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Short title: ERK regulates ERs-induced apoptosis after CIRI 

Summary 

Cerebral ischemia-reperfusion injury (CIRI) is the predominant cause of 

neurological disability after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). 

The endoplasmic reticulum stress (ERs)-induced apoptosis plays an important role in 

neuronal survival/death in CIRI. Our previous studies reported that the extracellular 

signal-regulated kinase (ERK) inhibitor, PD98059, alleviates CIRI after CA/CPR. 

Whether ERs-induced apoptosis is involved in the neuroprotection of PD98059 remains 

unknown. This study aims to investigate the effects of ERK inhibition by PD98059 on 

ERs-induced apoptosis after CIRI in the CA/CPR rat model. The baseline 

characteristics of male adult Sprague-Dawley (SD) rats in all groups were evaluated 

before CA/CPR. The SD rats that survived from CA/CPR were randomly divided into 

3 groups (n = 12/group): normal saline group (1 ml/kg), Dimethylsulfoxide (DMSO, 

the solvent of PD98059, 1 ml/kg) group, PD98059 group (0.3 mg/kg). Another 12 SD 

rats were randomly selected as the Sham group. Twenty-four hours after resuscitation, 

neural injury was assessed by survival rate, neurological deficit scores (NDS) and Nissl 

staining; apoptosis of brain cells was detected using terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) staining; mRNA expression and protein 

levels of ERs-related protein BIP, PERK, ATF4 and CHOP were checked with RT-PCR 

and Western Blot. The results showed that there were no significant differences in 

baseline characteristics before CA/CPR among all groups. PD98059 significantly 

improved survival rate and NDS, increased the Nissl bodies in neurons, reduced 
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apoptosis, downregulated the mRNA transcription and expression levels of BIP, PERK, 

ATF4 and CHOP at 24 h after CA/CPR. Our results demonstrate that inhibition of ERK 

by PD98059 alleviates ERs-induced apoptosis via BIP-PERK-ATF4-CHOP signaling 

pathway and mitigates CIRI in the CA/CPR rat model. 

 

Key words: cardiopulmonary resuscitation, ·cerebral ischemia-reperfusion, 

endoplasmic reticulum stress, apoptosis, PD98059 

 

1. Introduction 

Cardiac arrest (CA) is a major global public health problem with high incidence 

and low survival rate. The most effective treatment is rapid initiation of 

cardiopulmonary resuscitation (CPR) to achieve return of spontaneous circulation 

(ROSC). However, CA/CPR inevitably leads to cerebral ischemia-reperfusion injury 

(CIRI), which is the major cause of neurological disability and death. There are few 

available effective treatments for CIRI in patients after ROSC except for the target 

temperature management 1. Further elucidation of the pathophysiological mechanisms 

is a prerequisite for improving the therapeutic strategies for CIRI 2,3. 

Previous studies have showed that the dysfunction of endoplasmic reticulum (ER) 

is involved in the pathogenesis of CIRI. ER plays an important role in regulating protein 

synthesis, folding, and degradation 4. Under pathological conditions, the balance 

between protein loading and folding is broken, leading to the accumulation of unfolded 

or misfolded proteins in ER lumen, known as ER stress (ERs) 5. To cope with ERs, 
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unfolded protein response (UPR) mediated by three ER transmembrane protein sensors 

- protein kinase RNA-like ER kinase (PERK), activated transcription factor 6 (ATF6) 

and inositol requiring enzyme 1 (IRE1) - is activated to restore ER homeostasis. In 

resting cell, PERK, ATF6 and IRE1 are held inactive by the binding of chaperone 

binding immunoglobulin protein (BIP). Upon ERs, these sensors dissociate from BIP 

and trig three UPR signaling pathway to reduce protein synthesis, to increase protein 

folding and to accelerate degradation of misfolded proteins. The UPR is generally 

considered as a defensive mechanism when ERs is mild. However, when ERs is 

overactivated or prolonged, apoptosis can be initiated by the activation of the C/EBP 

homologous protein (CHOP), which is the converge for the three signaling pathways 

of UPR and a master regulator of ERs-induced apoptosis 6. As a key sensor of ERs, 

PERK upregulates the expression of CHOP via increasing the translation of activated 

transcription factor 4 (ATF4) 7. ERs-induced apoptosis mediated by PERK-ATF4-

CHOP pathway is implicated in CIRI 8. Regulation of ERs-induced apoptosis is crucial 

for neuronal survival/death and may be a potential therapeutic target. 

