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The model

non-stationary non-isothermal saturated water flow in a deformable porous medium
isotropic elastic skeleton

negligible inertial effects

continuum approach, continuity assumption

the assumption of thermal equilibrium

the assumption of small perturbations (small transformations, small displacements, small vari-
ations of the porosity, water mass density and temperature) + the assumption of small defor-
mation velocity

e compressive-positive pore pressures, tensile-positive stresses

e an extract from [Cou04] with the Lagrangian approach + a connection and adaptation of the

Eulerian approach from [LS98]

Notation
t — the time u — the displacement vector of the skeleton
id + u — the deformation of the skeleton F =1 + Vu — the deformation gradient

IS

1
=5 (Vu+ (VU)T) — the linear strain tensor ¢, = tre = divu — the volumetric strain

J = det(I + Vu) — the Jacobian of the deformation

n

(= 1+ €, under the assumption of small transformations)
— the Eulerian porosity ¢ = Jn — the Lagrangian porosity

Balance laws

Skeleton mass balance

The Eulerian form (in the current configuration):

I(ps(1 —n))

5 + div(ps(1 — n)vs) =0 (1)

ps — the matrix mass density vs — the skeleton velocity

or equivalently:

Dy(ps(1 —n))

+ ps(1 —n)dive, =0 (2)

D _ 9
Dt ot

Dt

+ vs - V — the total time derivative with respect to the skeleton



The Lagrangian form (in the initial configuration):

ps(1=n)J = pso(1 = ¢o)
pso — the initial skeleton mass density
¢o(= ng) — the initial Lagrangian (= initial Eulerian) porosity

Water mass balance

The Eulerian form:

d(pun) . _
T + div(pynvy,) =0 (4)

pw — the water mass density
v, — the water velocity

or equivalently, referring to the skeleton motion:

D
% + pyndivo, + div(pwg,.,,) =0
q,., = n(v, —vs) — the water specific discharge relative to the skeleton
(or Darcy velocity or filtration vector)

The Lagrangian alternative:

d(pw
(’;t@ +div M =0
M = JF '(p,q,,) — the Lagrangian relative flow vector of water mass

Balance of momentum

For any current material domain V;:

D, Dy,
= ps(l—n)deVt—i——/ pwnvdet:/ pfdVy + T da (8)
Dt Jy, Dt Jy, Vi oV,
Dy,
—— — the total time derivative with respect to the water

D
p = ps(1 —n) + pyn — the mass density of the porous medium

(including both the skeleton and the water)

f — a body force density T — a surface force density

Applying the transport theorem to each component of the left-hand side of (8) one gets:

D D
= [ ps(1 —n)v, dV; + %if / Puwn Ui dV;
Vi

Dt Jy, D
_ / (W“"(ln)v“) + div(ps(l _ n)vsivs) + M + div(pwm}mvw)) dv, Vi
Vi ot ot

which together with the mass balance equations (1) and (4) yields:

D, D.,
Dp | ps(L=nvsdVit =5 | punvy, AV = / (ps(1 = n)as + punay,) dV,

Dt Jy, Dt Jy, v,
D 0
as = B:S = BI;S + (V,)vs, — the skeleton acceleration
D 0
ay, = %::w = % + (Vvy,)v, — the water acceleration



Use of the Cauchy stress tensor in the surface integral of (8) in connection with the divergence
theorem gives:

Tda:/ a'nda:/ divo dV;
oV oV Vi

o — the Cauchy stress tensor n — the outward unit normal to V;

Hence one can rewrite (8) in the form:
/ (diVO’ +pf - ps(l - n)as - pwnaw) dV; =0
Vi

which leads to the local equation of motion:
divo + pf - ps(l - n)a’s — PuwN@y =0 (9)

By neglecting the inertial forces one arrives at:

Equilibrium equation
The Eulerian form:

divo + (ps(1—n) + pu,n)f =0 (10)
The Lagrangian counterpart:

div(FII) + (pso(1 — ¢o) + pud) f =0 (11)
II=JF '0F~ " — the Piola-Kirchhoff stress tensor (12)

Balance of moment of momentum

= symmetry of the stress tensor o

Energy conservation

Partial stress tensors
The stress tensor o can be decomposed as:

o= (1-n)o, + noy (13)

o5, 0, — the partial stress tensors related to the solid matrix and the water, respectively
so that:
T=T,+T, T, =(1-n)osn, T,=no,n (14)
Here one can take approximately

op = —pul (15)

Pw — the water pressure

because the water shear stress plays the main role in the interaction force between the water and
the skeleton (which does not explicitly appear here).



