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The model

• non-stationary non-isothermal saturated water flow in a deformable porous medium

• isotropic elastic skeleton

• negligible inertial effects

• continuum approach, continuity assumption

• the assumption of thermal equilibrium

• the assumption of small perturbations (small transformations, small displacements, small vari-
ations of the porosity, water mass density and temperature) + the assumption of small defor-
mation velocity

• compressive-positive pore pressures, tensile-positive stresses

• an extract from [Cou04] with the Lagrangian approach + a connection and adaptation of the
Eulerian approach from [LS98]

Notation

t — the time u — the displacement vector of the skeleton

id+ u — the deformation of the skeleton F = I + ∇u — the deformation gradient

ε ≡ 1

2

(
∇u+ (∇u)>

)
— the linear strain tensor εv ≡ tr ε = divu — the volumetric strain

J = det(I + ∇u) — the Jacobian of the deformation

(≈ 1 + εv under the assumption of small transformations)

n — the Eulerian porosity φ = Jn — the Lagrangian porosity

Balance laws

Skeleton mass balance

The Eulerian form (in the current configuration):

∂(ρs(1− n))

∂t
+ div

(
ρs(1− n)vs

)
= 0 (1)

ρs — the matrix mass density vs — the skeleton velocity

or equivalently:

Ds(ρs(1− n))

Dt
+ ρs(1− n) div vs = 0 (2)

Ds

Dt
=

∂

∂t
+ vs · ∇ — the total time derivative with respect to the skeleton
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The Lagrangian form (in the initial configuration):

ρs(1− n)J = ρs0(1− φ0) (3)

ρs0 — the initial skeleton mass density

φ0(= n0) — the initial Lagrangian (= initial Eulerian) porosity

Water mass balance

The Eulerian form:

∂(ρwn)

∂t
+ div(ρwnvw) = 0 (4)

ρw — the water mass density

vw — the water velocity

or equivalently, referring to the skeleton motion:

Ds(ρwn)

Dt
+ ρwndiv vs + div(ρwqrw) = 0 (5)

qrw ≡ n(vw − vs) — the water specific discharge relative to the skeleton

(or Darcy velocity or filtration vector)

The Lagrangian alternative:

d(ρwφ)

dt
+ divM = 0 (6)

M ≡ JF−1(ρwqrw) — the Lagrangian relative flow vector of water mass (7)

Balance of momentum

For any current material domain Vt:

Ds

Dt

∫
Vt

ρs(1− n)vs dVt +
Dw

Dt

∫
Vt

ρwnvw dVt =

∫
Vt

ρf dVt +

∫
∂Vt

T da (8)

Dw

Dt
— the total time derivative with respect to the water

ρ ≡ ρs(1− n) + ρwn — the mass density of the porous medium

(including both the skeleton and the water)

f — a body force density T — a surface force density

Applying the transport theorem to each component of the left-hand side of (8) one gets:

Ds

Dt

∫
Vt

ρs(1− n)vsi dVt +
Dw

Dt

∫
Vt

ρwnvwi dVt

=

∫
Vt

(
∂(ρs(1− n)vsi)

∂t
+ div

(
ρs(1− n)vsivs

)
+
∂(ρwnvwi)

∂t
+ div(ρwnvwivw)

)
dVt ∀i

which together with the mass balance equations (1) and (4) yields:

Ds

Dt

∫
Vt

ρs(1− n)vs dVt +
Dw

Dt

∫
Vt

ρwnvw dVt =

∫
Vt

(
ρs(1− n)as + ρwnaw

)
dVt

as ≡
Dsvs
Dt

=
∂vs
∂t

+ (∇vs)vs — the skeleton acceleration

aw ≡
Dwvw

Dt
=
∂vw
∂t

+ (∇vw)vw — the water acceleration
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Use of the Cauchy stress tensor in the surface integral of (8) in connection with the divergence
theorem gives:∫

∂Vt

T da =

∫
∂Vt

σnda =

∫
Vt

divσ dVt

σ — the Cauchy stress tensor n — the outward unit normal to Vt

Hence one can rewrite (8) in the form:∫
Vt

(
divσ + ρf − ρs(1− n)as − ρwnaw

)
dVt = 0

which leads to the local equation of motion:

divσ + ρf − ρs(1− n)as − ρwnaw = 0 (9)

By neglecting the inertial forces one arrives at:

Equilibrium equation

The Eulerian form:

divσ + (ρs(1− n) + ρwn)f = 0 (10)

The Lagrangian counterpart:

div(FΠ) + (ρs0(1− φ0) + ρwφ)f = 0 (11)

Π ≡ JF−1σF−> — the Piola-Kirchhoff stress tensor (12)

Balance of moment of momentum

=⇒ symmetry of the stress tensor σ

Energy conservation

Partial stress tensors

The stress tensor σ can be decomposed as:

σ = (1− n)σs + nσw (13)