Extracellular signal-regulated kinase (ERK) belongs to the family of mitogen-

activated protein kinases (MAPKs) and regulates the pathogenesis in various human 

diseases 9. The effect of ERK on ERs was determined by several evidences 10-12. Our 

previous studies found that ERK inhibitor, PD98059, reduces brain injury and improves 

survival rate through reversing oxidative stress, mitochondrial pathway-mediated 

apoptosis and autophagy in CA/CPR rats 13,14. However, it remains unknown whether 

alleviation of ERs-induced apoptosis is associated with the neuroprotection of ERK 
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inhibition. We hypothesized that inhibition of ERK mitigates ERs-induced apoptosis 

via PERK-ATF4-CHOP pathway. Accordingly, in this study, we aimed to examine the 

effect of ERK inhibitor, PD98059, on ERs-induced apoptosis and to explore its 

underlying mechanism involving PERK-ATF4-CHOP signaling pathway after CIRI in 

the CA/CPR rat model. We supposed that it may provide a novel insight into the therapy 

of CIRI. 

2. Materials and Methods 

2.1 Animals and experimental groups 

The healthy male Sprague-Dawley (SD) rats (weight 200 - 230 g, age 6 - 8 weeks) 

were obtained from the experimental animal center of Guangxi Medical University. The 

animal experimentation was complied with the Guide for the Care and Use of 

Laboratory Animals (1985), NIH, Bethesda. This study was approved by the Animal 

Ethics Committee and the Animal Care Committee of Guangxi Medical University. 

A total of 36 rats suffering from CA/CPR survived and were randomly divided into 

three groups (n = 12/group), including normal saline group (NS), intravenous injection 

of saline after ROSC; dimethylsulfoxide group (DMSO), intravenous injection of 

PD98059 solvent - DMSO after ROSC; and PD98059 group (PD), intravenous injection 

of PD98059 after ROSC. Another 12 healthy male rats were randomly selected as sham 

operation group (Sham). 

2.2 The CA/CPR rat model 

The CA/CPR model was performed according to the methods we previously 

published 15. The pacing electrode connecting to the stimulator (Chengdu Technology 
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& Market Co. Ltd., China) was inserted orally and placed in the esophagus. Then the 

alternating current produced by the stimulator were delivered to the pacing electrode to 

induce ventricular fibrillation for 1 min. CPR was initiated after 7 min of CA with chest 

compression and mechanical ventilation (DH-150, the medical instrument of Zhejiang 

University, Hangzhou, China). ROSC was defined as mean arterial pressure (MAP) ≥ 

50 mmHg accompanied by sinus, atrial, or borderline heart rhythm for more than 5 min. 

The rats not achieving ROSC in 3 min of CPR were excluded from the experiment. 

2.3 Neurological function evaluation 

Neurological deficits were assessed with the neurological deficit scores (NDS) 

according to the previous method 16 at 24 h after reperfusion. The score ranges from 0 

to 80. A lower score corresponded to a more serious neurological deficit. 

2.4 Preparation of brain tissues 

All surviving rats were anesthetized with 2% pentobarbital (3 ml/kg) at 24 h after 

reperfusion. The brains of 6 rats from each group were harvested after tissue fixation 

with 4% paraformaldehyde, then sectioned at 4 μm for Nissl staining and TUNEL 

staining. The cerebral cortices of other 6 rats from each group were detached and frozen 

in a refrigerator (–80℃) immediately for PCR and Western Blot. 