Mechanical energy equation

The work rate Py, (f,T) supplied by the external body and surface forces to a material domain
V; is given by:

Pv,(f.T) E/

(ps(l —’I’L)f"US +pwn.f"uw) d‘/t +/ (Ts *Us +Tw "Uw) da
Vi

oVy

:/(pf'vs+pwf'qrw)d‘/:t+/ (T'vs+Tw'(vw_US))da
Vi oV

The divergence theorem and the symmetry of the stress tensor o yield:

T~vsda:/ (a’n)~vsda:/ (dive) v+ o :ds)da
V; V; Vi

ds = - (Vvs + (Vv,) ") — the Eulerian strain rate tensor ~ (16)

N | =

Owing to (14) and (15) one gets:

Tw-(vw—'us)da:/ (an)'qrwdaZ/

(_p’wqrw) ‘nda = / (_ div(pwqr’w)) d‘/t
ovy oV

oV Vi

The total derivative of the kinetic energy associated with the skeleton and water particles in V;
reads:

D, [ 1 D, [ 1
(1 -n)vs -vsdV; + —/ — PNy, - Uy AV
Vi

Dt Jy, 2 Dt Jy, 2
1/ 0(ps(1 —n)vs - vy) .
/V/ 2( 5 + div(ps(1 = n)(vs - vs)vy)
N W + div(pyn(vy - ,,,w),,,w)) v
(1),(4) 1 Ds(vs - vs) Doy (v - Vo)
= — 1 — _— _—
/v, 2 (p B R T A

= / (ps(l - n)as “Us + PuwNQy - ’Uw) dVYt
Vi

= / <(P5(1 - n>a's + pwnaw) FVs + Puwly QTw) dVy
Vi

Use of the equation of motion (9) finally leads to the mechanical energy equation in the form:

D, [ 1 D, [ 1
,PVt(.faT)_ﬁ/V§ps(1_n)vs'vsd‘/t_ﬁ/v §pwnvw'vwdm

= / ((diVO’ +pf - ps(l - n)a's - pwna’w) " Vs
Vi
+o: dS - div(pwqrw) + pw(f - aw) . qrw) d‘/t
= / (U : dS - div(pwqrw) + pw(.f - aw) : qrw) dvvt (17)
Vi

where the right-hand side can be interpreted as the strain work rate related to the porous medium
contained in V.
By neglecting the inertia effects one obtains:

PVt (.faT) = / (U tdg — div(pwqrw) + ow : qrw) dV;
Vi

(which can be alternatively derived by applying the equilibrium equation (10) solely to Py, (f,T)
in the procedure above).



Energy balance

The conservation of energy in all its possible forms currently contained in a material volume V; is
expressed by:

Ds 1 Dy 1
Ht ths(]- _n) (65 + gvs -1)5> dV; + Dt[@ pwn<ew + ng : Uw) dV;

:PVt(ﬁT)—/ g-nda (18)

oVy
es, ey, — the specific internal energies of the solid matrix and the water, respectively
q — the heat flux vector

Use of the transport theorem furnishes:

Dy Dy,
s dV;
Dt v, Dt /Vt PwT€qy AV

= \/‘/t <3(p5(18;n)es) + diV(Ps(l - n)esvs) + M + div(pwnewvw)) dV;

ps(1—n)esdV; +

ot

Ds s 1- s . Ds w w . .
= / M + ps(1 —n)esdivos + M + puwney, div s + div(pwewq,.,) | Vi
v Dt Dt

which together with the mechanical energy equation (17) and the divergence theorem allows us to
rewrite (18) as:

Ds s 1 - s . Ds w w . .
/ M +ps(1 —n)esdivos + M + puwney divvg + div(pwewq,.,)
v, Dt Dt

—o:ds+ div(pwqrw) - pw(f - G,w) "y T+ div q) dVy =0 (19)
Neglecting the inertia force provides the local form:

D(ps(1 —n)ey)
Dt

Ds(pwneqw)
Dt
—0:ds+div(pwd,,) — Puf  Qpp +divg =0

+ pg(l - n)es divwg + + pwney divo,s + diV(Pwerrw)

Use of (2) and (5) then yields the Euler energy equation:

D,eg D,e

ps(1—mn) St + puwn Btw =0 :ds — div(pury + q) — Py - Vew + puf - @y (20)

With the aim of transporting equation (19) from the current volume V; to the corresponding
volume Vj in the skeleton initial configuration, we firstly introduce:

e = ps(1 —n)es + pyney, — the overall density of internal energy
per unit volume of porous medium
hy = ew + Pw  the water specific enthalpy (21)

w

and express (19) in the form:

D, . ,
/ ( Dte +edivv, — o : ds + div(pwhwq, + @) — pu(f — aw) - qrw> dv, =0
Vi



Now use of standard transport formulae provides:

D.e _ de . _ d(eJ) dFE
/(Dt )th—/ (at—i—vs V€+€d1VUs)JdVO—/VO T dVp = EdVO

E = eJ — the overall Lagrangian density of internal energy

per unit of initial porous medium volume

/ divgdV; = / div @ dVy
Vi Vo
Q = JF 'q — the Lagrangian heat flow vector

/ pul(f — Gw) G dV; 2 / (f — aw) - (FM)dVi (22)
Vi Vo

Moreover, one has for a particle which was initially located by a position vector X and is currently
located by a position vector x = X + w:

Vhy(X) = (F(X)) " Vhy(z)

dF _ d(Vu) B du B
o0 =0 = (v )0 = Vo @F 0
From here:
/dIV(pw wlry) d / (hw div(pwyw) + Pulrew - Vhe) AV,
Vi Vi
:/ (how div M + puq,,, - (F~ " Vhy)J) dVg
Vo
/ (hu div M + (JF~ (pwqm)).ww)dvo:/ div(hy M) dVy
V[) V[)
and
(16) 1 o 1[(dF __ L (dFN\T
d, "= 3(Vo, + (Vo,)T) = (th +F ()

1
>
|/ +dF (dF . +dE .,
Lp-T(F FIF ' = T¢p
2 ( dt+(dt> )

E = _(F"F —1I) — the Green-Lagrange strain tensor

/a:dstt:/ o-:<F_TdE —1>Jdv0
‘/t VO dt

dE dE
:/ (JF_laF_T). ave @ [ m: Eay,
Ve at o dt

DN =

Altogether, this furnishes:

/ (dE—n 9B | Giv(hy M + Q) - (f—aw)'(FM)> dvh =0
v \dt dt

Neglecting the inertia force delivers the Lagrangian local energy equation:

dFE dFE

— =II: — — M 2

i i div(hoeM + Q)+ f - (FM) (23)
Finally, we express the energy balance in terms of entropies.

Assumption. The water and the matrix are locally in thermal equilibrium, that is, at the same
absolute temperature T' (the timescale of the modelled phenomena is substantially larger than the
relaxation time required to reach thermal equilibrium locally).



