HIGH-RESOLUTION OBSERVING TECHNIQUES

This lecture I gave in August and May 1999 to the doctorands at the
Charles University in Prague and at the Karl-Franzens Universitat in
Graz. It should introduce the student to theoretical background and
practical solutions of problems of high-resolution observations in solar
physics. The structure of the lecture is as follows:

e Preliminaries in optics

e Atmospheric turbulence

e Long-exposure images

e Short-exposure images

e Real-time image corrections

e Data acquisition and reduction

Problems of scattered light are treated in another lecture.

The lecture is mostly based on the excellent reviews by von der
Lithe (1992) and by Bonet (1999):

Bonet J.A., 1999, High spatial resolution imaging in solar
physics, in A. Hanslmeier and M. Messerotti (eds.), “Mo-
tions in the solar atmosphere”, Dordrecht: Kluwer, pp.
1-34, and the references therein.

von der Lithe O., 1992, High spatial resolution techniques, in
F. Sanchez, M. Collados, and M. Vézquez (eds.), “Solar
observations: Techniques and interpretation”, Cambridge
University Press, pp. 3-68, and the references therein

Michal Sobotka
Astronomical Institute, Academy of Sciences of the Czech Republic,
Ondrejov



PRELIMINARIES IN OPTICS
Monochromatic plane wave

E(r,t) = Ey exp(j(wt —k - 1)) (1)
where |k| = 27 /\
Only the real part of the expression has a physical meaning.

The time-independent part is a complex amplitude
Y(r) = Ey exp(—jk-r) (2)

wavefront

e

The origin of the coordinate system is at the center of the entrance pupil.

Turbulence in the Earth’s atmosphere —
— random variations of the refractive index —
— fluctuations in the optical-path length —
— fluctuating phase delays in the wave.

Resulting phase delay ¢(r,t) describes the wavefront aberration.

Corrugated wave:
E'(r,t) = Ey exp(j(wt — (k- T+ ¢(r,1))) (3)
with complex amplitude

Y (r,t) = (r) exp(—j ¢(r, 1)) (4)
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Corrugated wavefront:

turbulence

A simple image-forming system:
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Point-spread function PSF

is a response of the telescope+atmosphere system to the point-source
signal.

In general, it depends on the positions in the object and image
planes and on the time.



Effects of corrugated wavefront: a seeing

e blurring
e image motion

e image distortion

- turbulence

The dependence of the PSF on the direction of propagation (i.e. on
the position of the source) is called anisoplanatism.

The region (solid angle) where the PSF is space-invariant is called

isoplanatic patch.
It is quite small, of about 5” at a good seeing.

Effects of the telescope:
e diffraction on the finite-size entrance pupil

e optical aberrations



Extended objects (the Sun) are composed of a collection of incoher-
ent point sources.

An ideal telescope+atmosphere system (no turbulence, no aberra-
tions, no diffraction on the entrance pupil) will form an image of the
extended object in the focal plane with a ”true” intensity distribu-
tion iy(z',y'), where 2,3y are ”true” positions of images of elementary
point sources.

Due to disturbing effects, characterized by the PSF s(z,y, 2, ¢/, t)
we obtain the observed intensity distribution

aj y7 //7/0 x y aj y7 ajl’ y” t) dxldyl (5)

For the isoplanatic optical system (PSF does not change its shape with
position) (5) can be written as

(z,y,t //20 o y)s(r — 2,y — o, t)da'dy’ (6)

This is a convolution:

i(z,y,t) = io(z, y) * s(z, y,1) (7)
or, in vectorial notation, where q = (z, y)
i(q,t) = io(q) * s(q, t) (8)

When operating with a convolution, the Fourier transform is useful,
because

I(u,t) = Iy(u) S(u,t) (9)

where u is the spatial frequency vector (coordinates in the Fourier
domain), and

I(u,t) = Fli(q,t), S(ut)=F(s(q,t)), etc.

S(u,t) is called optical transfer function OTF,
|S(u,t)| is the modulation transfer function MTF.