2.5 Nissl staining 

Brain slices were stained with Nissl Staining Solution (G1430, Solarbio) for 30 

min, dehydrated in 95% ethanol, cleared in dimethylbenzene, then covered with neutral 

balsam. The slices were observed under the pathology microscope (BX53+DP80, 

Olympus, Japan). The average optical density was used for the quantitative analysis of 
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Nissl body.  

2.6 TUNEL staining 

The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was 

used for detecting cell apoptosis. TUNEL staining was performed with In Situ Cell 

Death Detection Kit (11684817910, Roche, USA) according to the manufacturer’s 

instruction. The slices were observed under the fluorescence microscopy (BX53 + 

DP80, Olympus, Japan). The apoptosis index = number of TUNEL (+) cell/number of 

total cells. 

2.7 RT-PCR 

The brain tissues samples (100 mg) were separated for extracting total RNA with 

Nucleozol (MNG, German). The concentration and purity of RNA were detected by 

UV spectrophotometer. The reverse transcription and amplification were performed 

with PrimeScript™ RT Master Mix (RR036A, Takara) and TB Green® Premix Ex 

Taq™ II (RR820A, Takara). The real-time PCR program was as follows: 95℃ for 30sec; 

40 cycles at 95℃ for 5 sec, 60℃ for 30 sec; and 95℃ for 15 sec, 60℃ for 1 min 

followed by 95℃ for 15 sec. The primer sequences are as follows, 

BIP-F: 5’-GCGAGTGTGAGAGGGAAGC-3’ 

BIP-R: 5’- CGCCGACGCAGGAGTA-3’ 

PERK-F: 5’-CCAGAGATTGAGACTGCGTG-3’ 

PERK-R: 5’-ATCTTATTCCCAAATACCTCTGGT-3’ 

ATF4-F: 5’- ATGTAGTTTTCTCTGCGCGT-3’ 

ATF4-R: 5’-TTAAATCGCTTCCCCCTTGG-3’ 
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CHOP-F: 5’-ACCTGAGGAGAGAGTGTTCA-3’ 

CHOP-R: 5’-ACATCTGCAGGATAATGGGG-3’ 

GAPDH-F: 5’-CCGGGAAGGAAATGAATGGG-3’ 

GAPDH-R: 5’-GCCCAATACGACCAAATCAGAG-3’ 

2.8 Western Blot analysis 

The brain tissues samples (40 mg) were lysed with RIPA buffer (R0010, Solarbio). 

The lysed protein was centrifuged at 12000 rpm for 20 min at 4℃. The supernatant was 

collected, and the total protein concentration was detected by the BCA Protein Assay 

Reagent Kit (AR1189, Boster, Wuhan, China). The protein samples (60 μg) were 

separated by 8% - 12% separation gel and then transferred to PVDF membranes 

(MERK&Co, NJ, USA). The PVDF membranes were incubated overnight at 4℃ with 

the primary antibodies included: BIP (3183S, CST), PERK (3192S, CST), ATF-4 

(11815S, CST), CHOP (2895S, CST) and GAPDH (ab181602, Abcam). Then, the 

membranes were washed with Tris-buffered saline and incubated with the secondary 

antibody [anti-rabbit horseradish peroxidase-conjugated antibodies (Santa Cruz 

Biotechnology)] for 1 h. The proteins were detected using the chemiluminescent 

detection system (Gene Genius, India). 

2.9 Statistical analysis 

Statistical analyses were performed using SPSS 21.0 (IBM, Chicago, USA). Data 

were reported as mean ± standard deviation (SD). One-way analysis of variance 

(ANOVA) followed by least significance difference (LSD) post hoc test. The Chi-

squared test was used to analyze survival rate. P < 0.05 was considered statistically 
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significant. 

3. Results 

3.1 Baseline Characteristics 

The baseline parameters were as shown in Table 1, there were no significant 

differences in baseline characteristics before CA/CPR among all groups. 