Let:

ss — the Eulerian specific entropy of the matrix
sw — the Eulerian water specific entropy
S = (ps(1 —n)ss + pwnsy)J — the overall Lagrangian density of entropy (24)
per unit of initial porous medium volume

VU = F — T'S— the overall Lagrangian density of Helmholtz free energy (25)

Then

At At dt T dt
FE T \\
(2:3)1'1:(il—t—(hw—Tsw)divM—Sd——d——(Vhw—Tsz)-M—i—f-(FM)

dt dt
—divQ — T div(s,, M)

ds _dE _dv _ dT

which provides the entropy balance in the form of the Lagrangian thermal equation:

d
T(i +div(st)> =—divQ + &5 + @, (26)
dE dr dv
o, =11: T (hy — T'sy) div M — SE T the Lagrangian density (27)

of skeleton dissipation
O, = —(Vhy —TVsy) - M + f - (FM) — the Lagrangian density of water dissipation (28)

The identification of ®,; and ®,, as the dissipation terms related respectively to the skeleton and
water will be done later.

Constitutive relationships

Lagrangian approach

Water
One can obtain the following water state equations by applying the first two laws of thermostatics:
1 _ Ohy T— Ohy
pw  Opbw sy

hw = hw (pwa Sw) (29)

These state equations can be inverted with respect to the conjugate sets of thermodynamical state
variables (py, $w) and (1/pyw,T). Indeed, by introducing;:

Y = €y — TSy ) hw — % — T's,, — the water specific Helmholtz free energy (30)
one gets:
By B dpy, 1 1
iy = L0 g O g AP pwd<> — Tdsy — sdT 2 pwd< > — 5dT
O Dsw Pw Pw Pw
and the state equations take the alternative form:
1 aww aw’w
w = win w = T A w = T o 31
so=vu(pnT)  mm ey = (31



Equations (29) can also be only partially inverted with respect to the couple of conjugate variables
($w,T) by introducing:

Guw = hy — TS0y = Yy + Pv  the water specific free enthalpy (also called the Gibbs potential)
so that:
Ohy

dgw = m—dpuw
g apwp +

8h—wdsw — Tdsy — $,dT 2 1
05y,

=" —dpy — 8, dT
p

w

and one obtains:

1 Ogw
Juw = Gw (pwu T) =

99w
o e Sy = — 22
Pw Opw orT
By differentiating (32) one finally arrives at the constitutive equations:
dpy dpw
— = — — f,dT
= B

K,, — the water bulk modulus

(33)
Bw — the water volumetric thermal expansion coefficient
dp dT
d5w = 7ﬂu;p7: + Cp., ? (34)
¢p, — the water specific heat capacity at constant pressure

Note that considering K,, and f3,, constant (over some ranges of pressures and temperatures), one
can integrate (33) into the form:

Pw = pwoe(pw —Pwo)/ Kw—PBw(T—To)

Pw0s Pwo, Lo — initial values of the water density, pressure and temperature
Darcy’s law

(for negligible inertial forces)

qyy = Mi(*va + ,Dw.f)

w

(35)
k — the (intrinsic) permeability tensor of the porous medium (in a general anisotropic case)
1y — the dynamic viscosity of water

Ohy,
%pr +

Let us look at the water dissipation term ®,, (28) at this point. Employing (29) one has:
Ohy, 1
Vhy =TV, D5 Vsy —TVsy = —Vpy
Suw

w

so we can rewrite ®,, as:

w

1
®, = —p*(pr) "M+ f-(FM)
This can be expressed more conveniently in the Eulerian form. Let:

P = Py ~1 — the Eulerian density of water dissipation
From

1 1
/ —(pr)-MdVo:/ —(F"Vp,) MJ*dV,
Vo Pw Vi Pw
1
:/ (Vpu) - (FMJ—1> av, @
Vi

w

_/(va)q'rwd‘/t
Vi



and (22) one gets:

1
/‘Pdet:/ <I>de0:/ (—(pr)-M+f-(FM))d%=/ (=Vpw + puwf) Gy Vi
Vi Vo Vo \ Puw Vi

Ow = (=Vpuw + puf) - Gy (36)

The non-negativeness of the dissipation associated with the water flow ¢,, > 0 in combination
with Darcy’s law (35) then requires:

(=Vpw + puf) (k(pr + pwf)> >0

w
which implies that k/pu,, has to be positive semidefinite.