σs,σw — the partial stress tensors related to the solid matrix and the water, respectively

so that:

T = Ts + Tw Ts = (1− n)σsn, Tw = nσwn (14)

Here one can take approximately

σw = −pwI (15)

pw — the water pressure

because the water shear stress plays the main role in the interaction force between the water and
the skeleton (which does not explicitly appear here).
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Mechanical energy equation

The work rate PVt
(f ,T ) supplied by the external body and surface forces to a material domain

Vt is given by:

PVt
(f ,T ) ≡

∫
Vt

(
ρs(1− n)f · vs + ρwnf · vw

)
dVt +

∫
∂Vt

(
Ts · vs + Tw · vw

)
da

=

∫
Vt

(
ρf · vs + ρwf · qrw

)
dVt +

∫
∂Vt

(
T · vs + Tw · (vw − vs)

)
da

The divergence theorem and the symmetry of the stress tensor σ yield:∫
∂Vt

T · vs da =

∫
∂Vt

(σn) · vs da =

∫
Vt

(
(divσ) · vs + σ : ds

)
da

ds ≡
1

2

(
∇vs + (∇vs)>

)
— the Eulerian strain rate tensor (16)

Owing to (14) and (15) one gets:∫
∂Vt

Tw · (vw − vs) da =

∫
∂Vt

(σwn) · qrw da =

∫
∂Vt

(−pwqrw) · n da =

∫
Vt

(
−div(pwqrw)

)
dVt

The total derivative of the kinetic energy associated with the skeleton and water particles in Vt
reads:

Ds

Dt

∫
Vt

1

2
ρs(1− n)vs · vs dVt +

Dw

Dt

∫
Vt

1

2
ρwnvw · vw dVt

=

∫
Vt

1

2

(
∂(ρs(1− n)vs · vs)

∂t
+ div

(
ρs(1− n)(vs · vs)vs

)
+
∂(ρwnvw · vw)

∂t
+ div(ρwn(vw · vw)vw)

)
dVt

(1),(4)
=

∫
Vt

1

2

(
ρs(1− n)

Ds(vs · vs)
Dt

+ ρwn
Dw(vw · vw)

Dt

)
dVt

=

∫
Vt

(
ρs(1− n)as · vs + ρwnaw · vw

)
dVt

=

∫
Vt

((
ρs(1− n)as + ρwnaw

)
· vs + ρwaw · qrw

)
dVt

Use of the equation of motion (9) finally leads to the mechanical energy equation in the form:

PVt
(f ,T )− Ds

Dt

∫
Vt

1

2
ρs(1− n)vs · vs dVt −

Dw

Dt

∫
Vt

1

2
ρwnvw · vw dVt

=

∫
Vt

((
divσ + ρf − ρs(1− n)as − ρwnaw

)
· vs

+ σ : ds − div(pwqrw) + ρw(f − aw) · qrw
)

dVt

=

∫
Vt

(
σ : ds − div(pwqrw) + ρw(f − aw) · qrw

)
dVt (17)

where the right-hand side can be interpreted as the strain work rate related to the porous medium
contained in Vt.
By neglecting the inertia effects one obtains:

PVt
(f ,T ) =

∫
Vt

(
σ : ds − div(pwqrw) + ρwf · qrw

)
dVt

(which can be alternatively derived by applying the equilibrium equation (10) solely to PVt
(f ,T )

in the procedure above).
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Energy balance

The conservation of energy in all its possible forms currently contained in a material volume Vt is
expressed by:

Ds

Dt

∫
Vt

ρs(1− n)

(
es +

1

2
vs · vs

)
dVt +

Dw

Dt

∫
Vt

ρwn

(
ew +

1

2
vw · vw

)
dVt

= PVt
(f ,T )−

∫
∂Vt

q · nda (18)

es, ew — the specific internal energies of the solid matrix and the water, respectively

q — the heat flux vector

Use of the transport theorem furnishes:

Ds

Dt

∫
Vt

ρs(1− n)es dVt +
Dw

Dt

∫
Vt

ρwnew dVt

=

∫
Vt

(
∂(ρs(1− n)es)

∂t
+ div

(
ρs(1− n)esvs

)
+
∂(ρwnew)

∂t
+ div(ρwnewvw)

)
dVt

=

∫
Vt

(
Ds(ρs(1− n)es)

Dt
+ ρs(1− n)es div vs +

Ds(ρwnew)

Dt
+ ρwnew div vs + div(ρwewqrw)

)
dVt

which together with the mechanical energy equation (17) and the divergence theorem allows us to
rewrite (18) as:∫

Vt

(
Ds(ρs(1− n)es)

Dt
+ ρs(1− n)es div vs +

Ds(ρwnew)

Dt
+ ρwnew div vs + div(ρwewqrw)

− σ : ds + div(pwqrw)− ρw(f − aw) · qrw + div q

)
dVt = 0 (19)

Neglecting the inertia force provides the local form:

Ds(ρs(1− n)es)

Dt
+ ρs(1− n)es div vs +

Ds(ρwnew)

Dt
+ ρwnew div vs + div(ρwewqrw)

− σ : ds + div(pwqrw)− ρwf · qrw + div q = 0

Use of (2) and (5) then yields the Euler energy equation:

ρs(1− n)
Dses
Dt

+ ρwn
Dsew

Dt
= σ : ds − div(pwqrw + q)− ρwqrw · ∇ew + ρwf · qrw (20)

With the aim of transporting equation (19) from the current volume Vt to the corresponding
volume V0 in the skeleton initial configuration, we firstly introduce:

e ≡ ρs(1− n)es + ρwnew — the overall density of internal energy

per unit volume of porous medium

hw ≡ ew +
pw
ρw

— the water specific enthalpy (21)

and express (19) in the form:∫
Vt

(
Dse

Dt
+ e div vs − σ : ds + div(ρwhwqrw + q)− ρw(f − aw) · qrw

)
dVt = 0
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Now use of standard transport formulae provides:∫
Vt

(
Dse

Dt
+ ediv vs

)
dVt =

∫
V0

(
∂e

∂t
+ vs · ∇e+ ediv vs

)
J dV0 =

∫
V0

d(eJ)

dt
dV0 =

∫
V0

dE

dt
dV0

E ≡ eJ — the overall Lagrangian density of internal energy

per unit of initial porous medium volume∫
Vt

div q dVt =

∫
V0

divQdV0

Q ≡ JF−1q — the Lagrangian heat flow vector∫
Vt

ρw(f − aw) · qrw dVt
(7)
=

∫
V0

(f − aw) · (FM) dV0 (22)

Moreover, one has for a particle which was initially located by a position vector X and is currently
located by a position vector x = X + u:

∇hw(X) = (F (X))>∇hw(x)

dF

dt
(X) =

d(∇u)

dt
(X) =

(
∇du

dt

)
(X) = ∇vs(x)F (X)

From here:∫
Vt

div(ρwhwqrw) dVt =

∫
Vt

(
hw div(ρwqrw) + ρwqrw · ∇hw

)
dVt

=

∫
V0

(
hw divM + ρwqrw · (F

−>∇hw)J
)

dV0

=

∫
V0

(
hw divM + (JF−1(ρwqrw)) · ∇hw

)
dV0 =

∫
V0

div(hwM) dV0

and

ds
(16)
=

1

2

(
∇vs + (∇vs)>

)
=

1

2

(
dF

dt
F−1 + F−>

(dF

dt

)>)
=

1

2
F−>

(
F>

dF

dt
+
(dF

dt

)>
F

)
F−1 = F−>

dE

dt
F−1

E ≡ 1

2
(F>F − I) — the Green-Lagrange strain tensor∫

Vt

σ : ds dVt =

∫
V0

σ :

(
F−>

dE

dt
F−1

)
J dV0

=

∫
V0

(
JF−1σF−>

)
:

dE

dt
dV0

(12)
=

∫
V0

Π :
dE

dt
dV0

Altogether, this furnishes:∫
V0

(
dE

dt
−Π :

dE

dt
+ div(hwM +Q)− (f − aw) · (FM)

)
dV0 = 0

Neglecting the inertia force delivers the Lagrangian local energy equation:

dE

dt
= Π :

dE

dt
− div(hwM +Q) + f · (FM) (23)

Finally, we express the energy balance in terms of entropies.

Assumption. The water and the matrix are locally in thermal equilibrium, that is, at the same
absolute temperature T (the timescale of the modelled phenomena is substantially larger than the
relaxation time required to reach thermal equilibrium locally).
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Let:

ss — the Eulerian specific entropy of the matrix

sw — the Eulerian water specific entropy

S ≡ (ρs(1− n)ss + ρwnsw)J — the overall Lagrangian density of entropy (24)

per unit of initial porous medium volume

Ψ ≡ E − TS— the overall Lagrangian density of Helmholtz free energy (25)

Then

T
dS

dt
=

dE

dt
− dΨ

dt
− S dT

dt
(23)
= Π :

dE

dt
− (hw − Tsw) divM − S dT

dt
− dΨ

dt
− (∇hw − T∇sw) ·M + f · (FM)

− divQ− T div(swM)

which provides the entropy balance in the form of the Lagrangian thermal equation:

T

(
dS

dt
+ div(swM)

)
= −divQ+ Φs + Φw (26)

Φs ≡ Π :
dE

dt
− (hw − Tsw) divM − S dT

dt
− dΨ

dt
— the Lagrangian density (27)

of skeleton dissipation

Φw ≡ −(∇hw − T∇sw) ·M + f · (FM) — the Lagrangian density of water dissipation (28)

The identification of Φs and Φw as the dissipation terms related respectively to the skeleton and
water will be done later.