 

Table 1  Baseline parameters 

Group n BW (g) HR (beats/min) SP (mmHg) DP (mmHg) MAP (mmHg) 

Sham 12 330.96±13.62 414.75±11.66 119.33±4.85 99.00±4.81 109.17±4.17 

NS 18 337.78±10.91 413.22±10.30 118.56±5.10 98.33±5.00 108.44±4.65 

DMSO 18 334.56±15.10 410.22±10.30 117.72±4.35 100.44±4.57 110.50±4.59 

PD 13 332.15±13.36 415.85+11.17 118.69±5.19 98.38±5.11 109.21±4.40 

Sham, Sham‐operated group; NS, saline group; DMSO, dimethyl sulfoxide group; PD, PD98059 group; BW, body 

weights; HR, heart rate; SP, systolic pressure; DP, diastolic pressure; MAP, mean arterial pressure. The values of 

baseline parameters are all represented as mean ± SD. 

 

3.2 Inhibition of ERK improved the survival rate and NDS of rats at 24 h after 

reperfusion. 

To investigate the effect of ERK inhibitor, PD98059, on the neurological function 

after CA/CPR, we first evaluated the survival rate and NDS. As shown in Table 2, the 

survival rate in the Sham group was 100%, which is significantly higher than that in the 

NS (67%) and DMSO (67%) groups (P < 0.05). The survival rate in the PD group (92%) 
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showed significant improvement compared with that in the DMSO group (P < 0.05). 

No obvious neurologic deficit was observed in the Sham group at 24 h after CPR. In 

contrast, severe neurological deficits were found in the NS and DMSO groups (P < 

0.05). Administration of PD98059 significantly improved the NDS compared with that 

in the DMSO group (P < 0.05). As expected, there was no significant difference of 

survival rate and NDS between the NS and DMSO groups. 

 

Table 2  Survival rate, CPR duration and NDS at 24 h after CPR 

Group Survival rate n CPR duration (s) NDS 

Sham 12/12(100%) 12 - 79.50±0.84 

NS 12/18(67%) # 12 92.75±5.56 66.17±2.04 # 

DMSO 12/18(67%) # 12 89.50±5.45 65.33±2.16 # 

PD 12/13(92%) & 12 89.17±4.91 74.67±1.63 & 

 Sham, Sham‐operated group; NS, saline group; DMSO, dimethyl sulfoxide group; PD, PD98059 group; CPR, 

cardiopulmonary resuscitation; NDS, neurological deficit scores. The values of survival rate were represented as a 

ratio. The values of CPR duration and NDS were represented as mean ± SD. #, P < 0.05 compared with the Sham 

group; &, P < 0.05 compared with the DMSO group. 

 

3.3 Inhibition of ERK increased the Nissl bodies in the cortices of rats at 24 h after 

reperfusion. 

To determine whether ERK inhibition by PD98059 protect the neurons from CIRI, 

we observed the Nissl bodies in neurons with Nissl staining. As shown in Figure 1, the 
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neurons in the Sham group (A-a) were normal in structure and closely arranged with 

abundant distributed Nissl bodies, while the neurons in the NS (A-b) and DMSO (A-c) 

groups were loosely arranged and vacuolized in accompany with reduced Nissl bodies 

as evidenced by lower average optical density of Nissl bodies (P < 0.05). After 

administration with PD98059 (A-d), the neurons damage was mitigated as presented 

with higher average optical density of Nissl bodies compared with that in the DMSO 

groups (P < 0.05). There was no significant difference of average optical density of 

Nissl bodies between the NS and DMSO groups. 
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Figure 1  Inhibition of ERK increased the Nissl bodies in the cortices of rats at 24 h after reperfusion. (A) Nissl 

staining (blue) in the cortices of rats in the (A-a) sham, (A-b) NS, (A-c) DMSO and (A-d) PD groups. All images 

were represented with original magnification × 400. Scale bars = 50 μm. Sham, Sham‐operated group; NS, saline 

group; DMSO, dimethyl sulfoxide group; PD, PD98059 group. (B) The optical density value of Nissl bodies was 

quantified by ImageJ 6.0 software. All data were represented as mean ± SD. #, P < 0.05 compared with the Sham 

group; &, P < 0.05 compared with the DMSO group. 