Fourier’s law

q=—-krVT (37)

K — a tensor of thermal conductivities (in a general anisotropic case)

Skeleton
To derive the constitutive equations for the skeleton, we identify ®, (27) with the dissipation
related to the sole skeleton first. For this purpose, the use of water mass balance equation (6)
allows us to rewrite ®, in the form:
dE

B, =TI: = + (hy — Tsyy
( dt+( Sw)

d(pud) AT ¥

dt dt dt

Due to (24) and the additive character of entropy one has:

Ss = ps(1 —n)ssJ =5 — punsyJ =5 — pudSw (38)

— the skeleton Lagrangian density of entropy per unit of initial volume
and accordingly for the free energy (25):
U, =¥ — p,¢1h, — the skeleton Lagrangian density of free energy per unit of initial volume

These definitions in combination with (30) and (31) give:

CI)S =1II: w (ww + pw> d(pw¢) - (Ss + pwd)sw)di - w

'E+

L) dt at at
dE d(pw9) do | puwd dpu dT dr
=II: — w w T, T T 1, T RPs ;T PwPSw
a TeT g theg T S ey
_dy, Y d(puwo) — (pud) Oy d(1/pw) | Ohy dT
a T PePI\ 81 /pw) ~ dt aT dt
dE  d¢ _dT dv,
B VIR TR

Eventually, use of energy G defined by:

Gs=VU, — pw¢
leads to:
__ dE dé ar 4G, dé  dpy
Co =M T Pogy =S~ Py %
dE  dp, ar 4G,
B A R



When the assumption of small transformations is fulfilled, IT and E can be replaced by o and e,

and one can write: d d dr  dG
€ Pw ki

(ﬁ =0 — — qS_ —
s = dt dt Ss dt dt

The skeleton energy G5 admits €, p,, and T" as natural arguments since their rates explicitly appear
in the above expression for the dissipation related to the skeleton. In thermoporoelasticity, G is
therefore considered in the form:

Gs = Gs(e,py, T) (39)

In addition, the dissipation related to the skeleton is zero, that is:

de dpw dT dGs .
@S—U.E—(ﬁE—S‘SE— dr =0 (40)

0G de 0G5\ dpy 0Gs\ dT
J— : —_—— —_— SS — 0
(J Oe ) at (¢+ 3pw) dt < * 6T) at
Since variations of any variable among the set of state variables for the skeleton e, p,, and T can
occur irrespective of the variations of the other variables, this produces the state equations:

_ aGs aGs _ 8Gs

=% T, T ar

By differentiating these equations while taking into account (39) and Maxwell’s symmetry relations
(the symmetry of partial derivatives) and restricting ourselves to an isotropic material, we finally
obtain the constitutive equations:

do = D(d&: — ngI) — adpy, I

= Mde, I + 2ude — adp,, I — SKATT (41)

d¢ = ade, + d% — BydT (42)
dT

dSs = BKde, — Bydpw + CT (43)

D — a tangent elastic stiffness tensor of the skeleton
A, it — the Lamé coefficients of the skeleton

K = (3\ 4 2u)/3 — the skeleton bulk modulus (44)
B — the skeleton volumetric thermal expansion coefficient
a — Biot’s coefficient N — Biot’s modulus

B¢ — a volumetric thermal expansion coefficient related to the porosity
C — the skeleton heat capacity at constant strain and pressure

Considering «, N and 34 constant (over some ranges of strains, pressures and temperatures), one
can integrate (42) into the form:

® — o :agv_'_pw—pro — Bg(T — To) (45)

By introducing:
1 .
oy = 3 tr o — the hydrostatic part of the stress tensor o

and combining (43) and (41), one can express the entropy variation as a function of the volumetric
stress o, instead of the volumetric strain ¢, to see that:

C=0C,, —B*KT C,, — the skeleton heat capacity at constant stress and pressure (46)

10




Furthermore, let:
K, — the matrix bulk modulus

Under the assumptions of the constancy of o, N, K and K, and small variations of the porosity
(and small transformations), one can derive:

:Oé—’fl() (47)

K 1
“="" K. N K

Using ng = ¢g one can also show:

B = Bs ﬂd) = ﬂs(a - ¢0) Czn, = (1 - ¢O)C¢TSU (48)
[Bs — the matrix volumetric thermal expansion coefficient

C,,, — the solid matrix heat capacity at constant stress

One takes &« = 1and 1/N = 0 (1/K, = 0) for an incompressible solid matrix (not 84 = 0 in contrast
to [Cou04, §4.1.3], where incompressibility with respect to pressure as well as temperature changes
is considered).

