Physiological Research Pre-Press Article

1	Low-level laser therapy attenuates arthrogenic contracture induced by anterior
2	cruciate ligament reconstruction surgery in rats
3	
4	Akinori Kaneguchi ¹ , Junya Ozawa ^{1*} , Kengo Minamimoto ² , Kaoru Yamaoka ¹
5	
6	¹ Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International
7	University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
8	² Major in Medical Engineering and Technology, Graduate School of Medical Technology
9	and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai
10	555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
11	
12	* Corresponding author
13	Junya Ozawa
14	Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International
15	University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
16	E-mail: j-ozawa@hirokoku-u.ac.jp
17	Tel: +81-823-70-4547
18	Fax: +81-823-70-4542
19	
20	Short title: LLLT attenuates ACLR-induced joint contracture
21	

22 Summary

23 Therapeutic approaches to treat joint contracture after anterior cruciate ligament (ACL) 24 reconstruction have not been established. Arthrofibrosis accompanied by joint 25 inflammation following ACL reconstruction is a major cause of arthrogenic contracture. 26 In this study, we examined whether anti-inflammatory treatment using low-level laser 27 therapy (LLLT) can prevent ACL reconstruction-induced arthrogenic contracture. Rats 28 underwent ACL transection and reconstruction surgery in their right knees. Unoperated 29 left knees were used as controls. After surgery, rats were reared with or without daily 30 LLLT (wavelength: 830 nm; power output: 150 mW; power density: 5 W/cm²; for 120 31 s/day). We assessed the passive extension range of motion (ROM) after myotomy at one 32 and two weeks post-surgery; the reduction in ROM represents the severity of 33 arthrogenic contracture. ROM was markedly decreased by ACL reconstruction at both 34 time points; however, LLLT partially attenuated the decrease in ROM. One week after 35 ACL reconstruction, the gene expression of the proinflammatory cytokine interleukin- 1β in the joint capsule was significantly upregulated, and this upregulation was 36 37 significantly attenuated by LLLT. Fibrotic changes in the joint capsule, including 38 upregulation of *collagen type I* and *III* genes, shortening of the synovium, and 39 thickening were caused by ACL reconstruction and seen at both time points. LLLT

40	attenuated these fibrotic changes as well. Our results indicate that LLLT after ACL
41	reconstruction could attenuate the formation of arthrogenic contracture through
42	inhibition of inflammation and fibrosis in the joint capsule. Thus, LLLT may become a
43	novel therapeutic approach for ACL reconstruction-induced joint contracture.
44	
45	Keywords: anterior cruciate ligament reconstruction, low-level laser therapy, joint
46	contracture, inflammation, arthrofibrosis

48 Introduction

49	Anterior cruciate ligament (ACL) injury, a major cause of sports-related incidents,
50	induces joint instability [1,2]. The most common treatment for ACL injury is
51	reconstruction surgery [1,2]. Although reconstruction surgery restores joint stability [2],
52	one often-associated complication is joint contracture, which is characterized by
53	reduction in range of motion (ROM) [3,4]. A systematic review by Wang et al showed
54	that reported incidence rates of joint contractures after ACL reconstruction ranged from
55	0.1 to 71%, and the overall pooled incidence was 3% [5]. Joint contracture induced by
56	ACL reconstruction causes knee pain and quadriceps muscle weakness [6,7], which
57	disrupt the return to sports and daily activities [8,9]. Thus, prevention and/or
58	improvement of joint contracture are critical issues in rehabilitation following ACL
59	reconstruction.
60	In clinical practice, ROM exercises, continuous passive motions, surgical
61	treatments, and manipulations under anesthesia are performed to treat ACL
62	reconstruction-induced joint contractures. However, it has been reported that ROM
63	exercises and continuous passive motions have limited or no effect on joint contracture
64	[10-13]. Although surgical treatments and manipulations under anesthesia are effective
65	in improving joint contracture, these treatments are linked to complications, such as

fractures, heterotrophic ossification, and cartilage damage [14]. Thus, the development
of alternative treatment strategies for ACL reconstruction-induced joint contracture is
necessary.

69	Both myogenic and arthrogenic factors contribute to the formation of joint
70	contracture after ACL reconstruction in both human patients [15-17] and rats [18,19]. In
71	70% of human patients who underwent surgical treatment for joint contracture after
72	ACL reconstruction, the formation was attributed to arthrofibrosis [20]. Therefore,
73	arthrofibrosis is an important target for joint contracture therapy. Peri-operative
74	inflammation is a major cause of arthrofibrosis [3,4,18-20]; thus, suppression of
75	inflammation may be an effective therapy against arthrofibrosis. Previous studies
76	reported that anti-inflammatory treatments using an interleukin-1 (IL-1) receptor
77	antagonist or corticosteroid improved ROM in patients with arthrofibrosis after ACL
78	reconstruction [21,22]. In clinical practice, however, these treatments are not widely
79	used due to the high cost and/or adverse effects.
80	To inhibit inflammation, we focused on low-level laser therapy (LLLT). LLLT
81	has anti-inflammatory and anti-fibrotic actions, and is associated with few adverse
82	effects [23-25]. Moreover, it is a low-cost therapy [24], and already widely used for
83	inflammatory and fibrotic diseases, such as arthritis and scarring [26,27]. In this study,