Constitutive relationships

Lagrangian approach

Water

One can obtain the following water state equations by applying the first two laws of thermostatics:

hw = hw(pw, sw)
1

ρw
=
∂hw
∂pw

T =
∂hw
∂sw

(29)

These state equations can be inverted with respect to the conjugate sets of thermodynamical state
variables (pw, sw) and (1/ρw, T ). Indeed, by introducing:

ψw ≡ ew − Tsw
(21)
= hw −

pw
ρw
− Tsw — the water specific Helmholtz free energy (30)

one gets:

dψw =
∂hw
∂pw

dpw +
∂hw
∂sw

dsw −
dpw
ρw
− pwd

(
1

ρw

)
− Tdsw − swdT

(29)
= −pwd

(
1

ρw

)
− swdT

and the state equations take the alternative form:

ψw = ψw

(
1

ρw
, T

)
pw = − ∂ψw

∂(1/ρw)
sw = −∂ψw

∂T
(31)
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Equations (29) can also be only partially inverted with respect to the couple of conjugate variables
(sw, T ) by introducing:

gw ≡ hw − Tsw = ψw +
pw
ρw

— the water specific free enthalpy (also called the Gibbs potential)

so that:

dgw =
∂hw
∂pw

dpw +
∂hw
∂sw

dsw − Tdsw − swdT
(29)
=

1

ρw
dpw − swdT

and one obtains:

gw = gw(pw, T )
1

ρw
=
∂gw
∂pw

sw = −∂gw
∂T

(32)

By differentiating (32) one finally arrives at the constitutive equations:

dρw
ρw

=
dpw
Kw
− βwdT (33)

Kw — the water bulk modulus

βw — the water volumetric thermal expansion coefficient

dsw = −βw
dpw
ρw

+ cpw
dT

T
(34)

cpw — the water specific heat capacity at constant pressure

Note that considering Kw and βw constant (over some ranges of pressures and temperatures), one
can integrate (33) into the form:

ρw = ρw0e
(pw−pw0)/Kw−βw(T−T0)

ρw0, pw0, T0 — initial values of the water density, pressure and temperature

Darcy’s law

(for negligible inertial forces)

qrw =
k

µw
(−∇pw + ρwf) (35)

k — the (intrinsic) permeability tensor of the porous medium (in a general anisotropic case)

µw — the dynamic viscosity of water

Let us look at the water dissipation term Φw (28) at this point. Employing (29) one has:

∇hw − T∇sw =
∂hw
∂pw
∇pw +

∂hw
∂sw
∇sw − T∇sw =

1

ρw
∇pw

so we can rewrite Φw as:

Φw = − 1

ρw
(∇pw) ·M + f · (FM)

This can be expressed more conveniently in the Eulerian form. Let:

ϕw ≡ ΦwJ
−1 — the Eulerian density of water dissipation

From ∫
V0

1

ρw
(∇pw) ·M dV0 =

∫
Vt

1

ρw

(
F>∇pw

)
·MJ−1 dVt

=

∫
Vt

(∇pw) ·
(

1

ρw
FMJ−1

)
dVt

(7)
=

∫
Vt

(∇pw) · qrw dVt
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and (22) one gets:∫
Vt

ϕw dVt =

∫
V0

Φw dV0 =

∫
V0

(
− 1

ρw
(∇pw) ·M + f · (FM)

)
dV0 =

∫
Vt

(−∇pw + ρwf) · qrw dVt

ϕw = (−∇pw + ρwf) · qrw (36)

The non-negativeness of the dissipation associated with the water flow ϕw ≥ 0 in combination
with Darcy’s law (35) then requires:

(−∇pw + ρwf) ·
(
k

µw
(−∇pw + ρwf)

)
≥ 0

which implies that k/µw has to be positive semidefinite.

Fourier’s law

q = −κ∇T (37)

κ — a tensor of thermal conductivities (in a general anisotropic case)

Skeleton

To derive the constitutive equations for the skeleton, we identify Φs (27) with the dissipation
related to the sole skeleton first. For this purpose, the use of water mass balance equation (6)
allows us to rewrite Φs in the form:

Φs = Π :
dE

dt
+ (hw − Tsw)

d(ρwφ)

dt
− S dT

dt
− dΨ

dt

Due to (24) and the additive character of entropy one has:

Ss ≡ ρs(1− n)ssJ = S − ρwnswJ = S − ρwφsw (38)

— the skeleton Lagrangian density of entropy per unit of initial volume

and accordingly for the free energy (25):

Ψs = Ψ− ρwφψw — the skeleton Lagrangian density of free energy per unit of initial volume

These definitions in combination with (30) and (31) give:

Φs = Π :
dE

dt
+

(
ψw +

pw
ρw

)
d(ρwφ)

dt
− (Ss + ρwφsw)

dT

dt
− d(Ψs + ρwφψw)

dt

= Π :
dE

dt
+ ψw

d(ρwφ)

dt
+ pw

dφ

dt
+
pwφ

ρw

dρw
dt
− Ss

dT

dt
− ρwφsw

dT

dt

− dΨs

dt
− ψw

d(ρwφ)

dt
− (ρwφ)