 

3.4 Inhibition of ERK decreased neuronal apoptosis in the cortices of rats at 24 h 

after reperfusion. 

The influence of ERK inhibition by PD98059 on neuronal apoptosis was tested 

using TUNEL and DAPI staining (as shown in Figure 2). The apoptotic index in the NS 

and DMSO groups was obviously higher than that in the Sham group (P < 0.05). The 

apoptosis index in the PD group was significantly lower than that in the DMSO group 

(P < 0.05). There was no significant difference of apoptotic index between the NS and 

DMSO groups. 
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Figure 2  Inhibition of ERK reduced neuronal apoptosis in the cortices of rats at 24 h after reperfusion. (A) TUNEL 

staining (green) was performed to reveal apoptosis cells; the nucleuses were stained with DAPI (blue). All images 

were represented with original magnification × 200. Scale bars = 100 μm. Sham, Sham‐operated group; NS, saline 

group; DMSO, dimethyl sulfoxide group; PD, PD98059 group. (B) The apoptotic index was quantified by ImageJ 

6.0 software. The values were expressed as the mean ± SD. #, P < 0.05 compared with the Sham group; &, P < 0.05 

compared with the DMSO group. 
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3.5 Inhibition of ERK downregulated the mRNA transcription and expression 

levels of ERs-related proteins in the cortices of rat at 24 h after reperfusion. 

To further explore whether the protective mechanism of PD98059 against ERs-

induced apoptosis is involved in BIP-PERK-ATF4-CHOP pathway, we performed the 

RT- PCR and Western Blot to detect the mRNA transcription and expression levels of 

the ERs-related proteins BIP, PERK, ATF4 and CHOP after CA/CPR. As shown in 

Figure 3, the mRNA expression and the protein levels of BIP, PERK, ATF4, CHOP 

were detected. The mRNA expression of BIP (A-a), PERK (A-b), ATF4 (A-c) and 

CHOP (A-d) in the NS and DMSO groups were significantly increased than those in 

the Sham group (P < 0.05), and they were decreased in the PD group than that in the 

DMSO group (P < 0.05). The protein levels of BIP (B-a), PERK (B-b), ATF4 (B-c) and 

CHOP (B-d) in the NS and DMSO groups were significantly increased than those in 

the Sham group (P < 0.05), and the protein levels were decreased in the PD group than 

those in the DMSO group (P < 0.05). No significant difference was noted in the mRNA 

and protein expression levels of BIP, PERK, ATF4 and CHOP between the NS and 

DMSO groups. 
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Figure 3  Inhibition of ERK by PD98059 downregulated ERs in the cortices of rat at 24 h after reperfusion. (A) 

mRNA expression of (A-a) BIP, (A-b) PERK, (A-c) ATF4 and (A-d) CHOP. (B) WB bands of (B-a) BIP, (B-b) PERK, 

(B-c) ATF4 and (B-d) CHOP. Sham, Sham‐operated group; NS, saline group; DMSO, dimethyl sulfoxide group; PD, 

PD98059 group. (C) The bands intensity analysis of (C-a) BIP, (C-b) PERK, (C-c) ATF4 and (C-d) CHOP. The 

mRNA level was assessed by real-time RT -PCR and expressed as the mean ± SD. The values of band intensity were 

quantified by ImageJ 6.0 software and expressed as the mean ± SD. #, P < 0.05 compared with the Sham group; &, 

P < 0.05 compared with the DMSO group. 
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4. Discussion 

