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Summary 37 

Osteoporosis is a bone disease characterized by low bone mineral density (BMD) and 38 

impaired bone microarchitecture due to the abnormal activity of osteoclasts. 39 

Cathelicidins are antimicrobial peptides present in the lysosomes of macrophages and 40 

polymorphonuclear leukocytes. LL-37, a cathelicidin, induces various biological 41 

effects, including modulation of the immune system, angiogenesis, wound healing, 42 

cancer growth, as well as inflammation, and bone loss. A previous study reported 43 

direct involvement of LL-37 suppressing osteoclastogenesis in humans. Here, we 44 

examined the role of LL-37 in the treatment of osteoporosis using an ovariectomy 45 

(OVX) rat model. Our results showed that LL-37 significantly reduced bone loss and 46 

pathological injury in OVX rats with osteoporosis. Furthermore, we found that LL-37 47 

significantly increased the activity of the Wnt/β-catenin pathway in OVX rats with 48 

osteoporosis, including the increased expression of β-catenin, Osterix (Osx), and 49 

Runt-related transcription factor 2 (Runx2), whereas XAV-939, an inhibitor of the 50 

Wnt/β-catenin pathway, significantly blocked the effects of LL-37 on bone loss and 51 

abnormal bone metabolism. Altogether, our findings suggested that LL-37 exerted a 52 

protective role in regulating bone loss and abnormal bone metabolism in rats with 53 

osteoporosis by activating the Wnt/β-catenin pathway. 54 
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Introduction 57 

Osteoporosis, a systemic metabolic bone disease (BMD) characterized by 58 

reduced bone mineral density, low bone mass, microarchitectural disturbance of bone 59 

tissue, and increased bone fragility predisposing to fragility fractures, becomes a 60 

major global health problem [1]. Osteoporosis is divided into primary osteoporosis 61 

and secondary osteoporosis based on their etiology. Primary osteoporosis includes 62 

postmenopausal osteoporosis (PMOP) (type I), senile osteoporosis (type II). Among 63 

them, type I osteoporosis is further divided into PMOP (type IA) and male 64 

osteoporosis (type IB). Osteoporosis tends to occur in people of advanced age and in 65 

postmenopausal women, and patients mostly suffer from circumferential body pain 66 

and fragility fractures, which are the main clinical features and seriously affect the 67 

quality of life [2]. PMOP is characterized by the decreased levels of sex hormones in 68 

menopause of women causing a weakened inhibitory effect on osteoclasts, resulting in 69 

bone mass loss, bone microarchitectural changes, increased bone fragility, and 70 

stronger bone resorption function than bone formation, causing an imbalance in bone 71 

remodeling, thereby leading to decreased bone strength, has been considered as the 72 

most common type of osteoporosis [3-5]. At present, clinical anti osteoporosis drugs 73 

are mainly divided into two main classes, one is the bone promoting agents, such as 74 

teriparatide, ramucirumab; the other is bone resorption inhibitor, such as 75 

bisphosphonates, estrogen, selective estrogen receptor modulators, denosumab, etc 76 

[6-10]. Unfortunately, the long-term use of these drugs causes many potential side 77 

effects, such as dyspepsia, constipation and so on [7, 11]. Therefore, the development 78 

of safe and effective treatment strategies for osteoporosis without excessive side 79 

effects is urgently required. 80 

Wnt/β-catenin signaling pathway exerts an important role in normal bone growth 81 

and metabolism, such as promoting the differentiation of bone marrow mesenchymal 82 

stem cells (BMSCs) into osteoblasts, stimulating the proliferation of osteoblasts, 83 

inhibiting the activity of osteoclasts, and maintaining the balance between bone 84 

formation and resorption [12]. It has been shown that activating Wnt/β-catenin 85 

signaling pathway can promote osteogenesis, increase bone mineral density (BMD) 86 

and bone quality, improve bone structure and bone metabolism, thereby to play the 87 

therapeutic role of osteoporosis[13, 14]. Therefore, the Wnt/β-catenin signaling 88 

pathway may be a potential target for the treatment of osteoporosis, and expected to 89 



be used in clinical practice in the future and achieve better curative effects. 90 