OTF is, in general, a complex function. If the PSF is real (always)
and even (special cases), then the OTF is real and OTF = MTF.



Reconstruction of the ”true” intensity distribution

— formal solution: I(u.t
in(q) = F~! (5((1111 t))> o

Determination of the OTF

”Fourier transform of the intensity distribution at the focal plane is
proportional to the autocorrelation of the complex amplitude of the
wave at the pupil: I = corr('W,¢/W).”

In particular, the Fourier transform of the response of the system
to a monochromatic (wavelength \) distant point source (the OTF)
can be computed from

S(ut)~ [ ¢/ (e, )W (r) ¢ (r = Afu, )W (r = Afu)dr (1)

where ¢'(r,t) = Ey exp(—j(k-r+ ¢(r,t))) = ¥(r) exp(—j ¢(r, 1))
is the incident complex amplitude,

r varies over the entrance pupil,

f is the focal length of the telescope,

W (r) is the pupil transmission function:

W (r) = 0 outside the pupil

W (r) # 0 inside the pupil, describing telescope aberrations,

Afu represents the autocorrelation shift in the focal plane,

Au is an angle corresponding to the autocorrelation shift

Assuming that:

1) The source is located on the optical axis of the telescope,

2) Ey = const (no scintillations are present, valid for D > 10 cm),
we have ¢(r) = Ey = const, and the instantaneous OTF is

S(u,t) ~ [~ W(r) W (r—Afu) exp(—j(4(r,t) - p(r—Afu,t)))dr
(12)



OTF of an aberration-free, diffraction-limited telescope
No atmospheric degradation: ¢(r,t) =0

Aberration-free telescope with circular aperture D:
W(r)=1 forr<D/2
W()=0 forr>D/2

From (12) we obtain

S(u) ~ /_fo W (r) W(r — Afu)dr (13)

Solving the integral and normalizing it to 1 at the origin we get a
rotationally symmetric function

S(u) = : <arccos(au) —auv1— oz2u2> (14)

" a=\f/D (15)

spatial frequency u is measured in the same units as 1/« (e.g. cm™1)
In this case, S(u) = OTF is real, i.e. OTF = MTF.

The telescope behaves as a low-pass frequency filter with cut-off at
au.=1.  u.=D/(Af) (em™) w.=D/X (radian™?)

D =40em
2 =550 nm

OTF = MTF

o] 1 2 u 3 4% 4

-1
u (arcsec)

The cutoff u,. corresponds to an angular distance on the sky
6. = A/D (radian)

We cannot get any information about objects smaller than 6.
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PSF of an aberration-free, diffraction-limited telescope

PSF = s(r) = F1(S(u))
(Jl(g?r))Q (16)

r

s(r) =

N | =

This is so-called Airy function.
Ji is the Bessel function of order 1.

The first minimum (0) of s(r) is at 7y = 3.83 \f /(7w D) (cm)

PSF

o" 02" T ooaqv 0.6" 0.8"

r (arcsec)

r1 corresponds to angular distance ¢; = r1/f = 3.83 /(7 D),
6, =122)\/D =1.220. (radian)

Rayleigh resolution limit:

”Two points on the sky are resolved when a maximum of the Airy’s
pattern of the first one falls into the minimum of the second one”

— that is, when they are at the angular distance 6.

61 corresponds to spatial frequency u; < wu.. At Rayleigh resolu-
tion limit the value of OTF is 0.0894, so that at this frequency the
telescope still transmits about 9 % of the original signal.



ATMOSPHERIC TURBULENCE

Atmospheric turbulence — changes of temperature T —
— changes of refractive index n

An=7.6-107" % AT (17)

p (pressure) in mb, T in K
Good sites are those with small AT in the atmosphere. The statistics
of the temperature field is determined by the turbulent motions:

e Heating of the terrestrial surface —
— large-scale thermal convection. This corresponds to the
outer scale of turbulence, Ly~ 30m

e Turbulent regime: fragmentation of the large-scale convection
pattern into smaller cells down to a certain limit, /.

e Inner scale of turbulence, [y~ 3mm
At this scale, the kinetic energy is dissipated into heat by viscous
friction. The turbulent regime takes place between L and [.