Previously we manifested that inhibition of ERK with PD98059 had a 

neuroprotective effect via decreasing oxidative stress, mitochondrial-mediated 

apoptosis and autophagy in CIRI after CA/CPR 13,14. However, the effect of ERK 

inhibition on ERs-induced apoptosis remains unknown. In this study, we utilized the 

same CA/CPR rat model as in the prior experiments to investigate whether ERs-induced 

apoptosis participates in the neuroprotection of ERK inhibition. In line with our 

previous studies, we reconfirmed the neuroprotective effect of ERK inhibition in the 

CA/CPR rat model by demonstrating the improvement of survival rate, NDS and Nissl 

bodies in neurons. Moreover, we revealed that inhibition of ERK by PD98059 alleviates 

ERs-induced apoptosis via downregulation of PERK-ATF4-CHOP pathway after CIRI 

in the CA/CPR rat model. 

ERs apoptotic pathway has been widely studied. PERK-ATF4-CHOP pathway 

promotes cell apoptosis via inhibition of anti-apoptotic factor B-cell lymphoma-2 

(Bcl-2) and activates proapoptotic factor p53 upregulated modulator of apoptosis 

(PUMA) and tribbles homolog 3 (TRB3). These events finally lead to the initiation 

of caspase cascade and apoptosis 6. ERs-induced apoptosis aggravates cell death in 

CIRI. Wu et al. showed that the GRP78-eIF2α-ATF4-CHOP signaling pathway is 

activated in rat primary cortical neurons after oxygen glucose 

deprivation/reoxygenation (OGD/R), while Clausenamide significantly attenuates 

the ERs-related proteins, reduces apoptosis rate and improves the cellular viability, 

moreover, its neuroprotection is abolished by the ERs inducer Tunicamycin 17. As 
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a member of MAPK family, ERK is involved in the regulation of ERs-induced 

apoptosis. Yang et al. reported that ERs-induced apoptosis is inhibited by resina 

draconis via regulating ERK in myocardial IRI, while inhibition of ERK by miR-

423-3p suppresses BIP and CHOP, decreases pro-apoptotic protein Bax (Bcl-2 

associated X protein), elevates anti-apoptotic protein Bcl-2 12. Administration with 

ERK inhibitor or knockdown with siRNA reverses αNF-induced increment of 

CHOP and cell apoptosis in HT22 hippocampal neuronal cells 11. Similarly, our 

results showed that the cerebral apoptosis index and the expression levels of ERs-

related proteins BIP, PERK, ATF4 and CHOP were significantly increased after 

CIRI. ERK inhibitor PD98059 obviously reduces apoptosis and excessive ERs, 

improves survival rate, neurological function and protects neurons from CIRI (as 

shown in Figure 4). Thus, inhibition of ERs-induced apoptosis is possibly involved 

in the neuroprotective mechanisms of ERK inhibition in CIRI. 
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Figure 4  Schematic diagram depicting the pathway involved in CIRI after CA/CPR. (A). CA/CPR-induced CIRI 

leads to neuronal apoptosis through ERK-ERs pathway; (B). The ERK activates ERs-induced apoptosis via BIP-

PERK-ATF4-CHOP pathway. PD98059 inhibit the activation of ERK, thus, suppressing excessive ERs-induced 

neuronal apoptosis and death. CA, cardiac arrest; CPR, cardiopulmonary resuscitation; CIRI, cerebral ischemia-

reperfusion injury; ERK, extracellular signal-regulated kinase; PD, PD98059; ERs, endoplasmic reticulum stress; 

BIP, binding of chaperone binding immunoglobulin protein; PERK, protein kinase RNA-like ER kinase; ATF4, 

activated transcription factor 4; CHOP, C/EBP Homologous Protein. 