(
∂ψw

∂(1/ρw)

d(1/ρw)

dt
+
∂ψw
∂T

dT

dt

)
= Π :

dE

dt
+ pw

dφ

dt
− Ss

dT

dt
− dΨs

dt

Eventually, use of energy Gs defined by:

Gs ≡ Ψs − pwφ

leads to:

Φs = Π :
dE

dt
+ pw

dφ

dt
− Ss

dT

dt
− dGs

dt
− pw

dφ

dt
− φdpw

dt

= Π :
dE

dt
− φdpw

dt
− Ss

dT

dt
− dGs

dt
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When the assumption of small transformations is fulfilled, Π and E can be replaced by σ and ε,
and one can write:

Φs = σ :
dε

dt
− φdpw

dt
− Ss

dT

dt
− dGs

dt

The skeleton energy Gs admits ε, pw and T as natural arguments since their rates explicitly appear
in the above expression for the dissipation related to the skeleton. In thermoporoelasticity, Gs is
therefore considered in the form:

Gs = Gs(ε, pw, T ) (39)

In addition, the dissipation related to the skeleton is zero, that is:

Φs = σ :
dε

dt
− φdpw

dt
− Ss

dT

dt
− dGs

dt
= 0 (40)(

σ − ∂Gs
∂ε

)
:

dε

dt
−
(
φ+

∂Gs
∂pw

)
dpw
dt
−
(
Ss +

∂Gs
∂T

)
dT

dt
= 0

Since variations of any variable among the set of state variables for the skeleton ε, pw and T can
occur irrespective of the variations of the other variables, this produces the state equations:

σ =
∂Gs
∂ε

φ = −∂Gs
∂pw

Ss = −∂Gs
∂T

By differentiating these equations while taking into account (39) and Maxwell’s symmetry relations
(the symmetry of partial derivatives) and restricting ourselves to an isotropic material, we finally
obtain the constitutive equations: Are there

any require-
ments on
the range
of D so
that the
differenti-
ation admits
the form
of the 1st

equation?
– Proba-
bly yes, but
should it
not have
a full rank
due to in-
vertibility of
the stress-
strain rela-
tion?

Are there
any require-
ments on
the range
of D so
that the
differenti-
ation admits
the form
of the 1st

equation?
– Proba-
bly yes, but
should it
not have
a full rank
due to in-
vertibility of
the stress-
strain rela-
tion?

dσ = D

(
dε− β

3
dTI

)
− αdpwI

= λdεvI + 2µdε− αdpwI − βKdTI (41)

dφ = αdεv +
dpw
N
− βφdT (42)

dSs = βKdεv − βφdpw + C
dT

T
(43)

D — a tangent elastic stiffness tensor of the skeleton

λ, µ — the Lamé coefficients of the skeleton

K = (3λ+ 2µ)/3 — the skeleton bulk modulus (44)

β — the skeleton volumetric thermal expansion coefficient

α — Biot’s coefficient N — Biot’s modulus

βφ — a volumetric thermal expansion coefficient related to the porosity

C — the skeleton heat capacity at constant strain and pressure

Considering α, N and βφ constant (over some ranges of strains, pressures and temperatures), one
can integrate (42) into the form:

φ− φ0 = αεv +
pw − pw0

N
− βφ(T − T0) (45)

By introducing:

σv ≡
1

3
trσ — the hydrostatic part of the stress tensor σ

and combining (43) and (41), one can express the entropy variation as a function of the volumetric
stress σv instead of the volumetric strain εv to see that:

C = Cσv
− β2KT Cσv

— the skeleton heat capacity at constant stress and pressure (46)
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Furthermore, let:
Ks — the matrix bulk modulus

Under the assumptions of the constancy of α, N , K and Ks, and small variations of the porosity
(and small transformations), one can derive:

α = 1− K

Ks

1

N
=
α− n0
Ks

(47)

Using n0 = φ0 one can also show:

β = βs βφ = βs(α− φ0) Cσv
= (1− φ0)Cσsv (48)

βs — the matrix volumetric thermal expansion coefficient

Cσsv — the solid matrix heat capacity at constant stress

One takes α = 1 and 1/N = 0 (1/Ks = 0) for an incompressible solid matrix (not βφ = 0 in contrast
to [Cou04, §4.1.3], where incompressibility with respect to pressure as well as temperature changes
is considered).

Eulerian approach

The constitutive equations (33) and (41) for ρw and σ and Darcy’s and Fourier’s laws (35) and
(37) are considered in the same form as in the Lagrangian approach.