Statistical description of the temperature field:

Temperature structure function Dp

is defined as a statistical variance (02) of temperature differences be-
tween two points at a distance p:

Dr(p) = (|T(r,t) = T(r + p,t)[*) (18)
(...) means averaging in time.

In the turbulent regime, for /[y < p < Ly, the Obukhov’s law is

valid:
Dr(p) = C2 (19)

where C7 is called temperature structure constant.



Statistical description of the refractive index fluctuations:
Index structure function D,,
is derived from (17) and (19):

-5 P
Dy(p) = (76107 B)2 o2 28 (20)
D(p) = C2 p*F* (21)

where (), is the index structure ”constant”.
C, depends on p, T, i.e. it varies with the height in the atmosphere.

Temporal fluctuations of atmospheric inhomogeneities are in the
frequency range of 1 — 100 Hz.

e Short exposure time of about 10 ms or less can freeze the image
but the instantaneous OTF is complicated.

e Long exposure time > 0.1 s makes time-averaging of the instan-
taneous OTF and the resulting OTF is more simple.
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LONG-EXPOSURE IMAGES
Long-exposure OTF

Long exposure time > 0.1 s produces time-averaging (...) of the in-
stantaneous OTF'. In the Fourier domain:

(I(u,1)) = Io(u) (S(u,t)) (22)
(S(w,0) ~ [~ W (X)W (r=Afu) fexp(=j((r, ) — o(r—Afu, 1)) dr
(23)
o(r,t) — p(r—Afu,t) is a random variable for which a Gaussian dis-
tribution can be assumed, so that
(exp(—3(9{r, ) ~9(r-Afu, 1)) = exp (=5 16(0,6) — dr—Afu, )
(24)
The term (a real number) { |p(r,t) — ¢(r—Afu,t)*)
is the mean phase-delay difference between two points at the telescope

pupil, separated by

p=Xfu
and, analogously to Dp, we can call it wave structure function
Dy(p) = (lo(r,t) — ¢(r + 7, t)[*) (25)

Since ¢ is a function of the refractive index n, Dy can be related to the
statistics of the fluctuations of n along the ray path in the atmosphere,
and (25) turns into

Dy(p) = 2.91k* (cosy) ™ p*/* [ C2(h) dh (26)

k=2m/\,

~ is the zenith distance, and

h is the height in the atmosphere.

We see that C), determines the quality of image.

Finally, using (25) in (23), the long-exposure OTF can be written
as

(S(u,t)) ~ [~ W(r) WHr—Afu)dr - exp (—%D¢(p)> (27)
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Fried parameter r

o= (04237 (cosy)™" [ C2( ) (28)
Dy(p) = 2.91 k% (cos)~! p*/3 /C’TQL dh
p\3/3
Dy(p) = 6.88 (—) (29)
o

ro has a dimension of length and can be used as a unique parameter
to characterize the seeing.

Let us come back to (27):

00 1
(S, ) ~ [ W) W (r—Afu)dr - exp <—§D¢,(/\fu)>
In the long-exposure OTF, the telescopic and atmospheric parts can

be separated: (S(u,t)) = Ster(u) - (Satm(u,t))

OTF of the aberration-free telescope:

Ster(u) = : (arccos(au) —auv1— oz2u2>

™

The long-exposure atmospheric OTF: (a real and even function)

(St (1 £)) = exp (—% D\ fu))

(Sutm (1)) = exp ( 3.44 (/\fu>5/3)

r'o

(Satm(u,t)) = exp(—3.44 (5u)5/3) (30)
where [ = Af/rg.

We see that ry plays a similar role in the long-exposure atmospheric
OTF like D in the telescopic OTF. Also, in both cases, OTF = MTF.
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The Fried parameter can be interpreted as the diameter of a dif-
fraction-limited telescope located outside the atmosphere, that gives the
same resolution as an infinitely large (non-diffracting) perfect telescope
observing through the atmosphere.