1	84	therefore, we aimed to examine whether LLLT can prevent ACL reconstruction-induced
:	85	arthrogenic contracture via inhibition of inflammation. To achieve this, we examined the
:	86	attenuative effects of LLLT on arthrogenic contracture, as well as inflammatory and
:	87	fibrotic changes, using a rat model of ACL reconstruction.
:	88	
:	89	Materials and Methods
(90	Experimental animals
(91	A schematic diagram of the experiment protocol is illustrated in Fig. 1. In this study,
(92	twenty-nine 8-week-old male Wistar rats (180–230 g; Japan SCL, Shizuoka, Japan)
(93	were used. Rats were randomly divided into ACL reconstruction (ACLR; n = 14) and
(94	ACL reconstruction plus LLLT (LLLT; n = 15) groups. Some data (i.e., ROM, synovial
(95	length, and joint capsule area) on the operated (right) side for all rats in the ACLR group
(96	were obtained from our previous study [19]. Experimental periods were set for one or
(97	two weeks ($n = 7$ or 8 rats/group/time point) post-operation, because inflammatory and
(98	fibrotic reactions after ACL reconstruction peak at one week and subside within two
(99	weeks [19]. Rats were housed in standard cages under controlled environment
10	00	conditions (temperature of 20–25 $^{\circ}$ C, 12 h lighting cycle) with free access to standard
10	01	rodent chow and water. Experimental procedures were approved by the animal

102 experimentation committee of Hiroshima International University (AE18-018).

103

104 ACL reconstruction surgery

105	We performed ACL reconstruction surgery on the right knees using previously
106	described methods [18]. Rats were anesthetized with ketamine and xylazine (80 mg/kg
107	and 10 mg/kg, respectively) by an intraperitoneal injection. The knee joint was opened
108	via a medial parapatellar approach, and the ACL was transected. Using a 0.8 mm
109	diameter Kirschner wire, bone tunnels were created from the antero-medial side of the
110	proximal tibia to the lateral side of the distal femur. After passing the quadruple-bundle
111	tail tendon autograft through the bone tunnels, both ends of the autograft were fixed to
112	the bones using stainless steel interference screws (diameter of 0.8 mm and length of
113	2.0 mm, TE-00001; Matsumoto, Chiba, Japan). Finally, the joint capsule and skin were
114	sutured. Unoperated left knees were used as controls. After surgery, the rats could move
115	freely in the cage.
116	

117 *LLLT*

118 After ACL reconstruction, rats in the LLLT group received daily LLLT using

119 semiconductor laser systems (FINE LASER EL-800; Panasonic Healthcare, Tokyo,

120	Japan). Under ether anesthesia, LLLT was performed on the right knee under the
121	conditions as follows: skin contact method, continuous irradiation mode, wavelength
122	830 nm, power output 150 mW, spot area 0.03 cm ² , power density 5 W/cm ² , attaching
123	areas two points (medial and lateral sides of the knee), and irradiation time 60 s/point
124	(Fig. 2). These irradiation conditions attenuate ACL reconstruction-induced joint
125	swelling in the rat knee [28]. In addition, similar irradiation conditions (i.e., skin contact
126	method, continuous irradiation mode, wavelength 830 nm, power output 100 mW, spot
127	area 0.028 cm ² , power density 3.57 W/cm ²) could decrease inflammatory cytokines (IL-
128	1 β , IL-6, and tumor necrosis factor- α) in the articular cartilage in rat osteoarthritis
129	model [29]. LLLT was started immediately after surgery and was performed every day
130	until the day before sacrifice. Rats in the ACLR group did not receive any treatment
131	after surgery.
132	
133	Measurement of ROM
134	To assess the degree of arthrogenic contracture, we measured ROM after myotomy,

which is determined by joint components, as previously described [30,31]. After each 135

- rat was sacrificed by exsanguination under ether anesthesia, the skin and knee flexor 136
- muscles were removed from the hindlimbs. Subsequently, the trunk and femur of the rat 137

138	placed in a spine position were fixed manually at a hip flexion of 90°. Then, the knee
139	joint was extended by 14.6 N/mm extension moments, which stretch the rat knee joint
140	close to its physiological limit but does not disrupt the joint components [32,33]. The
141	angle between the femur and fibula was measured using a three-dimensional motion
142	analysis system (Kinema Tracer; Kissei Comtec, Nagano, Japan) as ROM after
143	myotomy. In a pilot study, we confirmed that ROM restriction is induced in the
144	extension direction, but not in the flexion direction in our rat ACL reconstruction model
145	at two weeks post-surgery (unpublished data). In this study, thus, ROM measurement
146	was performed only in the extension direction.
147	
148	Histological analysis
149	Tissue preparation
150	After ROM measurement, the knee joints were sampled and immersion-fixed in 0.1 M
151	phosphate-buffered 4% paraformaldehyde (pH 7.4) at a flexion of 90° for two days at
151 152	phosphate-buffered 4% paraformaldehyde (pH 7.4) at a flexion of 90° for two days at 4 °C. Next, samples were decalcified using 17.7% ethylenediaminetetraacetic acid (pH
151 152 153	phosphate-buffered 4% paraformaldehyde (pH 7.4) at a flexion of 90° for two days at 4 °C. Next, samples were decalcified using 17.7% ethylenediaminetetraacetic acid (pH 7.2, Osteosoft; Merck Millipore, Darmstadt, Germany) for one month at room
151 152 153 154	phosphate-buffered 4% paraformaldehyde (pH 7.4) at a flexion of 90° for two days at 4 °C. Next, samples were decalcified using 17.7% ethylenediaminetetraacetic acid (pH 7.2, Osteosoft; Merck Millipore, Darmstadt, Germany) for one month at room temperature and embedded in paraffin. Sagittal sections (thickness: 4 µm) were
151 152 153 154 155	phosphate-buffered 4% paraformaldehyde (pH 7.4) at a flexion of 90° for two days at 4 °C. Next, samples were decalcified using 17.7% ethylenediaminetetraacetic acid (pH 7.2, Osteosoft; Merck Millipore, Darmstadt, Germany) for one month at room temperature and embedded in paraffin. Sagittal sections (thickness: 4 µm) were obtained from the medial midcondylar level.