Matrix density
− an alternative to (42) for the Lagrangian porosity φ.
Introducing:

σsv ≡
1

3
trσs — the hydrostatic part of the partial stress tensor σs

and considering ρs = ρs(σsv, T ) in analogy with the constitutive relationship for the water density
ρw (33) furnishes:

dρs
ρs

= −dσsv
Ks
− βsdT (49)

The stress partition (13) with (15) yields:

σv = (1− n)σsv − npw

(1− n)σsv = σv + npw =
1

3
trσ′ − (1− n)pw

σ′ ≡ σ + pwI — Terzaghi’s effective stress

which under the assumption of small variations of the porosity leads to:

dσsv =
d(trσ′)

3(1− n)
− dpw

dρs
ρs

(49)
=

dpw
Ks
− d(trσ′)

3(1− n)Ks
− βsdT

Further, one gets from (41) and the expression for α in (47):

dσ′ = λdεvI + 2µdε+
K

Ks
dpwI − βKdTI

d(trσ′) = tr

(
λdεvI + 2µdε+

K

Ks
dpwI − βKdTI

)
(44)
= 3K

(
dεv +

dpw
Ks
− βdT

)
and using α from (47) again, one finally arrives at:

dρs
ρs

=
1

1− n

(α− n
Ks

dpw − (1− α)dεv −
(
βs(1− n)− β(1− α)

)
dT
)

(50)
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Enthalpies

The Euler energy equation will be expressed by means of enthalpies instead of entropies sw and Ss
from the Lagrangian approach. Taking into account our sign convention of pressures and stresses,
we define in analogy (correctly?) with the water specific enthalpy hw (21): hs ≡ ?hs ≡ ?

hs ≡ es −
σsv
ρs

— the specific enthalpy of the solid matrix (51)

In view of (29) and (32):

dhw =
∂hw
∂pw

dpw +
∂hw
∂sw

dsw =
1

ρw
dpw + T

[(
∂sw
∂pw

)
T

dpw +

(
∂sw
∂T

)
pw

dT

]

where T or pw in the subindices mean that the partial derivatives are taken at T or pw held
constant, respectively. Now one can see from (34) and (33) that:(

∂sw
∂pw

)
T

= −βw
ρw

= −
(
∂(1/ρw)

∂T

)
pw

(
∂sw
∂T

)
pw

=
cpw
T

which yields:

dhw = cpwdT +

[
1

ρw
− T

(
∂(1/ρw)

∂T

)
pw

]
dpw = cpwdT +

1

ρw

[
1 +

T

ρw

(
∂ρw
∂T

)
pw

]
dpw (52)

Accordingly (?) dhs = ?dhs = ?

dhs = cσsvdT −

[
1

ρs
− T

(
∂(1/ρs)

∂T

)
σsv

]
dσsv = cσsvdT − 1

ρs

[
1 +

T

ρs

(
∂ρs
∂T

)
σsv

]
dσsv (53)

cσsv = T

(
∂ss
∂T

)
σsv

— the solid matrix specific heat capacity at constant stress

Since entropy is an extensive quantity, one has:

(1− φ0)Ss = Ss
(24)
= ρs(1− n)ssJ

(3)
= ρs0(1− φ0)ss

Ss — the Lagrangian solid matrix entropy

ρs0cσsv = ρs0T

(
∂ss
∂T

)
σsv

= T

(
∂Ss

∂T

)
σsv

= Cσsv (54)

Complete equations

Lagrangian approach

Continuity equation

When adopting the small perturbation assumption,

∂(ρwφ)

∂t
= ρw

∂φ

∂t
+ φ

∂ρw
∂t

(42),(33)
= ρw

(
α
∂εv
∂t

+
1

N

∂pw
∂t
− βφ

∂T

∂t

)
+ φ

(
ρw
Kw

∂pw
∂t
− βwρw

∂T

∂t

)
≈ ρw0α

∂εv
∂t

+ ρw0

(
1

N
+

φ0
Kw

)
∂pw
∂t
− ρw0(βφ + φ0βw)

∂T

∂t

divM ≈ div(ρwqrw)
(35)
= div

(
ρw

k

µw
(−∇pw + ρwf)

)
≈ div

(
ρw0

k

µw
(−∇pw + ρw0f)

)

12



and the Lagrangian water mass balance equation (6) yields:

ρw0α
∂εv
∂t

+ ρw0

(
1

N
+

φ0
Kw

)
∂pw
∂t
− ρw0(βφ + φ0βw)

∂T

∂t

= − div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
(55)

Equilibrium equation

In the Lagrangian equilibrium equation (11) one can take:

div(FΠ) ≈ divσ ρwφ ≈ ρw0φ0

which furnishes:
divσ +

(
ρs0(1− φ0) + ρw0φ0

)
f = 0 (56)

Thermal equation

The small perturbation assumption is now extended by the following:

Assumption. Small variations of the temperature:∣∣∣∣T − T0T0

∣∣∣∣� 1

Under this assumption one can take T ≈ T0, which together with the remaining small perturbation
assumptions allows us to write:

dS

dt

(38)
=

dSs
dt

+ ρwφ
dsw
dt

+ sw
d(ρwφ)

dt
div(swM)