LL-37 is the only human member of the cathelicidin family. It is an amphipathic, 91 

positively charged, 37-residue peptide generated from the precursor hCAP18 protein. 92 

LL-37 is stored in the secondary granules of neutrophils, from where it is released 93 

upon activation [15, 16]. It exerts activity against most gram-negative and gram- 94 

positive bacteria with the primary role to exterminate the pathogens [17]. Numerous 95 

studies have shown that LL-37 participates in several host immune reactions, such as 96 

inflammatory responses and tissue repair, in addition to its antibacterial properties 97 

[18]. LL-37 has been shown to enhance the immune response by inducing the 98 

production of selective cytokines and chemokines [17]. Moreover, it is implicated in 99 

several key biological processes involving non-immune cells such as angiogenesis, 100 

re-epithelialization, wound closure, and the maintenance of intestinal epithelial barrier 101 

integrity [19-22]. In addition, LL-37 can directly suppress osteoclastogenesis in 102 

humans, thereby protecting against bone resorption induced by a bacterial infection in 103 

periodontal diseases [23].  104 

In the present study, we hypothesized that LL-37 regulates the bone metabolic 105 

balance to attenuate ovariectomy (OVX)-induced bone loss and pathological injury in 106 

ovariectomized rats. We studied bone formation and resorption, as well as the serum 107 

bone metabolism parameters, and investigated the activity of the Wnt/β-catenin 108 

pathway, which could be regulated by LL-37 as reported by a previous study [24, 25]. 109 

 110 

Materials and methods 111 

Animals 112 

Seventy-five 3-month old female Sprague-Dawley (SD) rats weighing 230 to 240 g 113 

were obtained from Chengdu Dossy Experimental Animals Co. Ltd. (certificate 114 

number: SCXK [Chuang] 2019–031). All animals were maintained in an animal house 115 

under controlled temperature (23 ± 2°C) and relative humidity (50–55%) in a 12/12 h 116 

(light/dark) cycle. They were provided free access to tap water and commercially 117 

available standard rat chow. Animals were allowed to acclimatize for one week before 118 

the experiment. All animal experiments performed in this study were approved by the 119 

Animal Ethical Committee of The First People’s Hospital of Taizhou. 120 

 121 

OVX-induced osteoporosis and drug administration 122 



After one week of acclimatization, the rats were anesthetized and subsequently 123 

subjected to bilateral OVX to establish osteoporotic animal models. As a control, the 124 

rats in sham-operated (sham) group were only removed the same volume of fat tissues 125 

surrounding the ovaries. One week after recovering from the surgery, OVX rats were 126 

randomly divided into four groups of 15 rats each, according to their body weight and 127 

named as OVX group, LL-37 treatment (OVX+LL-37) group, XAV-939 treatment 128 

(OVX+XAV-939) group, and LL-37 and XAV-939 co-treatment (OVX+LL-37+ 129 

XAV-939) group. During the treatment, the rats in the OVX + LL-37 group were 130 

intraperitoneally administrated with LL-37 (1.5 mg/kg), those in the OVX+XAV-939 131 

group were intraperitoneally administrated with XAV-939 (1.0 mg/mL), those in the 132 

OVX+LL-37+XAV-939 group were intraperitoneally co-administrated with LL-37 133 

and XAV-939, and the rats in the OVX group and sham group were intraperitoneally 134 

administrated with an equal volume of saline. The treatments were performed once 135 

every 2 days. After 12 weeks of administration, the rats were anesthetized with 136 

pentobarbital sodium (1%, 0.4 mL/100 g; i.p.). Next, the blood was harvested from 137 

the heart, and the serum sample was stored at −80 °C until biochemical analyses were 138 

performed. The bilateral femurs and tibias were dissected from the animal body and 139 

kept at −80 °C until histological and biochemical analyses. 140 

 141 

Serum biochemical marker analysis 142 

The levels of serum Ca (S-Ca), and serum P (S-P) were measured by standard 143 

colorimetric methods using commercially available test kits. The serum concentration 144 

of tartrate-resistant acid phosphatase-5b (TRACP-5b), type I collagen C-terminal 145 