Measurements of synovial length and joint capsule area 157

158	The posterior region of the knee joint in the sections stained with aldehyde-fuchsin-
159	Masson-Goldner was photographed at $2 \times$ magnification. The superior and inferior
160	synovial lengths of the posterior joint capsule were measured according to previously
161	described methods [34] and summed as total synovial length. To assess joint capsule
162	thickening, the posterior joint capsule area was also measured according to previously
163	reported methods [34]. Measurements of synovial length and joint capsule area were
164	performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA).
165	Posterior capsulotomy improves flexion contracture developed after ACL reconstruction
166	in human patients [35], implying that the posterior joint capsule is the structure
167	responsible for flexion contracture. In addition, fibrotic changes in the posterior joint
168	capsule were detected after ACL reconstruction in both human patients [17] and rats
169	[18,19,36]. In this study, thus, we focused on the posterior joint capsule.
170	

171 Gene expression analysis

- 172 Extraction of total RNA from the paraffin sections was performed as previously
- described [37]. In brief, the posterior joint capsule was isolated from paraffin sections, 173

174	and total RNA was extracted using the RNeasy FFPE Kit (Qiagen, Hilden, Germany).
175	Next, cDNA was synthesized using the total RNA and the SuperScript III First-strand
176	synthesis system (Invitrogen, Grand Island, NY, USA).
177	Using the 7300 Real Time PCR System (Applied Biosystems, Foster City, CA,
178	USA), real-time PCR was performed to quantify gene expression levels. TaqMan primer
179	and probe sets for <i>IL-1</i> β (Rn00580432_m1), <i>type I collagen (COL1A1</i> ;
180	Rn01463848_m1), <i>type III collagen</i> (<i>COL3A1</i> ; Rn01437681_m1), and <i>S18</i>
181	(Rn01428913_gH) were obtained from Applied Biosystems. S18 rRNA was used as the
182	internal control. The calibration curve method was used to quantify gene expression
183	levels.
184	
185	Statistical analysis
185 186	Statistical analysis The results were expressed as the mean \pm standard deviation. Dr. SPSS II for Windows
185 186 187	Statistical analysis The results were expressed as the mean ± standard deviation. Dr. SPSS II for Windows (SPSS Japan Inc., Tokyo, Japan) was used for statistical analyses. Two-way analysis of
185 186 187 188	Statistical analysis The results were expressed as the mean ± standard deviation. Dr. SPSS II for Windows (SPSS Japan Inc., Tokyo, Japan) was used for statistical analyses. Two-way analysis of variance was used to examine the relationship between the intervention and time. If
185 186 187 188 189	Statistical analysis The results were expressed as the mean ± standard deviation. Dr. SPSS II for Windows (SPSS Japan Inc., Tokyo, Japan) was used for statistical analyses. Two-way analysis of variance was used to examine the relationship between the intervention and time. If significant main or interaction effects were detected, post-hoc Bonferroni tests were
185 186 187 188 189 190	Statistical analysis The results were expressed as the mean ± standard deviation. Dr. SPSS II for Windows (SPSS Japan Inc., Tokyo, Japan) was used for statistical analyses. Two-way analysis of variance was used to examine the relationship between the intervention and time. If significant main or interaction effects were detected, post-hoc Bonferroni tests were used to localize the effects. If the interaction between time and intervention and the

192	had not been rejected by the Shapiro-Wilk test) or a Mann-Whitney test (if the
193	normality assumption had been rejected by the Shapiro-Wilk test) with a Bonferroni
194	adjustment was performed to compare differences between one and two weeks post-
195	surgery. Differences were considered significant at P-values < 0.05.
196	
197	Results
198	ROM
199	On the contralateral (left) side, ROM after myotomy was between 160° and 163° (Fig.
200	3). At one week post-surgery, ROM on the operated (right) side was $131 \pm 11^{\circ}$ and 150
201	$\pm5^\circ$ in the ACLR and LLLT groups, respectively. Two-way ANOVA revealed a
202	significant main effect of intervention ($P < 0.001$). In both groups, ROM on the operated
203	side was significantly smaller than that recorded on the contralateral side ($P < 0.001$).
204	Between the operated sides, ROM was significantly larger in the LLLT group than in
205	the ACLR group ($P < 0.001$). Similar results were obtained at two weeks post-surgery.
206	ROM on the operated side was $137 \pm 6^{\circ}$ and $148 \pm 6^{\circ}$ in the ACLR and LLLT groups,
207	respectively, and was significantly smaller than that observed on the contralateral side
208	(P \leq 0.003). ROM on the operated side was significantly larger in the LLLT group than
209	in the ACLR group ($P = 0.008$). The interaction between time and intervention ($P =$

210 0.156) and the main effect of time (P = 0.797) were not significant. There were no 211 significant differences between one and two weeks post-surgery in all groups (P \geq 212 0.508, unpaired t-test or Mann–Whitney test with a Bonferroni adjustment).

213

214 Synovial length

215	On the contralateral (left) side, the postero-superior joint space was blank, and the
216	synovial membrane in the posterior joint capsule was deeply folded at both time points
217	(Figs. 4a-d). At one week post-surgery, the postero-superior joint space was filled with
218	fibrous tissue, and the synovial folds disappeared on the operated (right) side in the
219	ACLR group (Fig. 4e). Two-way ANOVA revealed a significant main effect of
220	intervention (P < 0.001). In the ACLR group, the total synovial length was significantly
221	shorter on the operated side than on the contralateral side ($P = 0.001$) (Fig. 4i). On the
222	operated side in the LLLT group (Fig. 4f), the postero-superior joint space and synovial
223	folds remained largely unchanged, and the total synovial length was similar to that
224	noted on the contralateral side ($P = 0.634$). At two weeks post-surgery, in both the
225	ACLR (Fig. 4g) and LLLT (Fig. 4h) groups, the postero-superior joint space was filled
226	with fibrous tissue, and the synovial folds were shallower on the operated side versus
227	the unoperated left side. Consequently, the total synovial length was significantly