(6)
= M · ∇sw − sw

d(ρwφ)

dt

T

(
dS

dt
+ div(swM)

)
≈ T

(
∂Ss
∂t

+ ρwφ
∂sw
∂t

+ (ρwqrw) · ∇sw
)

(43),(34)
≈ βKT0

∂εv
∂t
− βφT0

∂pw
∂t

+ C
∂T

∂t
− φ0βwT0

∂pw
∂t

+ ρw0φ0cpw
∂T

∂t
+ qrw · (−βwT0∇pw + ρw0cpw∇T )

−divQ ≈ −div q
(37)
= div(κ∇T )

Φs
(40)
= 0 Φw ≈ ϕw

(36)
≈ (−∇pw + ρw0f) · qrw

and the Lagrangian thermal equation (26) becomes:

βKT0
∂εv
∂t
− T0(βφ + φ0βw)

∂pw
∂t

+ (C + ρw0φ0cpw)
∂T

∂t

= div(κ∇T ) +
(
−ρw0cpw∇T − (1− βwT0)∇pw + ρw0f

)
· qrw (57)

where qrw is given by Darcy’s law (35).

Eulerian approach

Continuity equation

When adopting the assumptions of small perturbations and small deformation velocity,

ρw ≈ ρw0 n ≈ n0 ρs ≈ ρs0
Ds

Dt
=

∂

∂t
+ vs · ∇ ≈

∂

∂t
div vs = div

Dsu

Dt
≈ div

∂u

∂t
=
∂εv
∂t

13



and one can rewrite the Eulerian mass balance equations (2) and (5) and the constitutive equation
for ρs (50) as:

∂(1− n)

∂t
+

1− n0
ρs0

∂ρs
∂t

+ (1− n0)
∂εv
∂t

= 0 (58)

ρw0
∂n

∂t
+ n0

∂ρw
∂t

+ ρw0n0
∂εv
∂t

= −div(ρw0qrw) (59)

1− n0
ρs0

∂ρs
∂t

=
α− n0
Ks

∂pw
∂t
− (1− α)

∂εv
∂t
−
(
βs(1− n0)− β(1− α)

)∂T
∂t

(60)

Elimination of ∂ρs/∂t from (58) by (60) gives:

∂n

∂t
=
α− n0
Ks

∂pw
∂t

+ (α− n0)
∂εv
∂t
−
(
βs(1− n0)− β(1− α)

)∂T
∂t

(61)

which inserted together with (33) and (35) into (59) yields:

ρw0α
∂εv
∂t

+ ρw0

(
α− n0
Ks

+
n0
Kw

)
∂pw
∂t
− ρw0

(
βs(1− n0)− β(1− α) + n0βw

)∂T
∂t

= − div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
(62)

Expressions for ρs and n

Taking α, Ks, βs and β constant, one can integrate (60) and (61) into:

ρs = ρs0

(
1 +

1

1− n0

(α− n0
Ks

(pw − pw0)− (1− α)εv −
(
βs(1− n0)− β(1− α)

)
(T − T0)

))
n = n0 +

α− n0
Ks

(pw − pw0) + (α− n0)εv −
(
βs(1− n0)− β(1− α)

)
(T − T0) (63)

Equilibrium equation

In the Eulerian equilibrium equation (10) one can take:

ρs(1− n) ≈ ρs0(1− n0) ρwn ≈ ρw0n0

which leads to:
divσ + (ρs0(1− n0) + ρw0n0)f = 0 (64)

Thermal equation

By (21), (51), (52) and (53), we switch from internal energies to enthalpies to get:

ρs
Dses
Dt

= ρs
Dshs
Dt

− σsv
ρs

Dsρs
Dt

+
Dsσsv

Dt
= ρscσsv

DsT

Dt
− T

ρs

(
∂ρs
∂T

)
σsv

Dsσsv
Dt

− σsv
ρs

Dsρs
Dt

ρw
Dsew

Dt
= ρw

Dshw
Dt

+
pw
ρw

Dsρw
Dt

− Dspw
Dt

= ρwcpw
DsT

Dt
+

T

ρw

(
∂ρw
∂T

)
pw

Dspw
Dt

+
pw
ρw

Dsρw
Dt

and the energy equation (20) becomes:

(
ρs(1− n)cσsv + ρwncpw

)DsT

Dt
− (1− n)T

ρs

(
∂ρs
∂T

)
σsv

Dsσsv
Dt

+
nT

ρw

(
∂ρw
∂T

)
pw

Dspw
Dt

− (1− n)σsv
ρs

Dsρs
Dt

+
npw
ρw

Dsρw
Dt

= σ : ds − div(pwqrw + q)− ρwqrw · ∇ew + ρwf · qrw (65)
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Now one obtains from (2) and (5):