The larger rg, the better the seeing. At very good sites (Canary Is-
lands), 20 cm < 79 < 30 cm, occasionally ¢ ~ 50 cm.

Practical resolution of the system telescope+atmosphere
for long exposures:

e D < ryg: The resolution 1s limited by the telescope.
The cut-off frequency is u. = D/(Af), corresponding to the mini-
mum angular distance 6, = A/D.

e D > ryg: The resolution 1s limited by the atmosphere.
The “cut-off frequency” is u. = ry/(Af), corresponding to the
minimum angular distance 6, = A/r.
Since ry ~ (k?)73/° — see (28), ro ~ A%, and 6, ~ A7/,
Therefore, seeing slowly improves with increasing wavelength.
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SHORT-EXPOSURE IMAGES

Short exposures (< 10 ms) can ”freeze” the image, giving higher
spatial resolution than the long exposures.

The short-exposure PSF
e has an irregular shape
e varies with time

e varies with position

The short-exposure OTF = the instantaneous OTF
(a complex function):

S(ut)~ [~ W(r) W*(r=Afu) exp(—j(4(r,t) — p(r—Afu, 1)) dr

We can get some information about this OTF taking a series of short-
exposure images (within a time interval shorter than evolutionary
changes in the object), and performing a suitable averaging in time.

This method is called speckle interferometry.

A series of N short-exposure images i;(q

):
Ii(u) = F(ii(q))
I,(u) = I()(U.) Sl(u)

where S;(u) is an instantaneous OTF of the i-th image.

With the ordinary time-averaging

1y 1y
N 2 iw) =D(w) 5 3 Siu) (31)

long—exposure OTF

we loose information at high frequencies, since the summation 3° S;(u)
produces cancellations in the complex Fourier components, mainly in
the high-frequency range.

14



Labeyrie’s method: suitable time-averaging of absolute values which
avoids cancellations of positive and negative values

LS L@F = B+ 318w (32)
e a = u e a
N 5 NN S

mean pow;;“ spectrum EEI:F

inst, OTF

frequency (r'm:l)'1 frequency (r'nd]'1

Energy transfer function ETF
BTF = = 3 [8i(u)
i=1
preserves averaged high-frequency components up to D/A\.

In the low-frequency range, vV ETF ~ long-exposure OTF.

Knowing the ETF, we can restore |[y(u)l|, i.e. the amplitude spec-
trum of the object, but not the phase spectrum. That means that the
restored intensities i are correct but they are not necessarily located
at correct places.

There are also methods to restore phase spectra (Knoz & Thompson).

15



How to obtain the ETF ?

Stellar observations: from time-averaged power spectra of unresolved
bright stars (point sources).

Solar observations: reference point sources are not available.
The ETF has to be obtained from numerical models parametrized
by the Fried parameter ry and the telescope aperture D (Korff).

And how to find ry ?
Comparing (31) and (32) we get

|2 Ii(a)? _ | >N, Si(u)? _ |long — exp. OTF |?
SN L2 2N, 1Si(n))? ETF

(33)

Both ETF and long-exposure OTF depend on ry — see the figure of
OTF and ETF. The ratio (33) is nearly constant at low frequencies,
shows a strong bend at u ~ r¢/A, and then decreases. Fitting model
curves to observed ratio | ¥ I;(u)|?/ 3 |I;(u)|? we obtain 7y, the model,
and, finally, the ETF.

ratio value

frequency (r'ad)"'
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Polynomial description of wavefront aberrations:
Zernike polynomials

After passing the atmosphere+telescope system, at the exit pupil
(radius R) of the telescope we receive the corrugated wavefront whose
aberrations ¢(r,6) (r,0 are polar coordinates) can be expanded in a
series of orthogonal Zernike polynomials Z;(p, ), p=r/R,

where a; are weighting factors.