228	shorter on the operated side than on the contralateral side in both groups (P \leq 0.007).
229	There were no significant differences in total synovial length between the operated sides
230	in the ACLR and LLLT groups at either time point (P \ge 0.307). The interaction between
231	time and intervention (P = 0.592) and the main effect of time (P = 0.749) were not
232	significant. There were no significant differences between one and two weeks post-
233	surgery in all groups (P \ge 0.936, unpaired t-test with a Bonferroni adjustment).
234	
235	Joint capsule area
236	At one week post-surgery, in the ACLR group an apparent thickening of the posterior
237	joint capsule was detected on the operated (right) side (Fig. 4e) compared with the
238	contralateral (left) side (Fig. 4a). Two-way ANOVA revealed significant interaction
239	between time and intervention (P = 0.004) and main effect of intervention (P < 0.001).
240	The posterior joint capsule area was significantly enlarged compared with the area
241	recorded for the contralateral side ($P < 0.001$) (Fig. 4j). Thickening of the posterior joint
242	capsule was also observed on the operated side in the LLLT group (Fig. 4f). However,

- this thickening was milder than that noted on the operated side in the ACLR group. The
- 244 posterior joint capsule area on the operated side in the LLLT group was also
- significantly larger than that on the contralateral side (P < 0.001), but significantly

246	smaller than the area determined for the ACLR group ($P < 0.001$). At two weeks post-
247	surgery, thickening of the posterior joint capsule on the operated side in the ACLR
248	group was partially attenuated (Fig. 4g). Consequently, the posterior joint capsule area
249	was significantly smaller than that measured at one week post-surgery (P < 0.001).
250	However, it remained significantly larger than that observed on the contralateral side (P
251	= 0.001). In the LLLT group (Fig. 4h), the posterior joint capsule area was significantly
252	larger on the operated side versus the contralateral side (P < 0.001), and comparable to
253	the area recorded for the ACLR group ($P = 1.000$). The main effect of time was not
254	significant ($P = 0.293$).

256 Gene expression

In the expression of the inflammatory cytokine gene *IL-1* β , a significant main effect of intervention was detected (P = 0.045), and significant simple main effects were detected at only one week post-surgery. At one week post-surgery, the expression of the inflammatory cytokine gene *IL-1* β in the ACLR group was significantly higher on the operated side than on the contralateral side (P = 0.013) (Fig. 5a). The expression of *IL-1* β on the operated side in the LLLT group was significantly lower than that measured in the ACLR group (P = 0.018) and was similar to that recorded for the contralateral side

264	(P = 1.000). At two weeks post-surgery, the levels of <i>IL-1</i> β expression on the operated
265	side of the ACLR group returned to the levels observed for the contralateral side (P =
266	1.000). The interaction between time and intervention ($P = 0.079$) and the main effect of
267	time (P = 0.162) were not significant. Differences between one and two weeks post-
268	surgery were not significant in all groups (P \ge 0.068, unpaired t-test or Mann–Whitney
269	test with a Bonferroni adjustment).
270	In the expression of COL1A1, a significant main effect of intervention was
271	detected ($P < 0.001$). At both time points, the expression of <i>COL1A1</i> in the ACLR group
272	was significantly upregulated on the operated side compared with the contralateral side
273	$(P \le 0.003)$ (Fig. 5b). On the operated side in the LLLT group, <i>COL1A1</i> gene expression
274	was significantly lower than that measured in the ACLR group (P \leq 0.042), and was not
275	significantly different from that determined for the contralateral side at both time points
276	(P \ge 0.077). The interaction between time and intervention (P = 0.262) and the main
277	effect of time ($P = 0.662$) were not significant. Differences between one and two weeks
278	post-surgery were not significant in all groups (P \ge 0.064, unpaired t-test or Mann–
279	Whitney test with a Bonferroni adjustment).
280	In the expression of COL3A1, a significant main effect of intervention was
281	detected (P < 0.001). At both time points, the expression of $COL3A1$ on the operated

291	Discussion
290	
289	0.984, unpaired t-test or Mann–Whitney test with a Bonferroni adjustment).
288	significant differences between one and two weeks post-surgery in all groups (P \geq
287	= 0.222) and the main effect of time (P = 0.231) were not significant. There were no
286	at two weeks post-surgery ($P = 0.107$). The interaction between time and intervention (P
285	group at one week post-surgery (P < 0.001); however, it was not significantly different
284	COL3A1 gene expression was significantly lower in the LLLT group versus the ACLR
283	and LLLT groups (P \leq 0.011) (Fig. 5c). Between the operated sides of the two groups,
282	side was significantly higher than that recorded on the contralateral side in both ACLR

- 292 In this study, we examined whether LLLT can prevent ACL reconstruction-induced
- 293 arthrogenic contracture. Our results indicate that LLLT can attenuate arthrogenic
- 294 contracture via inhibition of inflammation and fibrosis in the joint capsule.
- 295 Inflammation stimulates the formation of arthrofibrosis, which is the most
- common cause of ACL reconstruction-induced joint contracture [3,4,18-20]. Thus, anti-
- 297 inflammatory treatments may become a novel therapeutic strategy for the prevention of
- 298 joint contracture after ACL reconstruction. In this study, we focused on LLLT as an anti-
- 299 inflammatory therapy. The anti-inflammatory effects of LLLT have been reported in