Eulerian approach

The constitutive equations (33) and (41) for p,, and o and Darcy’s and Fourier’s laws (35) and
(37) are considered in the same form as in the Lagrangian approach.

Matrix density
— an alternative to (42) for the Lagrangian porosity ¢.
Introducing:

tr os — the hydrostatic part of the partial stress tensor oy

W =

Osy =

and considering ps = ps(0sy, T') in analogy with the constitutive relationship for the water density
Pw (33) furnishes:
dps _ _dow

= T (49)
The stress partition (13) with (15) yields:
oy = (1 = n)0s, — NPy
(1 —n)os, = 0y +npw = %tro" — (1= n)pw
o' = o + pwI — Terzaghi’s effective stress

which under the assumption of small variations of the porosity leads to:

/
do—sv = M - dpw
3(1—mn)
dps (49) dpy, d(tro”’)
2 __9)  gar
s K, 3(1—n)K, B

Further, one gets from (41) and the expression for « in (47):

K
do’ = Me, I +2pude + =—dp,I — BKATT

K
d(tro’) = tr ()\devI + 2ude + dewI - BKdTI) @ 3k (dev + i];w - BdT)
and using « from (47) again, one finally arrives at:
dps 1 a—n
= n( o dpw = (1 —a)dz, — (Bu(1—n) — (1 - a))dT) (50)

11



Enthalpies

The Euler energy equation will be expressed by means of enthalpies instead of entropies s,, and S,
from the Lagrangian approach. Taking into account our sign convention of pressures and stresses,
we define in analogy (correctly?) with the water specific enthalpy h,, (21):

hs =es — U the specific enthalpy of the solid matrix (51)
Ps
In view of (29) and (32):
oh oh 1 s as
dhy = —2dpy + ——dsy = —dp, + T <w> d w—i—(w) dT
Opw b 08w Pw b Opw T P or w

where T or p, in the subindices mean that the partial derivatives are taken at T or p, held
constant, respectively. Now one can see from (34) and (33) that:

05w\ _ _ Puw __(0(1/pw) 05w _ Cpu
apw Ti Pw N oT Pw oT D - T

lT(a(l/pw)) dpu;:prdT‘i’i 1+T(apw>
Pw Pw aT Pw

which yields:

dhy = ¢p, dT + dpy, (52)

Puw orT Puw

Accordingly (7)

dhs = ¢,,,dT — doy, (53)

1 9(1/ps) 1
— (AL — A
Ps ( or ), A% = Couud Ps

T (Ops
1 R
+ ps <8T )o'sv

0s
Copy = T( azf ) — the solid matrix specific heat capacity at constant stress
Osv

Since entropy is an extensive quantity, one has:

24 3
(1 - ¢0)Gs = Ss (:) ps(l - n)SGJ (:) pSO(l - ¢O)Ss
&5 — the Lagrangian solid matrix entropy

855 665
pSOCUm; = pSOT( aT) = T< aT > = C”sv (54)

Osv

Complete equations

Lagrangian approach

Continuity equation
When adopting the small perturbation assumption,

Nowd) _ 00 Opw (42),(33) dzy 1 9pw , OT Pw Opw or
ot o T - \Ca TNar Do) T\, e Pty

D, L 60\ pw or

~ pwoaﬁ + Pw0 (N + I{w> ot - pr(ﬁqﬁ + ¢0Bw)§

k
div M ~ div(pug,,) = div (pw

w

(~Vpu + pwf)> ~ div (pwof<—pr ; Pwof))

w

12



and the Lagrangian water mass balance equation (6) yields:

6 ¢0 apw or
puo 5 + puwo <N + K) o Puwo(By + ¢05w)a

— _div (pwoj(—pr + pr.f)) (55)

w

Equilibrium equation
In the Lagrangian equilibrium equation (11) one can take:

div(FII) = dive Pw® = PuwoPo

which furnishes:

divo + (pso(1 — ¢o) + puwodo) f =0 (56)

Thermal equation
The small perturbation assumption is now extended by the following:

Assumption. Small variations of the temperature:

T-T
‘ ol <1

To

Under this assumption one can take T' ~ Tj, which together with the remaining small perturbation
assumptions allows us to write:

dS (38) dS, dsw d(pw9) . (6) d(pw)
T - @ pwd) + Sw I div(s, M) = M - Vs, i
ds . 8S 054
T(dt + dlv(st)> = T( ot ¢7 + (Pwlyy) - sz>
(43),(34) Oey Opw oT Opy oT
R BTy = BTy~ + O = d0BuTo " + pundocs, 5,

+ @y - (—BuwToVPw + PwoCp, vT)
—divQ = —divg (87 div(kVT)

(40) (36)
(I’s =0 ‘I’w NPy ~ (_va + pr.f) “Qry

and the Lagrangian thermal equation (26) becomes:

Oey oT
T To(Bey + ¢05w) 5‘t + (C + pwodocp,) = ot

= div(kVT) + (=puwocp, VT — (1 = BuT0)Vpw + puwof) * G | (57)

BKTy——

where q,.,, is given by Darcy’s law (35).

Eulerian approach

Continuity equation
When adopting the assumptions of small perturbations and small deformation velocity,

Pw = Pwo n=ng Ps = Ps0
D, 0 0 Dsu Ou  Oe,
=5 _ = sV — divv, = div— ~ div —
Dt ot Y ot VU = AV RV S T o

13



and one can rewrite the Eulerian mass balance equations (2) and (5) and the constitutive equation
for ps (50) as:

O(1—n) 1—mngdps ey
1 — =
T T + (1 —ng) y 0 (58)
on Opuw e, .
Pu0 5y +no— 5 + pwono—F, 5 = — div(pwolyw) (59)
1—n08p3_0¢—n0% ey 3£

Elimination of dps/0t from (58) by (60) gives:

0 — Opw ey oT
a—?zo‘K‘f” Tt (= mo) S — (81— no) = B(1— ) (61)

which inserted together with (33) and (35) into (59) yields:

oT

Oe, o —ng Opw
Pwo&—(— a + Pw0 < + Kw) — Pw0 (68(1 - nO) ﬁ(l - O{) + nOﬁw)a

K, ot

k
= —div (pr

w

(_va + pr.f)) (62)

Expressions for p, and n
Taking «, K, Bs and 3 constant, one can integrate (60) and (61) into:

= a1+ 1 (00— o) — (1= @)y = (1~ n0) — 81— ) (T~ T)) )
n =+ S (pu — pun) + (o~ no)ey = (Be(1 = no) = B(1 — ) (T~ Tv) (63)

Equilibrium equation
In the Eulerian equilibrium equation (10) one can take:

ps(1 —n) = pso(1 —no) PwT = P00

which leads to:

‘diva—&—(pso(l —ng) + pwono) f :0‘ (64)

Thermal equation
By (21), (51), (52) and (53), we switch from internal energies to enthalpies to get:

Dses Dshs Osv Dsps + Dsosy D, T T 805 Doy Osv Dsps

s = Ps = PsCo, -
D TPDe T e De Dy oT ), "Dt  p, Dt

Dgey _ Dgha, &Dspw . Dspw _ 2 3,0w spw @Dspw
Pope =Py pw Dt Dt WP Dt p pw Dt

and the energy equation (20) becomes:

DT (1-n)T (8ps> Do, + (8pw> D,pw

Dt  p, \OT) =Dt or ), Dt

(1 - n)asv Dsps NPy Dspw

Ps Dt pw Dt

(PS(l —n)Cq,, + pwncpw)