1− n
ρs

Dsρs
Dt

=
Dsn

Dt
− (1− n) div vs,

n

ρw

Dsρw
Dt

= −Dsn

Dt
− n div vs −

1

ρw
div(ρwqrw)

The stress partition (13) with (15) yields:

σv = (1− n)σsv − npw

(1− n)
Dsσsv

Dt
=

Dsσv
Dt

+ n
Dspw

Dt
+ (σsv + pw)

Dsn

Dt

Besides, taking into account also the symmetry of σ and the decomposition:

σs = ss + σsvI ss — the deviatoric part of σs (66)

one may write:

σ : ds =
(
(1− n)σs + nσw

)
: ∇vs = (1− n)ss : ∇vs + (1− n)σsv div vs − npw div vs

Hence, with the aid of the identity:

−div

(
pw
ρw
ρwqrw

)
+
pw
ρw

div(ρwqrw)− ρwqrw · ∇ew = −ρwqrw · ∇hw

equation (65) takes the form:

(
ρs(1− n)cσsv + ρwncpw

)DsT

Dt
− T

ρs

(
∂ρs
∂T

)
σsv

Dsσv
Dt

+

[
nT

ρw

(
∂ρw
∂T

)
pw

− nT

ρs

(
∂ρs
∂T

)
σsv

]
Dspw

Dt

= (σsv + pw)

[
1 +

T

ρs

(
∂ρs
∂T

)
σsv

]
Dsn

Dt
+ (1− n)ss : ∇vs − div q + ρw(−∇hw + f) · qrw

Under the extended small perturbation assumption and the assumption of small deformation
velocity, this can be rewritten in the form:

(
ρs0(1− n0)cσsv + ρw0n0cpw

)∂T
∂t
− T0
ρs

(
∂ρs
∂T

)
σsv

∂σv
∂t

+

[
n0T0
ρw

(
∂ρw
∂T

)
pw

− n0T0
ρs

(
∂ρs
∂T

)
σsv

]
∂pw
∂t

= (σsv + pw)

[
1 +

T0
ρs

(
∂ρs
∂T

)
σsv

]
∂n

∂t
+ (1− n0)ss : ∇∂u

∂t
− div q + ρw0(−∇hw + f) · qrw (67)

According to (33), (49), (41) and (52):

1

ρw

(
∂ρw
∂T

)
pw

= −βw
1

ρs

(
∂ρs
∂T

)
σsv

= −βs

∂σv
∂t

=
1

3
tr
∂σ

∂t
=

1

3
tr

(
λ
∂εv
∂t
I + 2µ

∂ε

∂t
− α∂pw

∂t
I − βK ∂T

∂t
I

)
(44)
= K

∂εv
∂t
− α∂pw

∂t
− βK ∂T

∂t

ρw0∇hw = ρw0cpw∇T +
ρw0

ρw

[
1 +

T

ρw

(
∂ρw
∂T

)
pw

]
∇pw ≈ ρw0cpw∇T + (1− βwT0)∇pw

which together with (37) substituted into (67) yields:

βsKT0
∂εv
∂t
− T0

(
βs(α− n0) + n0βw

)∂pw
∂t

+
(
ρs0(1− n0)cσsv − βsβKT0 + ρw0n0cpw

)∂T
∂t

= (1− βsT0)(σsv + pw)
∂n

∂t
+ (1− n0)ss : ∇∂u

∂t
+ div(κ∇T )

+
(
−ρw0cpw∇T − (1− βwT0)∇pw + ρw0f

)
· qrw (68)

where qrw is given by Darcy’s law (35).
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• Eventually, ∂n/∂t can be substituted from (61). (The term related to mechanical work caused
by porosity changes can usually be neglected according to [LS98].)

• An expression for ss can be obtained from σs by (66), and the stress partition (13) with (15)
and the stress-strain relationship (41). (The term related to viscous dissipation of the skeleton
is usually neglected in literature.)

Summary

One can see that the Lagrangian system (55)–(57) coincides with the Eulerian one (62)&(64)&(68)
if:

• φ0 = n0 (they are equal to their original values from the initial configuration);

• the expressions (46) and (54) for C and Cσsv are taken into account (with T ≈ T0);

• the expressions for α, 1/N , β, βφ and Cσv
from (47) and (48) are valid;

• one omits

(1− βsT0)(σsv + pw)
∂n

∂t
+ (1− n0)ss : ∇∂u

∂t

from the Eulerian thermal equation. (The first term seems to be negligible under the as- Neglection
of (1 −
n0)ss :
∇(∂u/∂t)?

Neglection
of (1 −
n0)ss :
∇(∂u/∂t)?

sumption of small variations of the porosity, but is the second term also negligible under our
assumptions?)

One can also show that equations (45) and (63) for current values of the Lagrangian porosity φ
and Eulerian porosity n are then approximately related by:

φ = Jn ≈ (1 + εv)n

when εv, pw − pw0 and T − T0 are small.
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