300	both human and animal joints [23,25,27]. Our study corroborates these findings,
301	showing that LLLT downregulates the expression of the pro-inflammatory cytokine IL-
302	$l\beta$ at one week post-surgery. IL-1 plays an important role in the formation of
303	arthrofibrosis. For example, intra-articular injection of the IL-1 antagonist anakinra
304	increases the ROM in patients with arthrofibrosis after ACL reconstruction [22].
305	LLLT might inhibit inflammation in the posterior knee joint capsule via direct
306	and indirect effects. A previous study reported that LLLT for cultured synoviocytes from
307	rheumatoid arthritis patients decreased expression of IL-1 β at both the mRNA and
308	protein levels [38]. Thus, LLLT might inhibit inflammation by acting directly on the
309	cells in the posterior joint capsule. In addition, LLLT after injury has been shown to
310	inhibit inflammation and promote repair of the muscle [39] and bone [40], which are
311	damaged during ACL reconstruction surgery. It is considered that injured tissues can
312	lead to secondary damages in adjacent tissues through the release of inflammatory
313	cytokines. For example, exogenous inflammatory cytokines, such as IL-1 β and tumor
314	necrosis factor- α , can induce inflammatory reactions in cultured human synoviocytes
315	[41,42]. Thus, the anti-inflammatory effects of LLLT on periarticular tissues other than
316	the posterior joint capsule might indirectly contribute to the inhibition of inflammation
317	in the posterior capsule.

318	Synovial shortening and joint capsule thickening are characteristic changes in
319	arthrofibrosis, and are considered to be mechanisms of arthrogenic contracture after
320	ACL reconstruction [17-19]. In this study, accordingly, synovial shortening and joint
321	capsule thickening accompanied by upregulation of COL1A1 and COL3A1 expression
322	levels were observed after ACL reconstruction in parallel with formation of arthrogenic
323	contracture. LLLT after ACL reconstruction attenuated both synovial shortening and
324	joint capsule thickening as well as the upregulation of the COL1A1 and COL3A1 genes
325	at one week post-surgery. Therefore, the improvement in arthrogenic contracture as a
326	result of LLLT can be explained, at least in part, by the inhibition of fibrosis in the joint
327	capsule. However, at two weeks post-surgery, there were no differences in synovial
328	length or joint capsule area on the operated side between the ACLR and LLLT groups.
329	Arthrogenic contracture, represented by ROM restriction on the operated side, was
330	significantly milder in the LLLT group versus the ACLR group. Thus, improvement in
331	arthrogenic contracture by LLLT cannot be solely explained by the inhibition of fibrosis
332	in the joint capsule. Apart from joint capsule fibrosis, osteoarthritis and cyclops
333	syndrome may also contribute to ACL reconstruction-induced joint contracture [20].
334	Although we did not assess osteoarthritic changes, previous studies reported that LLLT
335	could attenuate ACL transection-induced osteoarthritis [43-45].

336	The pathways leading joint contracture may be different between joint
337	immobilization and our ACL reconstruction models. Our results suggest that
338	inflammation and fibrosis pathways contributed to the formation of ACL reconstruction-
339	induced arthrogenic contracture. Although inflammation and fibrosis in the joint capsule
340	were also detected in the immobilized knee [46,47], anti-inflammatory treatments,
341	including LLLT [48] and administration of non-steroidal anti-inflammatory drug
342	celecoxib [49], could not attenuated immobilization-induced arthrogenic contracture.
343	Thus, the contribution of inflammation and fibrosis pathways will be larger in joint
344	contracture induced by ACL reconstruction than in that induced by joint immobilization.
345	The present study has some limitations. Firstly, most ACL reconstruction
346	surgeries in patients are performed arthroscopically [50], but we selected open surgery.
347	Nevertheless, the effect of open surgery on increasing the risk of joint contracture
348	remains controversial [51,52]. Thus, contractures observed in this study may have been
349	overestimated compared with those observed following arthroscopic surgery. However,
350	we previously revealed that arthrotomy (i.e., opening of the joint capsule) alone did not
351	reduce ROM after myotomy under our experimental conditions [36]. Secondly, the
352	follow-up periods were relatively short (up to two weeks). Additional long-term studies
353	are warranted to confirm the favorable effects of LLLT on joint contracture. Thirdly, rats

354	in ACLR group did not undergo daily anesthesia. Between the ACLR and LLLT groups,
355	however, there were no differences in all parameters on the contralateral side. Thus, we
356	consider that effects of anesthesia on contracture formation were negligible. Fourthly,
357	we used young rats (eight-week-old) for the experiment, because ACL reconstruction
358	surgery in pediatric and the adolescent patients has steadily increased [53]. The effect of
359	age on the ACL reconstruction-induced joint contracture remains controversial [54-56],
360	and we cannot exclude the possibility that different results are obtained from older rats.
361	In conclusion, LLLT after ACL reconstruction could attenuate the formation of
362	arthrogenic contracture through inhibition of inflammation and fibrosis in the joint
363	capsule. Thus, LLLT may be a novel, safe, and effective therapeutic approach for
364	treating ACL reconstruction-induced joint contracture.
365	
366	Declaration of Conflicting Interests
367	The authors declare that there is no conflict of interest.
368	
369	Acknowledgements
370	This work was supported by grants from The Japanese Society of Physio Therapeutics

and JSPS KAKENHI (Grant Number 20K19400). We acknowledge technical assistance

372	from Mayuki Arataki, Yudai Ishikawa, Yusuke Ueno, Takahiro Uchiyama, Yoshiko
373	Kato, and Kei Takemaru.
374	
375	References
376	1. Musahl V, Karlsson J. Anterior cruciate ligament tear. N Engl J Med 2019;380:2341-
377	2348. https://doi.org/10.1056/NEJMcp1805931
378	2. Boutsiadis A, Panisset JC, Devitt BM, Mauris F, Barthelemy R, Barth J. Anterior
379	laxity at 2 years after anterior cruciate ligament reconstruction is comparable
380	when using adjustable-loop suspensory fixation and interference screw fixation.
381	Am J Sports Med 2018;46:2366-2375.
382	https://doi.org/10.1177/0363546518784005
383	3. Irrgang JJ, Harner CD. Loss of motion following knee ligament reconstruction.
384	Sports Med 1995;19:150-159. https://doi.org/10.2165/00007256-199519020-
385	<u>00006</u> .
386	4. Millett PJ, Wickiewicz TL, Warren RF. Motion loss after ligament injuries to the
387	knee. Part i: Causes. Am J Sports Med 2001;29:664-675.
388	https://doi.org/10.1177/03635465010290052401
389	5. Wang B, Zhong JL, Xu XH, Shang J, Lin N, Lu HD. Incidence and risk factors of