=0 :ds — div(puq,y + q) — Pwlry  Vew + puf - @y (65)
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Now one obtains from (2) and (5):
1—n Dsps Dsn . n Dst Dsn . 1 .
= —1— d S5 — - — - d S_id wHArw
o Di Di (1-n)dive ow Di D ~ divv » V(pwq,y)
The stress partition (13) with (15) yields:
oy = (1 = n)osy — npy

Dyoyy Do, Dspuw Dsn
1— = 3 '
(1=n) Dt Dt "Dt + (0 + Pw) Dt

Besides, taking into account also the symmetry of o and the decomposition:

0, = 8, + 04, 1 ss — the deviatoric part of oy (66)

one may write:

o:d, = ((1 —n)os + naw) :Vus=(1—n)ss: Vs + (1 — n)og, dives — np, divos
Hence, with the aid of the identity:

. [ Pw Pw ;.
- dlv(ppwqmu) + ? le(pwqrw) — Pwlyy Ve, = —Pwqyqy Vhy
equation (65) takes the form:
DST T (0p Doy, 0pw nT [ Ops Dspw
s 1- o, w - -
(pod = n)ee, + puncs, ) T = - <8T ){, Dt ( oT ) P <aT )U Dt

Dyn
+(1=n)ss: Vo, — divg + pu(—Vhe + f) - @y

- (Usv +pw) Dt

dps
1 + ps ( 8T >0's'u

Under the extended small perturbation assumption and the assumption of small deformation

nolo (Opw)  noTo (Ops
Pw oT Ds oT -

w

velocity, this can be rewritten in the form:

oT Ty [ 0ps Ooy
(pSO(l - nO)CUSVU + prnOpr) E - ?0 < ag-,) 6t

Opw
ot

u
—— 4 (1 —ng)ss Va—divq-kpwo(—Vhw‘i‘f)'qrw (67)

= (Usv + pw)

According to (33), (49), (41) and (52):

1 apw _ i 805 _

pw(aT) = —hu (8T > = b
do, 1 0o 1 [ 0e, de __Opu 4 0o Opy 0T
—tf</\ T+2pg —apmd = BK >_K8t o PR

ot 3% o T T Yy

Ipw
o <8T>

which together with (37) substituted into (67) yields:

prVh - prcpva + M

P

Vpw = Pw0Cp,, VT + (1 - BwT(J)pr

oT
+ (pSO(l - nO)Casv - 5sﬁKTO + prnOpr) E

Oey

KT,
ﬁs 0, ot

P
_TO(ﬂs( )+n05w> at
B P
= (1= ByTo) (o —l—pw)a—? (1= no)ss : vait‘ + div(kVT)
+ (_pwocpm VT — (1 - ﬁwTO)pr + prf) Gy (68)

where gq,., is given by Darcy’s law (35).
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Eventually, 9n /0t can be substituted from (61). (The term related to mechanical work caused
by porosity changes can usually be neglected according to [LS98].)

An expression for sy can be obtained from o, by (66), and the stress partition (13) with (15)
and the stress-strain relationship (41). (The term related to viscous dissipation of the skeleton
is usually neglected in literature.)

Summary

One can see that the Lagrangian system (55)—(57) coincides with the Eulerian one (62)&(64)&(68)

if:

¢o = ng (they are equal to their original values from the initial configuration);

the expressions (46) and (54) for C' and C,,_, are taken into account (with T ~ Tp);
the expressions for «, 1/N, 3, 84 and C,, from (47) and (48) are valid;

one omits

on
(1= BsTo) (050 erw)a + (1 —=mng)ss : Va

from the Eulerian thermal equation. (The first term seems to be negligible under the as-
sumption of small variations of the porosity, but is the second term also negligible under our
assumptions?)

One can also show that equations (45) and (63) for current values of the Lagrangian porosity ¢
and Eulerian porosity n are then approximately related by:

p=Jdn=(1+ey)n

when €, pw — Pwo and T — Ty are small.
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