telopeptide (CTx-1), bone-specific alkaline phosphatase (BALP), and procollagen 146 

type I N-terminal propeptide (PINP) were determined using an appropriate 147 

enzyme-linked immunosorbent assay (ELISA) kit according to the manufacturer's 148 

instructions. 149 

 150 

Bone histomorphometry analysis 151 

The left proximal femurs (0.5 cm below the femoral head) were used to detect the 152 

bone mineral density (BMD, g/cm2), bone volume per tissue volume (BV/TV, %), the 153 

thickness of trabeculae (Tb.Th, mm), number of trabeculae (Tb.N, 1/mm), and 154 

separating degree of trabeculae (Tb.Sp, mm). BMD was measured using dual-energy 155 

X-ray absorptiometry (DXA) (InAlyzer, Korea). BV/TV, Tb.Th, Tb.N, and Tb.Sp 156 



were measured by a microcomputed tomography (micro-CT) system (SkyScan, 157 

Belgium).  158 

 159 

Hematoxylin and eosin staining 160 

The morphology of the femur bone tissues was evaluated by hematoxylin and eosin 161 

(H&E) staining under a light microscope. Briefly, tissue samples were treated with 10% 162 

formaldehyde, decalcified in 15% neutral EDTA, followed by dehydration, paraffin 163 

embedding, and sectioning into 5 mm-thick sections. H&E staining was performed 164 

after rehydration following the protocols of Beijing Solarbio Science & Technology 165 

(China). Sections were differentiated in hydrochloric acid ethanol, rinsed in water, 166 

recovered in ammonia water, and then stained with eosin. Next, all samples were 167 

dehydrated, rendered transparent and sealed. Histological changes were observed 168 

using a light microscope. ImageJ software was used to visualize the stained trabecular 169 

bone sections. 170 

 171 

Western blotting 172 

Rat femur bone tissue was first pulverized using liquid nitrogen and subsequently 173 

immersed in the radioimmunoprecipitation (RIPA) lysis buffer (Beyotime, China) 174 

containing protease inhibitor (Beyotime, China) for 15 min on ice. Following 175 

centrifugation (12000 rpm, 20 min, and 4 °C), the resulting supernatants were 176 

harvested, and the protein concentration was measured using the Bradford assay. Each 177 

equal amount of protein sample (20 µg) was electrophoresed on a 12% SDS-PAGE 178 

and transferred onto a polyvinylidene difluoride (PVDF) membrane (Millipore, USA), 179 

which was afterward blocked in 5% skim milk for 2 h at room temperature. 180 

Subsequently, the membrane was incubated overnight at 4 °C with the following 181 

diluted primary antibodies: rat polyclonal anti-β-catenin antibody (1: 2000), rat 182 

monoclonal anti-RUNX2 antibody (1: 2000), rat monoclonal anti-Osterix antibody (1: 183 

2000), and rat monoclonal anti-β-actin antibody (1: 5000) (Abcam, Cambridge, UK). 184 

Subsequently, blots were cultured at 25 °C for 1 h with secondary antibodies. Finally, 185 

blots were visualized using an Enhanced Chemiluminescence Substrate kit (Millipore, 186 

USA). The ImageJ software was used for densitometry analysis of the band intensity. 187 

 188 

Statistical analysis 189 

Data are expressed as the mean±standard deviation (SD) and analyzed by GraphPad 190 



Prism 8.0. Comparisons between different groups were performed using the one-way 191 

analysis of variance (ANOVA) with Tukey’s post-hoc test. P < 0.05 was considered 192 

statistically significant. 193 

 194 

Results 195 

LL-37 improved BMD and bone microstructure in OVX rats 196 

As shown in Fig 1A–E, OVX significantly reduced the femoral BMD and impaired 197 

the bone microstructure in rats, including decreased BV/TV, Tb.Th, and Tb.N and 198 

increased Tb.Sp, whereas the administration of LL-37 for 12 weeks significantly 199 

increased the BMD and bone microstructure strength. Interestingly, XAV-939, a 200 

