lymphoma is not uncommon in China, with an incidence of 4-5 per 100,000 

population, and so it is one of the ten most common malignant tumors. In patients 

with lymphomas, the disease is often caused by the multiple cloning of a cell with a 

particular TCR rearrangement, while it is also partly caused by loss of TCR 

expression. Therefore, we speculated that the TCR pathway may play an important 

role in the occurrence and development of T-cell lymphoma. Miyata-Takata et al. 

identified components of the TCR pathway in 91 formalin-fixed paraffin-embedded 

lymphatic tissues using immunohistochemical techniques. The results indicate that 

ZAP70 is expressed in 94% (83/88) of cases, GRAP2/GADS in 68% (60/68), DOK2 

in 42% (38/90), LCK in 35% (31188), and ITK in 10% (9/90). Thus, iDOK2 appears 

to affect the TCR expression pathway and regulates the growth of T-cell lymphomas 

(Miyata et al.2018). Furthermore, immunostaining of proteins suggests that DOK2 

expression is also lower in both normal T-cells and those of lymphoma patients. It 

thus plays an important role in the differentiation of cells. Therefore, there may be a 

significant role for DOK2 in the treatment of T-cell lymphoma. 

4.9. DOK2 and astrocytoma 

Astrocytoma is a common malignant tumor of the brain. Although clinical research 

has made good progress, the median survival of patients with malignant astrocytoma 

remains very low. From 47 tissue samples of patients undergoing resection of 

astrocytoma, PCR and Western blot analysis has found that DOK2 protein is 

overexpressed in 83% of stage GIII and GIV astrocytoma, and in 30% of stage GII 

tissues. In a follow-up investigation, the median survival of patients in the 



DOK2-overexpression group was only 20 months (95% CI: 0.083 - 0.49) (Deshpande 

et al.2018). In conclusion, DOK2 overexpression is associated with poor prognosis in 

astrocytoma and may represent an effective target for its treatment. 

4.10. DOK2 and other tumors 

It has been shown that inhibition of DOK2 increases platinum resistance in ovarian 

cancer cells. In addition, loss of DOK2 protects against apoptosis and anoikis, that is, 

loss of DOK2 can induce resistance to carboplatin in ovarian cancer cells (Fang et 

al.2018). Concversely, inhibition of DNA methylation has been found to leads to the 

upregulation of DOK2 expression, causing ovarian cancer cells to be sensitive to 

platinum-based drugs (Lum et al.2013), and should be considered when Appraising 

the prognosis of ovarian cancer patients. Furthermore, the low frequency of missense 

mutants of DOK2 is significantly correlated with the increased incidence of 

pancreatic adenocarcinoma (PDAC) (Chang et al.2013). Additionally, it can also be 

used as a marker of poor prognosis after radical mastectomy (Miyagaki et al.2012), as 

shown in Table 3. 

 

5.Mechanisms of action of DOK2 

DOK2 is a well-known tumor suppressor gene located on human chromosome 8p21.3 

whose expression is downstream of tyrosine kinase, thereby affecting EGF-stimulated 

DOK2 phosphorylation. DOK2 operates through tyrosine kinase receptors, such as 

EGFR, PDGFR, and Her-2, with negative feedback regulating tyrosine kinase activity 

(Solarek et al.2019; Chen et al.2019; Ghanem et al.2014). For example, DOK2 interacts 

with EGFR. Through the action of an Src family kinase, DOK2 activates EGFR, 

which inhibits the EGF-P13K-Akt pathway, influencing the expression of related 

genes and proteins that inhibit cell proliferation and migration, promoting cell 

apoptosis and autophagy, which affects tumor development (Berger et al.2013; Van et 

al.2005). EGFR and RASA1 activation can also inhibit the EGF-RAS-MAPK-ERK 

pathway which inhibits cell division and affects the occurrence and development of 

tumors. In addition, DOK2 can recruit Csk family proteins that inhibit Src family 

kinase activity (Berger et al.2013). However, EGFR activation also induces DOK2 



recruitment to the EGFR complex and DOK2-mediated recruitment of RASA1. 

DOK2 is also stimulated by epidermal growth factor, macrophage colony-stimulating 

factor (M-CSF), angiogenin-1 (Ang-1), interleukin-3 (IL-3), etc. DOK2 can be 

phosphorylated when stimulated by these factors (Suzu et al.2000; Master et al.2001; 

Jones et al.2003), as shown in Figure 2.  