390	joint stiffness after anterior cruciate ligament reconstruction. J Orthop Surg Res
391	2020;15:175. https://doi.org/10.1186/s13018-020-01694-7
392	6. Eckenrode BJ, Carey JL, Sennett BJ, Zgonis MH. Prevention and management of
393	post-operative complications following acl reconstruction. Curr Rev
394	Musculoskelet Med 2017;10:315-321. https://doi.org/10.1007/s12178-017-9427-
395	2
396	7. Grapar Zargi T, Drobnic M, Vauhnik R, Koder J, Kacin A. Factors predicting
397	quadriceps femoris muscle atrophy during the first 12weeks following anterior
398	cruciate ligament reconstruction. Knee 2017;24:319-328.
399	https://doi.org/10.1016/j.knee.2016.11.003
400	8. Fisher SE, Shelbourne KD. Arthroscopic treatment of symptomatic extension block
401	complicating anterior cruciate ligament reconstruction. Am J Sports Med
402	1993;21:558-564. https://doi.org/10.1177/036354659302100413
403	9. Petersen W, Zantop T. Return to play following acl reconstruction: Survey among
404	experienced arthroscopic surgeons (aga instructors). Arch Orthop Trauma Surg
405	2013;133:969-977. https://doi.org/10.1007/s00402-013-1746-1
406	10. Wright RW, Haas AK, Anderson J, Calabrese G, Cavanaugh J, Hewett TE, Lorring
407	D, McKenzie C, Preston E, Williams G, Group M. Anterior cruciate ligament

408	reconstruction rehabilitation: Moon guidelines. Sports Health 2015;7:239-243.
409	https://doi.org/10.1177/1941738113517855
410	11. Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. Plaster
411	immobilization after anterior cruciate ligament reconstruction: A prospective
412	randomized comparison with a 2-year follow-up. Scand J Med Sci Sports
413	2002;12:73-80. <u>https://doi.org/10.1034/j.1600-0838.2002.120203.x</u>
414	12. Jaspers T, Taeymans J, Hirschmuller A, Baur H, Hilfiker R, Rogan S. Continuous
415	passive motion does improve range of motion, pain and swelling after acl
416	reconstruction: A systematic review and meta-analysis. Z Orthop Unfall
417	2019;157:279-291. https://doi.org/10.1055/a-0710-5127
418	13. D'Amore T, Rao S, Corvi J, Jack RA, 2nd, Tjoumakaris FP, Ciccotti MG, Freedman
419	KB. The utility of continuous passive motion after anterior cruciate ligament
420	reconstruction: A systematic review of comparative studies. Orthop J Sports
421	Med 2021;9:23259671211013841. https://doi.org/10.1177/23259671211013841
422	14. Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological
423	mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res 2019;7:9.
424	https://doi.org/10.1038/s41413-019-0047-x
425	15. Kuszewski MT, Gnat R, Szlachta G, Kaczynska M, Knapik A. Passive stiffness of

426	the hamstrings and the rectus femoris in persons after an acl reconstruction. Phys
427	Sportsmed 2018. https://doi.org/10.1080/00913847.2018.1527171
428	16. Pinto FG, Thaunat M, Daggett M, Kajetanek C, Marques T, Guimares T, Quelard B,
429	Sonnery-Cottet B. Hamstring contracture after acl reconstruction is associated
430	with an increased risk of cyclops syndrome. Orthop J Sports Med
431	2017;5:2325967116684121. https://doi.org/10.1177/2325967116684121
432	17. Lobenhoffer HP, Bosch U, Gerich TG. Role of posterior capsulotomy for the
433	treatment of extension deficits of the knee. Knee Surg Sports Traumatol Arthrosc
434	1996;4:237-241. https://doi.org/10.1007/BF01567970.
435	18. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. A rat model of arthrofibrosis
436	developed after anterior cruciate ligament reconstruction without rigid joint
437	immobilization. Connect Tissue Res 2021;62:263-276.
438	https://doi.org/10.1080/03008207.2019.1693548
439	19. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Formation process of joint
440	contracture after anterior cruciate ligament reconstruction in rats. J Orthop Res
441	2021;39:1082-1092. https://doi.org/10.1002/jor.24800
442	20. Mayr HO, Weig TG, Plitz W. Arthrofibrosis following acl reconstructionreasons
443	and outcome. Arch Orthop Trauma Surg 2004;124:518-522.

444 <u>https://doi.org/10.1007/s00402-004-0718-x</u>

445	21. Rue JP, Ferry AT, Lewis PB, Bach BR, Jr. Oral corticosteroid use for loss of flexion
446	after primary anterior cruciate ligament reconstruction. Arthroscopy
447	2008;24:554-559 e551. https://doi.org/10.1016/j.arthro.2007.10.013
448	22. Magnussen R, Brown C, Lawrence T, Toth A. Intra-articular anakinra for the
449	treatment of persistent inflammation and arthrofibrosis following anterior
450	cruciate ligament reconstruction. Duke Orthopedic J 2011;1:51-56.
451	https://doi.org/10.5005/jp-journals-10017-1008
452	23. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Low-level laser therapy
453	prevents treadmill exercise-induced progression of arthrogenic joint contracture
454	via attenuation of inflammation and fibrosis in remobilized rat knees.
455	Inflammation 2019;42:857-873. <u>https://doi.org/10.1007/s10753-018-0941-1</u>
456	24. Geneva, II. Photobiomodulation for the treatment of retinal diseases: A review. Int J
457	Ophthalmol 2016;9:145-152. https://doi.org/10.18240/ijo.2016.01.24
458	25. Wickenheisser VA, Zywot EM, Rabjohns EM, Lee HH, Lawrence DS, Tarrant TK.
459	Laser light therapy in inflammatory, musculoskeletal, and autoimmune disease.
460	Curr Allergy Asthma Rep 2019;19:37. https://doi.org/10.1007/s11882-019-0869-
461	<u>Z</u>