Wnt/β-catenin pathway inhibitor, significantly blocked the effect of LL-37 on BMD 201 

and bone microstructure in OVX rats. These results indicated that LL-37 functions to 202 

maintain the bone quality in OVX rats, and the Wnt/β-catenin pathway is an important 203 

regulator of LL-37 in osteoporosis. 204 

 205 

LL-37 attenuated the bone loss in OVX rats 206 

We further examined the levels of serum biochemical biomarkers closely related to 207 

bone metabolism and found that the levels of S-Ca and S-P remained unchanged in all 208 

groups. Compared with the sham group, the bone resorption markers TRACP-5b and 209 

CTx-1 and the bone formation markers PINP and BALP were significantly increased 210 

in OVX group, indicated a high turnover pathology which has been always combined 211 

with a net bone loss in OVX- induced osteoporosis. Twelve weeks after the LL-37 212 

treatment, the changes in these biochemical biomarkers were significantly attenuated, 213 

which were blocked by XAV-939 (Fig. 2A–F).  214 

 215 

LL-37 attenuated the pathological injury in OVX rats 216 

As shown in Fig. 3, OVX resulted in disordered and thin trabeculae, empty bone 217 

lacunae, slight fractures, and considerably lower trabecular area as compared with the 218 

sham group, whereas the aberrant trabecular architecture was improved by LL-37 219 

treatment, which was blocked by XAV-939. These results indicated that the 220 

osteoprotective effect of LL-37 was mediated by the maintenance of bone metabolism 221 

homeostasis, including the increase in bone formation and a reduction in bone 222 

resorption in OVX rats. 223 



 224 

LL-37 activated the Wnt/β-catenin pathway in OVX rats 225 

As shown in Fig. 4, we examined the activity of the Wnt/β-catenin pathway using 226 

western blotting. We found that the expressions of β-catenin, Runx2, and Osterix were 227 

significantly decreased in OVX rats, indicating that the decreased activity of 228 

Wnt/β-catenin pathway may mediate the abnormal bone turnover in OVX rats. 229 

Whereas LL-37 significantly increased the expression of Wnt/β-catenin pathway 230 

when compared with the OVX group. Similarly, XAV-939 markedly blocked the 231 

effect of LL-37 on the Wnt/β-catenin pathway (Fig. 4A). These results indicated that 232 

LL-37 improved bone metabolic balance and promoted normal bone turnover in rats 233 

with OVX-induced osteoporosis by activating the Wnt/β-catenin pathway. 234 

 235 

Discussion 236 

Osteoporosis is a metabolic bone disease and is characterized by imbalanced bone 237 

formation and resorption [26, 27]. Here, we showed that OVX induced osteoporosis 238 

in rats, along with pathological changes in BMD and trabecular microstructure, 239 

including the increased Tb.Sp and the decreased BMD, BV/TV, Tb.Th, and Tb.N. 240 

Twelve weeks after the LL-37 treatment, these changes in serum biochemical 241 

parameters and BMD and trabecular structure were significantly improved. In 242 

addition, the level of serum biochemical parameters, such as the bone resorption 243 

markers TRACP-5b and CTx-1 and the bone formation markers PINP and BALP 244 

were significantly decreased as compared with those in the OVX group after LL-37 245 

treatment. These results indicated that LL-37 plays an anti-osteoporosis activity 246 

through inhibition of the high bone turnover in OVX-rats. 247 

Cathelicidin has a variety of unique biological functions against pathogens and 248 

contributes to the induction and progression of infection, inflammation and cancer 249 

[28]. LL-37 is the mature form of human cathelicidin and has been reported to 250 

regulate bone homeostasis. A previous study reported that LL-37 directly suppressed 251 

osteoclastogenesis in humans and acted as a protector against bone resorption induced 252 

by a bacterial infection in periodontal diseases [29]. We found that LL-37 253 

significantly attenuated bone loss and pathological injury by reducing overactive bone 254 

turnover and maintaining serum biochemical parameter homeostasis in OVX rats. 255 