The first few Zernike polynomials correspond to the classical
optical aberrations:

AR piston (constant offset, no effect)

Zys:  tilt (image motion)

Zy defocus (change of wavefront curvature)
Zs¢ . astigmatism

)

Z7_1p : coma

Z11 spherical aberration

17



The polynomial expansion of ¢(r, #) is a utilized in the

Phase-diversity technique for image reconstruction

Two images, i1, 12, are observed simultaneously:
11 in the focal plane

19 out of focus, by a known distance [

telescope

Known amount of defocus — known phase error (phase diversity)
A¢ ~ Z4
n(q) = io(q) * s1(q)

i2(q) = io(q) * s2(q)

We must find a combination of object iy and PSFs si, s9 that mini-
mizes a functional

/((h(CI) —ig(a) * s1(a))” + (i2(a) —io(a) * s2(q))*) dg
or, equivalently, in the Fourier domain

J (L) = To(w) Si (@) + | F2(w) = To(w) Sa(w)[*) du

The difference between Sy, .59, due to defocus, is known. Iy, Is come
from observations. From the minimization, using the expansion of
S1, Sy into Zernike polynomials, we obtain 1.

18



REAL-TIME IMAGE CORRECTION

Tilts of the wavefront (Z,, Z3) — image motion

— sunspot tracker, correlation tracker

Higher-order aberrations — image motion, defocus, astigmatism,

coma, image distortion, ...
— adaptive optics systems

Sunspot tracker

A significant, high-contrast feature in the image (sunspot, pore).

Stabilized beam

Incident beam

Quad cell
Tilting
mirror
——
Actuators
Differential - High R Low |
amplifiers volt. pass
amplif. filter 50 - 100 Hz

Sunspot tracker

Analog system, 2 degrees of freedom.
Simple, reliable, often used.

19



Correlation tracker

Low-contrast, homogeneous structures (solar granulation).

Stabilized beam Incident beam

High-speed CCD

2000 frames /s Tilting
mirror
s
Live image Actuators
: i Low
Ref. Proces- | o High | |
image sor volt. _ pass
amplif. filter 50 - 100 Hz

Correlation tracker

Digital system, 2 degrees of freedom.

In the processor, the liwe image is correlated with a reference image
(updated every 10 s), and the shift of image corresponding to the best
correlation is computed.

Fast absolute differences algorithm used for correlation:

D(k, 1) => |ivet( + &k, 7 + 1) — dive(4, 7)| = minimum
i

where (i, 7) is the pixel position at the detector, and (k,[) is the cor-
relation shift.

20



Adaptive optics systems

Deformable mirrors (segmented or elastic) driven by digital systems.

e Slow systems (several Hz) compensate time-dependent aberrations
and the telescope, e.g. slow mechanical deformations (large thin
mirrors).

e Fast systems (500-1000 Hz) for seeing corrections (in develop-
ment).

N degrees of freedom = N channels

To compensate the effects of atmospheric turbulence and aberrations
of the telescope, i.e. to reach the diffraction-limited resolution,

N > (D/ry)? (D — aperture, ry — Fried parameter).

Stabilized beam Incident beam

Wavefront sensor

Deformable
mirror

Actuators

—— [T
Y

Control unit

Adaptive optics system

The wavefront sensor determines the wavefront deformation ¢.
Hartmann-Shack wavefront sensor:
2-D array of detectors, each detector has its own microlens.
Each local ¢ produces a shift of image on the corresponding detector.
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DATA ACQUISITION AND REDUCTION
Image acquisition

2-D solid-state detectors (CCD cameras) — images in the form of
2-D digital arrays of image elements — pixels.

To achieve high spatial resolution:
e short exposures
e moments of good seeing

e selection of recorded frames

Real-time frame selection

Indicator of image quality: rms contrast of granular field.

| [EL LG m s

A rms = =
frms = 5 N M 1
N x M — size of the granular field (in pixels)
7 — mean intensity in the granular field

Real-time frame selection

[| cco

LN
NDﬂ(i 2/fT

| |
L e ]

Better frame remains in the buffer, worse frame is overwritten by the
actual one. At the end of selection period remains the best frame.
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Image pre-treatment

Each pixel of the detector slightly differs in:
e dark current dc — response to zero illumination

e gain — responsitivity (sensitivity) to illumination 4

Assuming the detector to be linear:

response = 1 - gain + dc

_ response — dc (36)

gain

We need a map of dark current — an image taken with obstructed
light path. To remove the noise we average many (~ 50) such images.