462	26. Freitas CP, Melo C, Alexandrino AM, Noites A. Efficacy of low-level laser therapy
463	on scar tissue. J Cosmet Laser Ther 2013;15:171-176.
464	https://doi.org/10.3109/14764172.2013.769272
465	27. Soleimanpour H, Gahramani K, Taheri R, Golzari SE, Safari S, Esfanjani RM,
466	Iranpour A. The effect of low-level laser therapy on knee osteoarthritis:
467	Prospective, descriptive study. Lasers Med Sci 2014;29:1695-1700.
468	https://doi.org/10.1007/s10103-014-1576-6
469	28. Kaneguchi A, Ozawa J, Minamimoto K. The effects of low-level laser therapy on
470	joint swelling and range of motion restriction after anterior cruciate ligament
471	reconstruction in rat (in japanese). Japanese Journal of Electrophysical Agents
472	2020;27:73-77.
473	29. Tomazoni SS, Leal-Junior EC, Pallotta RC, Teixeira S, de Almeida P, Lopes-Martins
474	RA. Effects of photobiomodulation therapy, pharmacological therapy, and
475	physical exercise as single and/or combined treatment on the inflammatory
476	response induced by experimental osteoarthritis. Lasers Med Sci 2017;32:101-
477	108. https://doi.org/10.1007/s10103-016-2091-8
478	30. Kaneguchi A, Ozawa J, Moriyama H, Yamaoka K. Structures responsible for knee
479	joint contracture secondary to adjuvant-induced arthritis in a rat model. Iryo

480	Kogaku Zassi (J Med Eng) 2015:1-12.
481	31. Kaneguchi A, Ozawa J, Yamaoka K. Intra-articular injection of mitomycin c
482	prevents progression of immobilization-induced arthrogenic contracture in the
483	remobilized rat knee. Physiol Res 2020;69:145-156.
484	https://doi.org/10.33549/physiolres.934149.
485	32. Moriyama H, Yoshimura O, Sunahori H, Tobimatsu Y. Comparison of muscular and
486	articular factors in the progression of contractures after spinal cord injury in rats.
487	Spinal Cord 2006;44:174-181. https://doi.org/10.1038/sj.sc.3101802
488	33. Trudel G, Uhthoff HK. Contractures secondary to immobility: Is the restriction
489	articular or muscular? An experimental longitudinal study in the rat knee. Arch
490	Phys Med Rehabil 2000;81:6-13. <u>https://doi.org/10.1016/s0003-9993(00)90213-</u>
491	<u>2</u> .
492	34. Trudel G, Seki M, Uhthoff HK. Synovial adhesions are more important than pannus
493	proliferation in the pathogenesis of knee joint contracture after immobilization:
494	An experimental investigation in the rat. J Rheumatol 2000;27:351-357.
495	35. Wierer G, Runer A, Gfoller P, Fink C, Hoser C. Extension deficit after anterior
496	cruciate ligament reconstruction: Is arthroscopic posterior release a safe and
497	effective procedure? Knee 2017;24:49-54.

498	https://doi.org/10.1016/j.knee.2016.09.018
499	36. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Effects of each phase of
500	anterior cruciate ligament reconstruction surgery on joint contracture in rats. J
501	Invest Surg 2021:Online ahead of print.
502	https://doi.org/10.1080/08941939.2021.1985193
503	37. Kaneguchi A, Ozawa J, Kawamata S, Yamaoka K. Development of arthrogenic joint
504	contracture as a result of pathological changes in remobilized rat knees. J Orthop
505	Res 2017;35:1414-1423. https://doi.org/10.1002/jor.23419
506	38. Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE. Low level
507	light effects on inflammatory cytokine production by rheumatoid arthritis
508	synoviocytes. Lasers Surg Med 2009;41:282-290.
509	https://doi.org/10.1002/lsm.20766
510	39. Silveira PC, Scheffer Dda L, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS,
511	Latini A. Low-level laser therapy attenuates the acute inflammatory response
512	induced by muscle traumatic injury. Free Radic Res 2016;50:503-513.
513	https://doi.org/10.3109/10715762.2016.1147649
514	40. Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT,
515	Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (pbmt) in

516	bone repair: A systematic review. Injury 2019;50:1853-1867.
517	https://doi.org/10.1016/j.injury.2019.09.031
518	41. Tohidnezhad M, Bayer A, Rasuo B, Hock JVP, Kweider N, Fragoulis A, Sonmez TT,
519	Jahr H, Pufe T, Lippross S. Platelet-released growth factors modulate the
520	secretion of cytokines in synoviocytes under inflammatory joint disease.
521	Mediators Inflamm 2017;2017:1046438. <u>https://doi.org/10.1155/2017/1046438</u>
522	42. Chen J, Wu W, Zhang M, Chen C. Taraxasterol suppresses inflammation in il-1beta-
523	induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid
524	arthritis progression in mice. Int Immunopharmacol 2019;70:274-283.
525	https://doi.org/10.1016/j.intimp.2019.02.029
526	43. Assis L, Milares LP, Almeida T, Tim C, Magri A, Fernandes KR, Medalha C, Renno
527	AC. Aerobic exercise training and low-level laser therapy modulate
528	inflammatory response and degenerative process in an experimental model of
529	knee osteoarthritis in rats. Osteoarthritis Cartilage 2016;24:169-177.
530	https://doi.org/10.1016/j.joca.2015.07.020
531	44. Wang P, Liu C, Yang X, Zhou Y, Wei X, Ji Q, Yang L, He C. Effects of low-level
532	laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a
533	progressive osteoarthritis rabbit model. Lasers Med Sci 2014;29:1875-1885.