The formation of osteoporosis is an extremely complicated biological process 256 



involving multiple genes and factors. The Wnt/β-catenin pathway plays a crucial role 257 

in osteoporosis and significantly regulates bone formation and destruction by 258 

stimulating osteoblast generation and decreasing osteoclast differentiation. In the 259 

canonical Wnt/β-catenin pathway, β-catenin accumulates in the cytoplasm and enters 260 

the nucleus, where it activates the transcription of target genes and promotes bone 261 

formation [30]. Previous study has shown that Wnt/β-catenin pathway activity 262 

inhibition reduces osteogenic differentiation [31, 32], whereas the activation of 263 

Wnt/β-catenin pathway accelerates osteogenic mineralization by promotion of the 264 

β-catenin nuclear accumulation [1]. Thus, the factors involved in this pathway could 265 

serve as potential targets of anti-osteoporosis drugs. LL-37 has been reported to 266 

regulate the Wnt/β-catenin pathway during tumorigenesis [25, 33] and differentiation 267 

of adipose-derived stem cells [24]. However, whether the therapeutic role of LL-37 in 268 

OVX-induced osteoporosis is exerted via Wnt/β-catenin pathway remains unclear. We 269 

found that LL-37 significantly promoted the activation of β-catenin, whereas the 270 

Wnt/β-catenin pathway inhibitor XAV-939 blocked the effect of LL-37 on β-catenin, 271 

indicating that LL-37 protected against OVX-induced osteoporosis by activating the 272 

Wnt/β-catenin pathway. Meanwhile, the activated Wnt/β-catenin may inhibit 273 

overactive bone turnover and promote normal osteogenesis and osteoblast 274 

differentiation by inducing the expression of Runx2 [34]. Runx2 plays a key role in 275 

regulating osteoblastic function by controlling the transcription of its target genes. 276 

Recent study has been reported that Runx2 induces the expression of the COL1A1 277 

gene encoding the primary component of collagen type I by interacting with Osterix 278 

[35], and plays an important role in bone homeostasis [36]. We showed that the 279 

expression of Runx2 and Osterix was significantly decreased in rats with osteoporosis, 280 

whereas LL-37 increased the expression of Runx2 and Osterix, which was blocked by 281 

XAV-939. In addition, XAV-939 abolished the effects of LL-37 on OVX rats. These 282 

results indicated that LL-37 attenuated bone loss and pathological injury by activating 283 

the Wnt/β-catenin pathway in an experimental animal model with osteoporosis. 284 

In conclusion, our study revealed an important role of LL-37 in regulating 285 

OVX-induced osteoporosis. The results suggested that the Wnt/β-catenin pathway 286 

primarily mediates the protective role of LL-37.  287 
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 430 

 431 

Figure legends 432 

 433 

Figure 1. Effect of LL-37 on BMD and bone microstructure in OVX rats. 434 

(a) Bone mineral density (BMD, g/cm2). (b) Bone volume/tissue volume (BV/TV, %). 435 

(c) Trabecular thickness (Tb.Th, mm). (d) Trabecular number (Tb.N, 1/mm). (e) 436 

Trabecular separation (Tb.Sp, mm). All bar graphs are presented as mean ±SD. *p < 437 

0.05, **p < 0.01, ***p < 0.01. 438 

 439 



 440 

Figure 2. Effect of LL-37 on bone loss in OVX rats. 441 

(a) The content of serum calcium (mmol/L). (b) The content of serum phosphorus 442 

(mmol/L). (c) The level of TRACP-5b (ng/mL). (d) The level of CTx-1 (ng/mL). (e) 443 

The level of BALP activity (U/L). (f) The level of PINP (ng/mL). All bar graphs are 444 

presented as mean ±SD. *p < 0.05, **p < 0.01, ***p < 0.01. 445 

 446 



 447 

Figure 3. Effect of LL-37 on pathological injury in OVX rats. 448 

Light microscopy of cortical and trabecular structures of the femur head (H&E 449 

staining, scale bar = 500 µm). 450 

 451 



 452 

Figure 4. Effect of LL-37 on the activity of Wnt/β-catenin pathway in OVX rats.  453 

(a) The expression of Runx2, β-catenin, and Osterix in the femur of rats. (b) 454 

Quantitative graphs of western blotting. All bar graphs are presented as mean ±SD. *p 455 

< 0.05, **p < 0.01, ***p < 0.01. 456 