  

6. Summary 

DOK2 plays an important role in many physiological functions, especially negative 

regulation of the T-cell signaling pathway and growth and development of 

hematopoietic progenitor cells. Moreover, it is associated with multiple diseases, such 

as leukemia, invasive tissue sarcoma, herpes simplex virus (HSV-1), peritoneal 

fibrosis, etc. In addition, many reports have demonstrated that downregulation of 

DOK2 is related to the occurrence of cancer. Berger et al. have confirmed that DOK2 

is a target of genomic deletion and down-regulation in human lung cancer (54). 

Therefore, genetic testing prior to the occurrence of cancer should predict the risk of 

disease in patients. Similarly, we can also select DOK2 as a therapeutic target for 

cancer treatment to block its carcinogenic mechanism in advance. For prognosis 

related to surgery, DOK2 is also of considerable value as a reference. For example, in 

ovarian cancer, upregulation of DOK2 causes ovarian cancer cells to again be 

sensitive to platinum-based drugs (Fang et al.2018; Lum et al.2013). Therefore, to 

prevent, treat, and evaluate prognosis of cancer patients, DOK2 is an important target, 

but not the one and only most important. 
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Figure legends 

 

 

Figure 1.  DOK2 domain and potential function. The SH domain is at the DOK2 

C-terminus. The Pleckstrin homology domain (PH) is connected at the N-terminal of 

DOK2 and promotes protein-protein interactions. 

 

 

Figure 2.  Potential role of DOK2 in tumorigenesis. DOK2 is regulated by 
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multiple factors such as EGF, PDGF, etc., which then regulate the Ras/PI3K signaling 

pathway causing abnormal cell proliferation and migration, ultimately leading to 

tumorigenesis. 

 

 

 

 

Table 1. Role of DOK2 and related factors in various physiological processes 

Physiological processes DOK2 and DOK2-associated factors  

Cell fusion and proliferation  DOK2, DOK1, DOK3, IFN-γ 

Regulation of the cell cycle of 

hematopoietic stem and progenitor cells 

DOK2, DOK1 

Regulation of platelets DOK2,  αIIβ3 

Negative regulators of T cell receptor 

Signaling 

DOK2, ZAP-70, SHIP-1, Grb-2, CD4, 

RasGAP, gp120 

Tyrosine channel DOK2, EGFR, RasGAP, TLR-2 

Negative regulators of DOK2, LPS, TNF-α, ERK 



Lipopolysaccharide-induced signals 

FcⅠR DOK2, FcⅠR 

Modulation of memory CD8+ T cells DOK2, DOK1,  

CD200 and CD200R DOK2, CD200, CD200R, GasGAP 

 

Table 2. Role of DOK2 and related factors in various pathophysiological processes 

Pathological process 
DOK2 and DOK2-associated 

factors 

Peritoneal fibrosis DOK2, lncRNA(AK089579), 

JAK2/STAT3 

Herpes simplex virus 1 (HSV-1) DOK2, Vp11/12, DOK1 

Glial inflammation 

Leishmania infection 

DOK2, TLR-2, IL-6 

DOK2, DOK1, DOK3, GP63 

Table 3. Genes or proteins associated with DOK2 and the related cancers 

Cancer type DOK2-associated gene or 

protein 

Colorectal cancer DOK2 

Chronic myelogenous leukemia (CML) DOK2, ERK, MAP, gp210 

Adult T-cell leukemia (ATL) 

Erythroleukemia 

Chronic lymphocytic leukemia 

DOK2, Tax 

DOK2, KIf1 

DOK2, Src 

Aggressive histiocytic sarcoma (HS) DOK2, DOK1, DOK3, M-CSF, 

GM-CSF 

Lung cancer DOK2, MAPK, Dusp4, EGFR 

Renal cancer DOK2, IGFs, Insulin 

Breast cancer DOK2, RASA1, MAPK, C-Src, 

Csk, EGFR 

Glioma cancer DOK2, NC 

Lymphoma DOK2, TCR 



Astrocytoma DOK2 

Ovarian cancer DOK2 

Pancreatic cancer DOK2 

Gastric cancer DOK2 

 