 

The associations between ERs-induced apoptosis and reactive oxygen species 

(ROS) is demonstrated by substantial evidences 18,19. The overproduction of ROS 

produced in CIRI leads to apoptosis and brain injury 20, which is possibly related to 

ERs. Study revealed that ROS transfers into ER lumen and damages the 

tertiary/quaternary structure of protein, leading to the accumulation of misfolded 
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proteins 21. Besides, the excessive ROS produced in reperfusion aggravates the 

depletion of calcium in ER and disturbs protein folding 22. Both events trig ERs. 

Furthermore, ROS can also be induced in the process of protein folding and aggravates 

the oxidative stress within ER 23. Therefore, ROS and ERs may accentuate each other 

in a positive feedback mechanism, which activates proapoptotic signaling. Our previous 

research indicated that ROS significantly increased in brain after CA/CPR, while 

PD98059 provides the neuroprotection through antioxidant stress as evidenced by 

markedly decreased ROS and increased superoxide dismutase 13. Therefore, it is 

conceivable to infer that ERK inhibition possibly downregulates ERs-induced 

apoptosis via reduction of ROS and breaking the vicious positive feedback loop 

between ROS and ERs in CIRI. 

ERs-induced apoptosis is closely associated with mitochondrial dysfunction. The 

contact sites of ER membrane cover nearly 5% of mitochondrial surface to exchange 

signals and regulate mitochondrial fission/fusion 24. Phosphorylation of PERK was 

observed much earlier than the release of cytochrome c in CIRI, indicating that ERs 

precedes mitochondrial apoptotic pathway 25. Overactivated PERK upregulates the 

expression of phorbol-12-myristate-13-acetate-induced protein 1 (Noxa), which 

increases the mitochondrial permeability and mitochondrial apoptotic signaling via 

transferring Bax to outer membrane of mitochondria 26. In our prior study, we observed 

that PD98059 decreases apoptosis through mitochondrial pathway as confirmed by 

reversing the mitochondrial permeability transition pore (mPTP) opening, cytochrome 

c release 14. Based on the above reports, we suggested that downregulation of ERs by 
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PD98059 at least partly improves the mitochondrial function and mitigates the 

development of mitochondrial apoptotic pathway in CIRI. 

As a process of self-degradation, autophagy removes proteins and organelles 

depending on lysosome pathway. Overactivated or dysregulated autophagy is harmful 

to cell survival 27. Autophagy-trigged neuronal death is a major consequence of ERs 28. 

PERK pathway participates in ERs-induced autophagy. Kouroku et al. verified that 

dominant negative mutation of PERK prevents autophagy through blunting the 

conversion of LC3I to LC3II 29. As a downstream factor of ERs-induced apoptosis, 

CHOP regulates the death-associated protein kinase 1 (DAPK1), which phosphorylate 

Beclin1 and detaches it from Bcl-2 to promotes autophagosomes formation 30. ERs 

inducer Tunicamycin enhances OGD/R-induced autophagy and decreases cell viability 

in primary rat cortical neurons after CIRI 31. Our prior study revealed that the 

neuroprotection of PD98059 is associated with the downregulation of autophagy as 

verified by decreased autophagosomes and expression of LC3II, Beclin-1 and increased 

p62 in CIRI 14. Combining with our present study, we speculated that autophagy is 

involved in the ERs-induced cell death in CIRI after CA/CPR. 

Our study has several potential limitations. First, it is a preliminary study of ERK 

inhibitor PD98059 on the ERs and apoptosis, further activation/inhibition of ERs 

control examines are needed to clarify whether the neuroprotection of ERK inhibition 

is ERs-dependent in CIRI. Second, considering the PERK-ATF4 is the predominant 

pathway among the three branches for CHOP activation in ERs, we only detected it 

without evaluating the other two pathways. Further experiments are under way to 
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wholly elucidate the role of ERs-induced apoptosis pathway in CIRI after CA/CPR. 

In summary, our study reveals that inhibition of ERK by PD98059 alleviates ERs-

induced apoptosis via downregulation of PERK-ATF4-CHOP signaling pathway and 

mitigates CIRI in the CA/CPR rat model. 
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