534	https://doi.org/10.1007/s10103-014-1600-x
535	45. Bublitz C, Medalha C, Oliveira P, Assis L, Milares LP, Fernandes KR, Tim CR,
536	Vasilceac FA, Mattiello SM, Renno AC. Low-level laser therapy prevents
537	degenerative morphological changes in an experimental model of anterior
538	cruciate ligament transection in rats. Lasers Med Sci 2014;29:1669-1678.
539	https://doi.org/10.1007/s10103-014-1546-z
540	46. Yabe Y, Hagiwara Y, Suda H, Ando A, Onoda Y, Tsuchiya M, Hatori K, Itoi E. Joint
541	immobilization induced hypoxic and inflammatory conditions in rat knee joints.
542	Connect Tissue Res 2013;54:210-217.
543	https://doi.org/10.3109/03008207.2013.786056
544	47. Sasabe R, Sakamoto J, Goto K, Honda Y, Kataoka H, Nakano J, Origuchi T, Endo
545	D, Koji T, Okita M. Effects of joint immobilization on changes in
546	myofibroblasts and collagen in the rat knee contracture model. J Orthop Res
547	2017;35:1998-2006. https://doi.org/10.1002/jor.23498
548	48. Usuba M, Akai M, Shirasaki Y. Effect of low-level laser therapy (lllt) on
549	viscoelasticity of the contracted knee joint: Comparison with whirlpool
550	treatment in rats. Lasers Surg Med 1998;22:81-85.
551	https://doi.org/10.1002/(sici)1096-9101(1998)22:2<81::aid-lsm3>3.0.co;2-s

552	49. Ozawa J, Kaneguchi A, Tanaka R, Kito N, Moriyama H. Cyclooxygenase-2
553	inhibitor celecoxib attenuates joint contracture following immobilization in rat
554	knees. BMC Musculoskelet Disord 2016;17:446.
555	https://doi.org/10.1186/s12891-016-1303-5
556	50. Samuelsson K, Andersson D, Ahlden M, Fu FH, Musahl V, Karlsson J. Trends in
557	surgeon preferences on anterior cruciate ligament reconstructive techniques.
558	Clin Sports Med 2013;32:111-126. https://doi.org/10.1016/j.csm.2012.08.011
559	51. Raab DJ, Fischer DA, Smith JP, Markman AW, Steubs JA. Comparison of
560	arthroscopic and open reconstruction of the anterior cruciate ligament. Early
561	results. Am J Sports Med 1993;21:680-683; discussion 683-684.
562	https://doi.org/10.1177/036354659302100507
563	52. Graf BK, Ott JW, Lange RH, Keene JS. Risk factors for restricted motion after
564	anterior cruciate reconstruction. Orthopedics 1994;17:909-912.
565	53. Nogaro MC, Abram SGF, Alvand A, Bottomley N, Jackson WFM, Price A.
566	Paediatric and adolescent anterior cruciate ligament reconstruction surgery. Bone
567	Joint J 2020;102-B:239-245. https://doi.org/10.1302/0301-620X.102B2.BJJ-
568	<u>2019-0420.R2</u>
569	54. Nwachukwu BU, McFeely ED, Nasreddine A, Udall JH, Finlayson C, Shearer DW,

570	Micheli LJ, Kocher MS. Arthrofibrosis after anterior cruciate ligament
571	reconstruction in children and adolescents. J Pediatr Orthop 2011;31:811-817.
572	https://doi.org/10.1097/BPO.0b013e31822e0291
573	55. Huleatt J, Gottschalk M, Fraser K, Boden A, Dalwadi P, Xerogeanes J, Hammond
574	K. Risk factors for manipulation under anesthesia and/or lysis of adhesions after
575	anterior cruciate ligament reconstruction. Orthop J Sports Med
576	2018;6:2325967118794490. https://doi.org/10.1177/2325967118794490
577	56. Cinque ME, Chahla J, Moatshe G, DePhillipo NN, Kennedy NI, Godin JA, LaPrade
578	RF. Outcomes and complication rates after primary anterior cruciate ligament
579	reconstruction are similar in younger and older patients. Orthop J Sports Med
580	2017;5:2325967117729659. https://doi.org/10.1177/2325967117729659
581	
582	

583 Figures

Fig 1

584

Fig 2

Fig 3

591 ACL, anterior cruciate ligament; LLLT, low-level laser therapy.

592

593 Figure 2. Image of LLLT. LLLT was applied to the medial and lateral sides of the knee

594 joint. LLLT, low-level laser therapy.

595

596 Figure 3. ROM after myotomy. Values are shown as the mean and standard deviation. *,

597 significant difference compared with the contralateral side (P < 0.05). \dagger , significant

598 difference compared with the same side in the ACLR group at the same time point (P <

599 0.05). ACLR, anterior cruciate ligament reconstruction; LLLT, low-level laser therapy;

600 Lt, left; Rt, right; ROM, range of motion.

601

615	Figure 5. Gene expression levels in the posterior joint capsule. (a) <i>IL-1</i> β , (b) <i>COL1A1</i> ,
616	and (c) COL3A1. Values are shown as the mean and standard deviation. *, significant
617	difference compared with the contralateral side (P < 0.05). \dagger , significant difference
618	compared with the same side in the ACLR group at the same time point (P < 0.05).
619	ACLR, anterior cruciate ligament reconstruction; LLLT, low-level laser therapy; Lt, left;

620 Rt, right; *IL-1β*, *interleukin-1β*; *COL1A1*, *type I collagen*; *COL3A1*, *type III collagen*.