We need a map of gain, which can also include other disturbing
effects:

— dust particles on optical surfaces,

— gradients of illumination,

— interference fringes.
This map is called flatfield ff. It is obtained as an image of a uni-
form source under identical observing conditions.
In practice, it can be obtained by defocussing the telescope, and taking
many frames while the telescope moves quickly to blur the structures
in the image. About 50-100 frames are necessary to average.

Then, the first step in data reduction is the dc + flatfield correction.
From (36) we have for each pixel

Z‘raw - dC

= h (37)

23



What to do with images of spectra where also spectral lines are
present in the flatfield?
Spectrograph settings and wavelength must be preserved.

2 Ve

L, ff 1. 2. ef 3.ff/ef

1. Compress the flatfield f f in y-direction, to obtain one average row
(in the flatfield, spectral lines must be exactly in the y-direction).

2. Expand the average row by replicating to the size of the original
2-D flatfield. This expanded image ef contains information only
about the spectral lines.

3. Divide ff /ef. The result is a flatfield without spectral lines.

Normalization

To compensate for changes in transparency of the sky and changes of
exposure times, each frame is usually normalized to the mean intensity
1, of a quiet (undisturbed) region (in spectra, to the mean continuum
intensity of a quiet region): inorm = @/ 7.
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Image deconvolution

How to compute the ”true” intensity distribution ¢y from the ob-
served ¢ 7 At a given instant (fixed time)

i(q) =io(q) * s(q)
and in the Fourier domain
I(u) = Iy(u) S(u)

We can determine the OTF in the following cases:
— diffraction-limited telescope,
— long exposures,
— short exposures.

The formal solution is given by (10):

) = (g

Problems:
e Information at frequencies beyond the cutoff cannot be restored.

e NOISE n(q) — mostly thermal noise of the CCD detector.

Assumption:

No correlation between signal and noise. — The noise can be con-
sidered as an additive contribution to the signal.
The noisy observed image can be expressed as:

in(q) = io(q) * s(q) +n(q) = i(q) +n(q)

and in the Fourier domain

25



The formal solution of the deconvolution then gives:

Iv(w) _ I(w)  N(u)
S(u)  S(u)  S(u)

(39)

This means that the noise is also restored (amplified). At high fre-
quencies, where the amplification is strong and the signal-to-noise ratio
(SNR) is low, the noise will be enhanced too much.

Prior to the restoration, the noise has to be filtered:
Ip(u) = (I(u) + N(u)) ®(u) (40)
where ®(u) is a filter.

Optimum filter ®(u)

®(u) (a real function) weights Fourier components according to the
level of noise at each frequency u.

A condition to define the optimum filter:
5= g (1(@) = ir (@) da = minimunm
In the Fourier domain (according to the Parseval’s theorem)

6= / |I(u) — Ir(u)|*du = /62 du = minimum (41)

where € is a residual error. From (40) and (41) we get

5= [11w)(1 — ®(u) — N(u) ®(u) P du = minimum (42

~~

signal notse

Since we assumed that the noise is uncorrelated with the signal, the
cross products in the development of the squared modulus will be zero
and (42) can be re-written as
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5= [(T() (1= ®(w)*+ |[N(w)* *(u)) du = [ &du = minimum

(43)
Finding the minimum of 4,
Oe? 5 9
a0 = 2HW (1= 2(u)) +2[N(u)["¢(u) =0
we obtain the optimum filter
I 2

[T()? + [N (w)]*

The optimum filter is determined by the power of observed signal and
by the power of noise.

Combining the optimum filter (44) with the restoration process (10)
we obtain the optimum restoration filter ®py(u)

() 1

26 = TP+ NP 50

(45)

and the image deconvolution has to be done following to the formula

io(q) = F~'(Ix(u) - @r(u)) (46)
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Practical realization of ®z(u) for S(u) € R, i.e. OTF = MTF
(diffraction-limited telescope, long exposures, amplitude restoration
for short exposures — S(u) = VETF).

Substituting I(u) = y(u) S(u) in (45) we have

[ Zo(w)[* S(u) 1

P = TR s2() + IN@E S

that means

S(u)

Pp(u) = S2(u) + |N(u)/Iy(u)|?

(47)

The restoration filter depends on the MTF and on the ratio of powers
of the noise and signal, i.e. on the power of 1/SNR.

Variations of SNR with u can be modelled:
e By a constant:
[N (u)/Io(u)]* =1/C

This is a rough approximation but it works in many cases when
the noise is not too strong. C' must be determined empirically
from the shape of restored images; C' ~ 10 to 50.

_o+1 S(u)

(W) ==~ Sy + /¢ (48)
e By a linear relation:
[N (u)/Io(w)]” =0 for [u| < fuy
[N(w)/T(w) = K(u—w) for [u] > [ul
So that,
®p(u) =1/5(u) for |u| < |uy|
B p(u) Su) for [ul > |ug| (49

~ S2(u) + K(u—up)
Here the filtering takes place only for |u| > |uy| and we can better

determine the shape of the filter, but two free parameters, K, uy,
have to be found by trial and error.
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MTF and Optimum Restoration Filters

0 1 2 3 4 5
Frequency (arcsec)™

An example of the telescope MTF for D = 50 cm and A = 550 nm
(solid line) together with optimum restoration filters:

1. Constant SNR (long dash), C' = 30.

2. Linear increase of SNR (dash-dot), K = 0.05, ug = 2.5 (arcsec) !
— see the vertical dashed line.

The cutoff frequency wu, is 4.4 (arcsec)™1.
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Time series
— corrections for image motion and distortion

Time series are necessary to study the dynamics of solar features,
e.g. lifetimes, photometric and morphological evolution, proper mo-
tions, oscillations, etc. Also necessary for speckle interferometry.

Image motion

Global displacements of images in the series — wavefront tilts and
mechanical vibrations of the telescope.

Correction:
Realignment of each frame with a reference tmage ip
by cross-correlation techniques.
Correlation:

C(d) = [ij(a)ir(a+d)dq (50)
We look for a shift A, where C(A) = mazimum,
and shifting i;(q) by —A we compensate the displacement.

Reference image:

e If the observed structures do not evolve significantly during the
series, we can take any frame as a reference (e.g. first, middle,
average image...)

e If the observed structures exhibit significant evolutionary changes,
we use the method of cumulative displacements:

1. We compute a set of relative displacements A;;_; of couples
of consecutive frames %;_1,¢;.

2. The vectorial summation of relative displacements gives the
cumulative displacement of j-th frame with respect to the first
one in the series:

Aj = Z Ak,k—l

k<j
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Image distortion

Image distortion is due to anisoplanatic image motion. It is seen in a
movie as relative random displacements between different parts of the
image.

Correction: destretching
To correct for image distortion we must determine a map of local dis-
tortions A(q) = (Az(q),Ay(q)) for each frame with respect to a
reference image.

Reference image:
Temporal running average of a few images preceding and following the
current frame.

A(q) is determined from local correlation:

C(d,q) = [i(h)ir(h+d)w(q— h)dh (51)

w(q — h) — correlation window centered on a variable position
q; usually a Gaussian bell with FWHM comparable with
the isoplanatic patch (2”—4”). w moves along the whole
image.

i(h) w(q — h) — a part of the image centered at q that will be
correlated with 5.

C(d,q) represents a correlation (for a shift d) around the
position q. Since the displacements are small, we need to
compute C(d, q) only for a few values of d to find

C(A,q) = mazimum.

Having A for each q we determined A(q) —a map of local distortions.
Then, the rectified (destretched) image will be

Z'7“ect(q) = Z(q - A(q))

Since A(q) is not necessarily integer, an interpolation has to be used.

END
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